
The Flow Problem as LP problem

We let xe be the flow on edge e. We have the
constraints 0 ≤ xe ≤ c(e) for all e. For each
node x except s and t we have∑

e∈In(x)

xe =
∑

e∈Out(x)

xe

We set

v =
∑

e∈Out(s)
xe

The flow problem can be written as

Maximize v

when
v =

∑
e∈Out(s) xe∑

e∈In(x) xe =
∑
e∈Out(x) xe for all x except s,t

0 ≤ xe ≤ c(e) for all edges



Another problem: A transport problemAnother problem: A transport problemAnother problem: A transport problem

A company produces milk in 4 different plants.
The milk is delivered to 5 customers. The com-
pany has to consider three things:

1. The capacities of the plants.
2. The demands of the customers.
3. The costs of the transports between plants
and customers.

Let us call the plants F1, F2, F3, F4.

Capacity:

F1 F2 F3 F4
30 40 30 40

(The numbers represent 1000 liters.)

Let us call the customers K1, K2, K3, K4, K5.



Demand:

K1 K2 K3 K4 K5
20 30 15 25 20

(The numbers represent 1000 liters.)

Transport costs:

K1 K2 K3 K4 K4
F1 2,80 2,55 3,25 4,30 4,35
F2 4,30 3,15 2,55 3,30 3,50
F3 3,00 3,30 2,90 4,30 3,40
F4 5,20 4,45 3,50 3,75 2,45

Goal:

Decide how the ”flow” to the customers should
be so that

1. The customers are satisfied.
2. The cost are minimal.



Mathematical model:

Use variables xij for the flow from plant i to
customer j.

What demands do we have?

1. Capacities

Ex: For plant 1 we should have
x11+x12+x13+x14+x15 ≤ 30000

2. Demand

Ex: For customer 1 we should have
x11+x21+ x31+x41 = 20000

Cost:

z = 2,80 x11 + 2,55 x12 + ... + 2,45 x45



We use the following definitions:

Let cij be the cost for transport from plant
i to customer j.

Let si be the capacity for plant i.

Let dj be the demand of customer j.

The problem can now be written as

Minimize
∑4
i=1

∑5
j=1cijxij

when

∑5
j=1 xij 6 si i = 1,2,3,4∑4

i=1 xij = dj j = 1,2,3,4,5
xij > 0



Linear Programming

A Linear Programming problem is the following:

Input: We have n variables x1, x2, ..., xn and m

linear equalities and/or inequalities in the va-
riables. We can also have constraints that say
that some (all) of the variables should be non-
negative. We are given a linear function f in
the variables.

Goal: We want to find values for the variables
so that the constraints are fulfilled and the fun-
ction f is optimized (maximized/minimized).



Different forms

We can express an LP-problem on different
forms. We have

1. General form: That is the one described
above.

2. Canonical form: Essentially a form with just
inequalities. This form is suitable for analy-
zing mathematical properties of solutions.

3. Standard form: Essentially a forma with
just equalities. This form is used when ac-
tually finding solutions.

The general form covers all LP-problems. But
all problems can in a certain way be transla-
ted to equivalent problems on canonical and
standard forms.



Linear Programming

A linear programming problem on canonical
form is

Minimize
∑n
j=1 cjxj

when∑n
j=1 aijxj 6 bi i = 1,2, ...,m

xj>0

In some texts the authors use maximization
instead of minimization. This doesn’t matter
much since we can always translate one form
to the other by changing the sign of the ci :s.



Translations

If we have a problem that is not on canonical
form we can rewrite it on form. We show how
it can be done by looking at some examples:

Example:

Minimize

x1 + 2x2 − x3

when x1 + x3 = 1

x2 − x3 ≥ 3

Inequalities "in the wrong direction"can be tur-
ned right by a sign change.

Equalities can be turned into inequalities by
using two using two inequalities for each equa-
lity.



In our problem we get

Minimize

x1 + 2x2 − x3

when


x1 + x3 ≤ 1

−x1 − x3 ≤ −1

x3 − x2 ≤ −3



Example: A company ISC

The company ISC is an ice sport company that
makes bandy sticks and hockey sticks.
There are two steps in the production: Sawing
and glueing.

There are times needed for the two steps

Sawing Gluing
Hockey 7 16
Bandy 10 12

(minutes)

The firm has capacity for 3600 minutes of
sawing and 5400 minutes of gluing per week.

The sticks can be sold for
Hockey: 125 kr but has a production cost of
105 kr.
Bandy: 115 kr but has a production cost of 97
kr.



Let x1 be the number of produced hockey x2

the number of produced bandy sticks.

We get the following problem

Maximize z = 20x1 + 18x2

when
x1 + 10x2 ≤ 3600

16x1 + 12x2 ≤ 5400

x1, x2 ≥ 0

Obs: We can transform the problem to cano-
nical form if we say that we want to minimize
-20x1-18x2



Towards solutions: Standard forms

Preparation: We transform the problem to so
called standard form

Standard form: We have equalities instead of
inequalities.

Ex:

Minimize z = 3x1 + 5x2 - x3

when

x1 − x2 + 2x3 = 5

x1 + 2x2 + 4x3 = 12

x1, x2, x3 > 0



We get equalities by introducing Slack Varia-
bles.

Ex: Let us assume that we have the in-
equality x1 + 3x2 6 10

We set x3 = 10 - (x1 + 3x2)

x3 is a new slack variable.

We get the equality x1 + 3x2 + x3 = 10



The ISC problem put on standard form will be:

7x1 + 10x2 6 3600 reduces to 7x1 + 10x2 +

x3 = 3600

16x1 +12x2 6 5400 reduces to 16x1 +12x2 +

x4 = 5400

We get

Maximize z = 20x1 + 18x2

when
7x1 + 10x2 + x3 = 3600
16x1 + 12x2 + x4 = 5400
x1, x2, x3, x4 > 0



Standard form

Minimize z =
∑n
j=1cjxj

when∑n
j=1 aijxj = bi i = 1,... ,m

xj > 0 j = 1, ... ,n

We can use matrix notation

Minimize c̄T x̄

when
Ax̄ = b̄

x̄ > 0̄



ICS will look like:

A =
(

7 10 1 0
16 2 0 1

)

x̄ =


x1
x2
x3
x4

 c̄ =


−20
−18

0
0

 b̄ =

(
3600
5400

)

Minimize (-20, -18, 0, 0 )


x1
x2
x3
x4


when(

7 10 1 0
16 2 0 0

)
x1
x2
x3
x4

 =

(
3600
5400

)


x1
x2
x3
x4

 >


0
0
0
0





How to find a solution

Maximize z = 20x1+ 18x2.
When

7x1+ 10x2+ x3 = 3600
16x1 + 12x2 + x4= 5400

How do we find the best solution?

One possibility is x3= x4= 0

7x1+ 10x2 = 3600
16x1 + 12x2 = 5400

If we solve the system we get x1≈ 142 x2
≈ 260

It gives us z ≈ 7520



But instead, we can put x2 = x4= 0

We get the equations

7x1+ x3 = 3600
16x1 = 5400

They give us x1 ≈ 337 x3≈ 1237

Then z ≈ 2362.

Are there more solutions?



Basic solutions:

Let us assume that we have n variables and m
equations. We also assume that all equations
are linearly independent. We assume that we
have set n-m of the variables to 0.
Then the other m variables have unique values.
This gives us a basic solution .

Feasible basic solution:Feasible basic solution:Feasible basic solution:

If all variables are > 0 we have a feasible basic
solution.

The solution to a LP-problem is always a fea-
sible basic solution (FBS).

But which FBS?



Method:Method:Method:

Variables which are 0 (at a certain stage) are
called non-basic variables. The other variables
are called basic variables.

We test different FBS:s by changing the ba-
sic variables one at a time.

Ex: Minimize z = 2x1 + x2

when 3x1 + x2 = 10

x1, x2 > 0

Set x1 = 0.

Then x2 = 10 and z = 10.



We now change basic variables so that x2 = 0 .

Then x1 ≈ 3,33

we get z ≈ 6,67.

So we have found a better solution.

How do you know if you have found the best
solution?

Ex: ISC

x1 = 142 x2 = 260 z = 7520

Is that the best solution?



We can write

x3 = 3600 - 7x1 -10x2

x4 = 5400 - 16x1 - 12x2

x1 = 0,158x3 - 0,132x4 + 142,1
x2 = -0,2x3 + 0,092x4 + 260,5

That gives us z = 20x1 + 18x2 = 20(0,15x3

- 0,13x4 + 142,1) + 18( -0,21x3 + 0,09x4 +
260,5) =
7520 - 0,62x3 - 0,98x4

Now we see that we would gain nothing by
increasing x3 or x4.
We see that any change from this solution
must end in a worse solution.



General description of the Simplex MethodGeneral description of the Simplex MethodGeneral description of the Simplex Method

Let’s say that we have a maximization pro-
blem and a FBS with basic variables y1, y2, ...
, ym and non-basic variables v1, v2 , ... , vn−m.

This means that v1 = v2 = ... = vn−m = 0

We can then write y1, y2, ... , ym as func-
tions of v1, v2 , ... , vn−m

y1 = f1 (v1, ..., vn−m) y2 = f2 (v1, ..., vn−m)

...
In the same way we can write z as

z = c1v1 + c2v2 + ... + cn−mvn−m + z0

If all ci are < 0 we must have an optimal solu-
tion.



If any ci > 0 , say c1 > 0, we can increase z
by increasing v1. But then the values of the
y:s must change. How much do they change?

We can increase v1 until fk(v1, v2, ...) = 0 for
some k. Then v1 will be a new basic variable
and yk will be a new non-basic variable.
We go on like this until all ci ≤ 0. Then we
have found the optimal solution.

If we have a minimization problem we must
try to increase variables with ci < 0. When all
ci ≥ 0 we have a solution.



Ex:

Minimize z = 2x1 + 2x2 + x3

when
x1 + x2 + x3 = 5

x1 − x2 + 2x3 = 8

x1, x2, x3 > 0

One FBS is x2 = 0 (non-basic variable).

We get

x1 + x3 = 5− x2

x1 + 2x3 = 8 + x2

x1 = 2− 3x2

x3 = 3 + 2x2



z = 2(2− 3x2) + 2x2 + (3 + 2x2) = 7− 2x2

We can increase x2. But how much?

x1 and x3 must be > 0.

x1 = 2− 3x2

This means x2 6 2
3

x3 = 3 + 2x2

This gives us no bound on x2.

So x2 = 2
3 and x1 = 0.

x3 = 13
3

We now write x2, x3 as functions of x1.



x2 = 2
3 −

x1
3

x3 = 3 + 2x2 = 3 + 2(2
3 −

x1
3 ) = 13

3 −
2x1

3

z = 7− 2x2 = 7− 2(2
3 −

x1
3 ) = 17

3 + 2x1
3

Since we gain nothing by increasing x1, we are
done.



This is however far from the full story. There
is a problem called degeneracy that can occur.
This happens when when we have no ci > 0

and some ci = 0 (if we assume that we have a
minimization problem). In that case we will ha-
ve to chose some i with ci = 0. Then there is a
chance that we could get into an infinite cyc-
le. In practice, there are several ways to avoid
this. Another problem is how to find a star-
ting point for the algorithm. It turns out that
we can use a modified variant of the simplex
algorithm to solve this problem.

Actually, in worst case, the Simplex Algorithm
is not a polynomial time algorithm. In practice,
however, the Simplex algorithm is always con-
sidered efficient enough.



Do solutions always exist?

If we form an LP-problem three things can hap-
pen:

1. 1. There is a solution to the problem (xi :s
and a value of f). The solution is not ne-
cessarily unique. It can be seen that if the
solution is not unique, then there is an in-
finite set of values for the xi :s. However,
the value of f is unique.

2. 2. It can happen that there is no bound for
f so that it can get arbitrarily large/small.
In this case, there are no solutions.

3. 3. It is possible that there are no points
fulfilling all the constraints. In this case,
there are no solutions. (The Simplex algo-
rithm can not even get started.)

We will, of course, focus on the first case.



Examples

Ex: Maximize x1 - x2

when
x1 + x2 > 10
x1, x2 > 0
The problem is that x1 − x2 can be arbitrarily
large. There is no solution.

Ex: Minimize x1 + x2

when
x1 - 2 x2 6 -2
x1 + 3x2 6 1
x1, x2 >0

Here we can not find x:s that satisfies the
constraints. Then, of course, there is no so-
lution to the problem.



Dual Problems

For each LP problem we can give a so called
dual problem.

Ex: We have the problem

Maximize 5x1 + 2x2

when
x1 + x2 6 10
2x1 + 3x2 6 20
x1 , x2 , x3 > 0

The dual problem is

Minimize 10v1 + 20v2

when
v1 +2v2 > 5



v1 + 3v2 > 2
v1, v2 > 0

How do we define the dual problem?

We write the problem on the form

Maximize c̄T x̄

when
Ax̄ 6 b̄

x̄ > 0̄

The dual problem is

Minimize b̄T v̄

when
AT v̄ > c̄

v̄ > 0̄



The Duality TheoremThe Duality TheoremThe Duality Theorem

Let P1 and P2 be two dual problems. If one
of the problems has a solution with value M ,
then the other problem also has a solution with
value M . If we solve one of the problems we
also get a solution to the other.

Ex: ISC again

We want to

Maximize 20x1 + 18x2

when
7x1 + 10x2 63600
16x1 + 12x2 65400
x1, x2 > 0



The corresponding dual problem is

Minimize 3600v1 + 5400v2

when
7v1 + 16v2 > 20
10v1 + 12v2 > 18
v1, v2 > 0

Both problems have the same value as solu-
tion.

But what does the dual problem mean?

Let us assume that ISC want to rent out its
production facilities. What rent would the mar-
ketbe willing to pay? We can suppose that the
market will pay v1 kr/minute for sawing and v2

kr/minute for gluing.

What prices v1 and v2 should the market set?



The market will want to minimize 3600v1 +
5400v2

The market must also consider the following
requirements: ISC must want to rent out. This
means that ISC must make at least as much
money as it would if it run the production it-
self.
A hockey stick can be sold with a profit of 20
kr. It will take 7 minutes of sawing and 10 mi-
nutes of gluing to make it. When ISC rents out
it would get 7v1 + 16v2 kr . This number must
be at least 20.

7v1 + 16v2 > 20

In the same way we get
10v1 + 12v2 > 18.



This gives us

Minimize 3600v1 + 5400v2

when
7v1 + 16v2 > 20
10v1 + 12v2 > 18
v1, v2 > 0



Classical example: The diet problem

Suppose that you want to buy food. You have
the choice of n types of food which can have
some of m different nutrients.

Let

aij be the amount of ith nutritient in a unit of
the jth food.
ri be the yearly requirement of ith nutritient.
xj be the yearly consumption of the jth food.
cjbe the cost per unit of the jth food.

Then you (probably) face the problem:

Minimize c̄x̄

when
Ax̄ ≥ r̄
x̄ ≥ 0



The dual problem

The dual problem is then

Maximize r̄w̄

when AT w̄ ≤ c̄
w̄ ≥ 0

What does this mean? A possible application
is that we have a store who wants to sell m
pills containing all the nutrients. Let wi be the
price he sets for pill i (containing nutrient i). In
order for the pills to be competitive with real
food he must make sure that AT w̄ ≤ c̄. He also
wants to maximize his profit, i.e. r̄w̄.



Reduction of a problem to a LP problem

Example: Find the shortest path s → t in a
weighted graph G.

There are several ways of doing this.

Maximize dt

when

dv ≤ du + w(u, v) for all edges(u, v)

ds = 0



Dual form

A translation of the shortest path problem to
dual form gives us:

Minimize ∑
e
xew(e)

when
1 =

∑
e∈Ut(s) xe∑

e∈In(x) xe =
∑
e∈Ut(x) xe for all x except s,t

0 ≤ xe ≤ 1 for all edges



Another example of dual problems

The flow problem can be put on dual form:

The vector ȳ contains |V |+ |E| numbers. They
are gi for each node vi and γj for each edge ej.

Minimize ∑
j

γjcj

when

gi − gj + γk ≥ 0 om ek = (vi, vj)

gn − g1 ≥ 1, γj ≥ 0 for all j

The solution to this problem generates a mini-
mal cut (S, V −S) and an assignment of values
gi = 0 if vi ∈ S, gi = 0 otherwise. γj = 1 if ej
goes from S to V − S, γj = 0 otherwise.


