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Abstract— In many scenarios, domestic robot will regularly
encounter unknown objects. In such cases, top-down knowledge
about the object for detection, recognition, and classification
cannot be used. To learn about the object, or to be able to
grasp it, bottom-up object segmentation is an important com-
petence for the robot. Also when there is top-down knowledge,
prior segmentation of the object can improve recognition and
classification. In this paper, we focus on the problem of bottom-
up detection and segmentation of unknown objects. Gestalt
psychology studies the same phenomenon in human vision.
We propose the utilization of a number of Gestalt principles.
Our method starts by generating a set of hypotheses about
the location of objects using symmetry. These hypotheses are
then used to initialize the segmentation process. The main
focus of the paper is on the evaluation of the resulting object
segments using Gestalt principles to select segments with high
figural goodness. The results show that the Gestalt principles
can be successfully used for detection and segmentation of
unknown objects. The results furthermore indicate that the
Gestalt measures for the goodness of a segment correspond
well with the objective quality of the segment. We exploit this
to improve the overall segmentation performance.

I. INTRODUCTION

Our future domestic robots will regularly encounter en-
vironments containing unknown objects. To reason about
these objects, in order to grasp and manipulate them, the
robot needs the ability to detect and segment them from the
background. Methods for object detection and segmentation
using top-down knowledge about the object have been suc-
cessfully proposed and many object segmentation methods
rely on input from a human user. However, an autonomous
robot dealing with unknown objects and environments cannot
use top-down knowledge or rely on human input. To this
end, we focus on the problem of bottom-up detection and
segmentation of unknown objects.

In this paper, we propose an integrated object detection
and segmentation method based on Gestalt principles for
perceptual grouping and figure-ground segregation. Gestalt
psychology [1] studies how the human visual system orga-
nizes the complex visual input into unitary elements. Many
Gestalt principles have been suggested throughout the years
[2], [3]. These principles formulate perceptual rules for the
grouping of basic elements and the segmentation of figure
and ground. Although some of the principles take top-
down information into account, most are strictly bottom-
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Fig. 1: Examples of segments resulting from different fixation points. In the
paper we focus on the question how to select the best segment without prior
knowledge of the object. The goodness measures of our segment evaluation
method are shown in the top-right corner of the images.

up processes. This motivated us to apply the principles to
bottom-up detection and segmentation of unknown objects.

Our method consist of three modules; object detection,
segmentation, and evaluation. In each module, different
Gestalt principles are used. In the object-detection module,
which we presented in [4], an object hypothesis is generated
by selecting a fixation point based on the principle of
symmetry. The fixation point initializes the figure-ground
segmentation. The segmentation module, which we presented
in [5] is based on similarity in color, proximity in depth, and
deviations from the dominant plane. The resulting segment,
however, can be incorrect, due to failure of the detection
module to fixate on the object, or due to failure of the
segmentation module to find the object borders (see Fig. 1).
We therefore introduce a novel segment-evaluation method.
The segment-evaluation module determines the figural good-
ness of the segment and selects the best object segment
among a number of hypotheses. The goodness is based
upon the principles of good continuation, contrast, proximity,
symmetry, parallelity, color uniqueness and on deviations
from the dominant plane.

The main contribution of this paper is a novel method
for the evaluation of the goodness of object segments using
Gestalt principles, which is crucial to achieve good object
detection and segmentation performance. We furthermore
present an integrated method for fast and bottom-up detec-
tion, segmentation and evaluation of unknown objects, which
is important for the real-time operation of robots in everyday
environments.

II. RELATED WORK

We assume no prior knowledge about the objects or the
object classes. However, object detection and segmentation
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Fig. 2: The proposed method and the used Gestalt principles.

can greatly benefit when information about, for instance,
color, texture, and shape is available. Existing top-down
methods are, for instance, based on interest points [6], shape
descriptors [7], or histograms of oriented gradients [8]. Other
methods use top-down information to detect objects and
integrate bottom-up cues to refine the segmentation [9], [10].

Instead of using top-down methods, we make use of a
bottom-up saliency model to detect objects in the scene.
Many saliency models are based on the center-surround
contrasts of basic features, such as brightness, color, and
orientation, e.g., [11]. However, in [12], a symmetry operator
was proposed to guide attention. This operator was extended
to a symmetry-saliency model for the prediction of human
eye fixations in [13]. We used the same model in [4] to detect
salient objects in the scene, which was shown to outperform
the contrast model.

Most current methods for foreground-background segmen-
tation are based on Markov Random Fields (MRF). Energy
or probability functions are formulated and updated using
graph cuts, e.g., [14], [15], or belief propagation, e.g., [16], to
assign pixels to fore- or background based on similarities in
color [14], and disparity [16]. To initialize the segmentation
process, information about foreground and/or background
need to be provided. Often this information is provided by a
human user, for instance in the GrabCut method [14], where
the user gives a bounding box around the to-be-segmented
object. In [17], only a single fixation point needs to be
provided on the object.

Gestalt principles have been used in other studies. Sym-
metry, for instance, have been used to detect facial features
[18]. In [19], grouping of image elements into larger regions
have been based on similarity and contrast in texture and
brightness, and on good continuation of the contour. In [20]
the principles of proximity and good continuity have been
used to cluster edge pieces to find the most salient boundary
in the image. Top-down influence based on the principle of
familiarity has been used in [21] by learning and using proto-
typical local shapes. These different top-down and bottom-up
measures were using a CRF in [22]. Local evaluation of the
principles of smallness, convexity, and lowerness have been
used in [23] to label opposite sides of contours as foreground
or background. Although the performance of the model was

similar to human performance when only local boundaries
were shown, the authors concluded that in general, humans
use global information and 3D cues as well.

For the evaluation of the goodness of a segment, we adopt
the good continuation of the contour and the contrast in color
between figure and ground. We furthermore introduce sym-
metry, parallelity, and color uniqueness as global measures
of the segment, and the 3D plane contrast between figure
and ground and the out-of-planeness of the segment as 3D
cues.

III. THEORETICAL FRAMEWORK

Our integrated bottom-up object detection and segmenta-
tion method consist of three methods, for object-detection,
figure-ground segmentation, and segment evaluation (see
Fig. 2). The object-detection method proposes object hy-
potheses by finding fixation points in the image. Such a
fixation point initiates the figure-ground segmentation. The
figural goodness of the segment is then evaluated. By doing
this for multiple fixation points and possibly for multiple
parameter settings of the segmentation method, the best
segment can be chosen. Our object-detection approach and
the figure-ground segmentation method have been presented
in [4] and [5] respectively and will therefore be only briefly
described. The segment-evaluation method is the main con-
tribution of this paper and will be described in detail.

A. Object Detection

The object-detection method is based on the Gestalt prin-
ciple of symmetry. In [4] we proposed the method based on
the symmetry-saliency model that we used to predict human
eye fixations [13]. The symmetry-saliency in the image is
determined based on the amount of local mirror symmetry
in the image. This is done by comparing the gradients of
neighboring pixels. The local symmetry is calculated for all
pixels and on different scales. The summation over scales
gives the symmetry-saliency map.

Based on the saliency map, fixation points are iteratively
generated by selecting the local maximum in the map with
the highest saliency value and subsequently applying an
inhibition of return. The inhibition of return devaluates all
local maxima which are in the same salient blob as the
generated fixation point. This ensures that points in different
parts of the image are selected. The fixation points are the
object hypotheses, which initialize the segmentation.

The object-detection method is fast. Running on a CPU
(2.53 GHz Intel processor), the method takes approximately
50 ms for a 640×480 image, while a parallel implementation
on a GPU (Nvidia GTX 480) runs in 5-10 ms .

B. Figure-Ground Segmentation

To segment foreground from background, we use the
segmentation method that we presented in [5]. The method
pre-segments the image into super pixel, where the super-
pixels are clusters of neighboring pixels with similar color.
To group fore- and background super pixels in the image,
the Gestalt principles of similarity and proximity are used.
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Fig. 3: The contour of the segment is depicted in dark gray. The orientation
and curvature at point pi are calculated using neighboring points pi−n and
pi+n. θi is the orientation of the contour at point pi and ϕi is the angle
of the change in orientation of the contour, or the curvature.

Super pixels that are similar to the fixated super pixel
in color and/or proximal in 3D position are likely to be
labeled as foreground. In addition, the estimated 3D planes
of the super pixels are compared to the dominant plane, to
remove elements of the supporting plane from the foreground
segment.

The segmentation process is formulated as a Markov
Random Field, using graph cuts to minimize the energy
function. This energy function is based on color, disparity,
and plane information. Initially, only the fixated super pixel
is labeled as foreground, but the segment is iteratively refined
by comparing all super pixels to the current fore- and
background information.

Due to the use of super pixels, the Markov Random Field
does not contain many nodes. The graph-cut minimization
of the energy function is therefore very fast. Implemented
on a CPU (2.53 GHz Intel processor), the segmentation is
done in 4-8 ms. This allows us to perform multiple seg-
mentations and evaluate the resulting segments. The super-
pixel pre-segmentation, including the transformation to the
Lab color space and the calculation of some color and
disparity statistics, takes approximately 100 ms on the same
CPU. A parallel GPU implementation of this part is quite
straightforward and will greatly cut the processing time.

C. Segment Evaluation

The purpose of the segmentation-evaluation method is to
evaluate the figural goodness of the segment. The figural
goodness is the Gestalt term for a measure of how good,
ordered, or simple a shape is. Evaluating the segments is
important to recover from failures in object detection and
in figure-ground segmentation. The fixation point can be not
on the object, but on a symmetrical part of the background,
and the segmentation method can fail to correctly find the
object borders. By evaluating a number of segments, the best
segment can be returned as the most likely object.

The Gestalt measures that we use to determine the good-
ness of the segment are detailed below.

1) Good Continuation (Ggc): This measure determines
how continuous and smooth the contour of the segment is.
In general, objects have a smooth contour, whereas mistakes
in segmentation often result in non-smooth contours. To mea-
sure the continuity, the curvature of the contour is determined
at every contour pixel. We determine the curvature ϕi at point

pi as the angular change in orientation of the contour (see
Fig. 3). This is defined as the difference in direction of the
vectors pi+n − pi and pi − pi−n:

ϕi = ψi+ − ψi− (1)
ψi+ = tan−1(yi+n − yi, xi+n − xi) (2)
ψi− = tan−1(yi − yi−n, xi − xi−n) (3)

In our experiments, we used n = 2. The final measure is
inversely based on the mean curvature of the whole contour:

Ggc = π − 1

|C|
∑
i∈C

ϕi (4)

where C is the set of all contour points.
2) Color Contrast (Gcc): The color of the object usually

contrasts with the background. If the contour of the segment
is nicely aligned with the boundary of the object, we expect
the gradient of color at the segment’s contour to be strong.
Therefore we use the color contrast at the contour as a
measure of the segment’s goodness.

The color contrast at contour point pi on the foreground
with neighboring point pb on the background is defined as
a weighted distance in rgb-color space:

ci =
√
0.3(ri − rb)2 + 0.59(gi − gb)2 + 0.11(bi − bb)2

(5)
The resulting measure is the mean contrast at the contour:

Gcc =
1

|C|
∑
i∈C

ci (6)

3) Plane Contrast (Gpc): Based on the disparity informa-
tion, we can estimate the local planes of the super pixels. At
the object boundaries, neighboring super pixels will generally
lie in different planes. This idea is exploited in the plane-
contrast measure.

The contrast between the planes at opposite sides of
the contour is measured. The plane contrast between plane
pi at the foreground and its neighboring plane pb at the
background is determined using the angle φib between the
two plane normals and the distance dib between the centroid
of both super pixels to the opposite plane. This results in the
measure:

Gpc =
1

|Fc|
∑
i∈Fc

(1− e−10·φib) + (1− e−10·dib) (7)

where Fc is the set of foreground super pixels along the
contour of the segment. Some super pixels might have insuf-
ficient disparity information, in which case the contribution
to the plane contrast is omitted. The measure is based on the
plane-distance measure used in our segmentation method [5].

4) Symmetry (Gs): Many objects in domestic environ-
ments are symmetrical, or at least locally symmetrical. When
an object segment is symmetrical, it is likely to correspond
with an object, since symmetry is non-accidental. This mea-
sure is inspired by our object-detection method, but functions
differently.

The symmetry of the segment is calculated by comparing
the orientations θi of the points on the contour. To speed up
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Fig. 4: a) To calculate the symmetry and parallelity of the segment, points on
the contour are compared to each other. b) The comparison of two contour
points.

calculations and to smooth noisy contours, we subsample the
contour by a factor of 4. The orientation of the contour is
set to (see also Fig. 3):

θi = tan−1(yi+n − yi−n, xi+n − xi−n) (8)

Every point on the contour pi is compared to other points
on the contour pj at a distance r1 < ||pi − pj || < r2,
where we set r1 = 10 and r2 = 250 (see Fig. 4a). The
symmetry contribution s(i, j) of the pair of points is similar
to the symmetry measure that we use in the symmetry-
saliency model, but adapted to be π-periodic, similar to [24].
π-periodicity is necessary, since θi ≡ θi + π. The symmetry
contribution is:

ξi,j = cos2(γi + γj) ·
(
sin2(γi) · sin2(γj)

)
(9)

λi,j = log(1 + ci) · log(1 + cj) (10)
si,j = ξi,j · λi,j (11)

where γi = θi − α with α being the angle of line between
the two points (see Fig. 4b). The first term in (9) is the
symmetry measure. The term has a maximum value when
γi + γj = {0, π}, which is true for contour orientations that
are mirror symmetric in the line m (see Fig. 4b). Using only
this term would also result in assigning high symmetry values
to to points that lie on the same straight contour. The second
term in (9) therefore reduces the symmetry value when the
contour has the same orientation as the line between pi and
pj , that is, when γi = {0, π}. The symmetry values are
multiplied by λi,j which includes the color contrast ci and
cj at the points on the contour. This means that contours
with stronger figure-ground contrast contribute stronger to
the symmetry value, which diminishes the influence of noise.

The total symmetry measure is then obtained by calculat-
ing the average symmetry contribution of all combinations
of points on the contour:

Gs =
1

N

∑
i∈C′

∑
j∈C′i

si,j (12)

where N is the number of comparisons, C′

is the subsampled set of contour points, and
C′

i = {j ∈ C
′ |(r1 < ||pi − pj || < r2) ∧ F ((pi − pj)/2)}

is the set of contour points that are compared to point i.
F (p) is a function that return true is point p is part of the
foreground and false otherwise.

5) Parallelism (Gp): Parallelism also counts as a non-
accidental property. Whenever two contours run parallel with
respect to each other, these contours are likely to belong
together.

The calculation of the parallelism of a segment is very
similar to the symmetry calculation, with the difference in
(9):

ηi,j = cos2(γi − γj) ·
(
sin2(γi) · sin2(γj)

)
(13)

pi,j = ηi,j · λi,j (14)

Gp =
1

N

∑
i∈C′

∑
j∈C′i

pi,j (15)

The parallelity value is high when point pi and pj have
parallel contour orientation. Again we discard points that lie
on the same straight contour.

6) Color Uniqueness (Gcu): This measure relates to the
Gestalt principles of surroundedness and smallness. Objects
are often smaller structures on a larger and more uniformly
colored background. The object is often distinctively colored
with respect to the background. Therefore, we relate this
Gestalt measure to the uniqueness of the colors in the
segment.

To determine the uniqueness of the segments colors, we
make color histograms for every super pixel in the segment
and a histogram for the complete image. The less similar
the super pixel’s histogram is to the overall color histogram,
the more uniquely colored the super pixels is. We use the
CIE Lab-color space for the histograms. The Lab space
is perceptual uniform, which corresponds to the human
experience and is preferable when comparing colors. The
color histograms are three dimensional, with 8× 8× 8 bins.

The color histograms are compared using Pearson’s corre-
lation. By first smoothing the histograms using 3D Gaussian
kernels, we introduce dependencies between neighboring
bins, and thus between neighboring colors. This gives better
color comparisons, and approaches the distance measures
using the Earth-Mover’s Distance, with the benefit that it
is much faster. The color uniqueness is:

Gcu =
∑
i∈F

(1− ρ(Hi, HT)) (16)

where F is the set of all super pixels labeled as foreground,
Hi is the 3D color histogram of super pixel i, HT is the
color histogram of the total image, and ρ is the correlation
coefficient.

7) Out-of-Planeness (Gop): This measure is basically a
3D contrast measure. We assume that the objects that we
observe are placed on a supporting plane, and that it can
be detected as the dominant plane. Everything that deviates
from the dominant plane is potentially an interesting object.

We estimate the dominant plane in the image using
RANSAC as proposed in [16]. Because we also have the
local plane estimates of every super pixel, we can compare
each super pixel to the dominant plane using the angle
between the normal vectors, φiD, and the distance from the
super pixel’s centroid to the dominant plane, diD, similar
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Fig. 5: The relation between the Gestalt principles and the true quality of the
object segmentation measured by the F1 score. The results for the different
objects are displayed with differently colored dots. The solid black lines
show the linear regression model fitted to all data points, and the solid gray
lines show the linear regression for the individual objects.

to (7). The out-of-planeness measure is the average over all
super pixels in the foreground:

Gop =
1

|F|
∑
i∈F

(1− e−10·φiD) + (1− e−10·diD) (17)

Note that for some super pixels, the plane cannot be esti-
mated reliably due to missing data or noise. Those super
pixels are not taken into account.

D. Combining the Segment-Evaluation Measures

To combine the individual measures into a combined
goodness, we use a simple multi-layer feedforward neural
network, with one hidden layer with five hidden neurons.
The network was trained on 600 examples using back-
propagation learning. The examples are segments resulting
from random fixations. For each example the 7 Gestalt mea-
sures are taken as input, and the F1 score of the comparison
between the segment and the ground truth is set as the target
for training. Learning continued until the error on a test
set containing 2400 examples did not further decrease. This
prevented overfitting on the data.

The segment-evaluation method is computationally effi-
cient. Calculating all Gestalt measures and combining them
into a goodness measure is takes 5-10 ms on the CPU (2.53
GHz Intel processor). The processing time mainly depends
on the length of the contour, mainly due to the quadratic
complexity of the symmetry and parallelity calculations.

IV. RESULTS

The analyze the performance of the segment-evaluation
method, we use the KTH Object and Disparity (KOD)
database [4]1. The database contains 600 images and dispar-
ity maps of 25 different objects with different backgrounds,
positions, orientations, and lighting. Hand-segmented ground
truth is available to measure the segmentation performance.

1http://www.csc.kth.se/~kootstra/kod

TABLE I: Correlation and explained variance (R2) of the Gestalt measures.

Measure Correlation R2 measure
good continuation 0.56 0.31
color contrast 0.58 0.34
plane contrast 0.64 0.41
symmetry 0.63 0.39
parallelity 0.61 0.37
color uniqueness 0.71 0.51
out-of-planeness 0.77 0.59

Linear combination − 0.80
Neural network 0.93 0.87
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Fig. 6: Selecting the segment with the highest Gestalt goodness. The solid
line show the average F1 score of the objectively best segment as a function
of the number of fixation points. The gray bar displays the mean F1 score
of the segment with the highest figural goodness. The left plot is based
on random fixations and the right plot on fixation points selected by our
object-detection method. The error bars give the 95% confidence intervals.

In Fig. 5, the relation between the different Gestalt mea-
sures and the objective quality of the segmentation is shown.
The measurements are obtained using random fixation points.
The plots show the Gestalt measures of the goodness of the
resulting segment on the horizontal axis, and the F1 score on
the vertical axis. The F1 score combines recall and precision
resulting from the comparison of the segment and the ground
truth. The different objects are displayed with differently
colored dots. The solid lines show the linear regression model
fitted to the data (N = 3000). It can be seen that all Gestalt
measures have a positive relationship with the F1 score. This
is an indication that higher Gestalt measures usually relate
to better segmentation and that they can thus be used to
evaluate segments. The plot on the bottom right shows the
results for the combined goodness measure using the trained
neural network. The combined goodness shows a good linear
relationship with the F1 score.

Table I shows the correlation coefficients between the
Gestalt measures and the F1 score along with the explained
variance by the linear regression model (R2). All individual
measures can explain a large proportion of the variance in the
measurements, with color uniqueness and out-of-planeness
as most successful measures. The explained variance is 0.80
when the different measure are combined using multivariate
linear regression. This shows that the different measures
are complimentary. Combining the measures with the neural
network results in an explained variance of 0.87 with a
correlation of 0.93. This shows that the combined goodness
is a good predictor for the quality of segmentation.

The results of selecting a segment based on the highest
combined goodness value is shown in Fig. 6. The left
plot uses random fixations and the right plot uses fixations
selected by our object-detection method. The solid lines show
the mean F1 score of the best possible segment, i.e., selected
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Fig. 7: Examples of scenes with multiple objects. The numbers in the top-
right corners of the images indicate the goodness measure by our model.
Each column corresponds to a fixation.

based on the F1 score, as a function of the number of
fixations. This sets an upper bound. The gray bar shows the
mean F1 score when the segment with the highest figural
goodness is selected by our segment-evaluation method. For
both plots, our method gets close to the upper bound. This
shows that the model successfully evaluates the segments
and usually chooses the best object hypotheses. Our model
greatly improves the segmentation performance over simply
selecting one of the first few segments.

Fig. 7 demonstrates that the methods can also be used in
scenes with multiple objects.

V. DISCUSSION

We introduced an integrated method for fast and bottom-up
object detection and segmentation. As an important element,
we have proposed a novel segment-evaluation method. The
method determines the figural goodness of a segment based
on a number of Gestalt principles. The evaluation of seg-
ments is important in bottom-up processing, in order to be
able to recover from failures in detecting the objects and
from errors in the segmentation process.

The evaluation method contains seven Gestalt measures:
good continuation, color contrast, 3D plane contrast, sym-
metry, parallelity, color uniqueness, and out-of-planeness.
All measures showed a positive relation with the objective
quality of the segmentation, indicating that they are all good
predictors of the quality of segments. Especially the corre-
lation for the color uniqueness and the out-of-planeness was
high. Also contrast in 3D plane, symmetry, and parallelity
performed well. An improved prediction using a linearly
combination of the individual measures showed that the
different measures are complimentary.

To combine the different measures in one goodness mea-
sure, we used a multi-layer feedforward neural network.
The trained network showed a very good correlation. Using
the combined goodness, the method was indeed capable of
improving the bottom-up object segmentation.

The proposed method allows to select the best segment
from a number of hypothesized segments, which greatly
improves bottom-up object segmentation.
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