
Sum of squares and integer programming relaxations Lecture 9 — 3 March, 2014

9. Graph Isomorphism and the Lasserre Hierarchy.
Lecturer: Massimo Lauria

http://www.csc.kth.se/~lauria/sos14/

Let G and H be two graphs, we say that two graphs are isomorphic,
denoted as G ≅ H, if there is a bijection π ∶ V(G) → V(H), such that
{u, v} ∈ E(G) if and only if {π(u), π(v)} ∈ E(H). In this lecture, we dis-
cuss a recent paper by O’Donnell, Wright, Wu and Zhou 1 which proved the 1 R. O’Donnell, J. Wright, C. Wu, and

Y. Zhou. Hardness of Robust Graph Isomor-
phism, Lasserre Gaps, and Asymmetry of
Random Graphs, chapter 120, pages 1659–
1677. 2014

following theorem.

Theorem 1. For infinitely many n, there exist graphs G and H, such that

• ∣V(G)∣ = ∣V(H)∣ = n.

• ∣E(G)∣ = ∣E(H)∣ = O(n).

• G and H are “far from” being isomorphic.

• Any PC> refutation of G ≅ H has degree Ω(n).

We will define what we mean by “far from” isomorphic shortly. First, we
give a (very) high level overview of the proof. The reduction starts by taking
a 3XOR formula, and generate two graphs G and H, such that if the 3XOR
formula is satisfiable, then G ≅ H, and if the 3XOR formula is far from being
satisfiable, then G and H are far from being isomorphic. Now remember
from previous lectures that if we pick a random 3XOR formula, then with
high probability it is unsatisfiable and the 3XOR refutation of it in PC> will
have degree Ω(n). This implies that the PC> refutation for G ≅ H will have
degree Ω(n), otherwise one can convert this refutation to a refutation for the
satisfiability of the 3XOR formula we started with without blowing up the
degree.

Background

Before we describe the reduction, let us start with some practical algorithm
for solving graph isomorphism. One class of algorithms is known as “color
refinement algorithm”, studied by Mckay 2 and Mckay-Piperno 3 The basic 2 BrendanD.Mckay. Practical graph isomor-

phism. Congressus Numerantium, 30:45–
87, 1981
3 Brendan D. McKay and Adolfo Piperno.
Practical graph isomorphism, ii. J. Symb.
Comput., 60:94–112, 2014

algorithm starts by giving all vertices in the two graphs with the same color.
Then, in each step, replace the colors of the vertices with the multiset con-
taining the colors of their neighbors. Repeat until the coloring in both graphs
converge, or for some coloring, the numbers of vertices with that color in
the two graphs are different, in which case return that the two graphs are not
isomorphic. An example of a run of the algorithm is given in Figure 1 and
Figure 2.

There are easy examples where the above color refinement algorithm does
not work. In particular, consider any pair of d-regular graphs, that is, graphs
where all vertices have exactly d neighbors. The coloring will essentially
converge to the degree of the vertices.

Scribe: Sangxia Huang 1

http://www.csc.kth.se/~lauria/sos14/


Lecture 9 — 3 March, 2014 Sum of squares and integer programming relaxations

2

2

2

3

2

3

2

2

2

2 2 2

2

3
2

3

2

2 Figure 1: The first step of the color refine-
ment algorithm, where vertices are labeled
essentially with their degres.

(2, 3)

(2, 2)

(2, 3)

(2, 2, 2)

(3, 3)

(2, 2, 2)

(2, 3)

(2, 2)

(2, 3)

(2, 2) (2, 2) (2, 2)

(2, 3)

(2, 2, 2)
(3, 3)

(2, 2, 2)

(2, 3)

(3, 3) Figure 2: The second step of the color refine-
ment algorithm. Observe that the number of
vertices labeled (3, 3) is different, and there-
fore the two graphs are not isomorphic.

The Weisfeiler-Lehman algorithm is an improvement of the basic color
refinement algorithm. The algorithm takes a parameter k, and we denote the
algorithm as WLk. We could view it as running the color refinement algo-
rithm on graph G(k) and H(k), where for any graph G, define V(G(k)) = Vk,
and for all {u, w} ∈ E(G) and v1,⋯, vi−1, vi+1,⋯, vk ∈ V(G), we add the
following edge to E(G(k))

{(v1,⋯, vi−1, u, vi+1,⋯, vk), (v1,⋯, vi−1, w, vi+1,⋯, vk)}.

Instead of constructing the power graphs G(k) and H(k), we could think of
the algorithm as coloring subsets of k vertices.

For any k, WLk runs in time nk+O(1). It is known that for some constant
k, WLk can distinguish random non-isomorphic graphs with high probability.
Also, Grohe 4 proved that for every class of graphs with excluded minors, 4 Martin Grohe. Fixed-point definability and

polynomial time on graphs with excluded
minors. J. ACM, 59(5):27:1–27:64, Novem-
ber 2012

there is a k such that WLk decides isomorphism of graphs in the class in poly-
nomial time.

On the other hand, Atserias and Maneva 5 proved that 5 Albert Atserias and Elitza N. Maneva.
Sherali-adams relaxations and indistin-
guishability in counting logics. SIAM J.
Comput., 42(1):112–137, 2013

SAk ≤ WLk ≤ SAk+1.

That is, the power of the k-level Weisfeiler-Lehman algorithm is sandwiched
between neighboring levels of the canonical Sherali-Adams relaxation. More-
over, when k = 1, the Weisfeiler-Lehman algorithm is exactly the same power
as the linear programming relaxation of the graph isomorphism problem.

It was also proved by Cai, Fürer and Immerman 6 that there are graphs for 6 J.Y. Cai, M. Fürer, and N. Immerman. An
optimal lower bound on the number of vari-
ables for graph identification. Combinator-
ica, 12(4):389–410, 19922 Scribe: Sangxia Huang



Sum of squares and integer programming relaxations Lecture 9 — 3 March, 2014

which distinguishing isomorphism with WLk requires k = Ω(n).
We now define the meaning of two graphs being “far from” isomorphic.

Definition 2. For any 0 ≤ α ≤ 1, graphs G and H on n vertices, we say that
a bijection π ∶ V(G) → V(H) is an α-isomorphism if

∣ {{u, v} ∈ E(G)∣{π(u), π(v)} ∈ E(H)} ∣
max{∣E(G)∣, ∣E(H)∣} ≥ α.

We say that G and H are α-isomorphic if there is a bijection π such that
π is an α-isomorphism.

Remark 3. Note that since π is a bijection, the notion of α-isomorphism of
G and H is well defined.

For Theorem 1, we set α = 1− 10−18, that is, we say that G and H are far
from being isomorphic if they are at most (1 − 10−18)-isomorphic. In other
words, any bijection between V(G) and V(H)must violate at least a fraction
10−18 of the edges.

The Reduction

Wenowdefine the reduction. We consider a random formula from 3XOR(n,m)
where we take m ∶= cn, that is, a random 3XOR formula with n variables and
m equations.

For a given system of m 3XOR equations over n variables, the following
process produces a graph on 4m+2n vertices with 18m+n edges. The vertex
set of the graph consists of two types of vertices: two variable vertices for each
variable, labeled (xi ← 0) and (xi ← 1), and for each clause xj1 + xj2 + xj3 ≡ bj

(mod 2), 4 vertices corresponding to the 4 assignments to (xj1 , xj2 , xj3) that
satisfies the equation, labeled

Cj(xj1 = aj1 , xj2 = aj2 , xj3 = aj3).

There is an edge between each pair of (xi ← 0) and (xi ← 1). There are edges
between clause variables corresponding to the same clause, so the 4 vertices
corresponding to the same clause form a clique. And for each variable xi

that appears in clause j and a bit b ∈ {0, 1}, connect (xi ← b) with Cj(xj1 =
aj1 , xj2 = aj2 , xj3 = aj3) such that in clause j variable xi is assigned value b.

The reduction uses the above process to produce two graphs: one from
a random 3XOR formula Ax = b, denoted as GAx=b, and another from the
homogeneous version of it, Ax = 0, denoted as GAx=0.

The completeness of the reduction is given by the following lemma.

Lemma 4. If Ax = b has an assignment that satisfies (1 − ε)-fraction of
the equations, then ther exists a bijection π that is a (1 − 2

3 ε)-isomorphism
between GAx=b and GAx=0.

Proof. Let y be an assignment that satisfies (1− ε)-fraction of the equations
in Ax = b. We define a bijection π as follows. For variable vertex (xi ← b) in
Ax = b, π maps it to (x ← b⊕ yi) in Ax = 0. For a clause Cj(xi1 + xi2 + xi3 =
b) satisfied by assignment y, π maps Cj(xi1 = b1, xi2 = b2, xi3 = b3) to
Cj(xi1 = b1 ⊕ yi1 , xi2 = b2 ⊕ yi2 , xi3 = b3 ⊕ yi3). Note that since (b1, b2, b3) is

Scribe: Sangxia Huang 3



Lecture 9 — 3 March, 2014 Sum of squares and integer programming relaxations

a satisfying assignment for Cj, we have that b1 + b2 + b3 = b = yi1 + yi2 + yi3 ,
therefore this part of the mapping is well-defined. For an unsatisfied clause
Cj, we map the 4 vertices corresponding to Cj in GAx=b to those correspond-
ing to Cj in GAx=0 in an arbitrary way.

Now we calculate the number of edges that are violated. The edges be-
tween variable vertices and the edges between clause vertices of a same clause
is always preserved. The edges between variable vertices and clause vertices
of satisfied clauses are also preserved. Therefore, at least n+ 6m+ (1− ε)m ⋅
12 = n + 18m − 12εm edges are satisfied by π.

Soundness of the Reduction

Recall that in previous lectures we studied the followingPC> refutation lower-
bound.

Lemma 5. For any c > 1, there exists α > 0, such that with high probability
3XOR(n, cn) requires αn-degree PC> refutation.

To complete the reduction, we use the following two lemmas.

Lemma 6. Let Ax = b be random formula from 3XOR(n, cn). If there is a
refutation of GAx=b ≅ GAx=0 in degree r, then we can refute Ax = b in degree
3r.

Lemma 7. Let c ≥ 108. Then with high probability, GAx=b and GAx=0 are
not (1− 1

95c2 )-isomorphic.

In the rest of the lecture we prove Lemma 6. We will study Lemma 7 in
the next lecture.

Now we formally define the axiom from which we derive refutation. For
3XOR, we use the following encoding that we are already familiar with.

∀i ∈ [n] x2
i − xi = 0

for constraint xi1 + xi2 + xi3 = b ∏3
k=1(1− 2xik) = (−1)b.

We use the following natural encoding for graph isomorphism. The variables
are πuv for u ∈ V(G), v ∈ V(H). The axioms are the following.

∀u, v π2
uv −πuv = 0

∀u ∈ V(G) ∑v∈V(H) πuv = 1
∀v ∈ V(H) ∑u∈V(G) πuv = 1
∀{u, u′} ∈ E(G) ∑{u,v}∈E(H) πuvπu′v′ = 1

Suppose now that we have a degree r refutation for “GAx=b ≅ GAx=0”. To
get a refutation for Ax = b, the main idea is to substitute πuv with polyno-
mials of xi’s of degree 3. We then argue that we can derive the axioms of
graph isomorphism after substitution from the axioms of 3XOR. This proves
Lemma 6 because we can take the refutation for “GAx=b ≅ GAx=0”, substi-
tute the πuv’s in each line with xi’s and get a proof starting from the 3XOR
axioms, and since in the end we have −1 ≥ 0 which remains the same after
substitution, this gives a refutation for Ax = b. And because we are substi-
tuting each πuv with a polynomial of degree at most 3, the total degree of the
refutation for Ax = b is no more than 3r.

4 Scribe: Sangxia Huang



Sum of squares and integer programming relaxations Lecture 9 — 3 March, 2014

The substitution is in fact rather straightforward and intuitively similar to
that in Lemma 4. We consider mappings between different types of vertices.
For simplicity of notation, for any bits b, b′ ∈ {0, 1} and 3XOR variable x,
define I[b, b′, x] as

I[b, b′, x] = { x if b ≠ b′

1− x if b = b′

For two variable vertices (xi ← b) and (xi ← b′), we define

π(xi←b)(xi←b′) = I[b, b′, xi].

For clause variables u = Cj(xi1 = b1, xi2 = b2, xi3 = b3), v = Cj(xi1 =
b′1, xi2 = b′2, xi3 = b′3), define

πuv = I[b1, b′1, xi1] ⋅ I[b2, b′2, xi2] ⋅ I[b3, b′3, xi3].

All other variables are substituted with 0.
Now we verify that the graph isomorphism axioms after substitution are

derivable from the 3XOR axioms.

π2
uv −πuv = 0. This is easy since either πuv is substituted by 0, or by a prod-
uct of I[b, b′, x]’s, which is 0/1-valued.

∑v∈V(H) πuv = 1 for any u ∈ V(G). Weconsider two cases, when u is a vari-
able vertex, and when u is a clause vertex.

Suppose that u = (xi ← b). Then only π(xi←b)(xi←b) and π(xi←b)(xi←1−b)
is not substituted by 0, and it is clear that they sum to 1.

Suppose now that u = Cj(xi1 = b1, xi2 = b2, xi3 = b3). For πuv to be
nonzero, it must be that v is also a clause variable of Cj. Observe that if
we expand the following

∑
b′1⊕b′2⊕b′3=b1⊕b2⊕b3

πuv = 1,

we get exactly the XOR constraint (multiplied by a constant factor).

∑u∈V(G) πuv = 1 for any v ∈ V(H). Similar to the case above.

For any {u, u′} ∈ E(G), ∑{v,v′}∈E(H) πuvπu′v′ = 1. Weneed to consider dif-
ferent types of edges in E(G).
The edges between variable vertices are easy and the details are left as an
exercise.

If {u, u′} is an edge between clause variables of the same clause Cj on
variable xi1 ,xi2 ,xi3 , then the only v, v′’s for which πuvπu′v′ is nonzero are
those corresponding to clause Cj in Ax = 0. Suppose u assigns (a1, a2, a3)
to (xi1 , xi2 , xi3), and u′ assigns (a′1, a′2, a′3). Similarly, suppose that v as-
signs (b1, b2, b3) and v′ assigns (b′1, b′2, b′3). We must have that aj ⊕ bj =
a′j ⊕ b′j, otherwise πuvπu′v′ contains the factor xij(1 − xij) which can be
proved to be zero from the basic axioms. Otherwise, we will just get
πuvπu′v′ = π2

uv = πuv and we just use the conclusion from above.

Finally we need to consider when u is a variable vertex (xi ← a), and u′ is
a clause vertex in Ax = b, denoted as Cj(xi1 = a1, xi2 = a2, xi3 = a3) and

Scribe: Sangxia Huang 5



Lecture 9 — 3 March, 2014 Sum of squares and integer programming relaxations

without loss of generality assume that i = i1. Then in the summation, the
only non-zero terms are those where v is a variable vertex (xi ← b), and
v′ is a clause variable in Ax = 0, denoted as Cj(xi1 = b1, xi2 = b2, xi3 =
b3). Similar as in the previous case, we need to have a ⊕ b = a1 ⊕ b1,
and therefore we can think of the summation as over the assignments that
satisfies xi1 + xi2 + xi3 = 0, and we have

∑
{v,v′}∈E(H)

πuvπu′v′

= ∑
b1,b2,b3

I[a, a⊕ a1 ⊕ b1, xi1]I[a1, b1, xi1]I[a2, b2, xi2]I[a3, b3, xi3]

= ∑
b1,b2,b3

I[a1, b1, xi1]I[a2, b2, xi2]I[a3, b3, xi3]

= ∑
u′v′

πu′v′ = 1.

References

[] Albert Atserias and Elitza N. Maneva. Sherali-adams relax-
ations and indistinguishability in counting logics. SIAM J.
Comput., 42(1):112–137, 2013.

[] J.Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound
on the number of variables for graph identification. Combina-
torica, 12(4):389–410, 1992.

[] Martin Grohe. Fixed-point definability and polynomial time
on graphs with excluded minors. J. ACM, 59(5):27:1–27:64,
November 2012.

[] Brendan D. Mckay. Practical graph isomorphism. Congressus
Numerantium, 30:45–87, 1981.

[] Brendan D. McKay and Adolfo Piperno. Practical graph iso-
morphism, ii. J. Symb. Comput., 60:94–112, 2014.

[] R. O’Donnell, J. Wright, C. Wu, and Y. Zhou. Hardness of
Robust Graph Isomorphism, Lasserre Gaps, and Asymmetry of
Random Graphs, chapter 120, pages 1659–1677. 2014.

6 Scribe: Sangxia Huang


	Background
	The Reduction
	Soundness of the Reduction

