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Abstract. This paper focuses on learning and adaptation of sensorimotor con-
tingencies. As a specific case, we investigate the application of prism glasses,
which change visual-motor contingencies. After an initial disruption of sensori-
motor coordination, humans quickly adapt. However, scope and generalization of
that adaptation is highly dependent on the type of feedback and exhibits markedly
different degrees of generalization. We apply a model with a specific interaction
of forward and inverse models to a robotic setup and subject it to the identical
experiments that have been used on previous human psychophysical studies. Our
model demonstrates both locally specific adaptation and global generalization in
accordance with the psychophysical experiments. These results emphasize the
role of the motor system for sensory processes and open an avenue to improve on
sensorimotor processing.

Keywords: Sensorimotor contingencies, prism-adaptation, motor learning/adaptation,
body maps, inverse kinematics

1 Introduction

Humans adapt easily to changes in sensorimotor coordination during development and
adulthood. A remarkable demonstration is adaptation to prism glasses that displace the
visual field horizontally by a constant angle. Despite such drastic changes of a sensori-
motor relationship, eye-hand coordination quickly adapts [6].

This is, however, not a passive process but requires active exploration [4, 5]. Prism
adaptation is specific to the involved body parts [7, 15] and actions [1, 7, 16]. The adap-
tation to changed sensorimotor dependencies therefore appears to crucially depend on
the ability to relate one’s own motor actions to their observed sensory consequences.
This bears a striking resemblance to the concept of sensorimotor contingencies (SMC)
[11], which also stresses the importance of action for perception [3]. The case of prism
adaptation is well investigated and therefore may serve as a prime example for investi-
gating how the brain achieves “mastery of a sensorimotor contingency” [11].

When prisms are donned, subject’s pointing movements are offset due to the visual
displacement. However, with repeated movements this offset diminishes and original
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performance restores. When subsequently the prisms are removed, pointing movements
are offset in the opposite direction. This aftereffect, i.e. the difference in pointing be-
tween pre- and post-exposure, is a convenient measure of the degree of adaptation.

The adaptation is thought to combine two separate processes: Recalibration and
realignment [15]. Recalibration is believed to utilize a cognitive learning strategy that
quickly reduces pointing errors. The effects of recalibration are local to specific actions.
Recalibration is quantified by the aftereffect measured with the identical movement
that was carried out during the prism exposure phase [15]. Realignment, in contrast,
is thought to be an automatic process that aligns, for example, visual and propriocep-
tive maps. It reveals a global generalization of adaptation to new pointing targets and
actions. Realignment is measured by actions not practiced during prism exposure.

Redding and Wallace observe that the realignment effect is modulated by differ-
ent kinds of feedback during exposure. When participants could see their own hand-
movement (concurrent feedback) during exposure, Redding and Wallace [15] observed
a small shift of “visual straight ahead” and a large shift of “proprioceptive straight
ahead”. This pattern was reversed when participants could only see the end-position of
their hand (terminal feedback) during exposure. Related to this, Redding and Wallace
found that the aftereffect generalized differently to targets not shown during exposure.
Specifically, concurrent feedback produced aftereffects that increased for targets in the
direction of the prismatic shift, whereas they decreased for terminal feedback. Both re-
sults are explained by two different references: During concurrent feedback the visual
system acts as a reference and the proprioceptive system is aligned to it and during
terminal feedback the situation is reversed.

In this paper, we investigate properties of recalibration and realignment and their
dependence on different types of feedback. For this purpose, a computational model
of prism adaptation is developed for the control of a simulated robotic arm and sub-
jected to the identical experiments focused on eye-hand coordination of the previous
psychophysical study [15]. Specifically, we test the hypothesis that the different forms
of adaptation aftereffects can be described in a unified approach based on the concept of
sensorimotor contingencies. We take as our starting point that adaptive agents have to
relate changes in perception to their own actions. At the same time we strive for a com-
putational description of recalibration and realignment to foster our understanding of
sensorimotor adaption and for facilitating the development of versatile robotic agents.
The ability to quickly learn eye-hand coordination from own experience makes manual
calibrations redundant, which is interesting, for instance, for robotic grasping [12].

2 Computational model of prism adaptation

The contingency between sensory and motor signals involved in pointing movements
is captured by forward and inverse-kinematic models. The forward model defines the
position of the effector, e.g. the hand, based on the joint angles of the arm. The inverse-
kinematic model provides the joint configuration of the arm necessary to reach a spe-
cific target, and thereby allows direct control of a robot. Motivated by [2, 10] and in
accordance with the SMC theory [11] we use a differential inverse-kinematic model
that generates the action necessary to reach a desired change in visual position of the
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Fig. 1. Theoretical model, including three sub-modules: the visual shift, the forward model, and
the inverse model. Based on visual and proprioceptive observations, the model estimates the
action to get the end effector to the target pose. All three sub-modules learn on-line using the
sensory consequences of the executed action as observed by the system itself. Information flow
for control is indicated by solid arrows, and the flow for learning by dashed arrows. The variables
are explained in the text.

end-effector. Given a current joint configuration, q, and a desired change in pose of the
end effector, ẋ, the necessary change in joint angles, q̇, is determined by the model,
expressed by the mapping (q, ẋ) 7→ q̇. For small enough changes, the optimal gradient
q̇ for any given state q is well defined and resolves ambiguities inherent in inverse-
kinematics.

When the robotic system is subject to changes, for instance, due to mechanical
wear or damage or adaptation to prisms, the forward and inverse mappings are not
fixed, but changes over time. This calls for adaptive systems that can learn and adapt
the inverse-kinematics model from own experience [9]. Others have used, for instance,
locally-weighted projection regression [2, 17], Gaussian-process regression (GPR) [13],
and local Gaussian-process regression [10]. Here we use Gaussian-process regression
(GPR) to learn the inverse kinematics, since it has the best reported performance [13,
10] at the cost of higher computational load. But note, that the GPR can be easily
substituted by other regression methods, if real-time performance is more of an issue.

In total, our model consists of three sub-modules: the forward model, the inverse
model, and the visual-shift model (see Figure 1). In the following, we give the model
details of all components in turn.

2.1 Forward model and inverse model

Based on the proprioceptive information pt, the forward model gives an estimation
of the pose of the end effector in visual coordinates xt at time t (see Figure 1). This
estimation is used when the end effector cannot be observed visually. The inverse model
provides an estimate of the necessary action, at, for instance a change in joint angles,
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based on pt and the desired change in pose, ẋd
t , which is determined based on the

difference between the target and the end effector, ẋd
t = τt − xt (see Figure 1).

Using GPR, an estimation is made of the functions at = f(pt, ẋ
d
t ) for the inverse

and xt = g(pt) for the forward model, based on a set of training examples, which
the system acquires from own experience. GPR has a few hyperparameters, including
{λ21, . . . , λ2D}, which are the characteristic length-scales of the different dimensions of
the squared-exponential kernel, where D is the dimensionality of the input to the GPR.
The hyperparameters are learned from data by maximizing the marginal likelihood. For
details on GPR, we refer to [13].

Recency effect A problem with a standard GPR implementation of the forward and
inverse models is that adaptation to changed SMCs is slow. When prism glasses are
donned, the old training samples contribute as strong to the estimation as the new sam-
ples, which results in a rather slow adaptation. To increase speed of adaptation and to
intensify the aftereffect, we include a forgetting mechanism using a recency effect, such
that more recent training data make a stronger contribution to the estimation. Specif-
ically, we add a time dimension to the input, resulting in input zi = {p, ẋ, t} for the
inverse, and zf = {p, t} for the forward model, both with a time constant λT . This
characteristic length-scale parameter is not included in the optimizing of the hyperpa-
rameters, but instead used as a free parameter to control the recency effect, which is
strong for low values of λT , whereas for λT →∞, the effect is absent.

Execution and on-line learning The Gaussian process regressors that implement the
inverse and forward models are continuously updated while the robot performs its task,
thus on-line learning the eye-hand coordination. In execution, the GPRs are used to pre-
dict the output of the models based on the SMC experience, resulting in an action. When
the robot executes this action, it results in a movement of the arm. The system then ob-
serves the visual and proprioceptive consequences of that action and uses the observa-
tion of these new SMCs as training samples. In case of the forward model, the training
data is {pt+1,xt+1, t}. The training data for the inverse model is {pt, ẋo

t ,at, t}, where
ẋo
t = xt+1 − xt is the observed change in end effector.

2.2 Visual-shift model

The visual system provides information about the pose of the end effector and the target
in visual coordinates. The visual-shift model applies a transformation, T , to these visual
observations, so that the retinotopic (or camera) coordinate system is transformed into
an internal visual coordinate system: x = T (xr) and τ = T (τ r), where xr

t is the pose of
the end effector and τ rt the pose of the target, both in the retinotopic coordinate system.

The transformation T is updated based on the visually observed error in pointing,
which is caused by the error of the model in predicting the effects of the applied action.
T needs to counterbalance the visual transformation caused by the prism glasses. This
can be done in different ways, but since in our experimental setup (see Section 3.1),
the prism effect causes a rotation of visual observations, we chose to implement T as
a rotation of the visual coordinates as well: x = T (xr) = Rθ · xr, where the rotation
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matrix Rθ applies a rotation over θ. The rotation angle θ is updated by the system
at the end of each movement by θt+1 = θt + η · ε, where ε is the visually-observed
terminal error. This error is based on the angular difference between the desired pose
of the end effector at the end of the trajectory, τM , and the actual pose observed by the
system after movement, xM+1: ε = ∠τM − ∠xM+1, where M is the last time step in
the action sequence. η ∈ [0, 1] is the transformation learning rate, which determines the
influence of the visual-shift model in the complete adaptation system.

2.3 Concurrent and terminal feedback

As in [15], we distinguish two different types of feedback: concurrent and terminal. In
the first case, the end effector is continuously observed visually to obtain the internal
pose xt, which is used by the inverse model to determine the action. This forms a visual
closed-loop control system, where the effect of the action is visually observed and used
in the next iteration. In the terminal-feedback condition, there is no visual closed-loop
control, since the internal pose of the end effector is estimated based on proprioceptive
information using the forward model. As a results, there will be a difference in terminal
pointing error in the two conditions when SMCs are altered through prism exposure.

Another consequence of the feedback condition is the available data to train the
inverse and forward model. In case of concurrent feedback, the new SMCs can reliably
be observed over the complete trajectory. However, in the terminal condition, the SMCs
related to the individual actions need to be estimated from the terminal feedback and
will be incorrect due to the non-linear relations involved. We generate training data
in the terminal-feedback condition by interpolating the internal visual pose of the end
effector based on the visually observed end pose and the start pose estimated by the
forward model.

3 Experiments

3.1 Simulation and model setup

We use a 2D simulated robotic setup to test our computational model of prism adap-
tation, see Figure 2a-c. The setup consists of a two degrees-of-freedom arm, a vision
sensor observing the 2D position of the end effector, xt = {xxt , x

y
t }, and the target,

τt = {τxt , τ
y
t }, and proprioceptive sensors in each of the joints, pt = {p1t , p2t} giving

information about the joint angles. In this setup, an action is a change in joint angles,
at = q̇t. The visual observations are made from the bird’s-eye perspective. In the ex-
periment, pointing is done at two different heights, high and low, causing different arm
poses during pointing. To experiment with the similarity of different poses, we add an
arm-pose dimension to the input of the GPRs, with an associated length-scale parameter
λP, which is by default set to 2.0 unless stated otherwise.

In a pointing trial, a target is positioned at a specific angle with respect to the
robot. The system observes the target’s position, g, and then plans a target trajectory,
{τ1, . . . , τM}, whereM = 5 is the number of actions involved in the pointing trajectory
(see Figure 2d). The prism glasses are implemented as a rotation of the visual coordi-
nates, so that yr = Rγ ·yt, where yt is the true position, yr is the position in retinotopic
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Fig. 2. Experimental setup. a) The robot has joint angles qt, the end effector is at true pose xt
t,

and the target at true pose τ tt . However, this information is not known to the system. Instead, the
system observes (dotted lines) the proprioceptive signals pt, and the retinotopic coordinates of
the end effector xr

t and the target τ rt . The model will suggest an action, which will change the
joint angles. b) At first, the SMCs will not be correctly learned, and the action will result in an
incorrect movement of the arm. c) After some time, the model will correctly estimate the action,
so that xt+1 ≡ τt. d) Based on the visual target at position g, the system plans a target trajectory
giving a set of intermediate targets {τ1, . . . , τM}.

coordinates, and Rγ is a rotation matrix applying deviation angle γ. The application of
the virtual prism glasses effects all visual observations, that is the observation of the
end effector and the target.

We set the recency effect used in the forward and inverse models to λT = 1000,
and the transformation learning rate to η = 0.35. These parameters change the slopes
of the learning curves and the influence of the forward and inverse models versus the
visual-shift model. The general results are robust to small changes in these values.

3.2 Experimental setup

To compare the performance of our model to psychophysical data, we adopt the exper-
iments performed by Redding and Wallace [15]. The task of the system is to point to
visual targets. In the experiment, two different starting positions are used. In the proxi-
mal starting position, the end effector starts at the origin, and with a low arm pose. The
distal starting position is halfway to the target, and with a high arm pose.

When the system has been initialized, as described below, we perform two sets of
pre-tests, one for realignment and one for recalibration, to measure the performance
before prism exposure. The prisms are then turned on in the simulation by rotating the
visual observations over the origin with an angle of 11.4o. Under prism exposure, the
system performs 12 consecutive pointing movements from the distal starting position
with either concurrent or terminal feedback. After that, the prisms are switched off, and
the recalibration and realignment tests are performed again as post-tests. No adaptation
learning is going on during the pre- and post-tests.

The realignment tests consist of a visual-shift test, a proprioceptive-shift test and a
total-shift test, and are all done from the proximal starting position, i.e., different from
the starting position during prism exposure. In the visual-shift test we measure subjec-
tive straight-ahead, by reading out−θ, the negative value of the applied transformation
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Fig. 4. The terminal error or aftereffect for the
different realignment measures. With concur-
rent feedback, the visual shift remains small,
while the proprioceptive shift is large, the re-
verse is true in case of terminal feedback.

in the visual-shift model. The proprioceptive-shift test measures proprioceptive straight
ahead by having the system point without a visual target. To do so, the system sets a
virtual target at 0o in internal coordinates. Finally, during the total-shift test, a visual
target is presented at different angles {−20o,−15o, . . . , 20o}, and the system points to
the targets. Pointing is always done without visual feedback.

The recalibration test is similar to the total-shift test, but the system is tested with
the distal starting position, i.e., similar to the starting position during prism exposure.
Moreover, we perform the test using different values for λP, to change the level of
similarity in arm pose between distal and proximal starting conditions.

An experimental trial starts by initializing the system. The robot initiates 300 ran-
dom movements in different parts of the work space and using the two different arm
poses. Next, the system specializes on the pointing task by performing 24 pointing
movements of M = 5 actions, using three different target positions (at -15o, 0o and
15o) and two different arm poses. Since this initialization is a noisy process and influ-
ences the performance of the system during the experiment, we repeat the experiment
20 times and report the mean values and 95% confidence intervals.

4 Results

Adaptation of pointing during prism exposure for the concurrent and terminal feedback
condition is shown in Figure 3. In both conditions, the system quickly adapts to the
prism effect, demonstrating accurate pointing behavior after 8 pointing trials. The error
in the terminal condition is considerably larger than in the concurrent condition, which
is expected, since the trajectory can be adjusted during pointing in the concurrent case.
Negative error values can be observed in later pointing trials, showing overcompensa-
tion by the model, which is due to the collaboration of the forward and inverse models
with the visual-shift model. These results correspond well with the psychophysical re-
sults observed by Redding and Wallace [15].

The size of the realignment aftereffect is shown in Figure 4. There is a clear dif-
ference in visual shift and proprioceptive shift between the concurrent and terminal
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condition, matching the psychophysical results [15, 14]. The visual shift is small in the
concurrent condition and large in the terminal condition. In the proprioceptive test, the
aftereffects are reversed, with a large effect in the concurrent and a small effect in the
terminal condition. The total aftereffects are approximately the sum of the visual- and
proprioceptive aftereffects.

To investigate the generalization over space, we next investigate the total-shift (re-
alignment) aftereffects as a function of target position for concurrent and terminal feed-
back (see Figure 5). With concurrent feedback, the aftereffect shows a positive slope
towards the prismatic shift (11.4o), whereas with terminal feedback, the curve shows a
slight negative slope. This matches the psychophysical results [15].

Generalization over different actions is investigated by the aftereffects for the to-
tal shift and recalibration tests with proximal and distal starting position as shown in
Figure 6. We use four different levels of similarity between the arm pose at those two
starting positions, λP = {4.0, 2.0, 1.0, 0.5}, where a higher value is a higher level of
similarity. The results for the concurrent and terminal feedback condition are combined,
as was done in [15]. The aftereffect is largest when the starting position is identical to
the exposure phase, that is, the distal position. The curves for the distal position show
a local generalization effect, with lower values for target positions that have not been
used during prism exposure. This can be explained by the local learning in GPR used
in forward and inverse model. The curves for the proximal position are more flat, indi-
cating a more global generalization effect caused by the visual-shift model. Reducing
the similarity in arm pose between exposure condition (distal) and the proximal con-
dition during recalibration testing, i.e., lower values of λP, results in lower and more
flat curves, indicating that aftereffects are weaker and mainly dominated by the global
effect. These results correspond with psychophysical observations [15, 1].

5 Discussion

We presented a computational model capable of learning the sensorimotor contingen-
cies involved in pointing, and of adapting to changes in these contingencies. Moreover,
it accounts for the observations made in human prism-adaptation studies [14, 15, 1],
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i.e. adaptation is achieved jointly through a specific local and a general global effect.
Whereas local adaptation, or recalibration, is specific for the sensorimotor contingen-
cies involved in the trained action, realignment, shows a global effect and generalizes
to different actions

Using two feedback conditions, the realignment shows fundamentally different af-
tereffects for visual and proprioceptive tests. Where the visual shift is small and the
proprioceptive shift is large for concurrent feedback, the reverse is true for terminal
feedback. In our model, the visual shift is larger during terminal feedback because the
observed pointing error at the end of the terminal feedback trials is larger compared to
concurrent feedback trials. During concurrent feedback the end effector is continuously
observed and the pointing error can be reduced while the movement is executed. In
contrast, the results for the proprioceptive test are explained by the forward and inverse
models. Since the sensory consequences of actions are directly observable in the con-
current condition, low-error training data is available which leads to quick adaptation
of the inverse model and thus a large proprioceptive after effect. In the terminal condi-
tion, these training data need to be estimated based on the terminal observation, causing
them to be less correct.

Our model gives a different explanation of prism adaptation compared to Redding
and Wallace [15]. Where they consider recalibration to be a cognitive learning strategy
and realignment to be an automatic process aligning different spatial maps, our model
solely consists of automatic and low-level processes. Although cognitive strategies are
an equally valid explanation, our model shows that similar effects can be reached with
a simpler mechanism. Furthermore, in our case, the model does not include an ex-
plicit proprioceptive-shift model. Instead the results for the proprioceptive-shift test can
be explained by adaptation of the forward and inverse models to changed SMCs. The
presented model offers a potential system implementation for learning sensorimotor
contingencies and emphasize the importance of the motor system for perception [8].

Currently, we assume a setup with a fixed eye-head system. However, in humans,
both eye-head and head-hand systems are involved. The presented work is a first step
towards modeling both systems. The current model is not able to learn multiple senso-
rimotor mappings. To account for dual adaptation effects observed in alternating prism-
exposure experiments [18], future additions to the model will be necessary.

The model presented is directed at fostering our understanding of human adaptation
as well as to improve on the current state of robotic systems. Inverse-kinematics learn-
ing with regression models has already been addressed by others, see e.g., [2, 9], but
the addition of a recency effect and the synergy with the visual-shift model results in a
fast adaptation to changes in sensorimotor contingencies.

Acknowledgments. This work was supported by the EU through the project eSMCs
(FP7-IST-270212), and by the Swedish Foundation for Strategic Research.
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