A 3D Musculo-mechanical Model of the Salamander for the Study of Different Gaits and Modes of Locomotion

Nalin Harischandra, Jean-Marie Cabelguen and Örjan Ekeberg
Objectives

- To introduce a simulator of a 3D-biophysically realistic salamander locomotor model (Spanish ribbed newt- Pleurodeles waltl)
- To mimic walking gait, trotting gait and swimming
- To compare the turning behavior w.r.t. Bending and Side-stepping in over ground locomotion
- Additional behaviors (underwater stepping, swimming on ground)
Background

- **Central Pattern Generators (CPG):** Provides the basic features of the movement – the rhythm, the duration of the stance and swing phases, and the level of muscle activity
 - Time driven Pattern generators
 - Coupled Oscillator network
 - IF neuronal networks

- **Sensory feedback:** Proprioceptive feedback (stretch), cutaneous inputs, vestibular inputs, visual inputs
Tools

- **Scripting:** Python Language (python 2.5.5) (www.python.org)
- **Mechanics:** Open Dynamics Engine (ODE 0.5)
 PyODE – python wrapper (www.ode.org)
- **Graphics:** OpenGL,
 PyOpenGL – python wrapper
 pygame, Qt library
Model

- 15 rigid links interconnected via 1DOF hinge joints
- Limbs (shank and thigh)- 1DOF knee/elbow joint
- Limbs connected to the body via 2DOF hinge joints
Model ...

- **Muscle model**: Spring and Damper system *(mathematical model introduced by Ekeberg (1993))*

\[T = (\alpha + \beta \Delta \phi)E + \gamma \Delta \phi + \delta \Delta \dot{\phi} \]

- \(T \) – Torque
- Gain
- Stiffness gain
- Intrinsic stiffness
- Damping coefficient
- Difference between the actual angle of the joint and the resting angle
- \(E \) - Neural activation
Results

• Trotting
Results...

- Walking
Results...

- Swimming
Side stepping
• Walking

A

B

Combination

Bending

Side-stepping

Trotting
Thank you