
Greedy algorithms

How to design algorithms:

Input Goal

We can: 
1.  Try to develop a completely new algorithm. 
2. Modify some existing algorithm.

If we try the second possibility we can: 
1. Modify a specific algorithm. 
2. Try an algorithm from a general class of 
algorithms.

Examples of algorithms to use in case 1 could be: 
 
Graph algorithms 
Flow algorithms 
Linear programming (Simplex method)
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We will describe three classes of algorithms that 
can be used in case 2: 
 
Greedy algorithms 
 
Divide & Conquer algorithms 
 
Dynamic Programming algorithms

But first, an example of how we can modify an 
existing algorithm. Remember DFS:

The algorithm can be used both for directed and 
undirected graphs.

Set R = ∅ 
For all v ∈ V 
 Set vis(v) = 0 
End for 
DFS(s)             

DFS(u): 
 
Set vis(u) = 1 
Add u to R 
For each v such that v is adjacent to u 
 If vis(v) = 0 
  DFS(v) 
 End if 
End for             
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DIRECTED CYCLE 
Input: A directed graph G 
Goal: Does G contain a directed cycle?

Modified DFS:

DFS_Mod(u): 
 
Set vis(u) = 0,5 
For each v such that v is adjacent to u 
 If vis(v) = 0,5 
         Return "Yes" 
 Else if vis(v) = 0 
  DFS_Mod(v) 
 End if 
End for      
Set vis(u) = 1       

We can prove  that this algorithm stops and returns 
Yes or No correctly.

 
For all v ∈ V 
 Set vis(v) = 0 
End for 
While there is v such that vis(v) = 0 
 DFS_Mod(v)    
Return "No "        
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Greedy algorithms                              

In this lecture we will describe a general template for finding algorithms. It works in a 
surprisingly large number of cases. It's the method of greedy algorithms.                              

We will study a special type of problems. We want to make choices. Let's say that 
we make choices c[1], c[2], c[3], ...  At each step in the algorithm we have a set of 
possible choices. When the algorithm ends we want to have a selection c[1], c[2], 
c[3], ...c[k] that in some sense is correct.  We assume that there, to each selection, 
is associated a cost A. Let's assume that our goal is to find a correct selection with 
as small cost as possible.                              

Furthermore, we assume that when the choice c[1] is made  the remaining situation is 
a problem of the same type. (This notion seems hard define in a precise way.) Then 
there is a chance that a so called greedy algorithm will work.                

A greedy algorithm is a an algorithm which make the choices following a very simple 
(greedy)  strategy. What this means depends on the situation. Usually there are two 
sorts of greedy strategies: 
               
1. We can make the choice c[1] so that the cost (locally) increases as little as 
possible. 
 
2. We can make the choice c[1] so that the remaining problem is as "good" as 
possible.               
(The first case is what we in the strictest sense means by a greedy algorithm. But 
lots of interesting problems are covered by the second, more vague case.)               
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                    The greedy algorithm runs like this:  Assume that we have made choices c[1], c[2], 
c[3], ..., c[m]. If this selection is correct we stop. Otherwise,  make the next choice 
following your greedy strategy.                       

The general idea with a greedy algorithm is that you don't have to spend 
long time on making your choices. You don't have to look ahead and 
consider the consequences. Greedy algorithm usually have low time-

Ex:  
We have the numbers 10, 5 and 1.  We are given the integer N. We want to write N as a 
sum of  of the numbers  10, 5, 1. (We can use a number more than one time.) That is, 
we want to find numbers a,b,c such that N = a 10 + b 5 + c. Furthermore, we want to 
use as few terms as possible. That is, a + b + c should be as small as possible.                    

The solution is obvious: As long as N is greater than 9 we subtract 10 to get a new 
number N and repeat. When N is smaller than 10 we subtract 5 if possible. Then 
we subtract 1 until we reach 0. So, for instance,  N = 37 gives a = 3, b = 1, c = 2. 
Obviously, we can not do better than this.  This is a greedy algorithm.                    
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When greedy algorithms fail 

A greedy algorithm can fail for two reasons: 

Ex:  The same problem but with the 
numbers 6, 5, 2. If we take N = 7, the 
greedy algorithm subtracts 6 from 7 and 
leaves us with 1. Then the algorithm fails 
to reach the sum 7. The correct solution 
is 7= 5 + 2. 

1. It can fail to give us an optimal solution 2. It can fail to give us a correct 
solution. 

Ex:  We take the same problem as 
before, but instead of 10, 5, 1 we 
use the numbers 6, 5, 1.  If we have 
N = 10,  the greedy algorithm gives 
us 10 = 6 + 1 + 1 + 1+ 1.  But the 
best solution is 10 = 5 + 5. 

But when do greedy algorithms work? We study some examples. 

Ex: 
We want to drive along a road. We represent the road as a coordinate 
axis. We start at x = 0 and want to go to a city x[n]. Along the road 
there are other cities x[1], x[2], ...x[n-1]. A full gas tank contains gas for 
A kilometers. We can fill the tank in the cities but nowhere else. We want 
to reach x[n] and tank as few times as possible. How do we do that? 
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 We might think that we should use some complicated strategy but 
that is not so. In fact, a greedy algorithm works: 

 

We will look at some more examples: 

If we are at x[i] and have enough gas left to 
reach x[i+1] we do not fill gas. Otherwise, we 
get a full tank at x[i]. If it is at all possible to get 
to x[n], this algorithm will take us there and fill 
gas as few times as possible. 

The time-complexity is O(n). 

Set L = ∅ 
Set i = 0 
Set T = A 
While TRUE do 
 While x[i+1]- x[i] =<   T and i  <  n  do 
                 Set T = T - x[i+1] + x[i] 
                 Set i = i + 1 
 End while 
        If i = n then 
                 Halt 
        If x[i+1] - x[i] <  A then 
                 Return "Impossible" 
        Set T = A 
 Put i at the end of L 
End while 

Page 7

When greedy algorithms fail 

A greedy algorithm can fail for two reasons: 

Ex:  The same problem but with the 
numbers 6, 5, 2. If we take N = 7, the 
greedy algorithm subtracts 6 from 7 and 
leaves us with 1. Then the algorithm fails 
to reach the sum 7. The correct solution 
is 7= 5 + 2. 

1. It can fail to give us an optimal solution 2. It can fail to give us a correct 
solution. 

Ex:  We take the same problem as 
before, but instead of 10, 5, 1 we 
use the numbers 6, 5, 1.  If we have 
N = 10,  the greedy algorithm gives 
us 10 = 6 + 1 + 1 + 1+ 1.  But the 
best solution is 10 = 5 + 5. 

But when do greedy algorithms work? We study some examples. 

Ex: 
We want to drive along a road. We represent the road as a coordinate 
axis. We start at x = 0 and want to go to a city x[n]. Along the road 
there are other cities x[1], x[2], ...x[n-1]. A full gas tank contains gas for 
A kilometers. We can fill the tank in the cities but nowhere else. We want 
to reach x[n] and tank as few times as possible. How do we do that? 



 

The time-complexity is O(n). 
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The Minimal Spanning Tree Problem          

If G is a connected graph,then a spanning tree is a tree that contains all 
nodes in G.          

Obs:  If | V | = n and  T   G is a tree then 
 
T is spanning       | E | = n - 1          

A graph with node weights          
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MST        

A minimal spanning tree  (MST) is a spanning tree such that          

The MST problem: 
 
Input: W weighted connected graph G 
Goal: A MST in G          

is minimal.          
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                 Kruskal's algorithm                

Sort the edges such that w(e₁) ≤ w( e₂) ≤ ... 
Set A = ∅ 
For each eᵢ in the sorted order 
 If A∪{eᵢ} does not contain any cycle 
  Set A = A∪{eᵢ} 
 End if 
End for 
Return A                

A first form              

How do we decide the complexity? How do you know if a set of 
edges contains a cycle or not? We have to describe the algorithm 
more in details.              

Data structures for identifying cycles: 
 
MakeSet(v) creates the set {v} 
                Complexity: O( 1 ) 
 
FindSet(v) finds the set containing v 
               Complexity : O( log |V| ) 
 
Make Union(u,v) makes the union of the sets 
containing u and v 
              Complexity : O( log 1V1 )              
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Another similar algorithm is Prim's algorithm   

It can be showed that the complexity is O( |E| log |V|)   
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