Plucker Line Coordinates
 $$
A=\left[\begin{array}{l} 3 \\ 4 \\ 5 \\ 1 \end{array}\right] \quad B=\left[\begin{array}{l} 2 \\ 3 \\ 6 \\ 1 \end{array}\right] \quad L_{i j}=A_{i} B_{j}-B_{i} A_{j}
$$

Quadric (Klein Quadric) in IP 5

$$
\operatorname{Det}(L)=0 \Rightarrow l_{12} l_{34}-l_{13} l_{24}+l_{14} l_{23}=0
$$

$$
L=\left[\begin{array}{cccc}
0 & 1 & 8 & 1 \\
-1 & 0 & 9 & 1 \\
-8 & -9 & 0 & -1 \\
-1 & -1 & 1 & 0
\end{array}\right] \text { 6-Vector An element of } \mathrm{IP}^{2}
$$

$$
\text { 1. }-1-8.1+1.9=-1-8+9=0
$$

Coplanarity and Plucker Line Coordinates

$\Lambda:[A, B]$
$\hat{\Lambda}:[\hat{A}, \hat{B}] \xrightarrow{\text { Coplanarit }} \operatorname{Det}(A, B, \hat{A}, \hat{B})=0$

$$
\operatorname{Det}(A, B, \hat{A}, \hat{B})=l_{12} \hat{l}_{34}+\hat{l}_{12} l_{34}-\left(l_{13} \hat{l}_{24}+\hat{l}_{13} l_{24}\right)+l_{14} \hat{l}_{23}+\hat{l}_{14} l_{23}
$$

Two lines are coplanar if and only if $(\Lambda \hat{\Lambda})=0$

Coplanarity and Plucker Line

 Coordinates$\begin{aligned} & \Lambda:[P, Q] \\ & \hat{\Lambda}:[\hat{P}, \hat{Q}]\end{aligned} \xrightarrow{\text { Coplanarix }} \operatorname{Det}(P, Q, \hat{P}, \hat{Q})=0$

Two lines are coplanar if and only if $(\Lambda \hat{\Lambda})=0$

Coplanarity and Plucker Line

 Coordinates$$
\begin{aligned}
& \Lambda:[A, B] \\
& \hat{\Lambda}:[\hat{P}, \hat{Q}] \\
& (\Lambda \hat{\Lambda})=\left(P^{T} A\right)\left(Q^{T} B\right)-\left(Q^{T} A\right)\left(P^{T} B\right)
\end{aligned}
$$

Plucker coordinates are useful in algebraic derivations. They are used in defining the map from a line in 3 -space to its image.

Quadrics

A quadric is a surface in IP3 defined by the equation

$$
X^{T} Q X=0
$$

where Q is a symmetric 4 x 4 matrix.

Quadrics and Conics

- A quadric has 9 degrees of freedom.
- Nine points in general position define a quadric.
- If the matrix Q is singular, then the quadric is degenerate, and may be defined by fewer points.

Quadrics and Conics

- A quadric defines a polarity between a point and a plane. The plane $\pi=Q X$ is the polar plane of X with respect to Q.

Quadrics and Conics

- The intersection of a plane π with a quadric Q is a conic C.

Quadrics and Conics

- Under the point transformation $\mathrm{X}^{\prime}=\mathrm{HX}$, a (point) quadric transforms as

$$
Q^{\prime}=H^{T} Q H^{-1}
$$

Categories of Quadrics

Two parameters are used to categorize quadrics:

- Rank
- Signature

Signature of Quadrics

Since the quadric matrix Q is symmetric, it can be decomposed into an orthogonal and a diagonal matrix as follows:

$$
Q=U^{T} D U
$$

By appropriate scaling, the matrix Dcan be re-written to exclusively contain zeros, +1 s and -1 s :

$$
Q=H^{T} D H
$$

Finally one can rearrange the matrix so that zeros are located at the end and +1 s are in the beginning.

Signature of Quadrics

Since the quadric matrix Q is symmetric, it can be decomposed into an orthogonal and a diagonal matrix as follows:

$$
Q=U^{T} D U
$$

By appropriate scaling, the matrix Dcan be re-written to exclusively contain zeros, +1 s and -1 s :

Finally one can rearrange the matrix so that zeros are located at the end and +1 s are in the beginning.

Categories of Quadrics

Rank	σ	Diagonal	Equation	Realization
4	4	$(1,1,1,1)$	$\mathrm{x}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}+1=0$	No real points
	2	$(1,1,1,-1)$	$\mathrm{x}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}=1$	Sphere
	0	$(1,1,-1,-1)$	$\mathrm{x}^{2}+\mathrm{Y}^{2}=\mathrm{Z}^{2}+1$	Hyperboloid of one sheet
3	3	$(1,1,1,0)$	$\mathrm{x}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}=0$	One point $(0,0,0,1)^{\top}$
	1	$(1,1,-1,0)$	$\mathrm{x}^{2}+\mathrm{Y}^{2}=\mathrm{Z}^{2}$	Cone at the origin
2	2	$(1,1,0,0)$	$\mathrm{x}^{2}+\mathrm{Y}^{2}=0$	Single line $(\mathrm{Z}$-axis)
	0	$(1,-1,0,0)$	$\mathrm{x}^{2}=\mathrm{Y}^{2}$	Two planes $\mathrm{X}= \pm \mathrm{Y}$
1	1	$(1,0,0,0)$	$\mathrm{x}^{2}=0$	The plane $\mathrm{X}=0$

Ruled vs. Unruled Quadrics

- Ruled quadrics contain straight lines (called generators)

Ruled Quadrics

Unruled Quadrics

Projective Transformation of 3-

 Space- Are identified by their matrix form, Or
- Their invariants

Projective Transformation of 3-

Space
The 15 degrees of freedom are accounted for as:

- Seven for similarity
- 3 for rotations
- 3 for translations
- 1 for isotropic scaling
- Five for affine scaling
- Three for projective part

Projective Transformation of 3Space

Group	Matrix	Distortion	Invariant properties

Projective 15 dof

Intersection and tangency of surfaces in contact. Sign of Gaussian curvature.

Affine 12 dof

The absolute conic, Ω_{∞}, (see section 3.6).

Euclidean 6 dof
$\left[\begin{array}{cc}\mathrm{R} & \mathbf{t} \\ \mathbf{0}^{\mathrm{T}} & 1\end{array}\right]$

Volume.

Screw Decomposition

Euclidean transformation on 3-Space is more general than Euclidean transformation on 2-Space

Any particular translation and rotation is equivalent to a rotation about a screw axis together with a translation along the screw axis. The screw axis is parallel to the rotation axis.

Screw Decomposition

Screw Decomposition

