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Abstract

High quality software can not be done without high quality testing. Muta-
tion testing measures how “good” our tests are by inserting faults into the
program under test. Each fault generates a new program, a mutant, that is
slightly different from the original. The idea is that the tests are adequate if
they detect all mutants. This thesis relates previous work on the theoretical
foundation of mutation testing and emphasizes the role of efficient mutation
operators. Mutation operators determine what types of faults to use. We
have investigated the properties of an adequate and efficient set of mutation
operators. Also, a prototype of a mutation testing tool for Java aimed at
real software projects was implemented. This tool was used to demonstrate
how the properties of efficient mutation operators allow us to find redundant
mutants. Not only do these results show how to reduce the cost of muta-
tion testing but they also hint at a more theoretical approach to design sets
of mutation operators. Further steps towards a complete mutation testing
system are suggested and we conclude that a usable tool for the software
industry is within reach.

Sammanfattning
Ett Verktyg för Mutationstestning av Javaprogram

Mjukvara av hög kvalitet kan inte konstrueras utan tester av hög kvalitet.
Mutationstesting ger ett mått p̊a hur ”bra” v̊ara tester är genom att införa
fel i programmet som testas. Varje fel ger upphov till ett nytt program, en
mutant, vilket skiljer sig n̊agot fr̊an det ursprungliga programmet. Tanken
är att testerna är adekvata om de kan hitta alla mutanter. Detta examen-
sarbete återger den teoretiska grunden för mutationstestning och betonar
vikten av effektiva mutationsoperatorer. Mutationsoperatorer bestämmer
vilka slags fel som förs in. Vi har undersökt egenskaperna hos en adekvat
och effektiv mängd av mutationsoperatorer. Dessutom har vi implementerat
en prototyp av ett mutationstestningsverktyg för Java som är riktat mot
verkliga mjukvaruprojekt. Detta verktyg användes för att visa hur egen-
skaperna hos effektiva mutationsoperatorer till̊ater oss att hitta mutanter
som inte leder till högre testkvalitet. Förutom att minska kostnaderna för
mutationstestning ger detta experiment en ledtr̊ad till ett mer teoretiskt
tillvägag̊angssätt för att designa mutationsoperatorer. I arbetet lägger vi
fram förslag p̊a nästa steg för att skapa ett komplett system för mutation-
stestning. Slutsatsen är att ett användbart verktyg för mjukvaruindustrin
är inom räckh̊all.



Preface

This Master’s Thesis actually started a couple of years ago. I had written a
module of a larger system and it was critical that it would not fail. To prove
that it would not is indeed a very difficult task. Hence I started the search
for tools and methods to test and improve the reliability of the program.
Soon, I was reading a web page describing this very promising “mutation
testing” method. It was a most natural choice to write my own thesis on
this topic.

To read the report, some familiarity with mathematical concepts such as
set theory and logic is recommended. Chapter 2 gives an introduction to the
matematical and intuitive foundations of the theory, chapter 3 shows several
(previous) ideas of how to describe the “coupling effect” and an attempt to
summarize them matematically. These results are used to deduce properties
of a set of efficient mutation operators. The brevity of chapter 4 does not
quite reveal the amount of work that was invested in creating a mutation
testing tool for Java, but some basic techniques to make such a tool are
presented. The future of mutation testing is discussed in chapter 5.

This Computer Science thesis was supervised by Prof. Karl Meinke at
the department of Numerical Analysis and Computer Science, Nada, at the
Royal Institute of Technology, KTH. I would like to use a couple of lines
to thank Karl for reviewing and finding all those missing definitions and
thoughts, for showing me how to fix it and for his keen interest in solving the
unsolvable (software testing) and new/old ideas how to do it (like mutation
testing).

Mattias Bybro
Stockholm, June 2003
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Chapter 1

Introduction

$59,500,000,000! That is how much software bugs cost in the United
States in the year 2002 alone, according to a recent NIST report [NI02].
The report estimates that $22,200,000,000 could be attributed to insufficient
testing.

[SQAT] lists some recent major computer system failures caused by soft-
ware bugs. Here are a few of them:

• 1996: The ESA Ariane 5 rocket fails due to a simple unchecked type
error.

• 1999: The $125 million NASA Mars Climate Orbiter was believed to
be lost in space. Why? Some data in the spacecraft software was used
in English units. It should have been in metric units.

• 2002: Software bugs in Britain’s national tax system resulted in more
than 100,000 erroneous tax overcharges. Difficulties with integration
testing was a major culprit.

Does the future look brighter? Methodologies like extreme programming
have emphasised software quality and as the complexity of many software
projects grows, software development processes are forced into more testing
and quality assurance. Yet, testing is considered boring by many software
developers and there is still resistance to accept important software engi-
neering concepts and methods such as unit-testing, design-by-contract and
daily or continuous builds.

Obviously, there is a great need for improved software quality and testing
processes. How to get there is easier said than done, and this thesis do not
aim to find the ultimate pesticide to eliminate all those bugs hidden in all
those (spaghetti?) lines of code.

One important issue is the coverage problem, that is determining how
well tested a piece of software is and when to stop. It is not unusual to stop
testing when the project deadline is reached. Another common approach is
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to use some metric, usually statement coverage and set a threshold like “at
least 80 % statement coverage”.

Then there is mutation testing, which is a coverage criterion that has
its roots in the very definition of reliable test sets. This is what makes it
fundamentally different from most other criteria.
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Chapter 2

Mutation Testing

To estimate the number of fish of a certain species in a lake, one way to
do it is letting some marked fish out in the lake (say, 20) and then catch
some fish and count the marked ones. If we catch 40 fish and 4 of them are
marked, then 1 out of 10 is marked and the population in the entire lake
could be estimated to about 200. If we catch all marked fish, we would as a
side-effect end up with almost the entire population in our nets.

Fault-based testing does something similar. We let some “marked” bugs
loose in the code and try to catch them. If we catch them all, our “net”
probably caught many of the other, fishier, fish. The unknown bugs, that
is.

One of the fault-based testing strategies is mutation testing. There are
many variations of mutation testing such as weak mutation [HO82], interface
mutation [DM96] and specification-based mutation testing [MR01]. The
method described in this thesis is strong mutation testing, but the idea is
the same for all of them, namely to “mutate” the original program under
test.

To mutate a program, an error is put somewhere in the code. And just
like the fish in the lake, we will try to catch it. A typical mutation would
be to replace < with > in one and only one expression. Example: the
program P =

1. if (x > 0)
2. doThis();
3. if (x > 10)
4. doThat();

A mutation of P would be (line 1)

1. if (x < 0)
2. doThis();
3. if (x > 10)
4. doThat();
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Another mutation (line 3):

1. if (x > 0)
2. doThis();
3. if (x < 10)
4. doThat();

Now we have made several copies of P and introduced a single mutation into
each copy. These copies are called mutants. Let D denote the input domain.
Assume we have a passing test set, T ⊂ D, that is P satisfies or passes every
test in T . To get a measure of its mutation adequacy, we run the test set
against each mutation and count the number of mutants for which T fails.
If T fails for a certain mutant, we call that mutant killed. The idea is that
if T detects this fault (kills the mutant), it will detect real, unknown faults
as well. If T kills all mutants, it potentially detects many unknown faults.
Mutants that are not killed are called alive and mutants (denoted mu) such
that ∀x ∈ D,P.x = µ.x are called equivalent. We will write µ ≡ P if the
mutant µ is equivalent to P . P.x represents the evaluation of the program P
on the input x. Mutation adequacy or mutation score is defined as (number
of killed mutations)/(total number of non-equivalent mutations) * 100 %.

Why would this method work? [BD80] makes two fundamental assump-
tions; (a) the competent programmer hypothesis and (b) the coupling effect.

The traditional approach to software testing is to find some subset T
(called the test set) of the input domain D, such that

∀x ∈ T, P.x = f(x) → ∀x ∈ D,P.x = f(x), (2.1)

where f is a functional specification of the program P . (This is called a
reliable test set.) To be able to reach this conclusion, some exhaustive
testing strategy would be necessary. This is too strong a conclusion and is
proven to be an undecidable problem. That is why mutation testing weakens
the above:

either P is “pathological” or
∀x ∈ T, P.x = f(x) → ∀x ∈ D,P.x = f(x)

(2.2)

What is a “pathological” program?

P is “pathological” ↔ P /∈ Φ, (2.3)

where Φ is the set of programs in a “neighbourhood” of a correct program
P ? satisfying f . Intuitively P is “pathological” if P is “far” from P ?. We
expect programmers to be competent enough to produce programs in this
neighbourhood. (See figure 2.1.)

We can now reformulate 2.1 to

∀x ∈ T, P.x = f(x) ∧
∀Q ∈ Φ (Q ≡ P ∨ ∃x ∈ T,Q.x 6= P.x)

→ ∀x ∈ D,P.x = f(x),
(2.4)
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Figure 2.1: The competent programmer hypothesis assumes that programmers
write programs in the neighbourhood Φ of the correct program P ?. P is such
a program. The area within the frame represents the set of all programs.

i. e. if P passes all tests in T and all non-equivalent mutants are killed by
some test in T , then P satisfies T . If we find T that satisfies the above
criteria, then we say that “P passes the Φ mutant test”. A test point x ∈ T
such that P.x 6= Q.x differentiates P from Q.

The competent programmer hypothesis assumes that the program under
test is not “pathological” and allows us to limit the problem. Instead of
exhaustively testing P with an enormous (almost infinite) test set, we could
find all programs in the neighbourhood of P and feed each of them with
some test values to differentiate them from P . Although this limits the
problem, it is also a huge and indeed impossible task.

However, the coupling effect says there is a small subset µ of Φ, such
that if P passes the µ mutant test → P passes the Φ mutant test. All we
have to do is find µ. In the next section, we will look at an instance of µ
which is used to mutate FORTRAN programs. (You have already seen in
the introductory example how a program in this µ might be like.)

First we will compile a list of problems with mutation testing:

• The coupling effect. How can we be sure that it holds? Does simple
syntactic changes like the ones on page 3 really define an appropriate
µ set?

• Equivalent mutants. Can we tell when Q ≡ P? If we do not find
any test point that can differentiate the two, is this because they are
equivalent or is it because it is hard to kill the mutant?
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Table 2.1: FORTRAN mutation operators. (Source: [OL93].)

Operator Description
AAR Array reference for Array reference Replacement
ABS ABS solute value insertion
ACR Array reference for Constant Replacement
AOR Arithmetic Operator Replacement
ASR Array reference for Scalar variable Replacement
CAR Constant for Array reference Replacement
CNR Comparable array N ame Replacement
CRP Constants ReP lacement
CSR Constant for Scalar variable Replacement
DER Do statement End Replacement
DSA Data S tatement Alterations
GLR Goto Label Replacement
LCR Logical Connector Replacement
ROR Relational Operator Replacement
RSR Return S tatement Replacement
SAN S tatement AN alysis
SAR Scalar for Array reference Replacement
SCR Scalar for Constant Replacement
SDL S tatement DeLetion
SRC SouRce Constant replacement
SVR Scalar V ariable Replacement
UOI Unary Operator Insertion

• Expensive testing. One might suspect that µ is quite a large set
and thus executing and creating tests will be costly.

2.1 Mutation Operators

For real-world programs, µ is defined as the set of programs generated by ap-
plying mutation operators to the program under test, P . What is a mutation
operator? A mutation operator is a simple syntactic or semantic transfor-
mation rule, like replacing < with >. (Table 2.1 defines some FORTRAN
mutation operators.)

What would constitute a good set of mutation operators? Before answer-
ing that, we will need to look at some previous results on this (see chapter
3). For now, we just conclude that the validity of the coupling effect is
highly dependent upon the set of mutation operators.

For instance, if all mutations always cause the test to fail by throwing
an exception, then the mutation adequacy score will be high, but the fault
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detection abilities low.

2.2 Equivalent Mutants

There is also the problem with equivalent mutants. If ∀x ∈ D,Q.x = P.x,
then the mutant Q is equivalent to the program P . An example of an
equivalent mutant: P =

1. if (x > 0)
2. if (y > x)
3. doThis();
4. fi
5. fi

Q = (applied ABS mutation operator to line 2)

1. if (x > 0)
2. if (y > abs(x))
3. doThis();
4. fi
5. fi

Since x = |x| for x > 0, then Q is an equivalent mutant of P . To manually
detect and remove an equivalent mutant is very time consuming and prone
to error. Therefore automatic detection algorithms have been developed
[OC94, OP97], estimated to remove approximately 50 % of the equivalent
mutants. How common are equivalent mutants? Of course, there is no
universal rule to this, but in the sample programs used by Offutt and Pan
in [OP97], 9 % of all mutants were equivalent. The results presented in this
thesis (see section 4.4.2) are similar; 8 % of the mutants were equivalent.
Note that some mutation operators generate more equivalent mutants; the
ABS operator accounted for half the equivalent mutants.

2.2.1 Automatically Detecting Equivalent Mutants

It is an undecidable problem to determine whether two programs are equal.
For simple mutations of programs, the situation is slightly different. Con-
sider the example in the previous section. Could we not create some smart
software that knew abs(x) = x if x ≥ 0?

In some cases, we can. [OP97] uses constraint resolving to identify equiv-
alent mutants. This is implemented as a specialized theorem prover based
on simple logical relations like

x > 0 ⇒ x = |x| (2.5)
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The goal is to find a contradiction in the set of constraints for a state-
ment. Since the constraints are independent of test values, we know that
the mutant is equivalent if we find a contradiction.

What does a set of constraints look like? In the above unmutated code
snippet, the set of constraints in line 3, Cp, would be (y > x) ∧ (x > 0) and
for the mutated code, Cµ, (y > |x|) ∧ (x > 0). From these, we can build a
necessity constraint system, Cn. This is based on the necessity condition of
a test set. If this condition is to be met, the state of the mutated program
immediately after the execution of the mutated statement must be different
from the state of the unmutated program at the same point. If the condition
cannot be met, the mutant is equivalent.

We can derive Cn:
(|x| 6= x) ∧ (x > 0), (2.6)

The system knows that x > 0 implies x = |x| and that (|x| 6= x) ↔ ¬(x =
|x|). Contradiction, regardless of choice of x. Hence, the mutant is equiva-
lent.

Having applied automatic equivalent detection and run the test set, we
have killed most mutants and found some to be equivalent. The remaining
mutants are called stubborn. They might be equivalent or they might not
be. To assist the human tester in analyzing these mutants, [HH99] suggests
program slicing to reduce a complex set of statements to a simpler one.
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Chapter 3

The Coupling Effect

Of course, it is not possible to create the entire set of “non-pathological”
programs, Φ. Could we find a small subset µ of Φ such that if P passes the
µ mutant test, then will it also pass the Φ mutant test? Empirical [OF92]
results and for some cases theoretical [WA00] studies have shown that there
are indeed cases where this is true, but only for a strict definition of Φ. The
following sections relate these results, give an explanation of what mutation
testing really is testing and list the desired properties of an efficient set of
mutation operators.

3.1 Empirical Studies of Higher-order Mutants

Offutt [OF92] investigated the mutation coupling effect, which is the cou-
pling between first-order and higher-order mutants. First-order mutants are
mutants created by inserting one single fault into the program. Higher-order
mutants are created by inserting more than one fault into the program. Of-
futt then showed that a test set that kills all first-order mutants would kill
almost all second-order mutants too. For a program similar to the one in the
appendix, there were 951 first-order mutants and 350, 982 second-order mu-
tants. An adequate test set killing all first-order mutants was constructed.
This test set killed all except ten of the second-order mutants.

What does this result prove? Well, we cannot say that the coupling
effect holds for the general case since we do not know whether higher-order
mutants accurately model complex faults1.

It does seem, however, that we could say something about the compound
effect of several bugs. First assume that it is possible to isolate two faults.
If we could detect each of these isolated faults with some strategy, the above
result indicates that they will not cancel each other out and that we with
great probability will detect them even if not isolated.

1At this point we would need to define “complex fault” too, but for now it will do to
just think of it as “real-life bugs”.
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This informal result will be formalised in the next section.

3.2 Theoretical Study of the Coupling Effect

Wah [WA00] models programs as finite functions. He defines the program
as a function f = g ◦ h, and two faulty versions thereof; f ′ = g′ ◦ h and
f ′′ = g ◦ h′, where g′ and h′ denote faulty versions of g and h respectively.
Define f ′′′ = g′ ◦ h′. The question is: if we detect f ′ and f ′′, will we also
detect f ′′′?

From a software specification, we know the expected behaviour of the
correct program f . For a set of test points T , can we decide whether the
program under test is correct or incorrect? Under what circumstances will
we believe the program to be f when it actually is f ′′′? Only if for each
t ∈ T , f(t) = f ′′′(t).

If we have a single-point test set T = {t0} that detects f ′ and f ′′, then
we will believe f ′′′(t) to be f if this constraint holds:

f(t0) = f ′′′(t0) = (g′ ◦ h′)(t0) = g′(h′(t0)) (3.1)

To get a measure of the coupling effect, ignoring the fact that some func-
tions (programs) are more likely to exist than others, we count the number
of functions where the above constraint holds and compare it to the total
number of possible functions. Note that the latter is a huge number; the
class of programs with input and output domain of cardinality n will have
nn possible functions (programs), counting all equivalent programs as one.

Applying some combinatorial magic, the coupling effect ratio2 for large
n and a test set of order 1 will be ≈ 1− 1

n . That is, if we have T detecting
f ′ and f ′′, we will not detect f ′′′ only in relatively few test cases.

We might think of f ′ and f ′′ as mutants. Their relation to mutation
testing will be investigated in section 3.4.

3.3 Semantic Size

In [OH96], the semantic size of a fault is defined as “the relative size of the
[input domain] D for which the output mapping is incorrect ... the semantic
size would ideally be based on a usage distribution”. We could rephrase this
in mathematical terms:

Pr{P.x 6= P1.x}, x ∼ O(x) (3.2)

That is, the probability that given an input value x from some usage dis-
tribution O(x), the program P and the faulty program or mutation P1 will
produce different results.

2The ratio of test points detecting f ′ and f ′′ that also detects f ′′′. See definition in
3.4.
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Offutt and Hayes tries to explain the coupling effect: The failure region
of a fault is the portion of the input space that causes the fault to result
in a failure3. Now, if for the failure region of every semantically large fault,
there is a large overlap in the failure region for at least one small syntactic
fault4, the coupling effect holds.

Moreover, they hint at a possible intuitive explanation of why selective
mutation would work. Selective mutation is when only some mutation op-
erators or some mutants test the program as thoroughly as all of them. In
this case, “all of them” refers to the 22 “standard” mutation operators of-
ten used in scientific papers. (They are listed in section 2.1.) There has
been much work done finding a minimal set of mutation operators [OL93]
and other efforts have been made to reduce the cost of mutation testing
[MW93, HS90, WM97].

The idea is that selective mutation uses mutants having small semantic
size. Although experiments showed that the semantic size was indeed smaller
for the selected mutants than for the remaining ones – 31.60 % vs. 39.88 %
– the evidence is inconclusive.

Finally, they state that semantically small mutants have the potential
to lead to higher quality tests.

3.4 Failure Regions and Mutation Operators

To visualize failure regions, we define D = (x, y, z), where x and y are inte-
gers in the interval [1, 10] and z = 5, execute two mutants of the TRIANGLE
program (see the appendix) and compare the output with the original, un-
mutated program P .

In figure 3.1 you see surface plots of the diff function

∆P,P1(x) =

{
1, if P.x 6= P1.x
0, otherwise

, (3.3)

where P is the program under test and P1 ∈ Φ. The semantic size, s,
(assuming uniform distribution of input values) would then be

s(P, P1) =

∑
x∈D

∆P,P1(x)

c(D)
, (3.4)

where c(D) is the cardinality of D. The failure region F is the set

FP,P1 = {x | ∆P,P1(x) = 1} (3.5)

3IEEE definitions of fault and failure. Fault: An incorrect step, process, or data
definition in a computer program. Failure: The inability of a system or component to
perform its required functions within specified performance requirements.

4Note the difference between semantic and syntactic faults.
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Figure 3.1: Left: failure region of Mutation 26, right: failure region of Mutation
27. The framed square is the input domain, the black areas indicate the failure
region. Failure region of Mutation 27: Compare with mutation 26; the rightmost
black area is slightly larger.

The coupling function δ for the two faulty versions P1 and P2 of P :

δP1,P2

P =

{
1, if x ∈ FP,P1 and x ∈ FP,P2

0, otherwise
(3.6)

Finally, we will define the coupling effect ratio of P1 with respect to P2:

CeRP (P1, P2) =
s(δP1,P2

P )
s(∆P,P1)

(3.7)

In words, we could express this as an estimate of the probability of “a
test point detecting P1 also detecting P2”. Normally, we will not have the
luxury to see the entire input domain at once. It will almost never be two-
dimensional. Now we do, and it might serve as a conceptual model of how
things work in higher dimensions. (See figures 3.1 and 3.2.)

Coupling of Mutation Operators: Consider δ
µi,µj

P , where µi is the
ith mutant. In the case shown in figure 3.1, where i = 26 and j = 27,
δ
µi,µj

P = 1 in just one point of the input domain, (5, 10). The coupling effect
ratio CeRµ26,µ27

P = 0.90, implying that most faults detected by µ27 will also
be detected by µ26.

Detecting Bugs: Take a look at figure 3.2. Why is the buggy program
P not detected (buggy with respect to a “perfect” program P ?)? Because
no test point is in the failure region of the bug. Consequently, the fact that
FP ?,P = FP,P ?∩FP,µx 6= � does not imply that we will detect the bug, given
we have killed the mutant µx.

At first sight, this sounds discouraging. Why do we make all these
efforts killing mutants if they do not detect real bugs? Because they often
do. Again, the coupling effect comes to the rescue.

A program, P , and the “perfect” program P ? might be written as a
sequence of functions:

P = s0 ◦ . . . ◦ sn,
P ? = s?

0 ◦ . . . ◦ s?
n

(3.8)
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Figure 3.2: An undetected bug. Explanation to the figure: The area within the
frame represents the input domain of the program under test. 1) Failure region
for a mutant. 2) Failure region for an undetected bug. Black dots illustrate test
points killing mutants.

The perfect program does not exist, but we assume we have a perfect (hu-
man?) test oracle that knows the value P ?(t) for any given t. The sequence
s?
0, . . . , s

?
n is just a representation of this knowledge. Define

Pi = s0 ◦ . . . ◦ s?
i ◦ . . . ◦ sn,

µi = s0 ◦ . . . ◦ µi(si) ◦ . . . ◦ sn,
(3.9)

where µi(si) is some mutation of si. The coupling effect as explained by
Wah in [WA00]5 shows that if we detect the first-order mutants of P , Pi, for
i = 1, . . . , n, then we will detect the n-order mutant P ? of P . That is, we
can differ between the correct program P ? and the program under test P .

How do we detect Pi? Assume we detect µi. If we analyze the coupling
effect ratio of µi with respect to Pi, there are three cases to consider:

• The coupling effect ratio CeRµi,Pi
P is high. Detecting µi will probably

detect Bi.

• The coupling effect ratio CeRµi,Pi
P is low. Detecting µi will probably

not detect Bi.

• si = s?
i . There is no failure region and hence no error in B at si.

Had there been a bug highly coupled to a mutant in P , T would have
detected it. Since we have a passing test set, no such bug was detected
and consequently no such bug exists. That leaves us either with this
case being true or with the bugs that are less coupled to mutants, the
previous case.

5There are still holes in this theory; for example, the theory requires equal input domain
size of each si. See [WA00] for a thorough discussion.
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Conclusion: If the coupling effect ratio is high for each pair µi, Pi and
we have a passing test set then si = s?

i for each i = 1, . . . , n. Our program
under test, P , is correct6.

The “only” thing we need to do is defining a set of mutation operators
such that CeRµi,Pi

P is high.

3.4.1 An Efficient Set of Mutation Operators

Let us revisit the earlier “δ
µi,µj

P = 1 in only one point” issue. This indicates
that the only bugs that µ27 will detect that µ26 with certainty will not,
must have a failure region covering (5, 10) and FP,µ26 ∩ FP,B = �. (B
is the potentially faulty program, P is a complete program specification
which exists in this specific case, but generally does not.) Since this mutant
probably will be killed by the same test case that kills µ26, it is clear that it
does not contribute much. This example shows there exists a coupling effect
between mutants and explains the success of selective mutation.

Another example; a function computing
∑10

i=1 i2 · f(i), applied mutation
operators AAR and AOR, the former replacing each array reference with
another and the latter replacing each arithmetic operator with another.

1. array[1..10] of integer squares =
( 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 );

2. array[1..10] of integer inv-squares =
( 1, 0.25, 0.1111, ...

3. function weightedSum(array[1..10] of integer a)
4. begin
5. result = 0;
6. for i = 1 to 10 do
7. result := result + squares(i) * a(i);
8. end

On line 7, replace + with −. Find the failure region, call it FAOR. Next,
replace the reference to the squares array with a reference to inv-squares.
Find the failure region, call it FAAR. Select an arbitrary point p in FAOR.
Does p ∈ FAAR? With a probability very close to 1, it does. This scenario
is quite common for all AAR mutants; they are coupled to other mutants
and there seems to be little use of this mutation operator.

To summarize, this is a list of desirable properties of a set of mutation
operators:

• Highly coupled to any mutant Pi (as defined in the previous section).
Recognizing that these mutants must use the same language constructs

6Well, almost correct anyway—a future development would be to introduce some reli-
ability measure of mutation testing. Maybe based on the coupling effect ratio?
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as our set of mutation operators, it should be feasible to obtain high
coupling. The exception seems to be when narrowing the input do-
main with for example if-statements; then a considerable part of the
failure region is lost and so is the coupling effect ratio.

Example: If if (x > 30 && x < 50) doSomething() is missing, it
could bring the coupling effect ratio down to a fraction of what is
required to detect the bug.

• As a consequence of this, we need mutation operators that couples to
constructs such as relational operators, function calls, array references,
etc. A logical starting-point for constructing the set of operators would
of course be to mutate these kinds of constructs. Ideally, they should
cover the entire input domain:⋃

i

FP,µi = D (3.10)

• Another consequence: the semantic size s(P, µi) for each mutation
operator should be as small as possible. The one case guaranteed to
detect all bugs would be the set of mutants covering the entire input
domain D, where each mutant is killed by one specific value of the
input domain.

• Low coupling with respect to one another. This will eliminate some
operators. In fact, [OL93] showed empirically that test sets killing
mutants generated by the five operators ABS, AOR, LCR, ROR and
UOI was almost 100 % mutation adequate compared to the set of
22 operators on page 6.

3.4.2 What does Mutation Adequacy Measure?

Our primary goal using mutation testing is to deem a program well tested
(or not). What does this mean? We already know that it does mutation
adequacy does not imply a reliable test set (see equation 2.1). Assume we
have 100 % mutation adequacy. What conclusions may we draw about the
reliability of our program under test?

Consider the PLUS function below:

function plus(x, y: int): int
begin

plus := x + y;
end

We have a clear vision what this function should do. It should add
numbers. Period. Mutation testing allows us to make this assumption about
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a program, devise a testing strategy (write tests), and be fairly confident
that the program under test does not exhibit any unexpected behaviour.
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Chapter 4

Implementing a Mutation
Testing System for Java and
JUnit

One of the most widely used unit test frameworks is JUnit. It is designed
to let programmers write tests in Java to test programs written in Java.

JUnit has TestCases and TestSuites. A TestSuite is a collection of Test-
Cases and/or other TestSuites. A TestCase is the smallest testing unit and
is supposed to test one single aspect of the program under test.

A mutation testing system for this framework is presented in the follow-
ing sections. On a high level, these are the basic steps from source code to
the completion of a test run:

1. Parse source code and create mutants, in this case a metamutant.

2. Find equivalent mutants.

3. Run test cases with unmutated program.

4. If passed, run test cases with mutants.

This process is shown in figure 4.1.
A complete, industrial strength tool would also include a repository for

storing test runs, support for regression testing by running only mutants
affected by code changes and possibly automatic test case generation.

Design goals:

• Should integrate well with existing tools.

• Should be easy to add new mutation operators.

• Should be language independent (to a certain degree, some elements
like expressions are very similar across languages, whereas things like
oo-features might not be).
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Figure 4.1: The mutation testing process implemented by the tool.
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4.1 Metamutant Generator

The most important functionality of the program would of course be to
create mutants. This section explains how to do that.

The problem is reduced to mutate individual program elements, since a
mutant normally differs from the program under test in one program element
only.

Consider this statement in the program under test:

...
z = x + y;
...

How do we mutate this statement? One approach is to create a metamutant
[UN92]. A metamutant is one program containing all mutants. To declare
which mutant is executing, an environment variable is set.

The metamutant version of the above statement could be something like

...
z = plusIntInt(x, y, 230, 232);
...

Each binary expression eligible for mutation is replaced with a function
similar to the one above. The automatically generated plusIntInt function

...
plusIntInt(int x, int y, int firstMut, int lastMut)
{

if (getCurrentMutation() >= firstmut &&
getCurrentMutation() <= lastmut)

{
if (getCurrentMutation() == firstmut)

return x - y;
if (getCurrentMutation() == firstmut + 1)

return x * y;
if (getCurrentMutation() == firstmut + 2)

return x / y;
return x + y;

}
else

return x + y;
}
...

checks whether, at this point in the program, it should execute a mutated
statement. In the example, mutation number 230 mutates x + y into x
- y, 231 into x * y and 232 into x / y. All other mutants executes the
unmutated x + y.
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4.1.1 Java Mutation Operators

Java is an object oriented programming language, very different from the
procedural languages like FORTRAN and C which were the target lan-
guages for early mutation testing tools. Of course, this implies that the
type of errors committed by programmers are different too. It is of great
importance for a Java mutation testing tool to implement or allow for the im-
plementation of mutation operators designed to uncover Java-specific faults.
[MK02] proposes 24 new mutation operators listed in table 4.1 and [BI02]
defines mutation operators for common Java classes like Collection and
InputStream.

4.2 Equivalence Detector

Detecting equivalent mutants requires a constraint solver. Constraints are
kept track of just like any scoped variable. Consider this code snippet:

1. public someFunc(int x, int y)
2. if (y == 0)
{

...
3. z = plusIntInt(x, y, 230, 232);

...
}

A type checker knows that in line 3, the variables x and y are available. With
not too much effort we can teach the type checker to handle constraints so
that it also know that in the entire code block after line 2, the constraint y
= 0 holds (unless y is modified, of course).

For each node in the abstract syntax tree of the mutated program, the
metamutant calls a method in a subclass of the MutationOperator class
that either instruments the node or leaves it untouched. It is appropriate
to let MutationOperator detect equivalent mutants. This code example
demonstrates how this could be done for the x + y to x - y case:

public class ArithmeticOperatorMutationOp
...
public boolean isEquiv(BinaryExpression bexp, Constraints constr)
{

...
if (bexp.getOperator() == PLUS &&

mutateTo == MINUS)
{

Variable y = bexp.rightOperand();
return constr.getConstraintsForVar(y).
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Table 4.1: 24 Java mutation operators. The first letter of the mutation operator
abbreviation represents the category; A = access control, I = inheritance, P
= polymorphism, O = method overloading, J = Java-specific features, E =
common programming mistakes.

Operator Description
AMC Access modifier change
IHD Hiding varible deletion
IHI Hiding variable insertion

IOD Overriding method deletion
IOP Overridden method calling position change
IOR Overridden method rename
ISK super keyword deletion
IPC Explicit call of parent’s constructor deletion

PNC new method call with child class type
PMD Instance variable deletion with parent class type
PPD Paramter variable declaration with child class type
PRV Reference assignment with other compatible type

OMR Overloaded method contents change
OMD Overloaded method deletion
OAO Argument order change
OAN Argument number change
JTD this keyword deletion
JSC static modifier change
JID Member variable initialization deletion

JDC Java supported default constructor create
EOA Reference assignment and content assignment re-

placement
EOC Reference comparison and content comparison re-

placement
EAM Accessor method change
EMM Modifier method change
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equals(new EqualityConstraint(
y, 0));

}
...

}

The above code compares the constraints on y. If they are equivalent to the
set of constraints { y = 0 }, then the mutant is equivalent, otherwise it is
not.

4.3 Test Runner

The architecture of JUnit lends itself easily to extraction of TestCases.
The test runner runs the entire TestSuite against the unmutated program,
records which tests execute which statements and, for each mutant, it runs
all TestCases that executed the particular statement of the mutant. After
the test run, every mutant is in one of the states Not executed, Alive, Killed,
Equivalent or Timed out (if the execution of a test case did not terminate
within a set time limit).

4.4 Testing the Triangle Program

The program in the appendix determines the type of a triangle; either it is
illegal (the sides do not connect properly) or it is one of three valid cases
scalene (no sides equal), isosceles (two sides equal) or equilateral (all sides
equal).

The program is submitted to the mutation testing tool together with a
pointer to the JUnit test class. Two experiments are to be performed. The
first demonstrates the mutation adequacy of a test set known to be adequate
from a testing perspective and the second uses the tool—or actually, a spe-
cial API included with the tool—to investigate the coupling effect between
mutants1.

4.4.1 Equivalent Mutants

The problem with equivalent mutants still stands out as a time-consuming,
error-prone and hence expensive task. To find all equivalent mutants in
this specific case, we exhaustively tested every integer value in the domain
D = (x, y, z) where x, y and z ∈ [−20, 40]. Obviously, this method is
infeasible in the general case.

1Only a subset of the available mutants are used in these experiments, including no
special Java mutation operators.
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Of the 117 mutants, these 9 (8 %) were found to be equivalent: 47, 81,
83, 96, 97, 99, 109, 110, 112. (Mutants 1 and 3 would be equivalent had the
domain been limited to three integers; test case 13 tests with more and less
parameters and kills those two mutants.) The numbers have no meaning
other than identifying individual mutants.

4.4.2 Experiment 1: Mutation Adequacy
of a Test Set Known to be Adequate

Myers [MY79] lists 13 test cases that thoroughly test the triangle program
in the appendix:

1. A test case which represents a valid scalene triangle.

2. A test case which represents a valid equilateral triangle.

3. A test case which represents a valid isosceles triangle.

4. At least three test cases which represent valid isosceles. triangles such
that you have tried all three permutations of two equal sides.

5. A test case in which one side is zero.

6. A test case in which one side is negative.

7. A test case with three positive integers such that the sum of two of
them is equal to the third.

8. At least three test cases in category 7 such that you have tried all
three permutations where the length of one side is equal to the sum of
the lengths of the other two sides.

9. A test case with the sum of two of the numbers less than the third.

10. At least three cases in category 9 such that you have tried all three
permutations.

11. A test case with all side lengths equal to zero.

12. At least one test case specifying non-integer values.

13. At least one test case specifying the wrong number of values (two or
four).

These test cases (except for number 12, which is not applicable) were
implemented as a JUnit test suite. Table 4.2 presents the results of the test
run. We cannot draw any statistically valid conclusions based on this test
run due to the limited number of mutants and the low complexity of our
program under test. Yet, it is instructive to consider two things: that our
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test set indeed seem to be mutation adequate, although it could be better
still, and the correlation between statement coverage and mutation score.
To kill a mutant, it must be reached. If it is reached, the statement of
that mutant is covered. Therefore, statement coverage must necessarily be
a worse measure of test set adequacy2.

Table 4.2: The percentage of non-equivalent mutants killed by each test case.
The total is the mutation score of the entire test set. The “statement coverage”
column shows the percentage of executed statements of the program under test.

Testcase Mutation score Statement coverage
1 36% 40%
2 23% 52%
3 32% 48%
4 49% 64%
5 3% 16%
6 3% 16%
7 34% 40%
8 44% 40%
9 19% 40%

10 26% 40%
11 0% 16%
13 5% 8%

Total 88% 96%

4.4.3 Experiment 2: The Coupling
Effect Ratio Between Mutants

[SS90, BU80, WO93, MW95] examines mutation testing with only a random
subset of all mutant programs. This is called mutant sampling and seems to
be much more cost-effective than running all mutants. [WO93], for example,
gives an instance where a 10 % sample of the mutants were only 16 %
less effective than the entire set of mutants. Why does this work? One
could suspect that the coupling of mutants plays an important role. One
experiment we could do with our tool would be to extract all “necessary”
mutants of the triangle program. The set of necessary mutants is almost as
efficient as the entire set of mutants. This simple algorithm shows how to
extract them:

• Define the set of necessary mutants, N . The initial value of N equals
the entire set of mutants, {µ1, . . . , µn}.

2Several authors discuss the value of mutation testing compared to other coverage
criteria. See for instance [FW94] and [MW93].
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Table 4.3: The number of necessary mutants given a coupling effect ratio thresh-
old. All mutants more coupled than the threshold to any necessary mutant is
not a necessary mutant itself. The mutation score is the result of running the
same triangle program test suite but with the necessary mutants only. (And
yes, the middle column should be filled with 23’s.)

Threshold Necessary Mutants Mutation Score
0.95 23 48%
0.90 23 48%
0.80 23 48%
0.70 23 48%

• For each mutant µi, if µi ∈ N , compute the coupling effect ratio with
respect to every other mutant in N .

• If the value of the coupling effect ratio with respect to the mutant µj

is greater than a preset threshold, remove µj from N .

We used random testing to estimate the coupling effect ratio. For a set
of n randomly distributed input values, compare the output out0 with the
output of the mutants, outi, outj . Count the number of inputs resulting
in out0 6= outi (call this ni) and the number of inputs resulting in both
out0 6= outi and out0 6= outj (called ni,j). Then the coupling effect ratio,

CeRP (µi, µj) ≈
ni,j

ni
(4.1)

Table 4.3 lists some important results. Of our 108 non-equivalent mutants,
23 couples more than 95 % to all the other mutants, which explains the
success of previous results on mutation sampling3. The lower mutation
score for the necessary mutants is not surprising as we expect the remaining
alive mutants to not couple to the killed ones. We believe that this score is
more accurate than the score of the entire mutant set. Also, a cost-effective
set of mutation operators produce a high ratio of necessary mutants.

3Note that we already use a highly efficient subset of all mutation operators. The
results would probably be even better if we used all of them.
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Chapter 5

Conclusions

Mutation testing has been around since the late 1970s but is rarely used out-
side academia. Executing a huge number of mutants and finding equivalent
mutants has been too expensive for practical use.

Selective mutation, the use of metamutants, automatic equivalence de-
tection and progress in automatic test generation algorithms have opened
the door to lowering the cost of mutation testing with orders of magnitude
[OU00].

A usable mutation testing system for the software industry is within
reach. There are still obstacles to overcome; the equivalent mutant problem
remains, although to a lesser degree (and might even be ignored as 100 %
adequacy is not always necessary). Then there are less theoretical issues.
The system should integrate well with software development processes and
software like testing frameworks and version control tools.

If these problems are resolved, mutation testing holds the potential of a
truly powerful tool.

5.1 Mutation Operators

The common approach to implement mutation operators is mimicking po-
tential faults like “inadvertently using the wrong logical connector” or “not
overriding a method”.

Even though inserting semantic faults is a most natural, simple and
powerful way to create efficient mutants, the coupling effect is a function
of semantic faults, not syntactic. We have clarified the concepts of failure
regions and how they explain the coupling effect. In many papers, especially
those treating the extension of mutation testing to object oriented languages
and integration testing, no thorough semantic analysis of mutation operators
is done. This casts doubts on the selection of mutation operators and could
lead to either too many mutants (expensive) or too few (inadequate).
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The four points on page 14 highlights the properties of an efficient set
of mutation operators.

5.1.1 The Mutation Testing Tool

Much effort has been put into the making of a mutation testing tool for
Java, a prototype of an easily extendible tool with support for JUnit, custom
mutation operators, support for adding more programming languages in the
future and a special API for conducting mutation testing experiments.

A couple of experiments to demonstrate the use and usefulness of the
tool were performed. One of the experiments showed how to extract the
set of necessary mutants from a larger set and might be used to gain more
insight into efficient sets of mutation operators.

5.2 Future Work

During the course of writing this thesis, a few areas stood out as especially
important (in order of importance):

• A mutation testing tool that is fast, easy to use and suitable for today’s
software development environments is much wanted.

• Because of mutation testing not being widely used in industry (because
of the obstacles mentioned earlier), there is a lack of mutation testing
experience. It would be interesting to implement a mutation testing
process for various types of software projects and report the outcome.

• What about those equivalent mutants? Could we find better methods
to find them? We should be able to find all equivalent mutants and/or
safely ignore the rest. Very little or no human detection is essential
for a successful solution to this problem.

• Efficient mutation operators are the key to quality mutation testing.
Are the operators currently used for object-oriented languages and
integration testing good enough?

• Contrary to what was assumed in section 3.2, domain sizes vary. For
small domain sizes, like in the statement if (x - y > z) then blah
blah, where the combined domain size of x, y and z is reduced to 2
(true/false), we expect the coupling effect to be reduced too. At this
point, more test cases will be needed to assure (almost) correctness of
the program.

• Mutation testing is quite flexible — for example, specialized mutation
operators have been proposed for some Java container classes [BI02]
and for finding environmental bugs [SP90]. Could this be exploited
somehow?
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Appendix: The TRIANGLE
program (in Java)

public static int getType(int side1, int side2, int side3)
{

return getType(new int[] { side1, side2, side3 });
}

public static int getType(int[] sides)
{

if (sides.length != 3)
return ILLEGAL_ARGUMENTS;

if (sides[0] < 0 || sides[1] < 0 || sides[2] < 0)
return ILLEGAL_ARGUMENTS;

int triang = 0;
if (sides[0] == sides[1])

triang = triang + 1;
if (sides[1] == sides[2])

triang = triang + 2;
if (sides[1] == sides[2])

triang = triang + 3;

if (triang == 0)
{

if (sides[0] + sides[1] < sides[2] ||
sides[1] + sides[2] < sides[0] ||
sides[0] + sides[2] < sides[1])
return ILLEGAL;

else
return SCALENE;

}
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if (triang > 3)
return EQUILATERAL;

else if (triang == 1 && sides[0] + sides[1] > sides[2])
return ISOSCELES;

else if (triang == 2 && sides[0] + sides[2] > sides[1])
return ISOSCELES;

else if (triang == 3 && sides[1] + sides[2] > sides[0])
return ISOSCELES;

return ILLEGAL;
}
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