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Abstract— We address the problem of transferring grasp
knowledge across objects and tasks. This means dealing with
two important issues: 1) the induction of possible transfers, i.e.,
whether a given object affords a given task, and 2) the planning
of a grasp that will allow the robot to fulfill the task. The
induction of object affordances is approached by abstracting
the sensory input of an object as a set of attributes that the agent
can reason about through similarity and proximity. For grasp
execution, we combine a part-based grasp planner with a model
of task constraints. The task constraint model indicates areas of
the object that the robot can grasp to execute the task. Within
these areas, the part-based planner finds a hand placement that
is compatible with the object shape. The key contribution is the
ability to transfer task parameters across objects while the part-
based grasp planner allows for transferring grasp information
across tasks. As a result, the robot is able to synthesize plans for
previously unobserved task/object combinations. We illustrate
our approach with experiments conducted on a real robot.

I. INTRODUCTION

Interaction with objects through grasping and manipula-
tion is an important ability of robots operating in natural
settings. A robot may be equipped with some initial knowl-
edge of how to grasp and manipulate certain types of objects,
but the ability to generalize across objects and tasks will
provide it with a much wider flexibility in interaction with
the environment.

In this paper, we focus on generalization principles that
conceptualize the modeling of relations between objects,
grasps and tasks. We use this as a basis for knowledge
transfer in situations where either the task and/or object may
not be known a-priori.

An example of the generalization principles we want to
achieve is: "Having seen a spoon used for stirring, now given
the choice of a fork or a bottle which one would be best to
perform the same action with and how would we grasp it to
perform the task?” We see this as a representation-learning
problem. This means that we want to learn transforms of
the sensory input that enables the agent to reason about,
explanatory factors for whether an object affords a task or
not, and the connection these factors have with the strategies
for executing the task. This closely relates to the idea of
encoding object affordances [1].
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We formulate the transforms through semantic descriptors
of the object, that is, what humans simply would call
attributes. Attributes encode concrete or abstract concepts of
objects such as a handle, opening, roundness, elongatedness,
etc.

We want the robot to incrementally discover the attribute
requirements, the explanatory factors, which are necessary
for a task while using a minimum of training data. To that
end, we use an inductive logic along the lines of: “The
objects I have seen that affords throwing were all round and
therefore to throw an object it must be round.” Practically
this means, giving the robot the ability to classify different
degrees of roundness as well as demonstrating negative
examples of non-round objects.

Once the robot has induced that an object affords a task,
it must transfer its obtained experience from executing the
grasp to execute the grasp on the new object. Our solution is
to modularize the task grasp model into constraints relating
to the task and constraints relating to the gripper and object.

To learn the task constraint model we employ a semi-
supervised approach using observations of the task being
performed on objects. The task constraints relate the ob-
served grasps to the attributes of the object, and forms
beliefs about good grasping regions for the task. The gripper
constraints encode local shape descriptors that generalize
between objects and allows for the transfer of grasps between
objects.

To execute a task-specific grasp the planner searches in
the grasping regions specified by the task constraints. It
uses the part-based planner to find a hand placement in the
regions that is compatible with the local object shape; that
will produce a stable grasp.

II. CONTRIBUTIONS AND RELATED WORK

A recently identified problem of importance is that of
transferring object and task-specific grasp knowledge. There
are works that approach the problem using synthetic data but
none, which to the best of our knowledge, treats it fully in
a real world setting.

Our approach to achieving an understanding of the prereq-
uisites for a possible transfer has been to employ a simple
logic that requires as few training examples as possible.
Similar to our work, Abdo et al. [2] developed a strategy
for training the robot to recognize preconditions and effects
for actions based on small set of training data. Chao et al. [3]
used learning from demonstration (LfD) to learn grounded
concepts based on low-level sensory experience. The authors
use these concepts to develop prerequisites and expectations
of changes that are needed to complete given tasks. Kriiger
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et al. [4] formulated the object action complexes (OAC)
framework as a basis for representing and reasoning about
sensory-motor experience.

Other recent work concentrates specifically on developing
graphical models for encoding knowledge, and perform in-
ference, under uncertainty. Song et al. [5] trained a Bayesian
Network (BN) that relates object, task, and constraint fea-
tures for a set of objects and tasks. To find a suitable grasp
the robot queries the BN conditioned on the task and object
features. Contrary to our method, this approach requires
a substantial amount of synthetic training data, 1800 data
points for three tasks, and cannot generalize beyond learned
categories, requiring complete supervision.

Madry et al. [6] enhanced the BN in [5] by an object
categorization system that helps refine the grasp queries.
However, the tradeoff is instead a dependency on a con-
structed categorization structure. In the current paper, we
consciously shift away from higher domain knowledge rely-
ing on a simple inductive system paired with LfD, allowing
us to use a small set of training data.

Dang et al. [7] introduced a data driven approach to mod-
eling the constraints inherent in a task. The authors build a
representation of an object using depth images and manually
specify task-specific parameters on it. The parameters form
a task constraint map over the representation that is queried
when grasping the object for a task. Our method is similar in
that we decompose the grasp problem into task constraints
and stability constraints. However, instead of requiring a
complete representation of the object, we decompose it into
parts relevant for the task and leave the agent to use its
acquired knowledge to reason about which parts are relevant
for completing the task. This gives the agent the possibility
to perform tasks on objects beyond the already known.

Other authors have approached the topic of task constraints
through decomposition by parts, the physics of objects, and
analysis of synthetic datasets. Ying et al. [8] used task
constraints to prune possible grasp candidates on an object.
They formulate the task constraints such that the grasp must
support the object against gravity in vertical and near-vertical
orientations.

Sahbani et al. [9], motivated by [10], decomposed objects
into parts. Similar to our work, the authors make a set of
assumptions about the design of everyday objects and the
grasping strategy for them. From a synthetic dataset, they
extract graspable parts from their parts representation and
train a classifier to recognize them. Once the classifier finds
a graspable part on an object, they use an analytical approach
for finding a force-closure grasp on it.

Aleotti et al. [11] also used decomposition, and LfD to
build a task-oriented planning system. The authors use a
topological representation to do decomposition and recog-
nition of objects. The robot learns grasps by LfD on a
synthetic dataset. They construct task specific grasp maps for
the objects and use the learned grasps as matching criteria.
To grasp the object for a task they sample grasps from the
grasp map focusing on the task-specific parts of the object.
Though good at finding task-specific grasps, the acquired

generalization capability is nonetheless limited to objects
with similar shape.

Although quite successful in finding good grasps, it is un-
clear how [7], [9], and [11] translate into a real environment
with no full 3D representations and only partial views of
the object. In addition, the analytical approach to finding
force-closure grasps with no additional learning could prove
difficult in a real setting.

III. MOTIVATION AND SYSTEM OUTLINE

The concrete questions that motivate us are: How can we
reason about object properties and tasks in a simple way
while still giving the robot an adequate ability to induce
possible transfers? How can we use the acquired skill set and
experience from performing the task as a basis to perform a
suitable task-specific grasp on a novel object? This is what
we will refer to as a transfer: the adaption of the learned
task-specific grasp parameters applied to novel objects.

A. Attribute Representation

We take a geometrical approach to encoding the attributes
and model the reasoning aspect based on measures of prox-
imity. Attributes are modeled as feature extraction functions,
Ay, acting on the sensory input of an object, O;, where k
and ¢ is the attribute and object index. T' represents tasks;
here meaning task-specific grasps.

To enforce the proximity measure we formulate the at-
tribute functions, Ay, such that attributes that are similar are
close in the feature space. Formally, we write,

Ak:OHXk, XkEDk, (])

where D, is the attribute space, which can be either discrete
or continuous. We refer to section IV for the specifics related
to the implementation.

B. Induction

Following the observation that affordances relate to at-
tributes, we make the assumption that we can explain all
affordances of an object by reasoning about its attributes.
Obviously, this is not always true but recurrent enough and
serves our purpose of using minimal domain knowledge.
To this end, we use simple inductive logic to reason about
affordances through attribute presence and similarity.

For example, if we want to teach a robot that objects that
affords throwing require an attribute such as roundness, we
demonstrate the throwing task on a ball as a positive example
and a block as a negative example. To induce if a novel object
affords throwing, the robot considers the proximity to the
positive and negative examples it has seen. In this paper, we
use the simple nearest neighbor Euclidian distance to infer
whether the task is transferrable or not. We illustrate this in
Fig. 4 in Section V.

Finally, to falsify the notion of roundness as a requisite
for throwing, the teacher needs to show the robot positive
examples of non-round objects that affords throwing. If
the distance is lower than some minimum threshold, ¢, the
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attribute is considered irrelevant for transfer. We summarize
the logic in the following algorithm/procedure:

TRANSFER BY ATTRIBUTE()
Learning:

Observe Aj =[Ay, As,...] on O; during task T

Observe A = [A1, Ag,...] on O, during task =T
Induction: Is 7 transferrable to O,?

Observe Ag = [A1, Ao, ...] on Os.

If Vi D(Ay;, As;) < D(Ae;, As;)

then O; affords T

~N NN BN =

C. Generalizing Grasp Parameters

To generalize the grasp parameters we modularize the task
grasp model into task constraints — the constraints inherent in
the task — and gripper constraints — the constraints inherent
in the shape of the object and the shape of the gripper. The
exact specifications of the task and gripper constraints are
dependent on the task, attributes, experience, and gripper.

Under the assumption that attributes determine the affor-
dances of an object, we model the constraints in relation to
each attribute. For example, if we want to teach the robot not
to cover the opening when grasping a bottle to pour from,
we encode openings as an attribute. We then record previous
grasping points and their position to the opening such that
they are object-scale invariant. The robot thus has no higher-
level understanding of what an opening is and how it works.
In fact, we show in Section V that under simplified conditions
we can rely on another much simpler attribute to learn that
we should grasp away from the opening when grasping for
pouring.

We model the gripper constraints based on our previous
work presented in [12]. The central observation of [12] is
that objects often share local shape and by generalizing
them, we can grasp similar shapes on other objects. For
example, segments of cylindrical shape are generalizable to
one prototypical shape, while cuboid shaped segments are
generalizable to another prototypical shape, and so on. If we
know how to grasp these different kinds of prototypes then
we should be able to grasp shape segments similar to them.

To envision how these modules work together, a simple
example will suffice: the robot wants to grasp a milk carton
to pour milk into a glass. It has previously learned how to
grasp a cuboid shaped milk carton to move it from the fridge
and put it on the table. It has also learned how to pour a glass
of juice from a bottle by grasping it on the upper part. Here
the task constraints are: grasping on the upper part of the
object to pour, and the gripper constraints are: how to grasp
cuboid shapes. To find a stable grasp for pouring the milk
into the glass the robot combines these two constraints. It
searches for a good grasp on the upper part of the carton
combining it with the experience gained from grasping the
cuboid shape segment. We visualize the example in Fig. 1

In summary, task constraints enforce the search for a
suitable grasp that matches previously observed constraints
for the task while the gripper constraint seeks for a suitable
grasp that matches the local shapes we have grasped before.

Learning grasps from demonstration

Task: placing on table Learned

Task constraints: Where
on main axis to grasp
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Gripper constraints:
How to grasp cuboid
shaped segments.
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Fig. 1: Simplified outline of our grasp-planning module. First, the robot
learns to grasp specific shape segments (gripper constraints) and good task-
specific grasping positions (task constraints) on the main axis using the
elongation attribute. To perform the task-specific grasp on an object other
than the one used in the learning phase, the robot matches learned shape
segments with the belief of good grasping regions for the task.

IV. METHODOLOGY

The key to making the induction and transfer as flexi-
ble and adaptive as possible lays in formulating attributes
and constraints as object-invariant as possible but without
compromising the quality and ability to repeat the learned
tasks. In the following subsections, we specify an attribute
and build on that to create a link to the task constraints.

A. Attributes

In this paper, we use the elongatedness of objects, an
important and common attribute of most objects, especially
containers and tools. Elongation is interesting since on most
elongated objects there are many possibilities to finding
suitable grasps even with a two-fingered gripper. We define
the elongatedness attribute function as,

AElongated 00— (ga 2)7 (2)

where a is the major axis length of the object and, b and ¢
are the minor axes lengths.



B. Modeling Task Constraints

We encode task constraints by modeling the viable po-
sitions of a grasp along the main axis of the object. The
main axis of an object is computed from the principal
components of the (possibly partial) point cloud of the object.
To generalize and enforce object invariance, the axis is
normalized to unit length. We model the constraints imposed
by a task with a probability density function ¢(y) defined
on the segment [0, 1]. The function ¢ yields a high value
at fractions y of an object’s main axis that correspond to a
viable grasp.

Task constraints are modeled with a Gaussian Mixture
Model (GMM), as

Zﬂ'n

where 1;’s and o0;’s are the model’s parameters.
Given an object’s (partial) point cloud O, the compatibility
of a gripper pose « € SE(3) with a task is written as

ZWn

n=1

y‘,uzao—z) 3)

f1(z|0,0) g(z,0)| i, 04), 4
where 6 is the concatenation of the parameters p; and o;
characterizing this particular task, and ¢ is a function that
takes the object representation and the gripper pose x and
returns the projection of = on the object’s main axis (after
normalization to unit length).

Below, in our experiments, the number of components, [NV
is equal to the number of grasps observed for a particular
task. Each component has a mean equal to the fraction of an
object’s main axis at which a grasp is demonstrated. We set
the variance o; manually so that 95% of the probability mass
is within +£10% of the mean. We formulate the component
probabilities, m,, as follows,

o~

n

I’ (&)
where [, is the length of the main axis of the n-th object, and
l4 is the fraction of that axis at which a grasp is demonstrated.
Our motivation for this is that when the object is taller than
the palm of the gripper it will be more precise than when the
gripper is of about the same height as the object; and should
therefore be more important. We normalize the component
probabilities to sum to one.

Ty =

C. Modeling Gripper Constraints

Gripper constraints are modeled with grasping prototypes
[12] (see Section III-C). We teach a set of grasps to the
robot, and we let the robot learn the shape of parts by which
objects are recurrently grasped. The result is a dictionary
of prototypes that describe object parts, and how to grasp
each of these parts. Prototypes allow us to measure whether
a given gripper pose x fits the object, by measuring the
similarity between each of the prototypes and the shape
of the object near the grasping site x. If the shape of one

prototype resembles the shape of the object at z, it is likely
that x is a viable gripper pose.

We model the shape of object parts with surface densi-
ties [13], which correspond to probability density functions
defined over surface points and surface normals. Surface
densities are thus defined over R? x S2. We estimate the value
of a surface density at a specific point via kernel density
estimation, using an isotropic Gaussian kernel for position
and two antipodal von-Mises Fisher distributions [14] for
orientation.

Our probabilistic setting allows us to formulate an elegant
solution to the surface similarity problem discussed above.
Let us denote the surface density model of an object O by gq.
The shape similarity between an object and the i prototype
in pose x is obtained by marginalizing the joint distribution
of prototype poses (i.e., gripper poses) and object surface
points, as

ﬁmu»=/MWmMWMw ©)

In the equation above, the conditional pose probability
p(x]i,w) is simply given by

where w — x corresponds to the rigid transformation of w by
. Intuitively, for a given grasp pose z, p(z|i, w) is equal to
the surface distribution model of prototype ¢, translated and
rotated by z. In other words, Eq. 6 is the value at = of the
SE(3) cross-correlation of the surface density of part ¢ and
g(w). Eq. 6 gives us measure of the overlap between p(z|w)

and g(w).

D. Performing the grasp

To find the most suitable prototype and task-specific
grasp we simultaneously maximize the product of the task
constraints and the gripper constraints

3372' — argma}( f1+2($‘7:,0,0), (8)

with

fraa(zli, 0,0) = fi(x]0, 0) fa(x]i, O) ©)
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This integral is intractable yet equivalent to the expectation
of fip under ¢, i.e., E,[f1 p;]. We therefore approximate it
by sampling from gq,

M
1 .
fmf:Mkz_lﬁ(xkl&@)p(xklz,w), zp~q. (1)

We perform the sampling using Monte Carlo methods in
accordance with [13].

V. EXPERIMENTS

We have designed the experiments to provide a proof
of concept that illustrates the main contributions of our
approach: the use of minimal data, learning of task constraint
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Mashed potato cuboid (0.76,0.28)  2.76
Cleaning spray cylinder  (0.34,0.19)  2.75
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Fig. 3: Left column, the elongatedness attribute value of each object, that
is, the relative size of the main axis to the minor axes. Right column, the
relative size between the object’s main axis height and the gripper palm
height.

parameters, the generalization of these parameters, the induc-
tion of possible transfers, and the realization of the actual
grasps.

For our experiments, we decide on three tasks: pouring,
storing, and shaking; all being tasks that are closely related to
the main axis attribute. For each of the tasks we choose one
optimal global grasp position on the main axis. The objects
we use are: a box of mashed potatoes, cleaning spray, a
cuboid shaped saltshaker and a cylindrical shaped saltshaker
(Fig. 2).

In the experiments, the objects are placed standing up on
a flat surface. We record a point cloud of the scene using a
Kinect and subsequently segment out the object. We find the
main axes using PCA on the segmented object.

A. Learning from Demonstration

To learn the grasp for pouring we let the robot grasp on the
upper part of the main axis; close to the pouring direction.
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Fig. 4: Determining a possible transfer for pouring. Having observed two
possible examples and one negative example for pouring, the robot tries
to induce if an object fits the prerequisites for transfer. Using the nearest
neighbor distance, the agent induces it as a possible transfer and attempts
the grasp using the learned gripper and task constraints for pouring. All
distances in the plot are the point wise Euclidian distances and the xy-axes
specifies the ratios of the minor axes to the major axis of the objects.

Store  Pour  Shake
‘Mashed potato cuboid  21%  80% 51%
Cleaning spray cylinder  20% ~ 81% 44%
Salt cylinder 29%  66% 46%
‘Saltcuboid 28%  69% 45%

Fig. 5: Matrix of learned grasping points as the relative position on the
main axis to perform a specific task. The task constraints are reflected in
the values. For storing, we have a low value since we want to store on a
high shelf; for pouring, we have a high value meaning we want to grasp
close to the opening; and for shaking, we grasp at the mid point of the main
axis close to the center of mass.

Store Pour Shake
Mashed potato cuboid  Obs. 21%  Obs. X Per. 44%
Cleaning spray cylinder  Per. 31%  Obs. 64%  Per. 50%
‘Saltcylinder  Per.58%  Per.50%  Obs. 46%

Fig. 6: Matrix of learned and performed relative grasping points on the main
axis for a specific task. Obs. denotes a value observed under the learning
phase, Per. specifies that the value is inferred, and X denotes a negative
example.

This makes sense since tilting the container for pouring will
make the center of mass move forward to the top of the
bottle.

When storing objects the grasping point depends on the
position of the robot’s arm with respect to the height of the
storing place. In this experiment, we want to store on a shelf
high up and to comfortably reach the shelf we must grasp
on the lower part of the object.

To shake an object, we assume evenly distributed mass,
and grasp at the center on the main axis since we want a
stable grasp at the center of mass.

To learn the relative grasping points for each task we place
the object in the gripper, in the positions we specified. We
record the relative grasp position on the main axis in the
object’s coordinate system and add the values to the task
constraint function.

In this paper, we are mainly concerned with the induction
and the task constraints. Therefore, we defer learning of
the shape segment prototypes for the gripper constraints and
make use of the prototypes already learned in [12].

B. Inducing transfer

In our first experiment, we want the robot to induce that
an object is pourable only if it is elongated. We first let the
robot observe the grasps for pouring from the spray and the
salt cuboid. After this, we show it the mashed potato cuboid
as a non-pourable object. The robot records the elongation
attribute for both the positive and negative examples.

We put the salt cylinder in front of the robot and order
it to grasp for pouring. The robot finds the object’s main
axes, and using the nearest neighbor distance, induces that
the salt cylinder affords pouring, and is ample for transfer.
We illustrate the decision in Fig. 4 and point out that just one
of the positive examples is enough to perform the induction.

The mashed potato cuboid obviously affords pouring as
seen in Fig. 5 and Fig. 7. By labeling it as a positive



Fig. 7: Tllustration of the transfer. Green images show observed task-specific
grasps, while red shows inferred task-specific grasps. The columns show the
tasks in the following order: store, pour and shake.

example we can reduce or disprove the robot’s belief that
only elongated objects affords pouring.

C. Transferring grasps

Having internalized the task constraint values from the
demonstration, and induced if an object affords the task, we
now want it to perform the task specific grasp on the object.

To perform the grasp the robot runs the task and gripper
constraint maximization on the segmented object and once it
finds a good candidate grasp position, it executes the grasp.
The learned and executed grasps relative grasping points on
the main axis can be found in Fig. 6.

If we analyze the inferred grasping points in Fig. 6 we see
that by using the task constraints we have learned the robot
to grasp away from the opening when grasping for pouring;
assuming the opening is at the top. The same applies to
storing and shaking. Thus, we have under much simplified
conditions, by using a simple task constraint formulation,
managed to achieve transfers one would assume requires
much more complex constraints.

Further analyzing the data points, we see the limitations
due to relative object and gripper sizes. We can also see the
physical limitations of the robotic arm and gripper in the
environment also having an impact on the results as they
need to move so as to not crash into the table; the grasp
position is therefore less close to the learned one.

VI. CONCLUSION & FUTURE WORK

We have presented a framework that facilitates transfer of
task-oriented grasps across different objects. The key aspect
of our approach is its ability to work with a limited amount
of training data, by focusing on generalization properties.
The proposed method casts generalization as a representation
problem so that we can use geometrical notions such as
proximity as a proxy for reasoning about similarity and
transferability.

In this paper, we do not learn the representations from data
but we define them by hand. Clearly, this will not be feasible
beyond the simple tasks and objects used in our experiments.
Our future work revolves around learning representations
directly from data with minimal supervision, where we will
build on our previous work on learning clustered represen-
tations from continuous data in a generative manner [15].
Metric learning for task of domain adaptation [16] also shows
interesting avenues.

To scale up the experiments to more complex and varying
shapes, we need to accommodate a wider variety of task
constraints. These constraints naturally need to be as object
invariant as possible and take into consideration circum-
stances such as the embodiment of the agent, limitations of
sensors, etc.; that are not fully accounted for in the current
form. Formulating constraints is not difficult as there is a
multitude of cues humans use: color, form, etc., that can
be drawn upon. The core of the problem instead lies in the
abstractions one chooses, how robust and discriminative they
are for the configuration at hand.
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