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We show how to give a good approximation for the max-cut problem using only
low levels of the Lasserre hierarchy. This implies a separation between Sherali-
Adams and Lasserre. Additionally, we show how to obtain locally consistent
solutions from intermediate polytopes and we introduce basic Fourier Analysis
definitions and properties.

Example of local consistency

We start by showing how the Lasserre proof system can be made locally con-
sistent. This is, we can find solutions that are integer over some suitable subset
of the variables without needing to go up the whole hierarchy.

In the previous lecture we saw that if we have a point y ∈ Lt(K) and a
set of variables |S| ≤ t then we can express y as a convex combination of
points whose S-coordinates are integer and are expressible in a lower level
of the hierarchy. Formally, there exists a probability distribution D(S) such
that Prz∼D [

∧
i∈I zi = 1] = yI (convex combination), z ∩ S ∈ {0, 1}|S|

(integrality) and z ∈ Lt−|S| (lower level).
Our example is the 3-colouring problem: given a graph G(V, E) and a set

{R, G, B}, we want to colour the vertices such that no adjacent vertices share
a colour. We can model the problem as a linear program in the following way.
We have variables xic meaning that the vertex i is coloured c, and we impose
the restrictions xiR + xiG + xiB ≥ 1 ∀i ∈ V to ensure that every vertex
has a colour and xic + xjc ≤ 1 ∀(i, j) ∈ E to ensure that adjacent vertices
do not share a colour.

Assume y ∈ L3t(K) is a point in the 3t-th level of the Lasserre hierarchy
and let U ⊆ V, |U| ≤ t be a subset of vertices. Then we can extract a distri-
bution of points in L3(t−|U|)(K) that have integer values over U×{R, G, B},
even though the solutions may be globally invalid.

This means that if we only want to satisfy local constraints, we do not
need the full power of Lasserre but we can settle for going up to as many
levels as variables we wish to satisfy.

This particular example would also work with a weaker proof system such
as Sherali-Adams, what Lasserre buys you is the ability to do global reasoning
since the SDP constraint has a global structure.

Upper bound for Lasserre

We now describe an algorithm for max-cut formalizable in low levels of
Lasserre but not of Sherali-Adams. We follow the presentation of Rothvoß1. 1 Thomas Rothvoß. The lasserre hierarchy

in approximation algorithms. Lecture Notes
for the MAPSP 2013 Tutorial (preliminary
version), 2013

For the max-cut problem we are given a graph G(V, E) and we want to
find a subset S ⊆ V of vertices such that its edge-neighbourhood |EG(S, S̄)|
is maximum.

We formalize the problem with a decision variable xi for every vertex,
meaning whether i is in S, and a variable ze for every edge, meaning whether
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e is in the cut. The integer problem is then

maximize ∑
u∈V

zij

subject to xi ⊕ xj = zij ∀(i, j) ∈ E. (1)

The natural linear relaxation is

maximize ∑
u∈V

zij

subject to xi − xj ≤ zij,

xj − xi ≤ zij,

zij ≤ xi + xj,

zij ≤ 2− xi − xj ∀(i, j) ∈ E. (2)

Observe that xi = 1/2, zij = 1 is a valid fractional solution, but it can
be very far from the feasible optimum. For instance, when G is the complete
graph the fractional optimum is approximately n2/2 while the real solution
is approximately n2/4. The integrality gap is roughly 1/2.

At the nδ(ε)-th level of the Sherali-Adams hierarchy, the integrality gap is
still 1/2 + ε, so this is the best we can do2. However, there is an algorithm3 2 Moses Charikar, Konstantin Makarychev,

and Yury Makarychev. Integrality gaps for
sherali-adams relaxations. In Proceedings of
the 41st annual ACM symposium on Theory
of computing, pages 283–292. ACM, 2009
3 Michel X Goemans and David P
Williamson. Improved approximation
algorithms for maximum cut and sat-
isfiability problems using semidefinite
programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995

that gives an approximation ratio of at least 0.878, and we will see that this
algorithm can be formulated in terms of a Lasserre program.

Let us first do some observations about the space of solutions. We had seen
in the previous lecture that the moment matrix is positive semidefinite and so
it can be expressed as an inner product of vectors, this is Mt(Y)I J = 〈vi, vJ〉.
It follows that yI = 〈vI , v∅〉 = 〈vI , vI〉 = |vI |2. For any vector vI it holds
that |v∅/2 − vI |2 = |v∅/4|2 − 〈v0, vI〉 + |vI |2 = 1/4, so the space of
solutions is a sphere of radius 1/2 centered at v∅/2. We can try to exploit
this fact by separating vectors that lie far away in this sphere into the two
components S, S̄.

To simplify the process of sampling separators, we will use another for-
mulation where the space of solutions is a unit sphere.

maximize
1− 〈ui, uj〉

2
subject to |ui|2 = 1 ∀i ∈ V. (3)

So first of all we need to show that our original relaxation (2) implies the
transformed formulation (3) and in fact we will show that this is the case using
the 5th level of the Lasserre hierarchy.

Let K be the polytope defined by the original relaxation (2) and let y ∈
L5(K) be a solution in the 5th Lasserre level. We can restrict the three vari-
ables zij, xi, and xj to be integers and we obtain a distribution over solutions
ŷ ∈ L2(K)whose components ŷzij , ŷxi , and ŷxj are integers. For these partic-
ular components, the constraints in (2) plus the integrality restriction imply
the stronger relation ŷzij = |ŷxi − ŷxj |. Since ŷ is on the 2nd level of the
Lasserre hierarchy, we can rewrite |ŷxi − ŷxj | = ŷxi + ŷxj − 2ŷ{xi ,xj}.
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This relation also holds for any (even fractional) solution in the 5th level
of the Lasserre hierarchy because we can see it as a convex combination of
integer solutions in the 2nd level. We repeat the argument for every choice of
i and j.

So if v is a solution in L5(K), then u defined by ui = v∅− 2vi is a solution
of (3). Indeed, |ui|2 = |v∅ − 2vi|2 = |v∅|2 − 4〈v∅, vi〉 + 4|vi|2 = 1,
which is the only constraint of (3).

Furthermore, 〈ui, uj〉 = |v∅|2− 2〈vi, v∅〉− 2〈v∅, vj〉+ 4〈vi, vj〉 = 1−
2(xi + xj − 2xij) = zij, from where zij = (1− 〈ui, uj〉)/2. We conclude
that the functions we are optimizing have the same value.

Observe that we are crucially using positive semidefiniteness to rewrite
the problem with inner products. In fact the 3rd level of Lasserre is enough4, 4 Thomas Rothvoß. The lasserre hierarchy

in approximation algorithms. Lecture Notes
for the MAPSP 2013 Tutorial (preliminary
version), 2013

but we used the 5th level for the sake of simplicity.
We now follow the Goemans-Williamson strategy to sample solutions to

(3). We use the intuition that vectors with close angles are in the same part of
the graph, while vectors with distant angles are in different parts. We cut the
sphere with a hyperplane and let the partition be each of the halfspaces. This
is, if we choose a hyperplane by sampling its normal vector h, then i ∈ S if
and only if 〈ui, h〉 > 0.

We want to sample h uniformly over all directions, which we can do by
sampling each component independently according to a normal distribution
N(0, 1). Indeed, the probability of sampling a specific coordinate xi isPr[hi =

xi] =
1√
2π

e−x2
i /2. Then the probability of sampling a specific vector x is

Pr[h = x] = 1√
2π

e−∑i x2
i /2 = 1√

2π
e−|x|

2/2, which depends on the length of
x but not on its direction.

We show a lower for the approximation ratio ROUND/OPT and the inte-
grality gap OPT/FRAC by computing

ROUND

FRAC
=

ROUND

OPT
· OPT
FRAC

(4)

and noting that each factor is at most 1 because we are solving a maximization
problem.

The solution we obtain by the GW approximation technique is ROUND =

E|E(S, S̄)| = ∑(i,j)∈E Pr[(i, j) ∈ E(S, S̄)] = ∑(i,j)∈E θij/π, where θij is
the angle between ui and uj. Then θij = arccos(〈ui, uj〉) = arccos(1−
2zij).

On the other hand, the solution we obtain by the SDP technique is FRAC =

∑(i,j)∈E zij. We obtain a lower bound for the approximation ratio and the
integrality gap of

ROUND

FRAC
=

∑(i,j)∈E arccos(1− 2zij)/π

∑(i,j)∈E zij
≥ inf

0<x<1

arccos(1− 2x)
πx

≥ 0.878.

(5)

A reminder of Fourier Analysis

And now for something completely different we introduce definitions and
notation for Fourier analysis of Boolean functions so we will have them fresh
for the following lectures.
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Given a Boolean function f : {0, 1} −→ R, we want to express it as
a linear combination of simple functions, this is f = ∑S⊆[n] αSχS. The
character function of a set χS counts the parity of x ∧ S, this is χS(x) =

(−1)∑i∈S xi .
If we use the so-called Fourier variables yi = 1− 2xi = (−1)xi , then we

can also express the characters as square-free monomials χS(x) = ∏i∈S yi.
The standard properties of Fourier basis hold, as it is the case with real

functions, but with simpler proofs since we only need to deal with finite do-
mains.

Lemma 1. EχS = [S = ∅].

Proof. If S = ∅ we are done. Otherwise pick any component i ∈ S.

2nEχS = ∑
x∈{0,1}n

χS(x) = ∑
x:xi=0

χS(x) + ∑
x:xi=1

χS(x) (6)

= ∑
x:xi=0

χS(x)− ∑
x:xi=0

χS(x) = 0 (7)

Lemma 2. {χS}S is an orthonormal basis.

Proof. Define the inner product by 〈χS, χT〉 = EχS4T
5. 5 The symmetric union of two sets is S4T =

S ∪ T \ (S ∩ T), the set of elements in ex-
actly one of the setsWe usually write the coefficients αS of f in the Fourier basis as f̂ (S), and

it holds that f̂ (S) = 〈 f , χS〉.
If we denote the vector of coefficients of f by f̂ , then the Plancherel iden-

tity
〈 f , g〉{0,1}→R = 〈 f̂ , ĝ〉R2n (8)

and the Parseval identity

‖ f ‖2
{0,1}→R

= ‖ f̂ ‖2
R2n (9)

hold. Note that two inner products are involved, the product as functions and
the product of the coefficients as vectors.
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