Dynamice Programming

Dynamic Programming is a general technique for construeting algorithms.
When the method works it almost always gives an efficient golution to a
problem. In order to apply the method you should go trough the following

(. Find a way if splitting your problem into subproblems. The solutions to the
subproblems will usually be recorded in an array.

2. Find a recursion formula that relates the values of subproblems to the values
of simpler subproblems.

3. Find a natural ordering of the subproblems and then compute the values of all
subproblems in that order, using the recursion formula.

Example: Steel. cutting

(This example is taken from Cormen, Leiserson, Rivest, Stein:
Introduction to Algorithms

Assume that a company Steelcutter inc. buys steel rods and cuts
them into shorter rods, which it then sells. We assume that the steel
rods all have integer lengths (before and after cutting). Let the
given price for a steel rod of length m is p(m). We can assume that
this is not a linear function in m. (Which might seem strange, but
possible.) It we have a rod of length n, it can be cutinto 1, 2, , n
pieces of varying length. If the rod is split into pieces of lengths nl,
n2, ..., nk, the company will get a revenue p(n1)+p(n2)+ ... p(nk). How
should the rod be cut?

Let V(n) be the maximal revenue the company can get from a rod of
length n. How can we find V(n)? One possibility is to make no cut at
all. Then we get p(n). Let us assume that we make a first cut of
length s.

Then we see that we must have an optimal revenue p(s) + v(n-s),
where we assume that v(n-s) is computed. We can formalize this into
a recursion formula:

JV(O) =0

LV(n) = max p(s) + V(n-s) for n> 0 (where s is an integer 1¢s <n)
3

We see that we can use the formula for recursively compute V(1),
Vv(2), ..., V(n).

Selection of weighted intervals

Asin lecture 2 we have a set of activities given by time intervals [s[i], f{i]).
We agsume that the intervals are sort by increaging finighing time. In this
problem we have weights w[i] on the intervals. The problem ig this:

[nput: n [ntervals [s[i], f[i]) with weights w[i].
Goal: Find a selection of non-overlapping intervals with maximal weight
sum.

5[\/\)l 1[(j(,l \/\)L, ﬂ‘/

53 W 100

(. How can we find natural subproblem? Why not index problems after the
numbers of intervals?

Def: Let M[k] be the maximal weigth sum you can get if you only are allowed
to use the first k intervals.

2. How do we find a recursion formula? [t is obvious that M[1] = w[l]. .
[f we want to use n intervals, how do we do? Do we include interval nin the
solution or not?

If we don't then obviously we get M[n] = M[n-(].

If we do, then there is a largest k such that interval k does not overlap
interval n. Then we must have M[n] = M[k] + w[n].

But now we can compare these two possible values of M[n] and see which
value ig largest. From thig we can tell what the best choice is.

M[1]=w(l]
M[n] = max (M[n-{], M[k]+ w[n]) wherek is the largest number such that f{k] < g[n]

3. We now compute the values M[(],M[2], ..., M[n]in the natural order.
We use an array choose[k] that indicates if interval k should be a part of
the optimal choice for M[k] and an array p[k] that indicates what the
previous choice in the selection corresponding to Mk] is.

MII] < w(l]
pll] < NULL
choose[l] < TRUE
Fori<2ton
If £11] > gfi]
If w(i] > M[i-]
M[i] <wl(i]
chooseli] < TRUE
pli] —NULL
Elge
M[i] <M[i-1]
chooseli] < FALSE
pli] <i-l
Elge
k <l
While fTk] < sfi]
k <k+l
k <k-I
I M[i-1]> M[k] + wli]
MIi] <M[i-1]
chooseli] <FALSE
pli] <i-
Elge
MIi] —MIk] + wli]
chooseli] < TRUE
plil —k

We assume that the intervals are sorted in
increaging f[i].

. We have choose[i] = TRUE iff intervaliis

part of the optimal choice in M[i].
P[i] =k means that M[k] is the previous
choice in building up the optimal choice M[i].

When the algorithm has stopped we get the
golution from M[n]. f we want to know which
intervals we should choose we just check the
gequence

choose[n], choose[p[n]], chooselp[p[n]]], ---
and so on for the value TRUE.

Since the algorithm hag two loops of size n (in
the worst cage) we get complexity O(r

Subset Sum

We assume that we have n positive integers a[l], a[2], ..., a[n]. We are given an
integer M. We want to know if there i¢ a subset of the integers with sum M.

What are the natural subproblems here? We can try to get the sum M by using fewer
than nintegers. Or we can try to get a smaller sum than M. In fact, we will combine

these two ideas.

Set v[i;m] = | if there is a subset of a[l], a[2], ..., a[i] with sum m and v[im] = O

otherwise.

If v[i,m] =l it must be either because we can get m just by using the numbers
a[l], a[2], ..., a[i-1] or because we can get the sum m - a[i] by uging the same

numbers. We get the recursion

v(l, 0] =1
For all i suchthat 2 <i < nand allm M such that a[i] < m

v[i,m] = max (v[i-I,m], v[i-I,m-a[i]])

We now try to congtruet an algorithm. We have to order the subproblems. We
compute all v[i,m] by running an outer loop over [<i< n and aninner loop over

[<m<M.

Set allv(ij]=0O
Fori<lton
V[i,0] «I
Fori<—2ton
Form <l toM
[f li-1,m] =
v(im] <l
Else lf m> a[i] and v[i-I, m-a[i]] =1
v[i, m] <l

Return v[n,M]

When the algorithm stops, the value of v[n,M] tells us the solution to the problem.
(1="I[t's possible”, O ="lt's not possible".) The complexity i Oln M).

[n Dynamic Programming-problems we have some value that we want
to optimize. We express thig value with some array like v[n] and try to
find a recursion formula and then use it to find all values v[i]. [n some
cages this is all we want. [n other cases we might want to find the actual
“choices” leading to these values. lf we have an algorithm which solves
the recursion equation we can often modify it so that it gives us the
actual choices.

For instance, in the previous problem we wanted to to find the values v[i,m]. lf we
know that v[i;m]-= [and also want to find the terms in the sum, we can modify

our algorithm:

Setallv[ij]=0
Fori<lton
v(i,0] <

choose[i,0] < FALS
p[i,0] < NULL \

Fori<21ton
Form <[toM New

If v[i-1, m] =
v(i,m] <1
@eup] @
[i,m] < [i-1,m]

Else lf m> 3[i] and v[i-l,m-a[i]] =
v[i, m] <
choose[im] < TRUE
pli,m] < [i-l,m-a[i]]

Return v[n,V

A recursive variant

[nstead of using the bottom-up approach when golving the subset sum
problem we could try a recursive variant. We could try this:

vrek[im] =

lf i<=0
Return O

lfm <O
Return O

fm=0
Return |

[f vrek[i-1, m] =
Return |

[f vrek[i-1, m-a[i]] = |
Return |

But this solution is no good. The problem
is that the algorithm useg repeated calls
to subproblems that already have been
solved.

But this modification of the recursive algorithm works better:

Set all compli,j] to FALSE
Setallv[ijlto O

vrek[i,m] =

If comp[i,m]
Return v[i,m]

lfi<=0
Return O

fm< O
Return O

fm=0
Return |

[f vrek[i-I,m] =
comp[i,m] — TRUE
v(i,m] «I
Return |

[f vrek[i-1, m-a[i]] = |
comp(i,m] — TRUE
v(i,m] «I
Return |

Thig technique of remembering already computed
valueg is called Memoization. Sometimes it can be
ugeful, but in most cages the bottom-up method
ghould be preferred.

Shortest pathg in graphs

[n lecture 3 we discussed the problem of finding shortest pathg in graphs with
negative weights. Floyd-Warghall's algorithm is a dynamic programming algorithm for
golving the problem. Actually it find the shortest distances between all pairs of
nodes. We agsume that we have no negative cycles.

Subproblems:
We set d[i,jk] = length of shortest path using just nodes i,j and
nodes 2, ..., k.

Recursion:

d(i,j,0] = wlij] for alli;j (wli,j]= e if thereis no edge (i,j))
dlijk] = min { dli,j, k-1], dlik, k-1]+ dlk,j,k-1]) 1< k <n

Algorithm:

Fori<lton
Forj<Ilton
d[i,j,O]<—wl(iyj]
pli,j,O)<i
Fork <lton
If dli, j, k-1] <dli, k, k-1] + d[k, j, k-1]
dfi, j, k] <, j, k-1]
plij,k] <plijk-1]
Elge
dli, j, k] <dli, k, k-1] + dk, j, k-1]
pli,j,k] <plk,j,k-(]

Fori<lton
Forj<Ilton
d[i,j] <dli,j,n]
plij] —plijn]

The algorithm has complexity
O(n*).

Increasing sequence of numbers
Problem: Given a sequence of numbers

x1,To,...,Tn, W& want to compute the longest
sequence of increasing consecutive numbers.

Let v(i) = be the length of the longest se-
quence ending in x;.

Algoritm:
(1) (1)<« 1
(2) for:=2ton
(3) if 2(i—1) < x(?)

(4) v(e)) +—v(Ei—1)+1
(5) else
(6) v(i) < 1

(7) return v

Then we compute maxv(7).
(3

Longest subsequences (cage 2)

We have a sequence of n numbers. We want to find a longest increasing subsequence.
[n this case the numbers don't have to be congecutive.

(Strictly speaking, by increaging we willin thi case, mean strictly increaging, i.e. <)
Let the numbers be x[1], x[2], ..., x[n].

Set v[i] = Length of the longest increasing sequence ending in x([i]

Then v[l] = . For larger i we set v[i] = max (v[k] + |) where the max rung over all k such
that x(k] < x[i].

We can implement this with the algorithm:

v[l] <1
Fori<2ton
max <[
Fork <l toi-l
If x[k] < x[i] andv[k]+ [>max
max <v[k]+l
v[i] <max
max <O
Forj<Ilton
[v[j]> max
max <v[j]
Return max

The complexity is On?). The algorithm

just gives ug the length of the sequences
but we can modify it to give us the actual
gsequences. |

One more problem

Problem: Find the path from top to bottom
that maximizes the sum of the numbers.

»
/@
@@
@/@@@
4 (& @2 © &

Let aj be the number in row 2, column j.

Let Vi, j] be the value of the best path from
(7,7) down to bottom row n. Then

Qi 1= n,

Vi, j] = {aij + max{V[i+1,5],V[i+ 1,5+ 1]} otherwise.

Compute all V[i, j]:

(1) forj=1ton
(2) Vin,j] < an;
(3) fori=n—-1to1l
(4) for j =1 to
(5) Vi, jl < a;;+
max{V[i+ 1,75],V[i+ 1,5+ 1]}

The runtime for finding V[1,1] is ©(n?).

