
  

  

Abstract— Object recognition is a challenging problem for 

artificial systems. This is especially true for objects that are 

placed in cluttered and uncontrolled environments. To chal-

lenge this problem, we discuss an active approach to object rec-

ognition. Instead of passively observing objects, we use a robot 

to actively explore the objects. This enables the system to learn 

objects from different viewpoints and to actively select view-

points for optimal recognition. Active vision furthermore sim-

plifies the segmentation of the object from its background. As 

the basis for object recognition we use the Scale Invariant Fea-

ture Transform (SIFT). SIFT has been a successful method for 

image representation. However, a known drawback of SIFT is 

that the computational complexity of the algorithm increases 

with the number of keypoints. We discuss a growing-when-

required (GWR) network for efficient clustering of the key-

points. The results show successful learning of 3D objects in 

real-world environments. The active approach is successful in 

separating the object from its cluttered background, and the 

active selection of viewpoint further increases the performance. 

Moreover, the GWR-network strongly reduces the number of 

keypoints. 

I. INTRODUCTION 

HE real world poses many challenging problems for 

artificial systems. Consider for instance the problem of 

recognizing objects in the real world. Many object recogni-

tion systems that are successful in controlled laboratory envi-

ronments have problems with the uncontrolled and unpre-

dictable properties of the real world. Whereas, for instance, 

illumination and background can be controlled in an artificial 

setting, this is not true for real-world environments. Natural 

systems deal with these problems by using active perception 

[8]. Instead of passively observing an object, many animals, 

including humans, explore the object to control the visual 

input (see fig. 1). The use of active perception is also very 

important for artificial systems [1, 21]. In this paper, we dis-

cuss an active approach to 3D object recognition in the real 

world by an autonomous robot. By actively changing view-

point, the robot observes an object from different angles, 

making it possible to learn to recognize the object from any 

given viewpoint. Moreover, the system selects the viewpoint 

that is expected to be most informative for recognition. Fur-

 
Manuscript received September 14, 2007.  

Gert Kootstra is with the Artificial Intelligence Institute of the University 

of Groningen, Grote Kruisstraat 2/1, 9712 TS, The Netherlands (corre-

sponding author, phone: +31 (0)50 363 6502, fax: +31 (0)50 363 6687, 

email: G.Kootstra@ai.rug.nl) 

Jelmer Ypma was with the Artificial Intelligence Institute of the Univer-

sity of Groningen, The Netherlands (email: jelmer@ai.rug.nl). 

Bart de Boer was with the Artificial Intelligence Institute of the Univer-

sity of Groningen and is currently with the Institute of Phonetic Sciences, 

University of Amsterdam, The Netherlands (email: B.G.deBoer@uva.nl). 

thermore, exploration of the object makes it possible to sepa-

rate the object from its background, something that is non-

trivial when passively observing an object on a highly clut-

tered background [16].  

Like many current approaches to object recognition, our 

model describes the objects by a set of local interest points 

[9, 12, 24]. Description in terms of local interest points has 

the advantage that the representation is more robust to occlu-

sions, clutter and noise. It is also less sensitive to changes in 

viewpoint. In our method we use the Scale Invariant Feature 

Transform (SIFT) for the detection and description of inter-

est points [14]. Our approach is, however, not restricted to 

SIFT, but can also be used with other local image detectors 

and descriptors. In the rest of the paper, we use the term key-

points to refer to points of interest detected by SIFT. 

Interest points have been successfully used for three-

dimensional (3D) object recognition [4, 13, 18, 22]. These 

studies have demonstrated the ability to learn to recognize 

objects from multiple viewpoints and subsequently recognize 

these objects in cluttered scenes. However, learning in these 

studies takes place in well-controlled environments: the ob-

ject is usually put on a turntable which carefully rotates the 

object, while taking pictures of the object with fixed lighting 

conditions – with the exception of [18] – and against a uni-

form background. This setup reduces the amount of noise 

and uncertainty and makes it trivial to separate the fore-

ground from the background. It is therefore not representa-

tive for real-world environments. A real-world environment 

is usually highly uncertain and cluttered with many distract-

ing features. In this paper, we present a method to learn ob-

jects in uncontrolled real-world environments, using active 

vision. We use a mobile robot to actively explore the objects 

and their environment. 

The use of active vision to simplify perceptual tasks has 

been advocated by Ballard, who referred to it with the term 

animate vision [1]. In our approach, we make use of active 
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Fig. 1. A 18 months old child exploring an unknown object. This en-

ables the child to observe the object from different viewpoints. In the 

meanwhile, it makes it possible to discriminate the object from the 

background.  



  

vision in multiple ways. Firstly, we use it to separate the ob-

ject from its background, similar to [5, 16]. We use a method 

that can be described as what-moves-together-belongs-

together. The robot observes the object while circling around 

it, a behavior that is comparable to rotating an object in your 

hand (see fig. 1). While doing this, interest points belonging 

to the object will show little displacement on the camera 

image, since the object is near the center of rotation. Interest 

points in the background, on the contrary, show relatively 

large displacements, with the possible exception of points on 

the floor close to the object. The amount of displacement of 

an interest point is used to classify whether it belongs to the 

object or to the background.  

Secondly, we use active vision to find stable interest 

points. By changing viewpoint, we can actively test whether 

an interest point is recognizable from nearby viewpoints. If 

so, we can classify the interest point as stable. This process 

will filter out points that are sensitive to rotation, translation 

and other affine transformations. This does away with the 

necessity to use affine invariant interest point detectors (e.g., 

[17]), which are not only computationally expensive, but 

have also been shown to perform worse on recognizing non-

planar 3D objects than SIFT [18]. A similar approach to ours 

was taken in [11], where a behavior, inspired by insects, was 

adopted to find reliable visual landmarks.  

Finally, we use active vision to gather more evidence for 

recognition. This is especially important in ambiguous situa-

tions. If from one viewpoint it is not possible to recognize an 

object, a more promising viewpoint can be selected. Al-

though, as a human observer, we might have the impression 

that ambiguous situations are quite rare, we must remember 

that ambiguity strongly depends on the quality of the sensory 

system, as can be seen in [19]. In 3D object recognition, 

gathering more evidence improves recognition [23]. Some 

viewpoints will be more informative than others. We there-

fore propose a probabilistic method to select the viewpoint 

that is expected to be most informative as the next viewpoint. 

Viewpoint selection is also used by [3, 20], with the differ-

ence that we use a one-shot learning method and perform 

recognition in a real-world environment. 

In addition to the use of active vision, we propose a 

method to reduce the number of keypoints in the keypoint 

database. One of the reasons that SIFT is so successful in 

object recognition is that it uses a large number of keypoints 

to represent one object [14]. This makes the system very 

tolerant to noise, and solves the problem of occlusions. 

There is, however, an important drawback, namely that a 

significant amount of computation in the recognition process 

is devoted to matching the observed keypoints with the key-

point database. Nearest-neighbor search methods like kd-tree 

search [6] that are efficient in low-dimensional spaces, do 

not do better than exhaustive search in the high-dimensional 

space of the SIFT features. An improvement in computation 

time can be achieved by an approximate best-bin-first 

method [2]. But even then, the computation time increases 

with the number of stored keypoints, while the success in 

finding the nearest neighbor decreases. It is therefore very 

useful for 3D object recognition to reduce the number of 

stored keypoints in an efficient way. 

In this paper, we use a growing-when-required (GWR) 

network [15] for efficient clustering of keypoints. When per-

forming 3D object recognition, many of the acquired key-

points look very similar. There are several reasons for this. 

First of all, these are keypoints belonging to the same point 

on the object seen from different angles. Secondly, there are 

similarly looking points on repeating structures on the same 

object, and finally, we see ambiguous keypoints on different 

objects. Our GWR-network clusters these similar keypoints 

to attain efficient database use.  

II. METHODS 

We use the SIFT detection and description, as described in 

[14], as the basis for the 3D object recognition. We use a 

prior smoothing of each octave of 1.2σ =  instead of 

1.6σ =  as proposed in [14], since this yields better per-

formance in our experiments. Our method for matching the 

observed keypoints with the database is somewhat different. 

First, we focus solely on the individual matching of key-

points, and therefore do not use the geometric matching of 

sets of keypoints as used in [14]. And second, we use a 

threshold on the distance to the nearest neighbor, instead of a 

best to second-best ratio to determine a match, since this 

yielded better performance in our experiments. Details on 

our matching and recognition process are described further 

on. 

In this section we will first discuss our active approach to 

object recognition, then our method to select the next view-

point, and we will end with the method to cluster the SIFT 

keypoints. 

A. Active Vision 

One of the contributions of our study to improve 3D ob-

ject recognition in real-world environments is the use of ac-

tive vision. We make use of a mobile robot that explores 

objects by circling around them, observing them every 10 

degrees. By actively changing viewpoint, the robot gathers 

new information that we use in two different ways: to detect 

stable keypoints and classify them as object or background, 

and to explore the object in order to gather more evidence to 

resolve ambiguous situations. Both methods are described in 

the following paragraphs. 

A keypoint is considered stable if it is originally observed 

at an angle of θ  degrees, and subsequently matched in the 

previous or next image, at 10θ ±  degrees. A keypoint 
i
k is 

matched to its nearest neighbor in the previous image, 
n
k , if 

the Euclidean distance between both is less than 0.6, where 

k  is the 128 dimensional feature vector of the keypoint. 

This filters out all keypoints that are only recognizable from 

one specific angle.  



  

In the next step, we segment the stable keypoints belong-

ing to the background from those belonging to the object. 

Each keypoint 
i
k  has a position ( ),

i i
x y  at which it is ob-

served in the image. Since the object is in the center of rota-

tion, object keypoints will move little when the robot is ex-

ploring the object, whereas the displacement will be rela-

tively large for keypoints in the background. Furthermore, 

since the robot moves on a flat surface, keypoints will only 

move in the horizontal direction. Allowing some fluctua-

tions, we classify a stable keypoint as an object point when 

 ( ) ( )i n T i n Tx x x y y y− < ∧ − <  (1) 

where we use 12
T
x =  and 4

T
y = . Otherwise, the stable 

keypoint is classified as background. The successful use of 

this simple classification model nicely illustrates the power 

of active vision to simplify perceptual tasks
1
. The robot ex-

plores the objects from 36 different angles and stores the 

stable object keypoints along with the object ID and pose. 

Doing so, the appearances of objects in a cluttered environ-

ment are learned.  

Once the object database is in place, objects can be recog-

nized. Based on the set of observed keypoints, O, and the 

keypoint database, D, we determine the activation of every 

model, 
,ID

m θ , for object ID, and pose θ . The activation of a 

model is based on the set of observations, 
,ID θ ⊆S O , that 

support the model.  

( ),
|

ID i n n
o IDθ α θ= ∈ = ∧ =p∪S O�  

where 
n
o  and 

n
α  are respectively the object ID and pose of 

the nearest neighbor, 
n
k , of 

i
p  in the keypoint database. 

Every supporting observation 
i
p  in M gives an activation 

i
a  of  

  ( )expi i na = − −p k  (2) 

The total activation of model 
,ID

m θ  given the observed key-

points, O, and the keypoint database, D, is given by 

 
1 Slightly better results could be obtained if one takes advantage of the 

fact that keypoints in the background move in the same direction as the 

robot, whereas visible object keypoints are in front of the center of rotation, 

and therefore move in the opposite direction. 
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where ,ID θD  is the number of keypoints in the keypoint da-

tabase that are associated with object ID en pose θ  and δ is 

the current viewpoint. Equation (3) gives the activation of a 

specific pose of an object. This activation increases with the 

number of supporting observations relative to the number of 

keypoints in the database associated with that object/pose. 

This makes that fewer matched observations are needed for 

objects that have relatively few interest points. However, the 

square root in the denominator causes the probability to in-

crease with the number of object keypoints given the same 

ratio of matched observations to database keypoints. This 

reflects the idea that there is more confidence when there are 

more object keypoints. 

Finally, the robot can actively gather more evidence for 

recognition. By rotating around the object, an action that is 

equivalent to the rotation of an object in your hand, the robot 

gathers more information about the object under considera-

tion by viewing it from different angles. When driving 

around the object, we accumulate the evidence by  

 
, ,
( )

ID ID

E

A t A
δ

θ θ
δ∈

=∑  (4) 

where 
,
( )

ID
A tθ  is the accumulated activation for object ID 

and pose θ  at time t and { }0
, ,

t
E ϕ ϕ= …  is the set of view-

points from where the observations are made. The change of 

viewpoint helps to disambiguate object and is therefore ex-

pected to result in more robust recognition of 3D objects. In 

the next section, we will discuss how the next viewpoint is 

selected b our model.  

Finally, the activations of all poses for a given object to-

gether give the activation of an object model  

 
,

( ) ( )
ID ID

A t A tθ
θ∈Θ

=∑  (5) 

 

B. Next Viewpoint Selection 

We use the active capabilities of the robot to explore the 

objects and gather more information from different view-

points. In order to select the next viewpoint, we use a prob-

abilistic approach. In this approach, the next viewpoint 
1t

ϕ +  

is the angle from where we expect the maximum activation 

of an objects-pose model. I.e., 

 ( )( )1 ,
argmax E 1

t ID
A tθ

γ

ϕ +
∈Θ−Φ

= +  (6) 

where Θ  is the set of all possible viewpoints, and 

{ }0 1
,

t
ϕ ϕ −Φ = �  is the set of all previous viewpoints. The 

expected activation of the object-pose model when viewed 

from viewpoint γ at time t+1 is given by 

 ( ) ( ) ( ), , , , ,E ( 1) ( ) E | PID ID ID ID IDA t A t A O O
γ

θ θ θ θ θ+ = +  (7) 

 ( ), , ,
E |

ID ID ID
A Oγ

θ θ θ γ+= D  (8) 

Fig. 2 A number of images from our database. 
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In words, the expected new activation of the model is based 

on the old activation. This value is increased with the ex-

pected extra activation gained from the new viewpoint given 

that we are looking at object ID and pose θ , 

( ), ,E |ID IDA O
γ

θ θ , multiplied by the probability that we are 

actually looking at object ID and pose θ , ( ),P IDO θ . Equa-

tion (8) can be inferred from eq. (3), when we assume that 

we observe all keypoints belonging to object ID at pose 

θ γ+ . And the probability ( ),P IDO θ  is the activation of the 

model divided by the total activation of all object-pose mod-

els. By selecting the viewpoint that optimizes the expected 

activation of one of the object-pose models, we select the 

most informative viewpoint as the next. 

 

C. Keypoint Clustering 

As explained in the introduction, 3D object recognition 

with SIFT has the main disadvantage that the computational 

time needed increases with the number of keypoints stored in 

the database. We therefore use a growing-when-required 

(GWR) network [15] to efficiently cluster keypoints that are 

highly similar. A GWR-network is a clustering method, very 

similar to a growing-neural-gas (GNG) network [7]. Both 

networks are based on Kohonen’s self-organizing maps 

(SOM) [10]. A SOM is an efficient method to cluster high-

dimensional data. The disadvantage, however, is that the 

number of clusters needs to be set in advance. This makes a 

SOM highly inappropriate for object recognition with SIFT, 

since the number of clusters depends on the number of 

unique keypoints. A GNG-network is an adaptation of a 

SOM which can dynamically change the number of nodes, 

i.e., clusters, in the network. However, the drawback of a 

GNG-network is that new nodes are only added after a num-

ber of inputs. This is not desirable for object recognition, 

since we would like to add a node in the network when we 

observe a completely new keypoint. A GWR-network does 

just that, it adds nodes if this is required.  

The GWR-network as described in [15] uses edges be-

tween nodes. This is based upon the SOM, and results in a 

topological preservation of the network in the sense that 

connected nodes in the network correspond to neighboring 

points in the input space. Usually, the edges in a GWR net-

work are used in learning to move the neighboring nodes of 

the winning node closer to the presented input. This is unde-

sirable for object learning, since the presentation of an input 

not only changes the representation of the corresponding 

keypoint, but also of neighboring keypoints. In the end, this 

will result in changing keypoints so much that they are not 

recognizable anymore. We therefore omitted the edges from 

the GWR-network.  

For the description of our implementation of the GWR-

network, we follow the notation and description in [15].  

Let K be the set of observed keypoints when learning the 

objects, A be the set of nodes in the network, 
n

w  be the 

weight vector of node n (of the same dimensionality as the 

SIFT keypoints), and 
n
t  be the activation counter. Further-

more, each node holds a record, 
n

R , of all associated objects 

and poses. We initialize the network with { }1A n= , where 

the weight vector of 
1
n  is initialized a randomly picked key-

point from K, and 
1

0t = . Then, for each keypoint k from K  

we do: 

1. k and the object ID and pose θ  to which the keypoint 

belongs are input to the network. 

2. Select the best matching node s A∈ , such that 

argmax n
n A

s
∈

= −k w   

3. Calculate the activity of the winning node 

( )exps sa = − −k w  

4. Calculate the firing counter 
s
h  

( )/
1 1 e /b st

s nh
α τ α−= − −   

where 1.05
b

α = , 1.05
n

α =  and 3.33τ =  

5. if ( ) ( )s T s T
a a h h< ∧ < , add a new node r 

- { }A A r= ∪  

- 
r

=w k  

- { },rR ID θ=  

where 0.8
T
a =  and  0.4

T
h = . 

6. Else, adapt the weights of the winning node 

- ( )s s s s
hη= + ⋅ ⋅ −w w k w  

- { },s sR R ID θ= ∪  

where 0.05η = . 

7. 1
s s
t t= +  

 

When the presented keypoint is sufficiently similar to the 

winning node, it is clustered with that node, and the descrip-

tion of the node is altered to better represent all associated 

keypoints. If, on the other hand, the presented keypoint dif-

fers from the existing nodes, and the firing counter of the 

nearest node is below the threshold 
T
h , the presented key-

point is added as a new node. In this way, the GWR-network 

clusters similar keypoint, thus creating a smaller database for 

recognition.  



  

A record is kept of all objects and poses that correspond to 

the nodes in the network. This allows for supporting all ob-

jects containing similarly looking keypoints when such a 

keypoint is observed. This is in contrast with [14], where 

important evidence is discarded by choosing only keypoints 

that match uniquely with one object. 

III. RESULTS 

We used seven objects placed in a cluttered environment 

for our image database (see fig. 2). A mobile robot equipped 

with a CCD camera was used to take images from 36 differ-

ent viewpoints around the objects. The image database con-

sists of four different sets, where the orientation of the ob-

jects is respectively 0°, 90°, 180° and 270° with respect to 

the environment, resulting in a different background for the 

objects. In the experiments, training was done on one single 

set, while the other three sets were used to test the perform-

ance. This resulted in 12 different cross-validation tests. 

In our first experiment, we tested the performance of our 

active approach to 3D object recognition and compared it 

with a passive approach that does not use robust keypoints 

filtering and multiple viewpoints. We furthermore compared 

the performance of our next viewpoint selection method to 

an approach where the next viewpoint is a simple 30º inter-

val, as well as to random viewpoint selection. Fig. 3 shows 

the mean recognition rates over the 12 tests. For the active 

approaches, the performance is plotted as a function of the 

amount of evidence. Since the passive approach does not 

accumulate evidence, it is drawn as a horizontal line. The 

error bars show the 95% confidence intervals.  

The active approaches clearly outperform the passive ap-

proach. Already with one viewpoint, the use of active vision 

to select stable object keypoints gives significantly better 

performance than passively considering all visible keypoints 

with respectively 73% and 60% success (t-test: p value < 

10
-4
). With increasing accumulation of evidence, the recogni-

tion rate rises from 73% to about 90% (t-test: 

p value << 10
-4
). Our next viewpoint selection method shows 

a systematically better performance than the fixed interval 

and random viewpoint methods. Although the performance is 

not significantly better for the third and fourth viewpoint, it 

is significantly better for the second viewpoint with p values 

of 0.03 and 0.02 for the comparison with respectively the 

interval method and the random selection method. A signifi-

cant increase in performance for the second viewpoint is 

important since this enables the system to recognize objects 

with fewer observations. 

In the second experiment we compared the performance of 

the GWR-network with the standard SIFT method, both us-

ing active vision with a fixed interval of 30º. The learned 

keypoints are presented to the GWR-network in random or-

der. We therefore performed ten different experimental runs 

to test the performance of the GWR-network. The standard 

SIFT method has on average 6429 keypoints in the database. 

The GWR-network has 2396 keypoint clusters (37% of stan-

dard SIFT), making it 2.7 times faster than standard SIFT. 

We also compared the GWR-network with standard SIFT 

that used only 36% of the keypoints, approximately the same 

amount of keypoints as the GWR-network used. These key-

points are selected randomly from the keypoint database. 

Again we performed 10 experimental runs. Fig. 4 shows the 

result of this experiment. We see that the standard SIFT 

method performs best. The GWR-network performs slightly 

(but significantly) worse. On the other hand, the GWR-

network performs significantly better than standard SIFT 

using approximately the same number of keypoints. This 

Fig. 3. The recognition rates for the passive approach and three active 

methods: a fixed 30º interval, random viewpoint selection and our next 

viewpoint method. The active methods are plotted as a function of the 

number of viewpoints used to explore the object. The plot of the pas-

sive method is flat, since it does not use exploration. The error bars give 

the 95% confidence intervals.  
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Fig. 4 The mean recognition rates for standard SIFT, the GWR-network 

and standard SIFT using 36% of the keypoint database. Standard SIFT 

uses on average 6429 keypoints. The GWR-network has on average 

2396 keypoint clusters (37% of standard SIFT). For the GWR-network 

and SIFT using 36% keypoints, the data is acquired from 10 experi-

mental runs. The error bars give the 95% confidence intervals. 
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shows that the GWR-network effectively clusters the key-

points, using only 37% of keypoints with a minimum loss of 

performance. 

IV. DISCUSSION 

Our experiments show the successful use of object explo-

ration for 3D object recognition. Exploration is used in dif-

ferent ways, (1) to detect stable keypoints, (2) to segment the 

object from the background, and (3) to select informative 

viewpoints. The active vision approach performs signifi-

cantly better than when passively observing. The problem of 

the passive method is that it not only learns to associate the 

keypoints of the object itself with the object, but also the 

background keypoints. By selecting the next viewpoint based 

on the optimization of the expected activation of object 

models, the system highly increases its recognition perform-

ance with subsequent viewpoints. 

Our second experiment tested the use of a GWR-network 

for clustering keypoints. Although the performance of the 

GWR-network in terms of recognition rates is slightly less 

than standard SIFT, it is computationally much more effi-

cient. The GWR-network uses 2.7 times fewer keypoints, 

while performing significantly better than SIFT using the 

same number of keypoints. Reducing the amount of key-

points is important for object recognition using SIFT, espe-

cially with a growing number of objects. Our results using 

the GWR-network are promising, although there is room for 

improvements. 

One of the problems with the GWR-network is that key-

points that are presented early to the network are badly rep-

resented in the final network, in contrast to keypoints that are 

presented later. This might account for the fact that the 

GWR-network performs worse than standard SIFT using the 

complete keypoint database. The keypoints presented first 

are simply lost. However, the fact that the network performs 

significantly better than SIFT using the same number of key-

points, shows that it is capable to effectively cluster the key-

points. Further research needs to be done to deal with the 

mentioned problem. 

In this study, we did not use additional methods to im-

prove the recognition rate. A good way to boost recognition 

is to use a geometric fit between sets of keypoints, for in-

stance the geometric verification method described in [14]. 

This method can be used both with our active vision method 

and with the GWR-network. We expect a similar increase in 

performance for our methods.  

Summarizing, we showed the successful use of active vi-

sion to simplify complex recognition tasks. We furthermore, 

demonstrated the possibility to reduce the number of key-

points for SIFT by using a GWR-network. Both methods 

make implementing object recognition in the real world more 

feasible. 
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