
About complexity

We define the class informally P in the following
way:

P = The set of all problems that can be
solved by a polynomial time algorithm, i.e.,
an algorithm that runs in time O(nk) in the
worst case, where k is some integer and n is
the size of the input.

We can contrast this class with

EXP = The set of all problems that can be
solved by an exponential time algorithm, i.e.,
an algorithm that runs in time O(cn

k
) in the

worst case, where k is some integer, c > 1
some real number and n is the size of the
input.

It is universally agreed that an algorithm is
efficient if and only if it is polynomial. This
makes it critical to define the size of the in-
put in a ”correct way”. For instance, we must
be careful if we have numbers as input. The
input size should then be logn instead of n
if we have a number-theoretical problem.



Using randomness in algorithms

The algorithms we have studied are determi-
nistic. We will now discuss algorithms that
use randomness. The randomness in compu-
tation can be observed as

a. Randomness in the output. These algo-
rithms are often called probabilistic algo-
rithms.

b. Randomness in running time. These al-
gorithms are often called randomized al-
gorithms.



Probabilistic algorithms

We will start with a study of a special pro-
babilistic algorithm: The Miller-Rabin algo-
rithm.

We will define a class of problems belonging
to a class called RP (Randomized Polynomi-
al). We will see that the problem of deciding
if a number is composed belongs to RP.

In order to set the scene for the Miller-Rabin
algorithm, we will start with a description of
some number theoretical algorithms.



Number theoretical algorithms

Number theoretical algorithms are algorithms
handling problems such as deciding if a num-
ber is a prime, finding greatest common di-
visor and so on. Input to the algorithms are
integers. The natural measure of the size of
the input is the logarithm of the numbers.

Ex: Test if a number is a prime.

PRIME(n)
(1) for i← 2 to

√
n

(2) if i|n
(3) return Not prime
(4) return Prime

This algorithm has complexity O(
√
n). It is to

slow for large numbers. We would like to have
an algorithm that runs in time O((logn)k) for
some k.



Greatest Common Divisor

Greatest common divisor: gcd(a, b) = is the
largest integer that divides both a and b.

Euclides’ algorithm:

The gcd(a, b) can be computed by the following
method:

r1 = a mod b

r2 = b mod r1

r3 = r1 mod r2

...

rn+1 = rn−1 mod rn = 0

Then gcd(a, b) = rn.

It is easy to verify that ri+2 < ri
2 for all i.

This means that the algorithm stops after
O(logn) steg. So the algorithm is efficient.



The algorithm can be implemented recursi-
vely.

EUKLIDES(a, b)
(1) if b = 0

(2) return a

(3) return EUKLIDES( b, a mod b)

If gcd(a, b) = d there are integers x, y such
that ax+ by = d. (x, y can be negative). In
fact, d is the smallest integer > 0 on that
form. The integers x, y can be found by a
modified version of Euclides’ algorithm:



MOD-EUKLIDES(a, b)
(1) if b = 0

(2) return (a,1,0)

(3) (d′, x′, y′) ← MOD-EUKLIDES(b, a
mod b)

(4) (d, x, y)← (d′, y′x′ − [ab ]y
′)

(5) return (d, x, y)

Finding the inverse: If gcd(a, n) = 1 there
are integers x, y such that ax+ny = 1. Then
x = a−1 mod n. So we can find a−1 by using
MOD-EUKLIDES(a, n).



Modular exponentiation

In cryptography it is important to be able to
compute ab mod n for very large numbers in
an efficient way. The following simple algo-
rithm is not efficient:

POT(a, b, n)
(1) d← 1

(2) for i← 2 to b

(3) d← d · a mod n

(4) return d

The following modified algorithm, though, is
efficient:

MOD-EXP(a, b, n)
(1) d← 1

(2) Let (bk, bk−1, ..., b0) be the binary repre-
sentation off b

(3) for i← k to 0
(4) d← d · d mod n

(5) if bi = 1

(6) d← d · a mod n

(7) return d



To decide of a number is a prime

Fermat’s Theorem: If p is a prime and a

is an integer such that a - n then ap−1 ≡ 1 (

mod p).

We can set a = 2. If n is such that 2n−1 6≡ 1(

mod n) then n cannot be a prime. Therefore,
we can use the following algorithm to test if
n is a prime:

FERMAT(n)
(1) k ←MOD-EXP(2, n− 1, n)

(2) if k 6≡ 1( mod n)

(3) return FALSE
(4) return TRUE

If FERMAT returns FALSE we know for su-
re that n is not a prime. But unfortunately,
FERMAT might return TRUE even if n is not
a prime. For instance, 2340 ≡ 1 mod 341 but
341 is not a prime.



We can use a so probabilistic algorithm which
randomly chooses a number a in [2, n−1] and
does a Fermat test with a.

PROB-FERMAT(n, s)
(1) for j ← 1 to s

(2) a← RANDOM(2, n− 1)

(3) k ←MOD-EXP(a, n− 1, n)

(4) if k 6≡ 1( mod n)

(5) return FALSE
(6) return TRUE

The algorithm is probabilistic in the sense
that it can give different answers at different
times even if it starts with the same input.
The following must, however, be true:

if n is a prime then the algorithm must re-
turn TRUE. This means that the algorithm
returns FALSE then we know that n is not a
prime. So FALSE is the only definite answer
we can get.



P (n is not prime| The algorithm returns FALSE ) =

1

What about the probability
P (n is prime | The algorithm returns TRUE )?

It can be shown that for almost all non-prime
n we get:

P (The algorithm returns FALSE ) > 1
2.

For primes n we have
P (The algorithm returns TRUE ) = 1.

Problem are caused by so called Carmichael
numbers.



Carmichael numbers

A Carmichael number is a non-prime integer
n such that an−1 ≡ 1 ( mod n) for all a ∈
[2, n−1]. The smallest Carmichael number is
341.

P ( The algorithm returns TRUE |
n is a Carmichael number ) = 1.

In order to handle Carmichael numbers we
can use the following algorithm:

WITNESS(a, n)
(1) Let n− 1 = 2tu, t ≥ 1, where u is odd
(2) x0 ←MOD-EXP(a, u, n)

(3) for i← 1 to t

(4) xi ← x2i−1 mod n

(5) if xi = 1 och xi−1 6= 1 och xi−1 6=
n− 1

(6) return TRUE
(7) if xt 6= 1

(8) return TRUE
(9) return FALSE



The following can be shown for WITNESS:

P ( WITNESS returns TRUE |n is not prime ) > 1
2

for all n. If you make repeated calls to WIT-
NESS can get arbitrarily high probability for a
correct answer. This version of the algorithm
is called Miller - Rabin’s Test.

MILLER-RABIN(n, s)
(1) for j ← 1 to s

(2) a← RANDOM(1, n− 1)

(3) if WITNESS(a, n)
(4) return Not prime
(5) return Prime

Here

P ( The algorithm returns Prime |n is prime) = 1.

P ( The algorithm returns Not prime |n is not prime ) >

1− 1
2s.



It is, of course, also interesting to study the
”reversed” conditional probabilities:

P (n is not prime | The algorithm returns Not prime) =

1.

The probability
P (n is prime | The algorithm returns Prime )

is trickier. It can be computed as

P (n is prime and the algorithm returns Prime)
P ( The algorithm returns Prime) =

P (n is prime)
P ( The algorithm returns Prime)

But then we need to know P (n is prime). If
we know that the probability is α we can use
Bayes’ law to show that
P (n is prime | The algorithm returns Prime )

> 2s

2s+(1α−1)
.



Since August 2002 it is known that there is
an algorithms that decides primality (in the
usual non-probabilistic sense) in polynomial
time. This algorithm is much more complica-
ted and slower than Miller-Rabin’s algorithm.



Monte Carlo algorithms

Suppose that we have a decision problem,
i.e. a problem with yes/no as answer. We say
that F is a Yes-based Monte Carlo algo-
rithm for solving the problem if F is polyno-
mial and:

1. If the answer to the problem is yes, then
F (x) = Y es with probability > 1

2.

2. If the answer to the problem is no, then
F (x) = No with probability 1.

No-based Monte Carlo algorithms are defined
in the obvious, symmetrical way.

Definition: The class RP is the set of all
problems that can be solved by a Yes-based
Monte Carlo algorithm.

It is easily seen that P ⊆ RP .

We have seen that the problem to tell if a
number is composite is in RP.



Another algorithm

Is the polynomial

f(x, y) = (x−3y)(xy−5x)2−10x3y+25x3+

3x2y3 +30x2y2 − 75x2y

identically equal to 0?

Test: Choose some values xi, yi randomly and
test if f(xi, yi) = 0.

Two possibilities:

1. f(xi, yi) 6= 0. Then f 6= 0.

2. f(xi, yi) = 0 for all chosen values xi, yi.
What is then the probability for f = 0?



Theorem: If f(x1, ..., xm) is not identically
equal to 0 and each variable occurs with de-
gree at most d and M is an integer, then the
number of zeros in the set {0,1, ...,M − 1}m

is at most mdMm−1. This gives us:

P [ A random integer in {0,1, ...,M−1}m is a zero]
= 1

mdMm−1 = δ.

This means that if we have done k tests in-
dicating f = 0, then P [f = 0] ≥ 1− δk.

This means that to tell if a polynomial is not
zero is a problem in RP.



RP and similar classes

In this section we will temporarily forget that
PRIME actually is in P .

So teh foregoing has not shown that PRIME
∈ RP. Instead of using a Yes-based MC algo-
rithm we can use a No-based one. The we get
a class coRP, i.e. the class of problems that
can be solved by No-based MC algorithms.

We have PRIME ∈ coRP.



ZPP

And now we define ZPP = RP ∩ coRP

Problems in the class ZPP can be solved by
machines M with the following properties:

a. M returns one of Yes, No, Undecided.

b. If M returns Yes then the true answer is
Yes and if M returns No then the true
answer is no.

c. The probability that M returns undecided
is < 1

2.

In fact, it can be shown that PRIME ∈ ZPP.



Quick sort

We now turn to the other kind of random-
ness, that is when the running time of the al-
gorithm is random. We know that QuickSort
can sort n numbers with mean running time
O(n logn). In worst case, however, we get
O(n2). So if the input is equally distributed
(which is not to be expected) we would get
good performance on average. But we can
make randomness part of the algorithm and
thereby force randomness regardless what in-
put distribution we have. We define Random-
Partition such that it chooses a pivot element
randomly.

QuickSort(v[i..j])
(1) if i < j

(2) m← RandomPartition(v[i..j], i, j)
(3) QuickSort(v[i..m])
(4) QuickSort(v[m+1..j])

It can be shown that the complexity is O(n logn)

in the mean.



Finding the median

If we have an array v[1...n] the problem of fin-
ding the median is the problem of finding an
element v[i] such that exactly bn2c elements
are smaller than v[i]. We can obviously find
the median in time O(n logn). But if we use
a probabilistic algorithm we can find the me-
dian in time (On) in the mean. We define
a function Select(v[i...j], k) which finds the
kth element (in sorted order) in the subarray
v[i...j]. (We assume that k ≤ j− i+1.) Then
Select(v[1...n], bn2c) will give us the median.

Select(v[i...j], k)
(1) if i = j

(2) Return v[i]

(3) p← Partition(v[i..j])
(4) q ← p− i+1

(5) if q = k

(6) Return v[p]

(7) if k < q

(8) Return Select(v[i...p− 1], k)
(9) Return Select(v[p+1...j], k − q)



It can be shown that if E(T (n)) is the me-
an value of the time complexity, whe have
E(T (n)) ≤ 2

n

∑n−1
k=bn2c

E(T (k)) + O(n). From

this, we can prove that T (n) ∈ O(n).


