Prerequisites for a Theory of Intelligence

- G. Ananthakrishnan
- Simon Benjaminsson

Popper Vs Feyerabend

- Popper
 - The Logic of Scientific Discovery
 - Theory has temporary status
 - Falsifiability of a theory
 - Against psuedotheories like
 Freudian
 psychology etc.

Feyerabend

Against Method

No precise rules

Anything goes

Anarchist approach to scientific theory

This book traverses somewhere in between

Abstraction, Algorithms, Dynamical Systems etc.

- Abstraction is necessary
 - Principles of systems can be predicted, but specific system needs some empirical values

Can a theory of intelligence be algorithmic?

- Can we have an algorithm which computes and thereby explains all intelligence?
- Dynamic systems chaos theory
 - Structured systems emerge from chaotic conditions
- Analytical component + Design aspect

Diversity (exploitation) - Compliance

Soft Rules

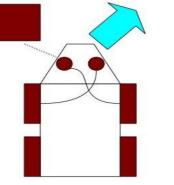
- Choice about compliance
- Syntax Vs Semantics & Grammar Vs Content
- Grammatically incorrect no compliance
- Grammatically correct, but repetitive no diversity
- Hard Rules
 - Laws of Physics
 - No choice but to comply
 - Only possible to exploit
 - Rock only complies, does not exploit

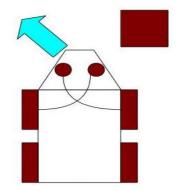
Exploitation and Knowledge

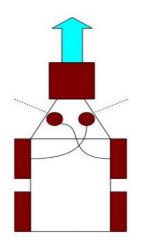
- Rock flowing down river
 - does not exploit, no diversity,
 - only complies with fluid dynamics
- Asimo robot that can dance, walk etc. diversity, exploits friction and gravity
- Fish exploits fluid dynamics
 - Do they know they are exploiting?
- Humans write poems, exploiting some figures of speech, possibly breaking some soft rules
 - Do we know? Do we need to know?

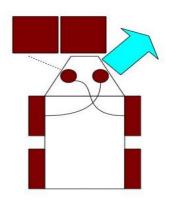
Stability-Flexibility (accomodation - assimilation)

- Category learning
 - Representation of the world
 - Do we need only one example or several examples?
 - Role of the right features?
 - Categorizing unknown objects
 - Soft categorization
 - Exploration Exploitation

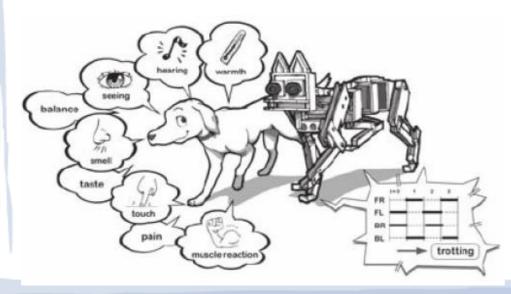


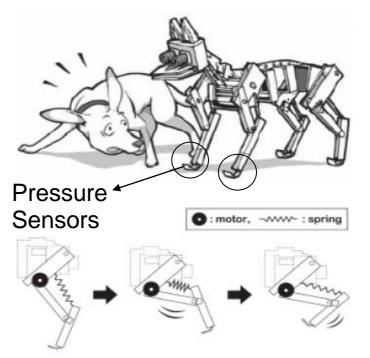

Frame-of-reference problem


- An intelligent agent
 - Conforms to rules/laws (Hard or Soft)
 - Exploits the environment
 - Exhibits diverse behavior
 - May or may not be aware of this behavior
- Complex behavior with simple rules
 - e.g., beach ant walks around puddles, twigs etc.
 without knowing what the obstacles are
- From ant's perspective simple rules
- From observer's perspective complex behavior


Swiss Robots

- The Swiss Robots
 Desimple rules
 - Unexpected behavior
 - Robots do not see cubes
 - Intelligent? Depends on perspective
 - Different location of sensors?

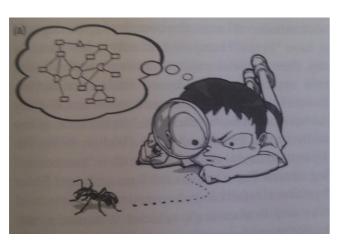


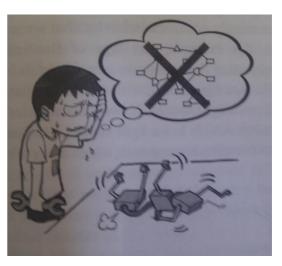

Interaction - Emergence

- Robot's perspective reaction to sensory stimulus
- Our perspective cleaning up of Styrofoam cubes
- Effect of interaction of internal mechanism with environment
- Behavior cannot be estimated solely by the internal mechanism – embodiment, environment
- Emergence of complexity from simple rules and interaction with environment
- What if cubes were heavier, what if sensor was placed differently, what is the cubes were slightly larger or slightly smaller?

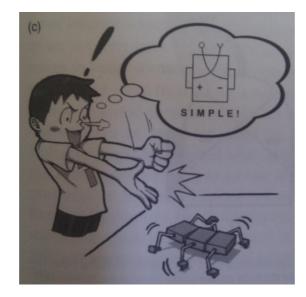
Robot Puppy

- Motor and spring mechanism copies the gait of a puppy
- Uses pressure sensors on the feet to sense the ground
- Hip and shoulders are moved periodically



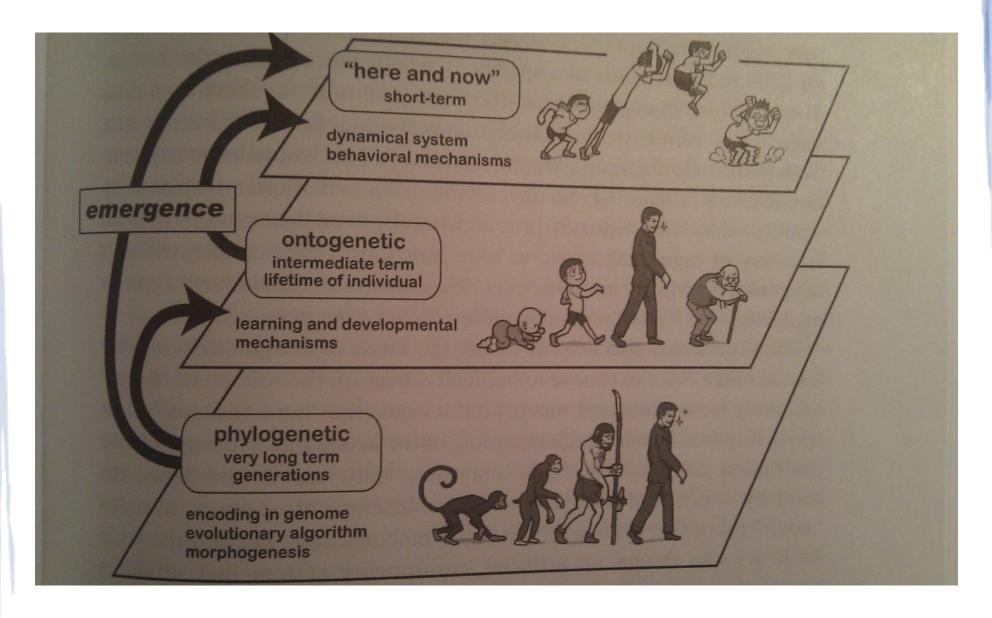

- The dog sees the world from the view of its sensors
 - Complex gait mechanism from simple principles

Synthetic methodology -"Understanding by building"



В

С



Example: Braitenberg vehicle

Conclusion: Simple neural circuits may be involved in producing complex behaviors

Time perspectives

Emergence

- Designates behavior that has not been explicitly programmed into a system.
 - Global phenomena
 - Individual behavior from interaction with environment
 - Emergence of behavior from one time scale to another
- Design for emergence
 - "Design is out, evolution is in!"

Summary

- Diversity-compliance
- Frame-of-reference issue
- The synthetic methodology "understanding by building"
- Three time scales
- Emergence