
Greedy algorithms

How to design algorithms:

Input Goal

We can:
1. Try to develop a completely new algorithm.
2. Modify some existing algorithm.

If we try the second possibility we can:
1. Modify a specific algorithm.
2. Try an algorithm from a general class of
algorithms.

Examples of algorithms to use in case 1 could be:

Graph algorithms
Flow algorithms
Linear programming (Simplex method)

Page 1Page 1

We will describe three classes of algorithms that
can be used in case 2:

Greedy algorithms

Divide & Conquer algorithms

Dynamic Programming algorithms

But first, an example of how we can modify an
existing algorithm. Remember DFS:

The algorithm can be used both for directed and
undirected graphs.

Set R = ∅
For all v ∈ V
 Set vis(v) = 0
End for
DFS(s)

DFS(u):

Set vis(u) = 1
Add u to R
For each v such that v is adjacent to u
 If vis(v) = 0
 DFS(v)
 End if
End for

Page 2Page 2

DIRECTED CYCLE
Input: A directed graph G
Goal: Does G contain a directed cycle?

Modified DFS:

DFS_Mod(u):

Set vis(u) = 0,5
For each v such that v is adjacent to u
 If vis(v) = 0,5
 Return "Yes"
 Else if vis(v) = 0
 DFS_Mod(v)
 End if
End for
Set vis(u) = 1

We can prove that this algorithm stops and returns
Yes or No correctly.

For all v ∈ V
 Set vis(v) = 0
End for
While there is v such that vis(v) = 0
 DFS_Mod(v)
Return "No "

Page 3Page 3

Greedy algorithms

In this lecture we will describe a general template for finding algorithms. It works in a
surprisingly large number of cases. It's the method of greedy algorithms.

We will study a special type of problems. We want to make choices. Let's say that
we make choices c[1], c[2], c[3], ... At each step in the algorithm we have a set of
possible choices. When the algorithm ends we want to have a selection c[1], c[2],
c[3], ...c[k] that in some sense is correct. We assume that there, to each selection,
is associated a cost A. Let's assume that our goal is to find a correct selection with
as small cost as possible.

Furthermore, we assume that when the choice c[1] is made the remaining situation is
a problem of the same type. (This notion seems hard define in a precise way.) Then
there is a chance that a so called greedy algorithm will work.

A greedy algorithm is a an algorithm which make the choices following a very simple
(greedy) strategy. What this means depends on the situation. Usually there are two
sorts of greedy strategies:

1. We can make the choice c[1] so that the cost (locally) increases as little as
possible.

2. We can make the choice c[1] so that the remaining problem is as "good" as
possible.
(The first case is what we in the strictest sense means by a greedy algorithm. But
lots of interesting problems are covered by the second, more vague case.)

Page 4

 The greedy algorithm runs like this: Assume that we have made choices c[1], c[2],
c[3], ..., c[m]. If this selection is correct we stop. Otherwise, make the next choice
following your greedy strategy.

The general idea with a greedy algorithm is that you don't have to spend
long time on making your choices. You don't have to look ahead and
consider the consequences. Greedy algorithm usually have low time-

Ex:
We have the numbers 10, 5 and 1. We are given the integer N. We want to write N as a
sum of of the numbers 10, 5, 1. (We can use a number more than one time.) That is,
we want to find numbers a,b,c such that N = a 10 + b 5 + c. Furthermore, we want to
use as few terms as possible. That is, a + b + c should be as small as possible.

The solution is obvious: As long as N is greater than 9 we subtract 10 to get a new
number N and repeat. When N is smaller than 10 we subtract 5 if possible. Then
we subtract 1 until we reach 0. So, for instance, N = 37 gives a = 3, b = 1, c = 2.
Obviously, we can not do better than this. This is a greedy algorithm.

Page 5

When greedy algorithms fail

A greedy algorithm can fail for two reasons:

Ex: The same problem but with the
numbers 6, 5, 2. If we take N = 7, the
greedy algorithm subtracts 6 from 7 and
leaves us with 1. Then the algorithm fails
to reach the sum 7. The correct solution
is 7= 5 + 2.

1. It can fail to give us an optimal solution 2. It can fail to give us a correct
solution.

Ex: We take the same problem as
before, but instead of 10, 5, 1 we
use the numbers 6, 5, 1. If we have
N = 10, the greedy algorithm gives
us 10 = 6 + 1 + 1 + 1+ 1. But the
best solution is 10 = 5 + 5.

But when do greedy algorithms work? We study some examples.

Ex:
We want to drive along a road. We represent the road as a coordinate
axis. We start at x = 0 and want to go to a city x[n]. Along the road
there are other cities x[1], x[2], ...x[n-1]. A full gas tank contains gas for
A kilometers. We can fill the tank in the cities but nowhere else. We want
to reach x[n] and tank as few times as possible. How do we do that?

Page 6

 We might think that we should use some complicated strategy but
that is not so. In fact, a greedy algorithm works:

We will look at some more examples:

If we are at x[i] and have enough gas left to
reach x[i+1] we do not fill gas. Otherwise, we
get a full tank at x[i]. If it is at all possible to get
to x[n], this algorithm will take us there and fill
gas as few times as possible.

The time-complexity is O(n).

Set L = ∅
Set i = 0
Set T = A
While TRUE do
 While x[i+1]- x[i] =< T and i < n do
 Set T = T - x[i+1] + x[i]
 Set i = i + 1
 End while
 If i = n then
 Halt
 If x[i+1] - x[i] < A then
 Return "Impossible"
 Set T = A
 Put i at the end of L
End while

Page 7

When greedy algorithms fail

A greedy algorithm can fail for two reasons:

Ex: The same problem but with the
numbers 6, 5, 2. If we take N = 7, the
greedy algorithm subtracts 6 from 7 and
leaves us with 1. Then the algorithm fails
to reach the sum 7. The correct solution
is 7= 5 + 2.

1. It can fail to give us an optimal solution 2. It can fail to give us a correct
solution.

Ex: We take the same problem as
before, but instead of 10, 5, 1 we
use the numbers 6, 5, 1. If we have
N = 10, the greedy algorithm gives
us 10 = 6 + 1 + 1 + 1+ 1. But the
best solution is 10 = 5 + 5.

But when do greedy algorithms work? We study some examples.

Ex:
We want to drive along a road. We represent the road as a coordinate
axis. We start at x = 0 and want to go to a city x[n]. Along the road
there are other cities x[1], x[2], ...x[n-1]. A full gas tank contains gas for
A kilometers. We can fill the tank in the cities but nowhere else. We want
to reach x[n] and tank as few times as possible. How do we do that?

The time-complexity is O(n).

Page 8

Page 9

The Minimal Spanning Tree Problem

If G is a connected graph,then a spanning tree is a tree that contains all
nodes in G.

Obs: If | V | = n and T G is a tree then

T is spanning | E | = n - 1

A graph with node weights

Page 10

MST

A minimal spanning tree (MST) is a spanning tree such that

The MST problem:

Input: W weighted connected graph G
Goal: A MST in G

is minimal.

Page 11

 Kruskal's algorithm

Sort the edges such that w(e₁) ≤ w(e₂) ≤ ...
Set A = ∅
For each eᵢ in the sorted order
 If A∪{eᵢ} does not contain any cycle
 Set A = A∪{eᵢ}
 End if
End for
Return A

A first form

How do we decide the complexity? How do you know if a set of
edges contains a cycle or not? We have to describe the algorithm
more in details.

Data structures for identifying cycles:

MakeSet(v) creates the set {v}
 Complexity: O(1)

FindSet(v) finds the set containing v
 Complexity : O(log |V|)

Make Union(u,v) makes the union of the sets
containing u and v
 Complexity : O(log 1V1)

Page 12

Page 13

Another similar algorithm is Prim's algorithm

It can be showed that the complexity is O(|E| log |V|)

Page 14

