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1 Introduction
In this part we will state the problem setting and point out some theoretical
background.

1.1 Rarefied Gas Flow
A gas contains many particles in the order of 1016 per cubic millimeter. Due
to the many collisions between particles, the gas behaves as a continuum.
The condition of a gas can be described by the Knudsen number which is de-
fined byKn = λ0

L
where λ0 is the mean free path length which is the covered

distance between two collisions of a particle andL is the macroscopic length
scale. In situations where the typical length scale L is much larger then the
mean free path length λ0 the flow is described well through the Navier-
Stokes and Fourier equations. These equations are valid for Kn . 0.01,
which is called the hydrodynamic regime. In Fig.3 the regimes for differ-
ent Knudsen number is shown. Gases outside the hydrodynamic regime are
called rarefied gases. In this region the Navier-Stokes Fourier equations fail
and have to be replaced by a set of more refined equations. Such an equa-
tion is the Boltzmann equation which describes the gas on a microscopic
level which refers to the translation and collision of the particles. The Boltz-
mann equation is the main equation in the kinetic theory of gases.

0 0.01 0.1 1 10
Kn

Hydrodynamic Regime Slip Flow Regime Transient Regime Free Molecular Flow

Navier-Stokes-Fourier Extended Macroscopic Models

Figure 1: Flow regimes classification

1.2 Kinetic Theory of Gases
To model a rarefied gas which is outside the hydrodynamic regime we need
different equations than the Navier-Stokes-Fourier equations. To come up
with equations which represents the rarefied gas we go into the Kinetic The-
ory of Gas, where we describe the state of the gas with a distribution func-
tion f(x, t, c) which gives the number of particle at a position x at the time
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t and the velocity c. The Boltzmann equation
∂f

∂t
+ ci

∂f

∂xi
+Gi

∂f

∂ci
= S (f) (1.1)

gives a solution for the distribution function f . The left hand side of the
equation describes the free flight of the particles with an external force G
and the right-hand side S(f) is the collision operator. Since it is too expen-
sive to calculate the direct solution of the Boltzmann equation, we have to
come up with a simplification. The solution of the Boltzmann equation for a
gas in equilibrium is the Maxwell distribution:

f(c) =
ρ/m
√

2πθ
3 exp

(
−(c− v)2

2θ

)
(1.2)

Where ρ is the density, m the mass of a particle and v the mean velocity of
the particles. θ = RT is the temperature in energy units, with R the gas
constant and T the temperature of the gas. To come up with a less complex
equation we can use the Chapman-Enskog method which yields the Bur-
nett equations. The principle is that we have the conservation equations for
mass, momentum and energy. To close the system an asymptotic analysis
is done for the heat flux q and stress σ. This is discussed in [3]. Another ap-
proach, which is presented by Grad in [12] describes the flow by the moment
equations. The closure in this case is done over an extension of the distribu-
tion function with a Hermite series.
The R13-Equations which are used in this work combines these two methods.
This means an asymptotic expansion is done on top of Grad’s distribution.
Compared to the two other methods the R13-equations are highly accurate
and fully stable. For more information about these models and other macro-
scopic transport models for rarefied gas flows see [14].

1.3 Knudsen Layer
The flow of a gas in the rarefied region can be split in two parts. Away from
the wall the flow is the solution of the fluid-dynamic-type equation. Next to
the wall, within a layer with the thickness of a few mean free paths adjacent
to the boundary we have a correction to the fluid-dynamic-type solution.
This layer is called the Knudsen layer.

1.4 Content
In this work we will use the stationary and linearized R13-equations which
represent a steady slow flow. First we present in Chapter 2 an analytical so-
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lution for a flow around a sphere and introduce the linearized R13-equations
with its boundary conditions. The aim is then to come up with a numerical
scheme which allows to calculate solutions for the linearized R13-equations
in different flow scenarios. In this work the flow around a cylinder in two di-
mensions is considered and compared to the analytical solution of the flow
around the sphere. In Chapter 3 we reduce the linearized R13-equations and
split the system in two separate problems. One is the stress problem which
will be presented in Chapter 4 and the other is the heat flux problem which
will be discussed in Chapter 5. For every system a variational formulation
is presented and its solution is calculated with the finite element software
FEniCS [8]. In Chapter 6 we look at the coupled system and show results for a
coupling through the boundary conditions and a coupling also through the
constitutive relations.
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2 Linearized R13-Equations
To calculate gas flows in the rarefied regime we have the R13-equations
which give an adequate result. To reduce the complexity of the equations
we consider stationary and slow flow. As a test case we use the flow around
a cylinder, which can also be compared to the flow around a sphere consider-
ing the symmetries. Let us start first with the examination of the analytical
solution for the flow around a sphere.

2.1 Flow Around a Sphere
The paper [19] presents an analytical solution for a rarefied gas flow around
a sphere. Fig.2 shows the analytical result for Kn = 0.3. On the left hand
side the flow lines and the speed contours are shown. On the right hand
side we see the heat flux lines and the temperature contours. We can see
that the velocity on the north and the south pole are non-zero. This is due
to the slip conditions for a rarefied gas, where the wall can not slow down
the gas in the same way as a non rarefied gas. We should take into account
that the problem is rotation-symmetric. By analyzing the the temperature
and the heat flux we see a counterintuitive behavior, the heat in front of the
sphere is lower than behind. The heat is recirculating on the top and bottom
of the sphere. Because the linear R13-equations are used to calculate the
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Figure 2: Stream lines and speed contours (left), heat flux and temperature flow
lines (right)

solution, the quadratic energy dissipation, which is typically responsible for
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temperature increase through shear, is not present. An analytical solution
for standard flow around a sphere can be found in [1], [7] or [15].

2.2 Conservation Laws
We start from the Navier-Stokes-Fourier equations, which are the conserva-
tion laws for mass, momentum and energy. We reduce these equations by
considering stationary and slow flow, which means that the time derivative
is zero (∂t () = 0) and the Mach number is small(M0 � 1). The conservation
equations look like:

∇ · u= 0 (2.1)
∇p+∇ · σ= 0 (2.2)

∇ · s= 0 (2.3)
Whereu represents the velocity vector. p is the pressure or the mean normal
stress and can be combined with the stress deviatoric tensor σ to the stress
tensor π = pI + σ. The heat flux is represented by the variable s and the
temperature by θ.

2.3 Constitutive Equations
A constitutive equation is a reasonable approximation that holds in some
material. In the case of a fluid with low Knudsen number we have the
Navier-Stokes law for the stress tensor and Fourier’s law for the heat flux.
For higher Knudsen number we have to extend the constitutive equations,
which describe the gas more accurate. A constitutive equation builds a clo-
sure for the conservation equation. These equations are also reduced con-
sidering steady and slow flow.

2.3.1 Extended Stokes Law

For the deviatoric stress tensor we have the following expression:

σ =− 2µ0 (∇u)sym −
4

5

µ0

p0

(∇s)sym

+
2

3

µ2
0

p0ρ0

(
∆σ +

6

5

(
(∇ (∇ · σ))sym −

1

3
∇ · (∇ · σ)1

))
(2.4)

The notation ()sym stands for the symmetric part of a tensor and means
(A)sym = 1

2
(A+ At). The first term on the right-hand side is the standard

Navier-Stokes law. The second is a coupling between the heat flux and the
stress. The last terms are of higher order in the Knudsen number.
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2.3.2 Extended Fourier’s Law

The heat flux for the extended model looks like:

s = −15

4
µ0∇θ −

3

2

θ0

p0

µ0 (∇ · σ) +
18

5

µ2
0

p0ρ0

∆s (2.5)

The first term on the right-hand side equates to the Fourier’s law. The second
term is the coupling between the stress and the heat flux. The last term is
of higher order in Knudsen number.

2.4 Boundary Conditions
The first condition we have is the impermeability condition for a wall and is
given as

un = 0 (2.6)

which is not a special condition of the R13-equations. The following condi-
tions are part of the extended model for the rarefied gas. The velocity slip
condition reads

σnt = − χ√
θ0

(
p0 (ut − uw) +

1

5
st +

1

2
mnnt

)
(2.7)

where the index n stands for the normal and t for the tangential component.
χ is the accommodation coefficient of the wall model and will be set to 1 in
this work. The variables uw and θw represent the wall velocity and the wall
temperature, respectively. The temperature jump is given by

sn = − χ√
θ0

(
2p0 (θ − θw) +

1

2
θ0σnn +

5

28
Rnn

)
(2.8)

We also have boundary conditions involving higher order moments

Rnt = − χ√
θ0

(
−θ0p0θ0ut +

11

5
θ0qt +

1

2
θ0mnnt

)
(2.9)

mnnn = − χ√
θ0

(
−2

5
p0 (θ − θw) +

7

5
θ0σnn +

1

14
Rnn

)
(2.10)

mntt −mnss = − χ√
θ0

(
Rtt −Rss

14
+ θ0 (σtt − σss)

)
(2.11)
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whereR andm are higher order moments and are given by the gradient of
the heat flux and the gradient of the stress, respectively. Index s represents
the component normal to n and t. The boundary conditions (2.10) and (2.11)
will be neglected in the numerical part. For more information about the
boundary conditions see [20] and more details about the analytical solution
for the flow around a sphere can be found in [19].

2.5 System of Equations
Finally, the full system of equation which models the rarefied gas flow is
given by the conservation laws (2.1), (2.2) and (2.3), with the constitutive rela-
tions (2.4) and (2.5) for the closure, as well as the boundary conditions (2.6),
(2.7), (2.8), (2.9), (2.10) and (2.11), which models the walls. This system con-
tains a mass flow and a heat flow problem. On one hand the two problems
are coupled through the constitutive equations. On the other hand the two
systems are connected through the boundary condition. By just considering
the first term on the right-hand side of each closure and boundary condi-
tion the two systems are uncoupled and we have a Stokes and a standard
heat flux problem. In the following Sections 4 and 5 we will discuss these
two systems separately, but first we will go on with a discussion about the
numerical issues and the reduction of the system.
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3 Numerical Approach
To calculate the numerical solution of the linearized equations we first have
a look at the equations. What we see is that we can split the system into two
separate systems. One is the stress system with the linearized conservation
of mass and momentum as well as the constitutive relation for the stress.
The other system is the heat flux system with the linearized conservation of
energy and the constitutive relation for the heat flux. These two systems are
coupled through the constitutive relations and also through the boundary
conditions, which can be assigned to their respective system. Given the sim-
ilarities to a standard Stokes problem, the method of choice to calculate the
numerical solution is the finite element method. We use the software FEn-
iCS [8], which offers a flexible way of solving partial differential equations
with the finite element method. In order to come up with a valid variational
formulation, which gives a stable solution we had to test different formula-
tions. The FEniCS [8] software is built such that variational formulation can
be easily changed. More Information about the software can be found in
Section 8.

3.1 Problem Setting
In the numerical calculation we deal with the flow around a cylinder. The
situation is presented in Fig.3. We have an inflow on the left-hand side and

x

y

0
0

0
1

0
1

0
2

0
3

0.0

1.0

0.0 1.0

Figure 3: Setup for the numerical experiments
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an outflow on the right-hand side. The walls are fixed. We set a tempera-
ture on the cylinder and consider adiabatic walls on top and bottom. Every
boundary is assigned by a number. The upper and lower walls are located at
the positions y = 0.0 and y = 1.0 on the boundary ∂Ω1. The cylinder with
radius r = 0.1 and center c = (0.5, 0.5) has the boundary ∂Ω0. The inflow
boundary at x = 0.0 is marked by ∂Ω2 and the outflow boundary at x = 1.0
by ∂Ω3.

3.2 Reduced Constitutive Relations
We reduce the linearized R13-Equations in order to have a simpler system,
which can be solved numerically with the present software. Starting from
the linearized constitutive relations

σ =− 2µ0 (∇u)sym −
4

5

µ0

p0

(∇s)sym

+
2

3

µ2
0

p0ρ0

(
∆σ +

6

5

(
(∇ (∇ · σ))sym −

1

3
∇ · (∇ · σ)1

))
(3.1)

s = −15

4
µ0∇θ −

3

2

θ0

p0

µ0 (∇ · σ) +
18

5

µ2
0

p0ρ0

∆s (3.2)

we make them dimensionless and introduce the Knudsen number asKn =
µ0
√
θ0

p0L
. The closure for the stress will be modeled only with its two first terms.

The constitutive relation for the heat flux will be considered with all the
terms.

σ = −Kn (∇u)sym −Kn (∇s)sym (3.3)
s = −Kn∇θ −Kn (∇ · σ) +Kn2∆s (3.4)

For the sake of simplicity we omit the coefficients.

3.3 Reduced Boundary Conditions
We also reduce the boundary condition in order to run the numerical simu-
lation of the flow process. We start from the conditions discussed in Section
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2.4

un = 0 (3.5)

σnt =− χ√
θ0

(
p0 (ut − uw) +

1

5
st +

1

2
mnnt

)
(3.6)

sn =− χ√
θ0

(
2p0 (θ − θw) +

1

2
θ0σnn +

5

28
Rnn

)
(3.7)

Rnt =− χ√
θ0

(
−θ0p0θ0ut +

11

5
θ0qt +

1

2
θ0mnnt

)
(3.8)

mnnn =− χ√
θ0

(
−2

5
p0 (θ − θw) +

7

5
θ0σnn +

1

14
Rnn

)
(3.9)

mntt −mnss =− χ√
θ0

(
Rtt −Rss

14
+ θ0 (σtt − σss)

)
(3.10)

We neglect the higher order moment terms, make the equations dimension-
less and remove the coefficients. After these reductions and setting the wall
velocities uw to zero, it remains the following boundary conditions

un = 0 (3.11)
σnt =α1ut + β1st (3.12)
sn =α2 (θ − θw) + β2σnn (3.13)

∂nst =α3st − β3ut (3.14)

In the full R13-equations it can be seen that the coefficientsαi are larger than
βi. In this work we will use αi = 2.0 and βi = 0.5.

3.4 Remarks on the Implementation of the Boundary Condi-
tions

In the finite element method we distinguish between natural and essen-
tial boundary conditions. The natural boundary condition often comes as
Neumann boundary condition and is built into the weak formulation. The
essential boundary condition often comes as Dirichlet boundary condition
and is built into the solution space. This makes the test function vanish on
the boundary where the essential boundary condition are specified. There
exists also a possibility to enforce Dirichlet boundary conditions in a weak
sense. Since the finite element software FEniCS does not allow to specify
essential boundary condition for just one component of a vector, we have
to apply this weak enforcement of the Dirichlet condition. In the following
part an example will be presented, where we demonstrate how to imple-
ment this condition.
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3.4.1 Example for a Weak Enforce Dirichlet Boundary Condition

Consider the following two dimensional Poisson problem in a unit square.
−∆u=f in Ω = {(0, 1)× (0, 1)} (3.15)

un =u0 on ∂Ω (3.16)
∂nut = a0 on ∂Ω (3.17)

After multiplying the equation by the test function v and integration by part
the variational formulation is given as
Find u ∈ V such that∫

Ω

(∇v : ∇u) dx−
∫
∂Ω

v · (∇un) dl =

∫
Ω

v · fdx (3.18)

for all v ∈ V .
The next step is to implement the Dirichlet and the Neumann boundary con-
ditions (3.16) and (3.17), respectively. What we see is that we can not imple-
ment them directly in the test function space and boundary integral. First
we have to perform a transformation of the test and trial functions v and u
into normal and tangential direction. This can be done the following way:

v =

(
v · n
v · t

)
=

(
vn
vt

)
, ∇un = ∂nu =

(
∂nu · n
∂nu · t

)
=

(
∂nun
∂nut

)
Inserting these transformations into the boundary integral of the variational
formulation (3.18) we get for the boundary integral∫

∂Ω

v · (∇un) dl =

∫
∂Ω

(
vn
vt

)
·
(
∂nun
∂nut

)
dl

=

∫
∂Ω

(vn∂nun + vt∂nut) dl (3.19)

We see now that we can implement our boundary conditions into the in-
tegral (3.19) on the right-hand side. We would build the Dirichlet condition
(3.16) into the space of the normal test functions which would dispose of the
first term and enforce the Neumann condition (3.17) in a natural way by re-
placing ∂nut by its value a0 in the second term. With the FEniCS [8] software
we can proceed with the Neumann boundary condition as described. But
the Dirichlet condition can not be implemented in an essential way since
FEniCS [8] does not allow essential boundary conditions for only one com-
ponent of a test function. Therefore we enforce the Dirichlet boundary con-
dition in a weak sense. We take the boundary condition (3.16) and replace
the term ∂nun in the following way

un = u0 → δ∂nun = (un − u0) ⇒ ∂nun =
1

δ
(un − u0) for δ � 1
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For a large δ the Neumann condition ∂nun = 0 is enforced but if δ is small
the Dirichlet condition (3.16) is satisfied. Finally the variational formulation
is given as
Find u ∈ V such that∫

Ω

(∇v : ∇u) dx−
∫
∂Ω

(
vn

1

δ
(un − u0) + vta0

)
dl =

∫
Ω

v · fdx (3.20)

for all v ∈ V and δ � 1.
The weak enforcement of the Dirichlet boundary condition will be applied
several times in this work.
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4 Stress System
In this chapter we deal with the Stokes equation with velocity slip bound-
ary conditions. We present a different variational formulation than it is pre-
sented in the standard literature. At the end a numerical experiment is per-
formt for the flow past a cylinder.

4.1 Equations
We have the following equations with the conservation of mass and mo-
mentum as well as the Navier-Stokes law.

∇ · u= 0 in Ω (4.1)
∇p+∇ · σ= 0 in Ω (4.2)

σ +Kn (∇u)sym = 0 in Ω (4.3)

The constitutive relation (3.3) has been reduced to the relation (4.3) by ne-
glecting the heat flux coupling term. Normally we would insert the consti-
tutive relation into the momentum equation. This would lead to a Poisson
problem for the velocity with the divergence free constrain for the velocity
field. This is done in the two books [18] and [7] for example. In our case we
do not insert the closure for the stress into the momentum equation. We
do this in view of extending the constitutive relation, where we will have
a Laplacian of the stress tensor and coupling to the heatflux. With an addi-
tional term inσwe will not be able anymore to solve for the stress and insert
it into the momentum equation. A numerical analysis for a similar system is
done in [4]. The variational formulation they present is different to the one
below.

4.2 Boundary Conditions
For the Stokes problem we have the following two boundary conditions. The
first is the condition for an impermeable wall:

un = 0 on ∂Ω (4.4)

which the velocity has to satisfy. The second boundary condition is the ve-
locity slip condition, given as:

σnt = α1ut on ∂Ω (4.5)

As we have only the stress problem, the right-hand side of the boundary
condition (3.12) is reduced to the the first term. The condition states now
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that the tangential velocity is proportional to the tangential shear on the
wall.

4.3 Variational Formulation
In our problem we have the velocity, the pressure and the stress tensor. Let
V , P and T denote the function spaces to which these quantities belong.
For every equation of the Stokes problem we need a test and a trial func-
tion. For the mass conservation we need a scalar function. For the momen-
tum conservation a vectorial one and for the constitutive relation a tensorial
function. We write the trial functions as (u, p,σ) and the test function as
(v, q, τ ). We have now the following formulation:

∇ · u= 0 in Ω (4.6)
∇p+∇ · σ= 0 in Ω (4.7)

σ +Kn (∇u)sym = 0 in Ω (4.8)

We multiply the first equation with the scalar test function q, the second
with the vectorial test function v and the third with the tensor function τ .
After integrating over the computational domain we get the following vari-
ational formulation:
Find (σ,u, p) ∈ {T × V × P } such that∫

Ω

q (∇ · u) dx = 0, (4.9)

−
∫

Ω

p (∇ · v) dx+

∫
∂Ω

p (v · n) dl

−
∫

Ω

(∇v : σ) dx+

∫
∂Ω

(v · σn) dl = 0, (4.10)∫
Ω

(τ : σ) dx+Kn

∫
Ω

(
τ : (∇u)sym

)
dx = 0 (4.11)

for all (τ ,v, q) ∈ {T × V × P }.
We define the spaces V , P and T as follows

V = H1(Ω)2, P = L2
0(Ω) and T = H1(Ω)2×2

The choice of the finite element spaces is inspired by papers with deeper in-
vestigation into the finite element methods of the Stokes problem. This vari-
ational formulation can also be called a mixed velocity-pressure-stress for-
mulation. A least-square method for this kind of formulation for the Stokes
problem can be found in [2] and a spectral approach for the Stokes problem
in [11].
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4.4 Numerical Experiment
In this part we present a numerical experiment for a flow around a cylinder.
We have to specify the boundary integral related to the problem settings.

4.4.1 Settings

We consider the variational formulation for the Stokes system given in Sec-
tion 4.3 and the geometrical settings given in Section 3.1. We have an inflow
on the right-hand side on the boundary ∂Ω2 and an outflow on ∂Ω3. On the
wall boundaries ∂Ω1 and on the cylinder ∂Ω0 we have the two conditions
(4.4) and (4.5). To imply these boundary conditions we have to transform
the boundary integrals.

4.4.2 Boundary integral

We reformulate the boundary integrals in (4.10) in order to apply the spe-
cific boundary conditions. The two integrals can be combined to one in the
following way

A1 =

∫
∂Ω

p (v · n) dl +

∫
∂Ω

(v · σn) dl

=

∫
∂Ω

(v · p1n+ v · σn) dl

=

∫
∂Ω

(v · (p1+ σ)n) dl

=

∫
∂Ω

(v · πn) dl (4.12)

where π is the pressure tensor. We transform now into normal and tangen-
tial direction considering the boundary conditions which are given in this
orientation. A detailed explanation for the transformation can be found in
Section 3.4.1. Since the pressure matrix p1 has only diagonal elements we
have πnt = σnt and can write the integral as:

A1 =

∫
∂Ω

(v · πn) dl

=

∫
∂Ω

(vnπnn + vtπnt) dl

=

∫
∂Ω

(vnπnn + vtσnt) dl (4.13)
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We apply essential boundary conditions for the in- and outflow on ∂Ω2 and
∂Ω3. This means that the test function v vanish on these two boundaries
and we build the conditions un = 1 and ut = 0 into the space. For the cylin-
der, upper and lower walls we apply the boundary conditions in a natural
way. We insert the boundary condition (4.5) into the variational formulation
for the second term and for the first term we have to transform the essen-
tial condition (4.4) into a natural one. This can be done by weak enforcement
which was discussed in Section 3.4.1.

un = 0 → δπnn = (un − 0) ⇒ πnn =
1

δ
un for δ � 1 (4.14)

The boundary integral is then given as

A1 =

∫
∂Ω

(vnπnn + vtσnt) dl =

∫
∂Ω0∪∂Ω1

(
vn

1

δ
un + vt (α1ut)

)
dl (4.15)

4.4.3 Variational Formulation

The variational formulation with the specified boundary integrals, is given
as:
Find (σ,u, p) ∈ {TN × V N ×QN } such that∫

Ω

q (∇ · u) dx = 0, (4.16)

−
∫

Ω

p (∇ · v) dx−
∫

Ω

(∇v : σ) dx

+

∫
∂Ω0∪∂Ω1

(
vn

1

δ
un + vt (α1ut)

)
dl = 0, (4.17)∫

Ω

(τ : σ) dx+Kn

∫
Ω

(
τ : (∇u)sym

)
dx = 0 (4.18)

for all (τ ,v, q) ∈ {TN × V N ×QN} and δ � 1.
We define the numerical finite element spaces as:

QN := {q ∈ P ∩ C0 : q|K ∈ P1(K),∀K ∈ T }, (4.19)
V N := {v ∈ V : v|∂Ω2∪∂Ω3 = 0,v|K ∈ P2(K)2, ∀K ∈ T }, (4.20)
TN := {τ ∈ T : τ |K ∈ P3(K)2×2,∀K ∈ T } (4.21)

These are Lagrange elements on the triangle K , where T is the mesh. For
the pressure we use first order, for the velocity second order and for the de-
viatoric stress third order elements. The test function for the velocity dis-
appears on the boundary ∂Ω2 and ∂Ω3 since we have Dirichlet boundary
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conditions. These choices have heve been found to yield stable results in
the numerical experiments. More details about the Lagrange elements and
how to implement them in the FEniCS [8] software can be found in [17]. The
setup of this problem for the FEniCS [8] software is given in Section 9.1 with
the definition of the basis function and the variational formulation.

4.4.4 Numerical Results

In Fig.4 we see the streamlines and the speed contours of the flow around
the cylinder. The parameter α1 is set to α1 = 2.0. In- and outflow veloc-
ity are u0 = 1 on ∂Ω2 and ∂Ω3 respectively. The Knudsen number is set to
Kn = 1.0. The velocity is low in front and back of the cylinder. Due to the
conservation laws we have higher velocities between the cylinder and the
walls. On the top and the bottom walls we have a minor slowdown which is
not immediately present at x = 0.0, since the drag of the wall needs some
time to develop. Around the position x = 0.5 the resistance effect of the wall
reduces due to higher velocities between the wall and the cylinder.
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Figure 4: Stream lines and speed contours for Kn=1.0
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5 Heat flux System
In this Chapter the heat flow problem is considered. We present the equa-
tions with its boundary conditions, state a variational formulation and per-
form a numerical experiment for a heated cylinder in a squared domain.

5.1 Equations
The standard steady heat flow problem is represented by the Laplace equa-
tion and is modeled with the linearized conservation of energy and the
Fourier’s equation. In our case we have the Laplacian of the heat flux in the
constitutive equation as an additional term. It is therefore not possible to
insert the closure for s into the conservation equation. We have to solve the
following system of equations.

∇ · s= 0 in Ω (5.1)
s+Kn∇θ −Kn2∆s= 0 in Ω (5.2)

The constitutive relation (3.4) is reduced to (5.2) since we first consider no
coupling with the stress problem. The system is similar to the Stokes equa-
tions with the additional heat flux in (5.2) as an extra term. The temperature
can be seen as the pressure and the heat flux as the velocity. It is well known
that the pressure causes problems in the numerical calculation. We expect
the same problem for the temperature.

5.2 Boundary Conditions
The boundary conditions play an important role and need some more atten-
tion. We neglect the coupling to the stress term in (3.13) which leads to the
standard temperature jump condition. The temperature jump results from
the temperature gradient at the wall and is written as:

sn = α2 (θ − θw) on ∂Ω (5.3)

where α2 represents the accommodation condition which is a surface prop-
erty. The extended model requires another boundary condition which is
given by

∂nst = α3st on ∂Ω (5.4)

again without coupling term compared to (3.14). This boundary condition
states that the normal gradient of the tangential heat flux is proportional to
the tangential heat flux.
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5.3 Variational Formulation
In the heat flux problem we have the temperature θ and the heat flux s as
the unknown quantities. Accordingly we have the two function spaces P
and V . We define the function spaces as:

P = L2
0(Ω) and V = H1(Ω)2

The corresponding test and trial functions are (κ, r) and (θ, s), respectively.
The choice for these spaces was made in consideration of the fact that this
system is similar to the Stress problem, where we chose the same spaces.
We multiply in the following system

∇ · s= 0 in Ω (5.5)
s+Kn∇θ −Kn2∆s= 0 in Ω (5.6)

the first equation with the test function κ and and the constitutive equation
with r. We do an integration by parts on the second and third term of equa-
tion (5.6). After these steps we get the following variational formulation:
Find (s, θ) ∈ {V × P} such that∫

Ω

κ (∇ · s) dx = 0, (5.7)∫
Ω

(r · s) dx−Kn
∫

Ω

(∇ · r) θdx+Kn

∫
∂Ω

(r · n) θdl

+Kn2

∫
Ω

(∇r : ∇s) dx−Kn2

∫
∂Ω

(r · ∇sn) dl = 0 (5.8)

for all (r, κ) ∈ {V × P}.

5.4 Numerical Experiment
We perform now a numerical experiment with specific settings. Therefore
we have to formulate the boundary integrals in order to implement the
boundary conditions according to the settings.

5.4.1 Settings

With the variational formulation given in Section 5.3 and the boundary con-
ditions (5.3) and (5.4) we come up with the following specific problem for-
mulation. We assume the upper and lower walls ∂Ω1 to be adiabatic. This
means the heat flux is zero over the wall. The temperature on the left and
right boundary will be set to θ2 = 1 on ∂Ω2 and θ3 = 1 on ∂Ω3, respectively.
We have the following temperature on the cylinder θ0 = 2 on ∂Ω0. We en-
force these specification via the boundary integrals.
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5.4.2 Boundary Integral

We have two boundary integrals in equation (5.8). Both contain the test
function r which is related to the heat flux. Since we have no heat flux over
the boundary ∂Ω1, which is a Dirichlet condition, the domain where the in-
tegral have to be evaluated reduces to ∂Ω \ ∂Ω1 = ∂Ω0 ∪ ∂Ω2 ∪ ∂Ω3. In the
corresponding function space we set the heat flux to zero. The two integrals
look now the following way

B1 =

∫
∂Ω

(r · n) θdl =

∫
∂Ω\∂Ω1

rnθdl (5.9)

C1 =

∫
∂Ω

(r · ∇sn) dl =

∫
∂Ω\∂Ω1

(rn∂nsn + rt∂nst) dl (5.10)

where we made an notation change in the first integral and a transforma-
tion into normal and tangential direction in the second one. For details
about the transformation, see Section 3.4.1. We first solve for θ in the tem-
perature jump condition (5.3)

θ =
1

α2

sn + θw (5.11)

and insert it into the integral (5.9)

B1 =

∫
∂Ω\∂Ω1

rnθdl =

∫
∂Ω\∂Ω1

rn

(
1

α2

sn + θw

)
dl

=
1

α2

∫
∂Ω\∂Ω1

rnsndl +

∫
∂Ω0

rnθ0dl +

∫
∂Ω2

rnθ2dl +

∫
∂Ω3

rnθ3dl (5.12)

In the last three integrals we set the temperatures on the walls. Now we
have a look at the boundary integral (5.10). We have to specify two terms.
The first term on the right-hand side of equation (5.10) contains the normal
derivative of the normal heat flux. It can not be fixed by a given bound-
ary condition, since the temperature and the normal heat flux are coupled
through the boundary conditions (5.3) and we have already set the temper-
ature on the boundaries. We leave this term at that and just specify the
second term of (5.10) by inserting boundary condition (5.4). This leads to the
following boundary integral

C1 =

∫
∂Ω\∂Ω1

(rn∂nsn + rt∂nst) dl =

∫
∂Ω\∂Ω1

(rn∂nsn + rtα3st) dl (5.13)

A rigoros justification for this approach is left out for future work. It turned
out to be useful in the following numerical experiments.
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5.4.3 Variational Formulation

The variational formulation for this specific problem reads:
Find (s, θ) ∈ {RN × PN} such that∫

Ω

κ (∇ · s) dx = 0, (5.14)∫
Ω

(r · s) dx−Kn
∫

Ω

(∇ · r) θdx+
Kn

α2

∫
∂Ω\∂Ω1

rnsndl

+Kn

∫
∂Ω0

rnθ0dl +Kn

∫
∂Ω2

rnθ2dl +Kn

∫
∂Ω3

rnθ3dl

+Kn2

∫
Ω

(∇r : ∇s) dx−Kn2

∫
∂Ω\∂Ω1

(rn∂nsn + rtα3st) dl = 0 (5.15)

for all (r, κ) ∈ {RN × PN}.
We define the numerical finite element spaces as:

PN := {κ ∈ P : κ|K ∈ P1(K), ∀K ∈ T }, (5.16)
RN := {r ∈ V : r|∂Ω1 = 0, r|K ∈ P3(K)2, ∀K ∈ T } (5.17)

where K is the triangle in the mesh T . The basis function for the temper-
ature is a discontinuous Lagrange finite element of first order. For the heat
flux we use continuous Lagrange finite elements of third order. Related to
the essential boundary condition on ∂Ω1 we set the test function of the heat
flux to zero. The setup for the FEniCS [8] software of this experiment can be
found in Section 9.2.

5.4.4 Numerical Results

Fig.5 shows the result with the heat flow lines and the temperature con-
tours. The Knudsen number is set to Kn = 1 and the parameters are set to
α2 = 2.0 and α3 = 2.0. The heat flows from the cylinder to the left and right
wall. Due to the adiabatic walls on the boundary ∂Ω1 we have no heat flux
over the upper and lower walls. Close to the cylinder we have temperature
oscillations. In the 3D contour plot in Fig.6 we see them even better. These
are numerical effects which depend on the variational fromulation and the
choice of the finite element spaces. Since the heat flux problem is similar
to the Stokes problem, where the temperature represents the pressure, we
have analogous instabilities. To get rid of these oscillation we would have
to implement stabilized finite element methods, or choose more elaborated
finite element spaces. Note that in contrast to standard heat conduction the
heat flow does not follow the temperature gradient. That means, the flow
lines are not perpendicular to the temperature contours.
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Figure 5: Temperature contours and heat flow lines for Kn=1.0
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6 Coupled System
In this chapter we discuss the coupled system. We state the variational for-
mulation and show numerical results. We consider the system coupled only
through its boundary conditions, as well as at the system of equations cou-
pled through the boundary conditions and the constitutive equations.

6.1 Equations
We put the two systems together and add the coupling terms. On one hand
we have the stress system with the set of equation (4.1),(4.2) and (4.3) with
the additional term

Kn (∇s)sym

in the constitutive law of the stress tensor. On the other hand we have the
heat flux problem given by (5.1) and (5.2) with the additional term

Kn∇σ

as an extension for the constitutive law of the heat flux. The full system of
equations reads

∇ · u= 0 in Ω (6.1)
∇ · s= 0 in Ω (6.2)

∇p+∇ · σ= 0 in Ω (6.3)
σ +Kn (∇u)sym +Kn (∇s)sym = 0 in Ω (6.4)

s+Kn∇θ −Kn2∆s+Kn (∇ · σ) = 0 in Ω (6.5)

The stress and heat flux systems are coupled. This means that the velocity
of the gas has an influence on the heat flux and vice versa.

6.2 Boundary Conditions
For each system we have coupling terms in the boundary conditions. Con-
sidering the stress part of the full system, the impermeability condition (4.4)
stays the same. So we have:

un = 0 on ∂Ω (6.6)

The second boundary condition turns into:

σnt = α1ut + β1st on ∂Ω (6.7)
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which differs from (4.5) in the tangential heat flux term. The temperature
jump condition (5.3) has the normal stress as an additional term

sn = α2 (θ − θw) + β2σnn on Ω (6.8)

For the boundary condition (5.4) we have the tangential component of the
velocity which comes into play.

∂nst = α3st − β3ut on Ω (6.9)

6.3 Variational Formulation
For the full system we have the temperature θ, the heat flux s, the pressure
p, the velocity u and the stress σ. The related function spaces are defined as

P = L2
0(Ω), V = H1(Ω)2 and T = H1(Ω)2×2

The test functions are given as

(κ, r, q,v, τ ) ∈ {P × V × P × V × T }

and the trial functions are called by their quantities name

(θ, s, p,u,σ) ∈ {P × V × P × V × T }

We start with the following system:

∇ · u= 0 in Ω (6.10)
∇ · s= 0 in Ω (6.11)

∇p+∇σ= 0 in Ω (6.12)
σ +Kn (∇u)sym +Kn (∇s)sym = 0 in Ω (6.13)
s+Kn∇θ −Kn2∆s+Kn∇σ= 0 in Ω (6.14)

By multiplying every equation with the appropriate test function and inte-
gration by parts we end up with the following variational formulation.
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Find (θ, s, p,u,σ) ∈ {P × V × P × V × T } such that∫
Ω

q (∇ · u) dx = 0, (6.15)∫
Ω

κ (∇ · s) dx = 0, (6.16)

−
∫

Ω

p (∇ · v) dx+

∫
∂Ω

p (v · n) dl

−
∫

Ω

(∇v : σ) dx+

∫
∂Ω

(v · σn) dl = 0, (6.17)∫
Ω

(τ : σ) dx+Kn

∫
Ω

(
τ : (∇u)sym

)
dx

+Kn

∫
Ω

(
τ : (∇s)sym

)
dx = 0, (6.18)∫

Ω

(r · s) dx−Kn
∫

Ω

(∇ · r) θdx+Kn

∫
∂Ω

(r · n) θdl

+Kn2

∫
Ω

(∇r : ∇s) dx−Kn2

∫
∂Ω

(r · ∇sn) dl

−Kn
∫

Ω

(∇r : σ) dx+Kn

∫
∂Ω

(r · σn) dl = 0 (6.19)

for all (κ, r, q,v, τ ) ∈ {P × V × P × V × T }
Compared to the two separate systems the additional integrals are

Kn

∫
Ω

(
τ : (∇s)sym

)
dx (6.20)

in (6.18) from the stress problem and

−Kn
∫

Ω

(∇r : σ) dx+Kn

∫
∂Ω

(r · σn) dl (6.21)

in (6.19) as a part of the heat flux problem.

6.4 Numerical Experiment
In this part we present two numerical experiments. The difference will be
that the first experiment will be done with coupling between heat flux and
stress problem through the boundary condition only. In the second exper-
iment the two systems will be coupled also through the constitutive rela-
tions where the integrals (6.20) and (6.21) will be considered additionally. In
the next part we will discuss the setup for both experiments. In the bound-
ary integral part we will present the implementation of the boundary condi-
tions. The numerical results will be presented in the last part of this section.
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6.4.1 Settings

In both experiments we have the following conditions. The upper and lower
walls are adiabatic and we have no heat flux through the in- and outflow.
We note this as s = 0 on ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3. The temperature on the cylinder
∂Ω0 is set to θ0 = 1.0.

Boundary Coupled Experiment

The variational formulation in Section 6.3 is reduced by the two additional
integrals (6.20) and (6.21) which we got through the coupling. Thereby the
equations are uncoupled. The boundary conditions are given by (6.6), (6.7),
(6.8) and (6.9). These conditions, except the impermeability condition, will
impose the coupling between the two systems.

Fully Coupled Experiment

In this case we have the variational formulation from Section 6.3 and the
boundary conditions (6.6), (6.7), (6.8) and (6.9). This system is now coupled
through the constitutive relation and the boundary conditions.

6.4.2 Boundary Integral

We discuss here how we implement the boundary conditions into the
boundary integrals. Compared to the uncoupled systems in the previous
Sections 4 and 5 we have now additional terms which we have to take into
account. We present the boundary integral for the stress and the heat flux
separately.

Stress Part

We start with the boundary integrals in (6.17) which can be reduced to one
in the same way as it is done in the stress system in Section (4.4.2).

A2 =

∫
∂Ω

p (v · n) dl +

∫
∂Ω

(v · σn) dl =

∫
∂Ω

(v · πn) dl

=

∫
∂Ω

(vnπnn + vtσnt) dl

=

∫
∂Ω0∪∂Ω1

(
vn

1

δ
un + vt (α1ut + β1st)

)
dl (6.22)



6 COUPLED SYSTEM 30

where we weakly enforce the Dirichlet boundary condition (6.6) as discussed
in Section 3.4.1.

un = 0 → δπnn = (un − 0) ⇒ πnn =
1

δ
un for δ � 1 (6.23)

The only difference to the boundary integral (4.15) is the presence of the tan-
gential heat flux.

Heat Flux Part

Now we have a look at the equation (6.19). We have three boundary inte-
grals. The first two, which we already had in the heat flux system, and an
additional one, which comes from the coupling in the constitutive relation
for the heat flux. The test function appearing in these integrals is r, which
is the test function for the heat flux. Since all the boundaries except of the
cylinder boundary have zero heat flux, we can reduce the integral over the
whole boundary to an integral over the cylinder boundary only. We built
the vanishing heat flux on the outer boundaries strongly into the function
space. Compared to Section 5, where we had only Dirichlet boundaries on
the upper and lower wall, the boundary integrals looks as follows:

B2 =

∫
∂Ω

(r · n) θdl =

∫
∂Ω0

rnθdl (6.24)

C2 =

∫
∂Ω

(r · ∇sn) dl =

∫
∂Ω0

(rn∂nsn + rt∂nst) dl (6.25)

D1 =

∫
∂Ω

(r · σn) dl =

∫
∂Ω0

(rnσnn + rtσnt) dl (6.26)

In the first boundary integral we insert the boundary condition (6.8) after
solving for θ

B2 =

∫
∂Ω0

rnθdl

=
1

α2

∫
∂Ω0

rnsndl −
β2

α2

∫
∂Ω0

rnσnndl +

∫
∂Ω0

rnθ0dl (6.27)

The second integral is written as

C2 =

∫
∂Ω

(rn∂nsn + rt∂nst) dl

=

∫
∂Ω0

(rn∂nsn + rt (α3st − β3ut)) dl (6.28)
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where we leave the first term as it is, because we can not fix the temperature
and the heat flux at the same time. They are coupled through the condition
(6.8). The second term is replaced by the condition (6.9). The considerations
for these two first integrals are the same as in Section 5.4.2, where the heat
flux system is presented. In the additional boundary integral, which we ob-
tain from the coupling, we project the variables onto normal and tangential
direction. We apply for the first term the boundary condition (6.6) in a natu-
ral way, as discussed in Section 3.4.1.

un = 0 → δσnn = (un − 0) ⇒ σnn =
1

δ
un for δ � 1 (6.29)

The second term is replaced by (6.7) and we finally get

D1 =

∫
∂Ω

(rnσnn + rtσnt) dl

=

∫
∂Ω0

(
rn

1

δ
un + rt (α1ut + β1st)

)
dl (6.30)

This boundary integral looks similar to (6.22), where the test function for the
heat flux is replaced by the test function for the velocity.

6.5 Numerical Results
In this part we present the two solutions. The first is the solution for the
coupling through the boundary conditions and the second solution is the
case for the coupling also through the constitutive relations. In each part we
state first the specific variational formulation with its finite element spaces
and discuss the results of the computation.

6.5.1 Boundary Condition Coupling

By considering coupling only through the boundary condition of the heat
flux and stress system the variational formulation is given as
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Find (θ, s, p,u,σ) ∈ {PN ×RN ×QN × V N × TN} such that∫
Ω

q (∇ · u) dx = 0, (6.31)∫
Ω

κ (∇ · s) dx = 0, (6.32)

−
∫

Ω

p (∇ · v) dx−
∫

Ω

(∇v : σ) dx

+

∫
∂Ω0∪∂Ω1

(
vn

1

δ
un + vt (α1ut + β1st)

)
dl = 0, (6.33)∫

Ω

(τ : σ) dx+Kn

∫
Ω

(
τ : (∇u)sym

)
dx = 0, (6.34)∫

Ω

(r · s) dx−Kn
∫

Ω

(∇ · r) θdx

+
Kn

α2

∫
∂Ω0

rnsndl −
Knβ2

α2

∫
∂Ω0

rnσnndl +Kn

∫
∂Ω0

rnθ0dl

+Kn2

∫
Ω

(∇r : ∇s) dx−Kn2

∫
∂Ω0

(rn∂nsn + rt (α3st − β3ut)) dl = 0

(6.35)

for all (κ, r, q,v, τ ) ∈ {PN ×RN ×QN × V N × TN} and δ � 1
For the finite element spaces we have the following definitions:

PN := {κ ∈ P : κ|K ∈ P1(K),∀K ∈ T }, (6.36)
RN := {r ∈ V : r|∂Ω\∂Ω0 = 0, r|K ∈ P3(K)2,∀K ∈ T }, (6.37)
QN := {q ∈ P ∩ C0 : q|K ∈ P1(K),∀K ∈ T }, (6.38)
V N := {v ∈ V : v|∂Ω2∪∂Ω3 = 0,v|K ∈ P2(K)2,∀K ∈ T }, (6.39)
TN := {τ ∈ T : τ |K ∈ P3(K)2×2,∀K ∈ T } (6.40)

K is the triangle in the mesh T . We use discontinuous piecewise polyno-
mial function of first order for the temperature, which is a discontinuous
Lagrange element. For the other quantities we use continuous piecewise
polynomial functions, which are standard Lagrange elements. For the
pressure we use first order polynomials, for the velocity second order
and for the heat flux and stress third order. In terms of the essential
boundary conditions we set the corresponding test functions to zero on the
boundary. The Knudsen number is Kn = 1.0 and the parameters we set to
α1 = α2 = α3 = 2.0 and β1 = β2 = β3 = 0.5. The code for this variational
formulation with the definition of the finite element spaces for the FEniCS
[8] software can be found in Section 9.3.
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On the left-hand side of Fig.7 we see the speed contours and the stream
lines. Compared to the solution of the stress system shown in Fig.4 we have
a different picture. The velocity around the cylinder is in this case lower and
the drag of the lower and upper walls is not that effective as in the result
for the stress system in Chapter 4. The higher velocity next to the upper and
lower walls is caused by the coupling term st in the boundary condition (6.7),
which is the only additional term compared to the Stress system solution.
Since we have high tangential heat flux next to the boundary ∂Ω1, which is
negative proportional to the tangential velocity in (6.7), the velocity along
the upper and lower walls is higher. The plot on the right-hand side of the
Fig.7 shows the heat flux lines and the temperature contours. The cylinder
has the temperature θ0 = 1. The heat starts flowing out of the cylinder in
normal direction. Since only the boundary condition (6.8) is affecting the
the normal heat flux, σnn is the driving force for the heat flux. In front of
the cylinder the normal stress is pointing in direction of the cylinder, behind
the cylinder σnn points away. The resulting effect is that behind the cylinder
the heat drains off in direction of the right wall. Since we have adiabatic
walls around the cylinder the heat can not interact with the walls. The heat
goes around the cylinder along the walls and approaches it from the front.
Through this process the temperature behind the cylinder is higher than the
temperature in front of the cylinder. Note that in contrast to the analytical
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Figure 7: Temperature contours and heat flow lines for Kn=1.0

result of the sphere no Knudsen layer is visible. This fact is subject to future
investigations.
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6.5.2 Boundary Condition and Constitutive Relation Coupling

In this case we have the fully coupled system which gives three additional
integrals. One from the constitutive relation for the stress and another one,
respectively two, after integration by part, from the constitutive relation for
the heat flux. The variational formulation for the specific problem is then
given as:
Find (θ, s, p,u,σ) ∈ {PN ×RN ×QN × V N × TN} such that∫

Ω

q (∇ · u) dx = 0, (6.41)∫
Ω

κ (∇ · s) dx = 0, (6.42)

−
∫

Ω

p (∇ · v) dx−
∫

Ω

(∇v : σ) dx

+

∫
∂Ω0∪∂Ω1

(
vn

1

δ
un + vt (α1ut + β1st)

)
dl = 0, (6.43)∫

Ω

(τ : σ) dx+Kn

∫
Ω

(
τ : (∇u)sym

)
+Kn

∫
Ω

(
τ : (∇s)sym

)
dx = 0, (6.44)∫

Ω

(r · s) dx−Kn
∫

Ω

(∇ · r) θdx+
Kn

α2

∫
∂Ω0

rnsndl

− Knβ2

α2

∫
∂Ω0

rnσnndl +Kn

∫
∂Ω0

rnθ0dl

+Kn2

∫
Ω

(∇r : ∇s) dx−Kn2

∫
∂Ω0

(rn∂nsn + rt (α3st − β3ut)) dl

−Kn
∫

Ω

(∇r : σ) dx+Kn

∫
∂Ω0

(
(−) rn

1

δ
un + rt (α1ut + β1st)

)
dl = 0

(6.45)

for all (κ, r, q,v, τ ) ∈ {PN ×RN ×QN × V N × TN}
The parameters and the basis functions are the same as in the first exper-
iment (6.5.1) without the coupling through the constitutive relations. The
setup for the FEniCS [8] software of this experiment, containing the varia-
tional formulation and the definition of the finite element spaces, can be
found in Section 9.4. The minus sign in brackets in the last boundary inte-
gral of the expression (6.45) was added due to stability reasons.
Fig.8 shows the result for the fully coupled case. On the left-hand side we
have the flow lines and the speed contours. On the right-hand side the heat
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flux lines and temperature contours are shown. The plot for the velocity
is again comparable with the solution for the stress system in Chapter 4.
This follows from the coupling through the constitutive relation which have
greater effect on the velocity field than the bounday conditions coupling.
If we compare the temperature plot on the right-hand side with the result
in Section 6.5.1 we see that we have detached heat recirculations on the top
and bottom of the cylinder. This is due to the higher tangential velocity close
to the cylinder compared to the previous case, which effects the tangential
heat flux in a proportional way in the boundary condition (6.9). Since this
boundary condition is dominant over the boundary condition (6.7), which
predicts a negative proportional effet of the tangential velocity on the tan-
gential heat flux, the detached recirculations are present. This is a Knudsen
layer effect. Note that in the analytical solution with Kn = 0.3 this effect is
larger than it is in the numerical solution for Kn = 1.0, although the Knud-
sen effect should be larger for larger Knudsen number. This fact is subject to
future investigations.
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Figure 8: Velocity flow lines and speed contours on the left-hand side. Heat flow
lines and temperature contours on the right-hand side. (Kn=1.0)
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7 Outlook
In this thesis a numerical approach to solve the linearized R13-equations is
presented. To compute the solution for the entire linearized equations, dis-
cussed in Section 2, more investigations in different areas have to be done.
On one hand there has to be a discussion about the different additional
terms which have to be taken into account for the full linearized equations.
During this work the Laplacian of the stress tensor was considered in the
stress system in Section 4. Due to unstable results and lack of time the sys-
tem was reduced by this term. In this sense there has to be found a way to
get more stable solutions. In this work several variational formulation where
tested but had to be rejected because of stability reasons. There is still some
potential to do investigations. One approach would be to come up with a
formulation with pressure imposed fluxes like it is presented in [5]. Another
approach would be to implement stabilized finite element methods, which
is discussed in [21]. After having an algorithm to calculate numerical solu-
tions for the linearized R13-equations we can calculate rarefied gas flows in
more complex geometries than presented in this work. After having expe-
rience with the linear case we can go on and consider nonlinear terms and
finally come up with a scheme for the nonlinear R13-equations where we can
calculate flow with higher Mach numbers.
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8 FEniCS - Project
FEniCS is an open-source software for the automation of Computational
Mathematical Modeling. Computational Mathematical Modeling means
modeling and solving of equations. The vision of the FEniCS project is to be
general, efficient and simple, concerning mathematical methodology, im-
plementation, and application. First, we will talk about the concept of FEn-
iCS, give some information how to install the software and present how to
solve a simple partial differential equation.

8.1 Automating the Finite Element Method
The intention of developing free software for the Automation of Computa-
tional Mathematical Modeling, includes the automation of discretization,
discrete solution, error control, modeling and optimization. Concerning the
complete automation of the finite element method, the following three
main components are included into the project: FIAT [10], the FInite elemet
Automatic Tabulator, which automates the generation of finite element ba-
sis functions for a large class of finite elements. FFC [9], the FEniCS Form
Compiler, which automates the evaluation of variational problems. DOLFIN
[6], Dynamic Object oriented Library for FINite element computation, which
provides simple, consistent and intuitive user interfaces for application pro-
grammers.

8.2 Installation of FEniCS
FEniCS depends on a number of packages which have to be installed. The
best way to start is to obtain the newest version of FEniCS from [8]. For
Debian and Ubuntu there exist pre-built packages. To build FEniCS on differ-
ent platforms, they offer a simple build script called Dorsal. Sometimes the
script has to be adapted to the own system. For more detailed informations
how to install FEniCS see [8]

8.3 Solving a Partial differential Equation with FEniCS
In this part we will solve the Poisson’s equation on the unit square with
Dolfin. We have the following problem setting:

−∆u= f in Ω = {(0, 1)× (0, 1)} (8.1)
u= 0 on Γ1 = {x = 0 or x = 1} (8.2)

∂nu= 0 on Γ2 = {y = 0 or y = 1} (8.3)
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The right-hand side of (8.1) is given by

f(x, y) = 10 exp

(
−(x− 0.5)2 + (y − 0.5)2

0.02

)

After multiplying the equation (8.1) by the test function v and integration by
part the variational formulation it follows:
Find u ∈ V such that∫

Ω

(∇v : ∇u) dx−
∫
∂Ω

v · (∇un) dl =

∫
Ω

vfdx (8.4)

for all v ∈ V N .
For the discretization we use Lagrange elements with first order polynomials
and the mesh is subdivided into triangles. The Dirichlet boundary condition
(8.2) we build into the finite element space. This is done in the main.cpp
file, which we will present later on. First we insert the Neumann boundary
condition (8.3) into the boundary integral, which makes the integral vanish.
The variational formulation for the given setup reads:
Find u ∈ V such that∫

Ω

(∇v : ∇u) dx =

∫
Ω

vfdx (8.5)

for all v ∈ V N .
With the space:

V N := {v ∈ V : v|Γ1 = 0,v|K ∈ P1(K)2,∀K ∈ T }, (8.6)

K is the triangle on the mesh T We write now the variational formulation
and the definition of the finite elent space into the ufl file Poisson.ufl:
element = FiniteElement (" Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = inner(grad(v), grad(u))*dx

L = v*f*dx

With the command:
ffc -l dolfin Poisson.ufl
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of the FFC compiler, we translate this Python code into the C++ header file
Poisson.h. This header file is then included into the main file, where the finite
element computation takes place. We have to include also the header for
the Dolfin library, which delivers the the functions and operators to solve the
partial differential equation. In the main file we include first the headers and
define the source term, as well as the subdomain for the Dirichlet boundary
condition.
#include <dolfin.h>

#include "Poisson.h"

using namespace dolfin;

// Source term (right -hand side)

class Source : public Expression

{

public:

Source () : Expression (2) {}

void eval(double* values , const double* x) const

{

double dx = x[0] - 0.5;

double dy = x[1] - 0.5;

values [0] = 10*exp(-(dx*dx + dy*dy) / 0.02);

}

};

// Sub domain for Dirichlet boundary condition

class DirichletBoundary : public SubDomain

{

bool inside(const double* x, bool on_boundary) const

{

return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS;

}

};

In the main function we start with the definition of the mesh and the
function space which was created by the FFC compiler. For the Dirichlet
boundary condition we define the constant zero and the subdomain for
the boundary. We initialize the object bc of the type DirichletBC which is
delivered by the Dolfin library.
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int main()

{

// Create mesh and function space

UnitSquare mesh(32, 32);

Poisson :: FunctionSpace V(mesh);

// Define boundary condition

Constant u0(mesh , 0.0);

DirichletBoundary boundary;

DirichletBC bc(V, u0, boundary );

In the following part we define the bilinear and linear form on the Poisson
function space, as well as the source term and apply it to the linear form.

// Define variational problem

Poisson :: BilinearForm a(V, V);

Poisson :: LinearForm L(V);

Source f;

L.f = f;

We can start now with the calculation using the function from the Dolfin
library.

// Compute solution

VariationalProblem problem(a, L, bc);

Function u(V);

problem.solve(u);

To save and plot the result you can use the following commands:
// Save solution in VTK format

File file(" poisson.pvd");

file << u;

// Plot solution

plot(u);

return 0;

}

To compile the the main file we use the scons command. To use it we need
the following SConstruct file:
\begin{verbatim}

import os, commands
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# Get compiler from pkg -config

compiler = commands.getoutput('pkg -config

--variable=compiler dolfin ')

# Create a SCons Environment based

# on the main os environment

env = Environment(ENV=os.environ , CXX=compiler)

# Get compiler flags from pkg -config

env.ParseConfig('pkg -config --cflags --libs dolfin ')

# Program name

env.Program('prog ', 'main.cpp ')

After typing:
scons

we can start the program with:
./prog

A similar example is presented in the documentation of FEniCS [8]. There
exist more examples in the demo directory of the Dolfin directory.
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9 Appendix
This section contains the ufl files for the numerical experiments presented
in this work. As explained in Section 8, the ufl files contain the definition of
the finite elements, as well as the variational formulation.

9.1 UFL File for the Stress Problem

cell = triangle

T = TensorElement("Lagrange", cell , 3)

V = VectorElement("Lagrange", cell , 2)

P = FiniteElement("Lagrange", cell , 1)

ME = MixedElement ([V,P,T])

vqt = TestFunction(ME)

v, q, tau = split(vqt)

ups = TrialFunction(ME)

u, p, sigma = split(ups)

delta = 0.001

alpha_1 = 2.0

# Transform Matrix

n = cell.n

t = as_vector ([n[1],-n[0]])

u_n = dot(u,n)

u_t = dot(u,t)

v_n = dot(v,n)

v_t = dot(v,t)

# will be set to zero in the main file

f = Function(V)

# Bilinear Form

a = q*div(u)*dx \

- p*div(v)*dx - inner(sym(grad(v)),sym(sigma ))*dx \
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\

+ (1/ delta)*v_n*u_n*ds(0) + (1/ delta)*v_n*u_n*ds(1) \

+ alpha_1*v_t*u_t*ds(0) + alpha_1*v_t*u_t*ds(1) \

\

+ inner(tau ,sigma)*dx \

+ inner(tau ,epsilon*sym(grad(u)))*dx

# Linear Form

L = inner(v,f)*dx

9.2 UFL File for the Heat Flux Problem

cell = triangle

Heatflux = VectorElement("Lagrange", "triangle", 3)

Temperature = FiniteElement("DG", "triangle", 1)

ME = Heatflux + Temperature

(r, kappa) = TestFunctions(ME)

(s, theta) = TrialFunctions(ME)

alpha_2 = 2.0

alpha_3 = 2.0

f = Function(Temperature)

h = Function(Temperature)

uWall = Function(Heatflux)

thetaR = Function(Temperature)

thetaL = Function(Temperature)

thetaC = Function(Temperature)

uR = Function(Temperature)

uL = Function(Temperature)

uC = Function(Temperature)

n = cell.n

t = as_vector ([n[1],-n[0]])

s_n = dot(s,n)

s_t = dot(s,t)

r_n = dot(r,n)

r_t = dot(r,t)
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# Bilinear form

a = kappa*div(s)*dx \

\

+ dot(r,s)*dx \

\

- div(r)*theta*dx \

\

+ inner(grad(r),grad(s))*dx \

+ (1/ alpha_2 )*r_n*s_n*ds(0) \

+ (1/ alpha_2 )*r_n*s_n*ds(2) \

+ (1/ alpha_2 )*r_n*s_n*ds(3) \

- r_n* dot(grad(s)*n,n)*ds(0) \

- r_n* dot(grad(s)*n,n)*ds(2) \

- r_n* dot(grad(s)*n,n)*ds(3) \

- r_t* alpha_3*s_t*ds(0) \

- r_t* alpha_3*s_t*ds(2) \

- r_t* alpha_3*s_t*ds(3)

# Linear form

L = - r_n*thetaR*ds(3) - r_n*thetaL*ds(2) \

- r_n*thetaC*ds(0)

9.3 UFL File for the Boundary Coupled Problem

cell = triangle

Stress = TensorElement("Lagrange", cell , 3)

Velocity = VectorElement("Lagrange", cell , 2)

Pressure = FiniteElement("Lagrange", cell , 1)

Heatflux = VectorElement("Lagrange", cell , 3)

Temperature = FiniteElement("DG", cell , 1)

ME = MixedElement ([Stress ,Velocity ,Pressure , \

Heatflux ,Temperature ])

(tau , v, q, r, kappa) = TestFunctions(ME)

(sigma , u, p, s, theta) = TrialFunctions(ME)

delta = 0.001

alpha_1 = 2.0

alpha_2 = 2.0
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alpha_3 = 2.0

beta_1 = 0.5

beta_2 = 0.5

beta_3 = 0.5

thetaR = 1.0

thetaL = 1.0

thetaC = 1.0

# Transform Matrix

n = cell.n

t = as_vector ([n[1],-n[0]])

u_n = dot(u,n)

u_t = dot(u,t)

v_n = dot(v,n)

v_t = dot(v,t)

s_n = dot(s,n)

s_t = dot(s,t)

r_n = dot(r,n)

r_t = dot(r,t)

sigma_nn = dot((sigma*n),n)

# Stress System

a_S = q*div(u)*dx \

- p*div(v)*dx - inner(sym(grad(v)),sym(sigma ))*dx \

\

+ (1/ delta)*v_n*u_n*ds(0) + (1/ delta)*v_n*u_n*ds(1) \

- v_t*( alpha_1*u_t+beta_1*s_t)*ds(0) \

- v_t*( alpha_1*u_t+beta_1*s_t)*ds(1) \

\

+ inner(tau ,sigma)*dx + inner(tau ,sym(grad(u)))*dx \

# Heat Flux System

a_H = kappa*div(s)*dx \

\

+ dot(r,s)*dx \

\

- div(r)*theta*dx \
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+ r_n* (1/ alpha_2 )*s_n*ds(0) \

- beta_2/alpha_2*r_n*sigma_nn*ds(0) \

\

+ inner(grad(r),grad(s))*dx \

- r_n* dot(grad(s)*n,n)*ds(0) \

- r_t* (alpha_3*s_t -beta_3*u_t)*ds(0)

L_H = - r_n*thetaC*ds(0)

# Bilinear form

a = a_S + a_H

# Linear form

L = L_H

9.4 UFL File for the Full Coupled Problem

cell = triangle

Stress = TensorElement("Lagrange", cell , 3)

Velocity = VectorElement("Lagrange", cell , 2)

Pressure = FiniteElement("Lagrange", cell , 1)

Heatflux = VectorElement("Lagrange", cell , 3)

Temperature = FiniteElement("DG", cell , 1)

ME = MixedElement ([Stress ,Velocity ,Pressure , \

Heatflux ,Temperature ])

(tau , v, q, r, kappa) = TestFunctions(ME)

(sigma , u, p, s, theta) = TrialFunctions(ME)

delta = 0.001

alpha_1 = 2.0

alpha_2 = 2.0

alpha_3 = 2.0

beta_1 = 0.5

beta_2 = 0.5

beta_3 = 0.5

thetaC = 1.0
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# Transform Matrix

n = cell.n

t = as_vector ([n[1],-n[0]])

u_n = dot(u,n)

u_t = dot(u,t)

v_n = dot(v,n)

v_t = dot(v,t)

s_n = dot(s,n)

s_t = dot(s,t)

r_n = dot(r,n)

r_t = dot(r,t)

sigma_nn = dot((sigma*n),n)

# Stress System

a_S = q*div(u)*dx \

- p*div(v)*dx - inner(sym(grad(v)),sym(sigma ))*dx \

\

+ (1/ delta)*v_n*u_n*ds(0) + (1/ delta)*v_n*u_n*ds(1) \

+ v_t*( alpha_1*u_t+beta_1*s_t)*ds(0) \

+ v_t*( alpha_1*u_t+beta_1*s_t)*ds(1) \

\

+ inner(tau ,sigma)*dx + inner(tau ,sym(grad(u)))*dx \

+ inner(tau ,sym(grad(s)))*dx

# Heat Flux System

a_H = kappa*div(s)*dx \

\

+ dot(r,s)*dx \

\

- div(r)*theta*dx \

+ r_n* (1/ alpha_2 )*s_n*ds(0)\

- beta_2/alpha_2*r_n*sigma_nn*ds(0)\

\

+ inner(grad(r),grad(s))*dx \

- r_n* dot(grad(s)*n,n)*ds(0)\

+ r_t* alpha_3*s_t*ds(0)\

- r_t* beta_3*u_t*ds(0)\

\

- inner(sym(grad(r)),sigma)*dx \
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- ((1/ delta)*r_n*u_n*ds(0) \

+ (alpha_1*r_t*u_t+beta_1*r_t*s_t)*ds(0))

L_H = - r_n*thetaC*ds(0)

# Bilinear form

a = a_S + a_H

# Linear form

L = L_H
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