Multiple View Geometry in Computer Vision

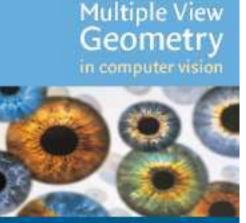
Information Meeting

15 Dec 2009

by Marianna Pronobis

- 1. Motivation & Objectives
- 2. What the course will be about (Stefan)
- 3. Content of the book & preliminary choice of chapters
- 4. Course structure:
 - Meetings
 - Requirments, credits
 - Dates

\star Interrupt me with questions


- What the course is to be about?
 - Problem of reconstructing of a real world scens given several images
 - Techniques for solving this problem originating from geometry
- Motivation:
 - Interest in the topic of the geometric computing
 - Need to extend our knowlage
- Course:
 - PhD Course: more advanced topics, self-studing
 - Extention of the Stefan's course in Geometric
 Computing and Visualization (geom'09; DD2428)

- To understand the geometric relations between multiple views of scenes
- To understand the general principles of parameter estimation
- To be able to compute scene and camera properties from real world images using state-ofthe-art algorithms

Literature

SECOND EDITION

Richard Hartley and Andrew Zisserman

- Richard Hartley and Andrew Zisserman "Multiple View Geometry in Computer Vision". Second Edition, Cambridge University Press, March 2004.
 - Book webpage: <u>www.robots.ox.ac.uk/~vgg/hzbook/</u>
 - Sample chapters: Content, Introduction
 - Corrections and Errata
 - Matlab code
- □ Related papers...

- Reconstructing of a real world scens given several images
- **Content of the book 5 main parts:**
 - PART 0: Background: projective geometry, transformations and estimation
 - PART 1: Camera Geometry and Single View Geometry
 - PART 2: Two-view Geometry
 - PART 3: Three-view Geometry
 - PART 4: N-view Geometry

Part 0: Background

PART 0 - Projective geometry, transformations and estimation (theory!)

Chapter 2 – Projective Geometry and Transformations of 2D:

image plane

- Projective transformations of 2D space (when a plane is imaged by a perspective camera);
- Hierarchy of transformations: projective, affine, euclidian;

- Recovery of affine properties (e.g. parallel lines) or metric properties (e.g. angles between lines) from a prospective image.
- Chapter 3 Projective Geometry and Transformations of **3D**:
 - Extra properties arising from the additional dimension;
 - Plane at infinity and the absolut canonic.

Part 0: Background

D PART 0:

- Chapter 4 Estimation 2D Projective Transformation:
 - Estimation of geometry (= computation of some transformation e.g. 2D homography, 3D to 2D camera projection, F matrix) from image measurments;
 - Answer the question what should be minimized as a cost function;
- Chapter 5 Algorithm Evaluation and Error Analysis:
 - □ How the results of estimation algorithms may be evaluated.

Part 0: Background

D PART 0:

- Chapter 4 Estimation 2D Projective Transformation:
 - Estimation of geometry (= computation of some transformation e.g. 2D homography, 3D to 2D camera projection, F matrix) from image measurments;
 - Answer the question what should be minimized as a cost function;
- Chapter 5 Algorithm Evaluation and Error Analysis:

D How the results of estimation algorithms may be evaluated.

PART	CHAPTER	TITLE	LENGTH	Geom'09	Recommended	Students / Units
0	2	Projective Geometry and Transformations of 2D	40 pages		YES	2
	3	Projective Geometry and Transformations of 3D	20 pages		YES	1
	4	Estimation – 2D Projective Transformation	60 pages (LONG!)		YES (IMPORTANT!)	3
	5	Algorithm Evaluation and Error Analysis	20 pages		NO	

Part 1: Single-View Geometry

PART 1:

- Chapter 6 Camera Models:
 - Cameras models: finite camera (projective), cameras at infinity (affine camera);
 - □ Parallel and prospective projection, camera center, principle point, K matrix etc.
- Chapter 7 Computation of the Camera Matrix
 - 2 algorithms accurate estimated world points, and 'inaccurate' estimated (lab 1 geom09);
- Chapter 8 More Single View Geometry
 - As far scen considerd as a set of point only. What will happen if we have lines, planes canonics and quadrics under projective transformation?
 - **C**amera calibration (computation of K matrix without computation of the camera matrix)

PART	CHAPTER	TITLE	LENGTH	Geom'09	Recommended	Students /Units
1	6	Camera Models	25 pages	70% in geom'09	YES (without 6.4)	1 ●A few new
	7	Computation of the Camera Matrix	15 pages	70% in geom'09 (lab 1)	YES	concepts; • New notation;
	8	More Single View Geometry	40 pages		YES (without 8.5)	2

Part 2: Two-View Geometry

- **PART 2**:
 - Chapter 9 Epipolar geometry and the Fundamental Matrix:
 - **D** Epipolar geometry; essential (E) matrix ; fundamental (F) matrix;
 - Chapter 10 3D reconstruction of Cameras and Structures:
 - Reconstruction of both cameras and scene structure from image points coorespondance;
 - Direct method (in geom'09); Stratified reconstruction (affine, metric assumptions);
 - Chapter 11 Computation of F matrix:
 - Different algorithms for computing F matrix (e.g. 8-points algorithm; RANSAC algorithm etc.); possibility to **implement** some algorithms;

PART	CHAPTER	TITLE	LENGTH	Geom'09	Recommended	Students/ Units	
2	9	Epipolar geometry and the Fundamental Matrix	25 pages	90% in geom'09	YES	1	
	10	Computation of the Camera Matrix	15 pages	50% in geom'09	YES		
	11	More Single View Geometry	30 pages	20% in geom'09 (lab 3)	YES Without (11.1, 11.2)	A few studens to imlement algorithms and present them	

Rest of Part 2 & Part 3

PART 2:

- Chapters 12-14 treat secondary problems;
 - Chapter 12 algorithms for estimating a best solution for 'real' points in 3D space for triangluation;
 - Chapter 13 two-view geometry of planes; what happen if points lie on the same plane;
 - □ Chapter 14 two-view geometry for affine cameras. Easier methods in Chapter 18.

PART 3 - Three-View Geometry

- Chapters 15-17 from historical reasons;
 - The same problems can be solved using tools developed for the multiple (N)-view geometry.

PART	CHAPTER	TITLE	LENGTH	Geom'09	Recommended	Students
2	12-14				NO	
3, 4	15-17				NO	

Part 4: N-view Geometry

PART 4:

- Chapter 18 N-View Computational Methods
 - State-of-the-art methods for estimating projective and affine reconstruction from a set of images; Factorization of cameras and 3D coordinates;
- Chapter 19 Auto-Calibration:
 - Algorithms for determining internal camera parameters directly from multiple images.

PART	CHAPTER	TITLE	LENGTH	Geom'09	Recommended	Students
4	18	N-View Computational Methods	25 pages	Just Intro	YES	1
	19	Auto-calibration	15 pages		YES (only 19.1-19.4)	1
	20-22				No	

Preliminary Plan of the Meetings

BOOK PART	CHAPTER	Problems	TITLE	# pages	Geom'09	Students/ Units	Meeting	Dates
0	2		Projective Geometry and Transformations of 2D	40		2	I	
	3		Projective Geometry and Transformations of 3D	20		1	II	
	4		Estimation – 2D Projective Transformation	60		3	ll and lll	
1	6 (without 6.4)		Camera Models	25	70%	1 • A few new concepts;	IV	
	7		Computation of the Camera Matrix	15	70% (lab 1)	• New notation;		
	8 (without 8.5)		More Single View Geometry	40		2	V	
2	9		Epipolar geometry and the Fundamental Matrix	25	90%	1 • A few new	VI	
	10		Computation of the Camera Matrix	15	50%	concepts;New notation;		
	11 (without 11.1-11.2)		More Single View Geometry	30	20% (lab3)	? Implementation	VII	
4	18		N-View Computational Methods	25		1	VIII	
	19 (only 19.1-19.4)		Auto-calibration	15		1	IX	

Meetings + Learning Approach

Meetings:

- In total 9-10;
- Every second week; When: mid Jan-May / Feb-mid Jun (?)
- Presentation (50min) + Problem solving (50min)
- Learning approach:
 - Before meeting (ALL):
 - Reading a relevant part of the book (papers)
 - Solving specified problems
 - Meeting:
 - Assigned students present a relevant part of the book
 - Exercise session: solving problems, presenting implemented algorihms (ALL)
 - □ Working in pairs or individually? How we are going to share the work?

Sharing Work + Reward ③

- Chapters different length and difficulty
- **Units:**
 - For each chapter number of *units (students)* to be assigned to is specified;
 - 1 unit =~20pages, 25 min of presentation
 - For each meeting 40 pages to read, 2-4 problems to solve
 - 12 units to be presented; 2-4 to be implemented (present the results)
 - Each of us: 2 x present OR 1 present+1 implement and shortly discuss
- Credits: 7.5 ECTS (PhD credits)

BOOK PART	CHAPTER	Problems	TITLE	# pages	Geom'09	Students/ Units	Meeting	Dates
0	2		Projective Geometry and Transformations of 2D	40		2	I	
1	11 (without 11.1-11.2)		More Single View Geometry	30	20% (lab3)	? Implementation	VII	

Important:

PRELIMINARY "setup" for the course

- If you feel that something is missing in the course:

 - If you would like to implement an algorithm...
- If you feel that something is not fair (e.g. load of work for different chapters/units)
- If you have better ideas to solve some issues...

Let me know – madry@kth.se

- Stefan's lecture notes for DD2428 course: www.nada.kth.se/~stefanc/gc_lec_notes.pdf
- Presentations prepared by Marc Pollefeys: <u>www.cs.unc.edu/~marc/mvg/slides.html</u>
- Marc Pollefeys "Visual 3D Modeling from Images
 - Tutorial Notes"
 - www.cs.unc.edu/~marc/tutorial.pdf
 - A detailed and advanced description of 3D modeling with pictures from multiple cameras

Thanks for attention!