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Abstract— Agents that operate in a real-world environment
have to process an abundance of information, which may
be ambiguous or noisy. We present a method inspired by
cognitive research that keeps track of sensory information,
and interprets it with knowledge of the context. We test this
model on visual information from the real-world environment
of a mobile robot in order to improve its self-localization.
We use a topological map to represent the environment,
which is an abstract representation of distinct places and
the connections between them. Expectancies of the place
of the robot on the map are combined with evidence from
observations to reach the best prediction of the next place of
the robot. These expectancies make a place prediction more
robust to ambiguous and noisy observations. Results of the
model operating on data gathered by a mobile robot confirm
that context evaluation improves localization compared to a
data-driven model.
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1. Introduction
Agents that operate in a real-world environment have

additional challenges compared to agents that operate in a
simulated or controlled environment. They have to process
an abundance of information, of which not everything is
necessarily relevant. Moreover, sensory information may be
ambiguous or noisy. To be able to make sense of its environ-
ment, an agent needs to identify and structure the sensory
information it gathers. We developed a method inspired by
cognitive research that keeps track of sensory information,
and interprets it with knowledge of the context. Human
perception is also not strictly data-driven. Knowledge of the
context helps humans to form predictions and guide their
perception of the environment (e.g. [1], [2]).

Applications of cognitive research, such as handwriting
recognition (e.g. [3]) and information retrieval (e.g. [4],
[5]), often employ a spreading activation semantic network
to recognize a particular item or retrieve specific information.
Spreading activation networks are based on models of human
memory [6]. They are built of nodes that represent pieces of
information or concepts, and the connections represent the
prior probabilities that the nodes are encountered together.
Spreading activation networks are typically static, because
the data in these application domains can be accessed
completely and simultaneously. In contrast, for agents op-

erating in a dynamic environment the available information
continuously changes.

To be able to deal with continuous data, we apply a
dynamic network model. This dynamic network is similar
to a spreading activation network, but instead of being
static, it is updated when new data are encountered. The
model continuously makes an estimation of its current state,
based on sensory input and knowledge of the context. The
dynamic network model has been applied previously to
sound input [7], but is developed to process any type of
sensory input. Therefore, as we will show in this paper, it
can also be applied to visual information from the real-world
environment of a mobile robot.

A basic task for an autonomous mobile robot is to build
a map of its environment for self-localization. For this
reason, Simultaneous Localization and Mapping (SLAM)
has received considerable attention in the last decade. Most
SLAM approaches use range or vision sensors to construct
a detailed metric map of the environment (e.g. [8]). These
maps contain the Cartesian coordinates of a large number
of structural features present in the environment. Other
approaches build topological maps of the environment (e.g.
[9]). Instead of representing the environment in detail, it is
represented more abstractly in topological maps, as distinct
places and the connections between them. The advantage of
such an abstract representation is that it is less susceptible to
noise, and ambiguous observations and situations. Moreover,
it results in a computationally less demanding system.

In topological mapping, a general idea of the location of
the robot can help to form an expectancy of the path of
the robot. This expectancy can be combined with evidence
from observations to form a hypothesis of the place of the
robot. Furthermore, an expectancy of the place of the robot
can resolve ambiguous observations. In this way, the place
in a topological map where an observation is made can be
considered as the context of that observation. When the robot
is moving and making observations, an evaluation of the
context can improve its localization. The evaluation of the
context entails that the recent history of visited places is
used to predict the place that follows. Furthermore, using
knowledge of the context makes localization more robust to
noise in the observations.

In the next section we describe the design of the model,
and how it processes observations made by a mobile robot.
In section 4 we present the results of two experiments that
are described in section 3. The first experiment demonstrates
that the model is more robust to noise when the context is



used. The second experiment shows that predictions in real
data with many ambiguous observations and noise are also
better with context evaluation than without. We end with
a discussion on the performance of the model and give an
outlook on future work.

2. Model
The model we present processes visual input of a moving

robot. These visual observations, which are explained in
section 2.1, provide evidence about the place of the robot.
However, ambiguous or noisy observations might lead to
erroneous place predictions. To improve these predictions,
contextual information about the environment is learned in
a supervised training phase and stored in a static knowledge
network. In the operation phase this knowledge is used in
a dynamic network model, which computes expectancies of
the place of the robot.

The knowledge about the environment, in the form of
nodes in the knowledge network and the strength w of
the connections between them, is computed in the training
phase. We refer to this knowledge as long-term memory,
since it reflects invariant knowledge. Therefore, it is stored as
a static network, which is constructed from learning relations
in the training data. This knowledge network is similar to
semantic networks used in information retrieval. In section
2.2 we describe in more detail how the knowledge network
is created.

In contrast to the knowledge network, the dynamic net-
work reflects short-term memory. Information represented by
nodes in this network is added and forgotten more quickly,
since the nodes pertain only to the current state of the
robot. Nodes in the dynamic network are called hypotheses,
because they represent possible explanations for input data.
The dynamic network has three levels that all represent a
different type of information: hypotheses of observations,
landmarks, and places in the environment. Figure 1 shows
an example of a dynamic network at one moment, namely
when oberservation 2 has been made. The network config-
uration represents the knowledge of the environment at that
moment. This knowledge consist of two observations, their
connections to landmarks hypotheses, and the connections of
the landmarks to hypotheses of places in the environment.
In section 2.3 we explain the construction of the dynamic
network, and how context is used to compute expectancies
of the place of the robot.

2.1 Observations
The robot (a Pioneer 2 DX mobile) uses a video camera to

observe the world. Visual interest points are detected in the
camera images, which serve as landmarks to represent the
environment. The interest points are detected and described
using the Scale-Invariant Feature Transform (SIFT) [10].
The SIFT algorithm detects points that stand out from their
surroundings. These points are described using histograms
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Fig. 1: Example network configuration at one instant, of two observations
that are matched to three landmarks, each in turn connected to a place.

of gradients. A drawback of SIFT is that it results in a large
number of interest points, many of which are not re-detected
in subsequent images. Therefore, we use a visual buffer to
test the stability of the interest points over a number of
successive images [11]. Only interest points that are stable
enough are used as landmark observations. The descriptor
of an observation is then compared to that of previously
observed landmarks. Based on the descriptor distances, the
observation is matched with one or more landmarks or
labeled as a new landmark.

The data set used in one of the two experiments (see sec-
tion 3.2) was collected by the robot while it drove a closed
loop of eight by ten meters in an office-like environment.
The data was logged by the robot while driving four laps.
The map of the loop was manually divided into nine places,
as depicted in Figure 2. Half of the data set, that is, the
observations made in the first two laps, is used to determine
which landmarks are observed in which place. The other
half is used to test the model. Because of the variability of
the images in different laps, the robot might have observed
landmarks in the last two laps that are not present in the
training data.
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Fig. 2: Environment where the robot drove four laps. The size of the loop is
8 by 10 meters, divided into nine places. The gray area consists of objects
the robot cannot drive through.



2.2 Knowledge Network
Three classes of information are stored in a knowledge

network: the descriptors of the landmarks, the relations
between the landmarks and the places in the environment,
and the transitions between the places. This knowledge
network represents the context, which is slowly changing
or invariant. Therefore, it is referred to as the long-term
memory of the model.

The connection strengths between landmarks and places
in the training data are calculated according to a term-
weighting approach used in automatic document re-
trieval [12]. In this method the importance of a term (word
or phrase) in a document is determined by multiplying its
frequency in the document with the inverse frequency it
occurs in other documents. Hence, the term is important for a
document if it occurs often in that document and infrequently
in other documents. Since the connection strength (weight)
between a landmark and a place should reflect the specifity
of the landmark to that place, we adopt the term-weighting
approach. The landmarks can be treated as terms, and
the places as documents. Accordingly, the weight of the
connection between landmark l and place r is:

wr,l = wl,r = tf · log
(

N

n

)
, (1)

where N is the total number of places, n is the number of
places in which landmark l is observed, and the normalized
term frequency is given by:

tf =
fl,r√

fl
, (2)

where fl,r is the observation frequency of l in r, and fl is
the total observation frequency of l.

The connections between observations and landmarks are
not stored in the knowledge network, because all observa-
tions are unique. Therefore, the weights of these connections
are computed at the moment when an observation is made,
both in the training and the operation phase.1 The connection
strength between an observation and a landmark should
represent the likelihood of a correct matching between their
descriptors. If these descriptors are far apart, the observation
and landmark are less likely to have been matched correctly.
Therefore, the weight of a connection between an observa-
tion and a landmark is inverse to the distance between their
descriptors:

wl,o = wo,l = 1 − d

θd
, (3)

where d is the distance between the descriptor of observation
o and landmark l, and θd is the maximum distance at which
an observation is still matched to a known landmark.

1Observed information is not necessarily always unique. In other domains
or applications areas it could be useful to store observations in the
knowledge network. However, in the presented application it would be
useless to do so.

The transition probability that the robot moves from one
place to another is calculated by normalizing the number
of times the robot moves from one place to another in the
training data (the first two laps). As can be seen in Figure
2, the robot can move within place i or move from place
i to place i ± 1. Since the robot is driving the loop in one
direction, the transition probabilities to all places other than
i and i + 1 are generally zero. However, there are a few
exceptions when no observations are made in a place in one
of the laps, and thus the probability to move to i+2 is greater
than zero. The complete matrix of probabilities serves as the
context that helps to compute an expectancy about the next
location of the robot.

To summarize, the knowledge network consists of the
matrix with the a priori transition probabilities between all
places. Furthermore, it stores the labels of all landmarks
that are observed in the training data, along with their
connections to the places in which they are observed.

2.3 Dynamic Network of Hypotheses
Once the knowledge network is fully trained after the

learning phase, it is used in the operation phase, together
with evidence from observations, to predict the place of the
robot. The algorithm for the construction and updating of
a dynamic network is summarized in Table 1. Every level
in the network consists of hypotheses of a single type of
representation (see Figure 1). The landmark observations are
the lowest level of the dynamic network. As described in sec-
tion 2.1, observations are matched to one or more previously
observed landmarks, or labeled as a new landmark, which
are at the middle level. (The current version of the model
only processes known landmarks in the operation phase. The
possibility to add new landmarks will be discussed in section
5.) The highest level in the network holds hypotheses of
places in the environment.

Each node in the network represents a hypothesis of one of
the three different types of representation. When an observa-
tion is made, a hypothesis is added to the dynamic network
(step 1). Next, its matched landmarks (that are stored in
the knowledge network) are initiated as hypotheses (step 2),
and they are connected to the observation hypothesis (step
3). Subsequently, these landmark hypotheses retrieve their
place connections from the knowledge network (KN)(step
4). These places are also initiated as hypotheses (step 5)
and connected to the landmark hypotheses that initiated them
(step 6). Every time new observations are made, the network
is updated and the dynamics change.

The connections in the dynamic network are symmetrical,
and only between hypotheses at different levels. For instance,
the landmark hypotheses are connected to the observations
that initiated them, and to hypotheses of places in which they
may lie, but not to each other (see Figure 1). Connections
between hypotheses at the same level would be redundant,
since they can reinforce each other through shared par-



Table 1: Algorithm for updating the dynamic network configuration at times
when observations are made by the robot.

For all observations o at time t:

1. Add observation hypothesis o
2. Add matched landmark hypotheses l
3. Connect o and l with strength wo,l

4. Places r ← receive place connections of l from KN
5. Add place hypotheses r
6. Connect l and r with strength wl,r

7. Spread data-driven activation
8. Spread context-based activation
9. Evaluate activation values

ent hypotheses. Furthermore, the hierarchy of the network
is now captured by the connections. Therefore, it is not
necessary to store a global representation of the complete
network. Instead, each hypothesis contains information of its
relative position in the network, that is, it contains its direct
connections. The only information that is stored globally is
which hypotheses are active.

2.3.1 Activation Spreading

After the connections in the network are updated, the
activation of the observation hypothesis spreads through the
network. The computation of the spreading activation is
similar to the method used in McClelland and Rumelhart’s
model of letter perception [13]. The input activation first
spreads upward to the place hypotheses at the highest level
in the network, and is called data-driven spreading (step 7).
Subsequently, the activations of the place hypotheses spread
downward to other connected hypotheses, for example land-
marks in the same place that are observed previously. We
call this context-based spreading (step 8). As a consequence
of context-based spreading, a landmark hypothesis of a par-
ticular observation can be reinforced by later observations.
For example, in Figure 1 the first observation is matched to
landmarks 1 and 2, where landmark 1 lies in place A and
landmark 2 in place B. Another landmark observation made
in place B will increase the support for the hypothesis that
the first observation was of landmark 2, and not of landmark
1.

The input activation ni(t) of the individual hypotheses is
the weighted sum of all connected hypotheses, either from
the level below, for data-driven activation spreading (step 7),
or from the level above, in case of context-based spreading
(step 8):

ni(t) =
∑

j

wjiAj(t), (4)

where j is a hypothesis connected to i, Aj(t) is its activation,
and wji is the connection strength between hypotheses j and
i, retrieved from the knowledge network.

2.3.2 Activation Evaluation
After the activation has spread through the network, the

activation value of each hypothesis is evaluated (step 9).
The activation evaluation is different for different types of
hypotheses, because the context is only relevant for the
highest level in the dynamic network, that is, the place
hypotheses. The activations of the hypotheses that are not at
the highest level in the network are normalized, similar to the
model of McClelland and Rumelhart [13]. The activations
of the place hypotheses at the highest level are a weighting
of evidence from the input and an expected value. The result
of the activation evaluation of a hypothesis is treated as the
likelihood that the hypothesis is true.

The activation evaluation is an accumulation of current
input and the previous activation corrected with a decay.
The decay represents that items in short-term memory are
forgotten without reinforcement, in contrast to information
in long-term memory [6]. The activations of the hypotheses
decay exponentially with time toward a default situation.
Therefore, the decay function is dependent on the a priori
probability of a hypothesis:

fi(∆t) = e−
∆t
D (1 − P (i)) + P (i), (5)

where P (i) is the a priori probability of hypothesis i, which
is computed as the normalized number of observations the
robot made in this place in the training data. The sum of
the a priori probabilities of all place hypotheses is 1. For all
other hypotheses P (i) = 0. Furthermore, D is a constant
parameter controlling the rate of decay, set to 0.015, and ∆t
is the elapsed time since hypothesis i is evaluated last. As a
result, hypotheses deactivate when they do not receive input
activation from other hypotheses. When the activation value
decreases below a minimum, the hypothesis is no longer
evaluated, and removed from the dynamic network. A new
hypothesis will be initiated when new evidence is found for
a particular landmark or place. Therefore, every hypothesis
in the two higher levels in the network corresponds to one
occurrence of a landmark or place. Every hypothesis at the
lowest level corresponds to a unique observation.

The activation value of the observation and landmark
hypotheses is normalized to the maximum input activation,
so that it is scaled between 0 and 1:

Ai(t) =fi(∆t)Ai(t − ∆t)+ (6)
ni(t)(M − fi(∆t)Ai(t − ∆t)) for i /∈ R,

where M is the maximum activation level, and Ai(t − ∆t)
is the activation of hypothesis i when the network was
last updated, multiplied with a decay fi(∆t), computed
according to (5). Furthermore, ni(t) is the input activation
as calculated in (4), and R the subset of hypotheses that
represent places. It should be noted that the activation of
the observation hypotheses will decay quickly, because they
do not get any more input activation (ni(t) = 0) after



being initiated. In contrast, landmark hypotheses may get
reinforced by new evidence from subsequent observations,
and thus can stay active for a longer period of time.

For place hypotheses an expected activation is computed,
which represents the expectancy to be at a place given the
context. It is calculated using the information about the place
transitions in the environment (see Figure 2). The expected
activation of place i is the sum of all possible options to
drive to place i:

Âi(t) =
∑

j

fj(∆t)Aj(t − ∆t)P (j → i)P (j) (7)

for i, j ∈ R,

where Aj(t − ∆t) is the previous activation of place hy-
pothesis j, multiplied with a decay fj(∆t), P (j → i) is
the transition probability from place j to place i, , including
j = i, the probability to stay in the same place. Finally, P (j)
is the a priori probability to be in place j.

The a priori transition probabilities from (7) are retrieved
from the knowledge network. The probabilities are adjusted
in the dynamic network of hypotheses, because the proba-
bility that the robot leaves a place increases as it is longer
in that place. More specifically, the probability to stay in the
same place decreases as a function of the age Ti (how long
it is active) of the place hypothesis: P (i → i)(Ti) = P (i →
i)Ti . The probabilities to move to other places are increased
proportionally to their a priori connection strength. For
example, suppose the initial transition probability between
place A and place B is 0.2, and the probability to stay in
place A is 0.8. After the robot has observed landmarks in
place A at four subsequent times, P (A → A) = 0.84 = 0.4
and P (A → B) = 0.6. When the robot returns to the same
place, the probabilities are re-initialized to the probabilities
in the knowledge network.

The expected activation is combined with evidence from
the current input to compute the activation evaluation of the
place hypotheses:

Ai(t) = Âi(t) + K

(
ni(t)

max(n(t))
− Âi(t)

)
if i ∈ R, (8)

where Âi(t) is the expected activation according to (7), ni(t)
is the input activation of i as calculated in (4), n(t) is a
list with the input activations of all active place hypotheses,
and K is the gain factor. The gain factor is dependent on
the noise in the observations. If the observations are very
reliable, its value should be high. However, the current data
set is relatively noisy. Therefore, the gain factor is set to
0.25, which entails that the model responds relatively slowly
to new observations, and is guided more by expectancies.

The final activation values of all active place hypotheses
are compared, and the one with the highest activation is the
current best hypothesis of the place of the robot. Hence,
the sequence of best hypotheses at each update gives the
estimation of the model of the path of the robot.

3. Experiments
To illustrate the benefit of context evaluation in robot

localization, we show the place predictions of two models.
In the first model the predictions are based on instant
observations alone, which implies that only information from
the knowledge network is used. Accordingly, context-based
spreading is not applied, because the data-driven model
does not remember previous predictions. In other words,
hypotheses of the place of the robot are deactivated after
the data-driven activation spreading. In the second model,
the expectancy-based model, the place prediction is based
on a combination of instant observations and expectancies,
which are computed through context evaluation, as discussed
in section 2.3.

We discuss the results of both models running on two
types of data. In the section 3.1 we present an experiment
with simulated data, which can be controlled in their com-
plexity. The simulated data are a simplification of the real
data described in section 2.1. The experiment with the real
data is discussed in section 3.2.

3.1 Simulated Data
We generated a data set to measure the performance

of the model on data with different levels of noise. The
noise simulates observations that are so similar that they are
matched to the same landmark, although the observations
are made at distinct places. These types of ambiguous
observations occur often in the real data due to reoccurring
objects and structures in office-like environments. At every
time step one observation is simulated, which is matched
to one landmark. The distance between the descriptor of
the observation and the landmark is set to the same value
for all observations. In the first lap all 240 landmarks are
observed and connected uniformly to one of eight places.
No noise was applied in the training part of the data, the
first two laps, so there are no ambiguous landmarks in the
a priori knowledge network. In the test data we applied a
varying amount of noise on the landmarks. When no noise
is applied to the data, the test set is identical to the training
set. As the amount of noise increases, the place at which
a landmark is observed becomes more random, until it is
completely random at a noise level of 100 %.

3.2 Real Data
In the real data, as described in section 2.1, 225 unique

landmarks are observed in the first two laps (the training
data). In the operation phase, 107 of these landmarks are re-
observed and used as input to the dynamic network. 114 new
landmarks are detected in the operation phase, which are not
processed by the current version of the model. 24 % of the
landmarks in the knowledge network is ambiguous, that is,
these landmarks are observed in more than one region in the
training phase. The real data are quite challenging, because
they contain noisy and erroneous observations, hold many



ambiguous landmarks, and landmarks that are unequally
distributed in the environment.

4. Results
The results of the model on the simulated data are shown

in figure 3. Since the model keeps track of all hypotheses,
there is a list of hypotheses with a decreasing activation
value, not only a single winner. Hence, it is possible that
the true place is not the best hypothesis, but the second best.
Therefore, the performance of the model can be evaluated
not only by comparing the true place to the best place
hypothesis, but also to the top two or top three. Figure
3 depicts the single best result for the expectancy-based
model and the data-driven model, and the top two and three
of the expectancy-based model. The results of the data-
driven model are identical for the top one, the top two,
and the top three, because the simulated data set contains
only one observation per time step, resulting in one possible
hypothesis.
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Fig. 3: Results of the model tested on data with a varying amount of noise.
The single best result of the expectancy-based (EB) model and the data-
driven (DD) model are shown, and the top two and top three of the EB
model.

As expected, the data-driven model performs at chance
level. When an incorrect observation is made, the place pre-
diction is also false. The expectancy-based model performs
better than the data-driven model, especially for low amounts
of noise (< 50 %). (High levels of noise are not included
in the figure, because the results are less meaningful if the
noise is more prominent than the observations.)

In the experiment on the real data, of which the results
are given in table 2, the expectancy-based model also out-
performs the data-driven model. The difference between the
score of the best hypothesis of both models is not very large,
but consistent in multiple tests. However, the high scores on
the top two and three are promising for future improvement.

It should be noted that the predictions of both models are
based solely on visual observations, and odometric informa-
tion is ignored. Therefore, the results of the two models can

be compared by their performance on visual information,
and we can show the advantage of the expectancy-based
model. If one would aim at a best possible robot localization,
odometric information should be included.

Table 2: Results of the data-driven and the expectancy-based model on data
collected by a moving robot.

Top-1 Top-2 Top-3

Data-driven 56% 69% 76%
Expectancy-based 63% 81% 88%

5. Discussion
We presented a model that dynamically manages a spread-

ing activation network. This network represents the envi-
ronment of an agent based on sensory information and
knowledge of the environment. To test the applicability of
the model in a real-world environment, we tested it on
visual observations gathered by a mobile robot, with the
goal to improve its localization. Learned knowledge about
the environment of the robot is used to compute expectancies
of its location. These expectancies are combined with instant
observations to form a prediction of its location. Including
expectancy in the prediction enhances the stability of the
model, since it prevents unexpected landmarks from disrupt-
ing the place prediction.

The information about the environment is learned in
a supervised training phase, and stored in a knowledge
network, the long-term memory of the model. The short-term
memory is represented by a dynamic network. Hypotheses
in the dynamic network are more transient, because they
represent the current state of the robot. The network and
the deduced location prediction are updated when the robot
gathers new evidence about its environment. The results of
the experiments confirm that context evaluation improves the
performance compared to data-driven evaluation on both the
simulated and the real data.

Although the expectancy-based model outperforms the
data-driven model, the difference on the top one in the
experiment on the real data is not very large. This can be
explained by the fact that more than half of the landmarks
that the robot encounters during the operation phase are new.
Hence, the information the model can base its prediction
on is limited. Therefore, it will be useful to integrate an
algorithm in the model that includes new landmarks in the
knowledge network during the operation phase. For example,
the Growing When Required (GWR) network of Marsland et
al. adds new nodes to a network based on the (mis-) match
between the data and the network [14]. Such an algorithm
would make it possible to learn new information during the
operation phase. Furthermore, incremental learning can be
used to update existing connections based on new observa-
tions.



Another possible improvement can be made in the deter-
mination of expectancies. In the current version of the model
we only update the network when observations are made.
This can pose problems to the model, especially when the
data is not equally distributed over the environment, causing
some places to be poorly represented by landmarks. Based
on temporal and odometric information, expectancies of the
path of the robot can be made even without observations.
Therefore, we are working on including this information in
the model.

In conclusion, the presented model can improve robot
localization through context evaluation. It is computationally
efficient and needs little memory storage. Therefore, it can
be easily scaled to larger environments. Moreover, the model
is general, because the sensory information in the model is
not limited to visual observations. Hence, it can be used for
state estimation in other domains (see [7]), or even combine
information from different modalities to make predictions.
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