

Dynamic Programming

Dynamic Programming is a general technique for constructing algorithms.
When the method works it almost always gives an efficient solution to a
problem. In order to apply the method you should go trough the following

1. Find a way if splitting your problem into subproblems. The solutions to the
subproblems will usually be recorded in an array.

2. Find a recursion formula that relates the values of subproblems to the values
of simpler subproblems.

3. Find a natural ordering of the subproblems and then compute the values of all
subproblems in that order, using the recursion formula.

Page 1: IntroPage 1

Increasing sequence of numbers

Problem: Given a sequence of numbers

x
1

, x
2

, ..., xn we want to compute the longest

sequence of increasing consecutive numbers.

Let v(i) = be the length of the longest se-

quence ending in xi.

Algoritm:

(1) v(1) 1

(2) for i = 2 to n

(3) if x(i� 1) x(i)

(4) v(i) v(i� 1) + 1

(5) else
(6) v(i) 1

(7) return v

Then we compute max
i

v(i).

Page 2: LSPage 2

Let the numbers be x[1], x[2], ... , x[n].

Set v[i] = Length of the longest increasing sequence ending in x[i]

We have a sequence of n numbers. We want to find a longest increasing subsequence.
In this case the numbers don't have to be consecutive.

(Strictly speaking, by increasing we will in this case, mean strictly increasing, i.e. <)

Longest subsequences (case 2)

Then v[1] = 1. For larger i we set v[i] = max (v[k] + 1) where the max runs over all k such
that x[k] ≤ x[i].

v[1] ←1
For i ←2 to n
 max ←1
 For k ←1 to i-1
 If x[k] < x[i] and v[k] + 1 > max
 max ←v[k]+1
 v[i] ←max
max ←0
For j ←1 to n
 If v[j] > max
 max ←v[j]
Return max

We can implement this with the algorithm:

The complexity is O(n). The algorithm
just gives us the length of the sequences
but we can modify it to give us the actual
sequences.

2

Page 3: LSPage 3

Selection of weighted intervals

As in lecture 2 we have a set of activities given by time intervals [s[i], f[i]).
We assume that the intervals are sort by increasing finishing time. In this
problem we have weights w[i] on the intervals. The problem is this:

Input: n Intervals [s[i], f[i]) with weights w[i].
Goal: Find a selection of non-overlapping intervals with maximal weight
sum.

1. How can we find natural subproblem? Why not index problems after the
numbers of intervals?

Def: Let M[k] be the maximal weigth sum you can get if you only are allowed
to use the first k intervals.

2. How do we find a recursion formula? It is obvious that M[1] = w[1].
If we want to use n intervals, how do we do? Do we include interval n in the
solution or not?

Page 4: WI 1Page 4

M[1] = w[1]
M[n] = max (M[n-1], M[k]+ w[n]) where k is the largest number such that f[k] ≤ s[n]

If we don't then obviously we get M[n] = M[n-1].

If we do, then there is a largest k such that interval k does not overlap
interval n. Then we must have M[n] = M[k] + w[n].

But now we can compare these two possible values of M[n] and see which
value is largest. From this we can tell what the best choice is.

3. We now compute the values M[1], M[2], ... , M[n] in the natural order.
We use an array choose[k] that indicates if interval k should be a part of
the optimal choice for M[k] and an array p[k] that indicates what the
previous choice in the selection corresponding to Mk] is.

Page 5: WI 2

Selection of weighted intervals

As in lecture 2 we have a set of activities given by time intervals [s[i], f[i]).
We assume that the intervals are sort by increasing finishing time. In this
problem we have weights w[i] on the intervals. The problem is this:

Input: n Intervals [s[i], f[i]) with weights w[i].
Goal: Find a selection of non-overlapping intervals with maximal weight
sum.

1. How can we find natural subproblem? Why not index problems after the
numbers of intervals?

Def: Let M[k] be the maximal weigth sum you can get if you only are allowed
to use the first k intervals.

2. How do we find a recursion formula? It is obvious that M[1] = w[1].
If we want to use n intervals, how do we do? Do we include interval n in the
solution or not?

Page 5

Since the algorithm has two loops of size n (in
the worst case) we get complexity O(n)

When the algorithm has stopped we get the
solution from M[n]. If we want to know which
intervals we should choose we just check the
sequence
choose[n], choose[p[n]], choose[p[p[n]]], ...
and so on for the value TRUE.

M[1] ← w[1]
p[1] ← NULL
choose[1] ←TRUE
For i ←2 to n
 If f[1] > s[i]
 If w[i] > M[i-1]
 M[i] ←w[i]
 choose[i] ←TRUE
 p[i] ←NULL
 Else
 M[i] ←M[i-1]
 choose[i] ←FALSE
 p[i] ←i-1
 Else
 k ←1
 While f[k] ≤ s[i]
 k ←k+1
 k ←k-1
 If M[i-1] > M[k] + w[i]
 M[i] ←M[i-1]
 choose[i] ←FALSE
 p[i] ←i-1
 Else
 M[i] ←M[k] + w[i]
 choose[i] ←TRUE
 p[i] ←k

We assume that the intervals are sorted in
increasing f[i].

We have choose[i] = TRUE iff interval i is
part of the optimal choice in M[i].
P[i] = k means that M[k] is the previous
choice in building up the optimal choice M[i].

2

Page 6: WI 3Page 6

One more problem

Problem: Find the path from top to bottom

that maximizes the sum of the numbers.

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫

��
⌫
7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

�
�↵

�
�↵

A
AU

�
�↵

Let aij be the number in row i, column j.

Let V [i, j] be the value of the best path from

(i, j) down to bottom row n. Then

V [i, j] =

⇢
aij i = n,

aij +max

�
V [i+1, j], V [i+1, j +1]

otherwise.

Page 7Page 7

Compute all V [i, j]:

(1) for j = 1 to n

(2) V [n, j] anj
(3) for i = n� 1 to 1

(4) for j = 1 to i

(5) V [i, j] aij+

max{V [i+1, j], V [i+1, j +1]}

The runtime for finding V [1,1] is ⇥(n2).

Page 8Page 8

What are the natural subproblems here? We can try to get the sum M by using fewer
than n integers. Or we can try to get a smaller sum than M. In fact, we will combine
these two ideas.

Subset Sum

We assume that we have n positive integers a[1], a[2], ... , a[n]. We are given an
integer M. We want to know if there is a subset of the integers with sum M.

If v[i,m] = 1 it must be either because we can get m just by using the numbers
a[1], a[2], ... , a[i-1] or because we can get the sum m - a[i] by using the same
numbers. We get the recursion

We now try to construct an algorithm. We have to order the subproblems. We
compute all v[i,m] by running an outer loop over 1 ≤ i ≤ n and an inner loop over
1 ≤ m ≤ M.

Set v[i,m] = 1 if there is a subset of a[1], a[2], ... , a[i] with sum m and v[i,m] = 0
otherwise.

v[1, 0] = 1
For all i such that 2 ≤ i ≤ n and all m such that a[i] ≤ m
v[i,m] = max (v[i-1,m], v[i-1,m-a[i]])

Page 9: SS 1Page 9

When the algorithm stops, the value of v[n,M] tells us the solution to the problem.
(1 = " It's possible" , 0 = " It's not possible".) The complexity is O(n M).

It should be noted that this algorithm could not strictly be considered efficient
since it is not polynomial in the size of the input. This is because it is n and log M
which are the input sizes. However, if M is not a large integer, the algorithm could
be considered efficient. But there are no known algorithms which solve the
problem for all inputs.

The algorithm does only work for integers. If we have real numbers as input, the
problem is much more complicated.

Set all v[i,j] = 0
For i ←1 to n
 v[i,0] ←1
For i ←2 to n
 For m ←1 to M
 If v[i-1, m] = 1
 v[i,m] ←1
 Else If m > a[i] and v[i-1, m-a[i]] = 1
 v[i, m] ←1
Return v[n,M]

Page 10: SS 2Page 10

In Dynamic Programming- problems we some value we want to optimize. We
express this value with some array like v[n] and the try to find a recursion
formula and then use it to find all values of v[i]. In some situations we just want
to find these values. But the problem could also be about finding the actual
"choises" leeding to these values. If we have an algorithm which solves the
recursion equation, we can modify it so that it also gives us the actual choices.

For instance, in the previous problem we wanted to to find the values v[i,m]. If we
know that v[i,m] = 1 and also want to find the terms in the sum, we can modify
our algorithm:

Set all v[i,j] = 0
For i ←1 to n
 v[i,0] ←1
 choose[i,0] ← FALSE
 p[i,0] ← NULL
For i ←2 to n
 For m ←1 to M
 If v[i-1, m] = 1
 v[i,m] ←1
 choose[i,0] ← FALSE
 p[i,m] ← [i-1,m]
 Else If m > a[i] and v[i-1, m-a[i]] = 1
 v[i, m] ←1
 choose[i,m] ← TRUE
 p[i,m] ← [i-1,m-a[i]]
Return v[n,M]

Page 11

In Dynamic Programming-problems we have some value that we want
to optimize. We express this value with some array like v[n] and try to
find a recursion formula and then use it to find all values v[i]. In some
cases this is all we want. In other cases we might want to find the actual
"choices" leading to these values. If we have an algorithm which solves
the recursion equation we can often modify it so that it gives us the
actual choices.

New

Page 11

Shortest paths in graphs

In lecture 3 we discussed the problem of finding shortest paths in graphs with
negative weights. Floyd-Warshall's algorithm is a dynamic programming algorithm for
solving the problem. Actually it find the shortest distances between all pairs of
nodes. We assume that we have no negative cycles.

d[i,j,0] = w[i,j] for all i,j (w[i,j] = ∞ if there is no edge (i,j))
d[i,j,k] = min (d[i,j, k-1] , d[i,k, k-1] + d[k,j, k-1]) 1 ≤ k ≤ n

Recursion:

Subproblems:
 We set d[i,j,k] = length of shortest path using just nodes i,j and
 nodes 1,2, ... , k.

Page 12: SPPage 12

For i ←1 to n
 For j ←1 to n
 d[i,j,0]←w[i,j]
 p[i,j,0]←i
For k ←1 to n
 If d[i, j, k-1] ≤ d[i, k, k-1] + d[k, j, k-1]
 d[i, j, k] ←d[i, j, k-1]
 p[i,j,k] ←p[i,j,k-1]
 Else
 d[i, j, k] ←d[i, k, k-1] + d[k, j, k-1]
 p[i,j,k] ←p[k,j,k-1]

For i ←1 to n
 For j ←1 to n
 d[i,j] ←d[i,j,n]
 p[i,j] ←p[i,j,n]

Algorithm:

The algorithm has complexity
O(n).

Page 13Page 13

 A recursive variant

Instead of using the bottom-up approach when solving the subset sum
problem we could try a recursive variant. We could try this:

vrek[i,m] =
 If m < 0
 Return 0
 If m = 0
 Return 1
 If vrek[i-1, m] = 1
 Return 1
 If vrek[i-1, m-a[i]] = 1
 Return 1

But this solution is no good. The problem
is that the algorithm uses repeated calls
to subproblems that already have been
solved.

Page 14: SS 2

Set all comp[i,j] to FALSE
Set all v[i,j] to 0

vrek[i,m] =
 If comp[i,m]
 Return v[i,m]
 If m < 0
 Return 0
 If m = 0
 Return 1
 If vrek[i-1, m] = 1
 comp[i,m] ← TRUE
 v[i,m] ←1
 Return 1
 If vrek[i-1, m-a[i]] = 1
 comp[i,m] ← TRUE
 v[i,m] ←1
 Return 1

This technique of remembering already computed
values is called Memoization. Sometimes it can be
useful, but in most cases the bottom-up method
should be preferred.

But this modification of the recursive algorithm works better:
Page 15: SS 3

