Quantum Computation - Lecture 05 - Quantum Fourier Transform

Mateus de Oliveira Oliveira

TCS-KTH

December 3, 2012
Overview of This Lecture

- Quantum Fourier transform over \mathbb{Z}_n
- QFT for abelian groups,
- Hidden subgroup problem for abelian groups
- QFT for general groups
Quantum Fourier Transform over \(\mathbb{Z}_N \):

\[
QFT_N |x\rangle = \sum_{y=0}^{N-1} e^{\frac{2\pi i x y}{N}} |y\rangle
\]
Quantum Fourier Transform over \mathbb{Z}_N:

$$QFT_{\mathbb{Z}_N}|x\rangle = \sum_{y=0}^{N-1} e^{\frac{2\pi i x y}{N}} |y\rangle$$

Recall that any abelian group G is isomorphic to the direct sum of cyclic groups:

$$G = \bigoplus_{j=1}^{k} \mathbb{Z}_{N_j}$$
Quantum Fourier Transform over \mathbb{Z}_N:

$$QFT_N |x\rangle = \sum_{y=0}^{N-1} e^{\frac{2\pi i x y}{N}} |y\rangle$$

Recall that any abelian group G is isomorphic to the direct sum of cyclic groups:

$$G = \bigoplus_{j=1}^{k} \mathbb{Z}_{N_j}$$

Quantum fourier transform over G:

$$QFT |x_1\rangle |x_2\rangle ... |x_k\rangle \rightarrow (QFT_{N_1} |x_1\rangle)(QFT_{N_2} |x_2\rangle)...(QFT_{N_k} |x_k\rangle)$$
• Quantum Fourier Transform over \mathbb{Z}_N:

$$QFT_N|x\rangle = \sum_{y=0}^{N-1} e^{\frac{2\pi i x y}{N}} |y\rangle$$

• Recall that any abelian group G is isomorphic to the direct sum of cyclic groups:

$$G = \bigoplus_{j=1}^{k} \mathbb{Z}_{N_j}$$

• Quantum fourier transform over G:

$$QFT|x_1\rangle|x_2\rangle...|x_k\rangle \rightarrow (QFT_{N_1}|x_1\rangle)(QFT_{N_2}|x_2\rangle)...(QFT_{N_k}|x_k\rangle)$$

$$= \frac{1}{\sqrt{N_1 N_2 \cdot N_k}} \sum_{y_1 y_2...y_k} e^{\sum_{j=1}^{k} \frac{2\pi i x_j y_j}{N_j}} |y_1\rangle|y_2\rangle...|y_k\rangle$$
Simplifying the notation: If \(G = \bigoplus_{j=1}^{k} \mathbb{Z}_j \) then set
Simplifying the notation: If $G = \bigoplus_{j=1}^{k} \mathbb{Z}_j$ then set

\[g = (g_1, g_2, \ldots, g_k), \quad x = (x_1, x_2, \ldots, x_k), \quad y = (y_1, y_2, \ldots, y_k) \]
Simplifying the notation: If $G = \bigoplus_{j=1}^{k} \mathbb{Z}_j$ then set

- $g = (g_1, g_2, \ldots, g_k)$, $x = (x_1, x_2, \ldots, x_k)$, $y = (y_1, y_2, \ldots, y_k)$
- $\chi_y(g) = e^{\sum_{j=1}^{k} \frac{2\pi i g_j y_j}{N_j}} |y\rangle$
- Simplifying the notation: If $G = \bigoplus_{j=1}^{k} \mathbb{Z}_j$ then set
 - $g = (g_1, g_2, \ldots, g_k)$, $x = (x_1, x_2, \ldots, x_k)$, $y = (y_1, y_2, \ldots, y_k)$
 - $\chi_y(g) = e^{\sum_{j=1}^{k} \frac{2\pi ig_j x_j}{N_j}} |y\rangle$
- Then QFT can be written as:

$$QFT |g\rangle = \frac{1}{\sqrt{|G|}} \sum_{y \in G} \chi_y(g) |y\rangle$$
Simplifying the notation: If $G = \bigoplus_{j=1}^{k} \mathbb{Z}_j$ then set

$g = (g_1, g_2, \ldots, g_k)$, $x = (x_1, x_2, \ldots, x_k)$, $y = (y_1, y_2, \ldots, y_k)$

$\chi_y(g) = e^{\sum_{j=1}^{k} \frac{2\pi i g_j y_j}{N_j}} |y\rangle$

Then QFT can be written as:

$$QFT|g\rangle = \frac{1}{\sqrt{|G|}} \sum_{y \in G} \chi_y(g) |y\rangle$$

and its inverse:

$$QFT^{-1}|g\rangle = \frac{1}{\sqrt{|G|}} \sum_{y \in G} \overline{\chi_y(g)} |y\rangle$$
Superposition of the elements of a Coset:
• Superposition of the elements of a Coset:
• Define $|Hg\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |hg\rangle$
Superposition of the elements of a Coset:

Define $|Hg⟩ = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |hg⟩$

$$QFT |Hg⟩ = \frac{1}{\sqrt{|H|}} \sum_{h \in H} \frac{1}{\sqrt{|G|}} \sum_{y \in G} \chi_y(hg) |y⟩$$
Superposition of the elements of a Coset:

Define $|Hg\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |hg\rangle$

$$QFT|Hg\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} \frac{1}{\sqrt{|G|}} \sum_{y \in G} \chi_y(hg)|y\rangle$$

$$= \frac{1}{\sqrt{|H||G|}} \sum_{y \in G} \chi_y(g) \left[\sum_{h \in H} \chi_y(h) \right] |y\rangle$$
Define

\[H^\perp = \{ y \in G | (\forall h \in H) \sum_{j=1}^{k} \frac{y_j h_j}{N_j} \in \mathbb{Z} \} \]
- Define

\[H^\perp = \{ y \in G | (\forall h \in H) \sum_{j=1}^{k} \frac{y_j h_j}{N_j} \in \mathbb{Z} \} \]

- Exercise: If \(G \) is an Abelian group and \(H \) is an abelian subgroup of \(G \) then \(H^\perp \) is an abelian subgroup of \(G \).
Define

\[H^\perp = \{ y \in G \mid (\forall h \in H) \sum_{j=1}^{k} \frac{y_j h_j N_j}{N_j} \in \mathbb{Z} \} \]

Exercise: If \(G \) is an Abelian group and \(H \) is an abelian subgroup of \(G \) then \(H^\perp \) is an abelian subgroup of \(G \).

Exercise:

\[\sum_{h \in H} \chi_y(h) = \begin{cases} |H| & \text{if } y \in H^\perp \\ 0 & \text{otherwise.} \end{cases} \]
Define

\[H^\perp = \{ y \in G | (\forall h \in H) \sum_{j=1}^{k} \frac{y_j h_j}{N_j} \in \mathbb{Z} \} \]

Exercise: If \(G \) is an Abelian group and \(H \) is an abelian subgroup of \(G \), then \(H^\perp \) is an abelian subgroup of \(G \).

Exercise:

\[\sum_{h \in H} \chi_y(h) = \begin{cases} |H| & \text{if } y \in H^\perp \\ 0 & \text{otherwise.} \end{cases} \]

Plugging this exercise in the equation:

\[
\text{QFT} |Hg\rangle = \frac{1}{\sqrt{|H||G|}} \sum_{y \in G} \chi_y(g) \left[\sum_{h \in H} \chi_y(h) \right] |y\rangle
\]
• Define

\[H^\perp = \{ y \in G | (\forall h \in H) \sum_{j=1}^{k} \frac{y_j h_j}{N_j} \in \mathbb{Z} \} \]

• Exercise: If \(G \) is an Abelian group and \(H \) is an abelian subgroup of \(G \) then \(H^\perp \) is an abelian subgroup of \(G \).

• Exercise:

\[\sum_{h \in H} \chi_y(h) = \begin{cases} |H| & \text{if } y \in H^\perp \\ 0 & \text{otherwise.} \end{cases} \]

• Plugging this exercise in the equation:

\[
QFT |Hg\rangle = \frac{1}{\sqrt{|H||G|}} \sum_{y \in G} \chi_y(g) \left[\sum_{h \in H} \chi_y(h) \right] |y\rangle
\]

• we have:

\[
QFT |Hg\rangle = \sqrt{\frac{|H|}{|G|}} \sum_{y \in H^\perp} \chi_y(g) |y\rangle
\]
Create a uniform superposition of all elements of G:

$$|G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle$$
Create a uniform superposition of all elements of \(G \):

\[
|G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle
\]

Apply the black box function:

\[
\frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle |f(x)\rangle
\]
Create a uniform superposition of all elements of G:

$$|G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle$$

Apply the black box function:

$$\frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle |f(x)\rangle$$

Measure the second register: Then for some element $g \in G$ the first register collapses to $|Hg\rangle$
Create a uniform superposition of all elements of G:

$$|G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle$$

Apply the black box function:

$$\frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle|f(x)\rangle$$

Measure the second register: Then for some element $g \in G$ the first register collapses to $|Hg\rangle$

Apply the inverse fourier quantum fourier transform:

$$\sqrt{\frac{|H|}{|G|}} \sum_{y \in H^\perp} \chi_y(g) |y\rangle$$
Create a uniform superposition of all elements of G:

$$|G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle$$

Apply the black box function:

$$\frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle|f(x)\rangle$$

Measure the second register: Then for some element $g \in G$ the first register collapses to $|Hg\rangle$

Apply the inverse fourier quantum fourier transform:

$$\sqrt{\frac{|H|}{|G|}} \sum_{y \in H^\perp} \chi_y(g) |y\rangle$$

Measuring the first register we have an uniform $y \in H^\perp$
Fact: Any group on \(n \) elements can be generated by a set of \(O(\log n) \) elements.
• Fact: Any group on n elements can be generated by a set of $O(\log n)$ elements.

• Exercise: After measuring $O(\log n)$ y’s with constant probability we have indeed a set of generators for H^\perp.

Exercise (analogous to Simon’s problem): Finding a set of generators for H^\perp. We can find a set of generators for H^\perp.
Fact: Any group on n elements can be generated by a set of $O(\log n)$ elements.

Exercise: After measuring $O(\log n)$ y’s with constant probability we have indeed a set of generators for H^\perp.

Repeating the anterior procedure $O(\log n)$ times we get a sequence $\langle y_1, y_2, \ldots, yO(\log n) \rangle$
Fact: Any group on n elements can be generated by a set of $O(\log n)$ elements.

Exercise: After measuring $O(\log n)$ y’s with constant probability we have indeed a set of generators for H^\perp.

Repeating the anterior procedure $O(\log n)$ times we get a sequence $\langle y_1, y_2, \ldots, yO(\log n) \rangle$.

Exercise (analogous to Simon’s problem): Finding a set of generators for H^\perp. We can find a set of generators for $H = (H^\perp)^\perp$.
Let V be a finite dimensional vector space. Then $U(V)$ denotes the group of unitary linear transformations on V.
Let V be a finite dimensional vector space. Then $U(V)$ denotes the group of unitary linear transformations on V.

A representation ρ of a finite group G is a homomorphism $\rho : G \rightarrow U(V)$ where V is a finite d_ρ-dimensional vector space over \mathbb{C} with an inner product.
Let V be a finite dimensional vector space. Then $U(V)$ denotes the group of unitary linear transformations on V.

A representation ρ of a finite group G is a homomorphism $\rho : G \rightarrow U(V)$ where V is a finite d_ρ-dimensional vector space over \mathbb{C} with an inner product.

Fixing an orthonormal basis for V each $\rho(g)$ may be realized as a $d_\rho \times d_\rho$ unitary matrix.
Let V be a finite dimensional vector space. Then $U(V)$ denotes the group of unitary linear transformations on V.

A representation ρ of a finite group G is a homomorphism $\rho : G \rightarrow U(V)$ where V is a finite d_ρ-dimensional vector space over \mathbb{C} with an inner product.

Fixing an orthonormal basis for V each $\rho(g)$ may be realized as a $d_\rho \times d_\rho$ unitary matrix.

In that case say that ρ is a matrix representation of G.
• Let V be a finite dimensional vector space. Then $U(V)$ denotes the group of unitary linear transformations on V.

• A representation ρ of a finite group G is a homomorphism $\rho : G \rightarrow U(V)$ where V is a finite d_ρ-dimensional vector space over \mathbb{C} with an inner product.

• Fixing an orthonormal basis for V each $\rho(g)$ may be realized as a $d_\rho \times d_\rho$ unitary matrix.

• In that case say that ρ is a matrix representation of G.

• Define the function $\rho_{ij}(g) = [\rho(g)]_{ij}$.
Let V be a finite dimensional vector space. Then $U(V)$ denotes the group of unitary linear transformations on V.

A representation ρ of a finite group G is a homomorphism $\rho : G \rightarrow U(V)$ where V is a finite d_ρ-dimensional vector space over \mathbb{C} with an inner product.

Fixing an orthonormal basis for V each $\rho(g)$ may be realized as a $d_\rho \times d_\rho$ unitary matrix.

In that case say that ρ is a matrix representation of G.

Define the function $\rho_{ij}(g) = [\rho(g)]_{ij}$.

Since ρ is a homomorphism $\rho(gh) = \rho(g)\rho(h)$. Then $\rho_{ij}(gh) = \sum_j \rho_{ik}(g)\rho_{kj}(h)$.
Irreducible representation: There is no unitary U such that $U\rho U^\dagger$ is block diagonal.
Irreducible representation: There is no unitary U such that $U \rho U^\dagger$ is block diagonal.

Two representations ρ and σ are equivalent if they differ only in a change of basis. In other words, there is a fixed U such that $\sigma(g) = U^\dagger \rho(g) U$ for every $g \in G$.
- Irreducible representation: There is no unitary U such that $U\rho U^\dagger$ is block diagonal.

- Two representations ρ and σ are equivalent if they differ only in a change of basis. In other words, there is a fixed U such that $\sigma(g) = U^\dagger \rho(g) U$ for every $g \in G$.

- A finite group G has a finite number of irreducible representations equal to the number of its conjugacy classes.
• Irreducible representation: There is no unitary U such that $U \rho U^\dagger$ is block diagonal.

• Two representations ρ and σ are equivalent if they differ only in a change of basis. In other words, there is a fixed U such that $\sigma(g) = U^\dagger \rho(g) U$ for every $g \in G$.

• A finite group G has a finite number of irreducible representations equal to the number of its conjugacy classes.

• \hat{G} denotes a set containing exactly one representation of each equivalence class.
- Irreducible representation: There is no unitary U such that $U\rho U^\dagger$ is block diagonal.
- Two representations ρ and σ are equivalent if they differ only in a change of basis. In other words, there is a fixed U such that $\sigma(g) = U^\dagger \rho(g) U$ for every $g \in G$.
- A finite group G has a finite number of irreducible representations equal to the number of its conjugacy classes.
- \hat{G} denotes a set containing exactly one representation of each equivalence class.
- The set of all entries of all matrices in \hat{G} form a $|G|$ dimensional vector space of complex valued functions on G. In other words, a basis to the space of functions $f : G \to \mathbb{C}$.
Irreducible representation: There is no unitary U such that $U\rho U^\dagger$ is block diagonal.

Two representations ρ and σ are equivalent if they differ only in a change of basis. In other words, there is a fixed U such that $\sigma(g) = U^\dagger \rho(g) U$ for every $g \in G$.

A finite group G has a finite number of irreducible representations equal to the number of its conjugacy classes.

\hat{G} denotes a set containing exactly one representation of each equivalence class.

The set of all entries of all matrices in \hat{G} form a $|G|$ dimensional vector space of complex valued functions on G. In other words, a basis to the space of functions $f : G \to \mathbb{C}$.

Therefore $\sum_{\rho \in \hat{G}} d_{\rho}^2 = |G|$.
The Fourier Transform of f at ρ: Let $f : G \rightarrow \mathbb{C}$ and $\rho : G \rightarrow U(V)$ be a matrix representation of G. Then the Fourier transform of f at ρ, denoted by $\hat{f}(\rho)$, is the matrix

$$\hat{f}(\rho) = \sqrt{\frac{d_{\rho}}{|G|}} \sum_{g \in G} f(g) \rho(g)$$
Fourier Transform of f at ρ: Let $f : G \to \mathbb{C}$ and $\rho : G \to U(V)$ be a matrix representation of G. Then the Fourier transform of f at ρ, denoted by $\hat{f}(\rho)$ is the matrix

$$\hat{f}(\rho) = \sqrt{\frac{d_\rho}{|G|}} \sum_{g \in G} f(g) \rho(g)$$

The collection $\{\hat{f}(\rho)\}_{\rho \in \hat{G}_B}$ is called the Fourier Transform of f.
Fourier Transform of f at ρ: Let $f : G \rightarrow \mathbb{C}$ and $\rho : G \rightarrow U(V)$ be a matrix representation of G. Then the Fourier transform of f at ρ, denoted by $\hat{f}(\rho)$ is the matrix

$$\hat{f}(\rho) = \sqrt{\frac{d_\rho}{|G|}} \sum_{g \in G} f(g) \rho(g)$$

The collection $\{\hat{f}(\rho)\}_{\rho \in \hat{G}_B}$ is called the Fourier Transform of f.

In this way, f is mapped into $|\hat{G}|$ matrices of varying dimensions.
Fourier Transform of \(f \) at \(\rho \): Let \(f : G \to \mathbb{C} \) and \(\rho : G \to U(V) \) be a matrix representation of \(G \). Then the Fourier transform of \(f \) at \(\rho \), denoted by \(\hat{f}(\rho) \) is the matrix

\[
\hat{f}(\rho) = \sqrt{\frac{d_{\rho}}{|G|}} \sum_{g \in G} f(g)\rho(g)
\]

The collection \(\{\hat{f}(\rho)\}_{\rho \in \hat{G}} \) is called the Fourier Transform of \(f \).

In this way, \(f \) is mapped into \(|\hat{G}| \) matrices of varying dimensions.

The total number of entries in these matrices is \(\sum d_{\rho}^2 = |G| \).
Fourier Transform of f at ρ: Let $f : G \rightarrow \mathbb{C}$ and $\rho : G \rightarrow U(V)$ be a matrix representation of G. Then the Fourier transform of f at ρ, denoted by $\hat{f}(\rho)$, is the matrix

$$\hat{f}(\rho) = \sqrt{\frac{d_{\rho}}{|G|}} \sum_{g \in G} f(g) \rho(g)$$

- The collection $\{\hat{f}(\rho)\}_{\rho \in \hat{G}_B}$ is called the Fourier Transform of f.
- In this way, f is mapped into $|\hat{G}|$ matrices of varying dimensions.
- The total number of entries in these matrices is $\sum d_{\rho}^2 = |G|$.
- The Fourier transform is linear in f.
Inner product for complex valued functions: \[\langle f_1, f_2 \rangle = \frac{1}{|G|} f_1(g) f_2(g)^* \]
Inner product for complex valued functions: $\langle f_1, f_2 \rangle = \frac{1}{|G|} f_1(g) f_2(g)^*$

For any pair of matrix representations $\rho, \sigma \in \hat{G}_B$ the corresponding irreducible matrix elements are orthogonal according to the inner product defined as follows
• Inner product for complex valued functions: $\langle f_1, f_2 \rangle = \frac{1}{|G|} f_1(g) f_2(g)^*$

• For any pair of matrix representations $\rho, \sigma \in \hat{G}_B$ the corresponding irreducible matrix elements are orthogonal according to the inner product defined as follows

• $\langle [\rho(\cdot)]_{ij}, [\sigma(\cdot)]_{kl} \rangle = 0$ if $\rho \neq \sigma$
• Inner product for complex valued functions: $\langle f_1, f_2 \rangle = \frac{1}{|G|} f_1(g)f_2(g)^*$

• For any pair of matrix representations $\rho, \sigma \in \hat{G}_B$ the corresponding irreducible matrix elements are orthogonal according to the inner product defined as follows

 - $\langle [\rho(\cdot)]_{ij}, [\sigma(\cdot)]_{kl} \rangle = 0$ if $\rho \neq \sigma$

 - $\langle [\rho(\cdot)]_{ij}, [\sigma(\cdot)]_{kl} \rangle = \frac{1}{d_\rho \delta_{ik} \delta_{jl}}$ if $\rho = \sigma$
Computing the Fourier transform with respect to a choice of \hat{G} is equivalent to the change of basis from the basis defined by the point masses to the irreducible matrix representations determined by \hat{G}.
Computing the Fourier transform with respect to a choice of \(\hat{G} \) is equivalent to the change of basis from the basis defined by the point masses to the irreducible matrix representations determined by \(\hat{G} \).

The inverse of this is given by:
Computing the Fourier transform with respect to a choice of \hat{G} is equivalent to the change of basis from the basis defined by the point masses to the irreducible matrix representations determined by \hat{G}.

The inverse of this is given by:

$$f(s) = \sum_{\rho \in \hat{G}} \sqrt{\frac{d_{\rho}}{|G|}} \operatorname{tr}(\rho(s)\hat{f}(\rho)^{-1})$$
Rewriting the fourier transform in quantum notation:

\[
QFT |g\rangle = \frac{1}{\sqrt{|G|}} \sum_{\rho \in \hat{G}} \sqrt{d_\rho} \sum_{i,j=1}^{d_\rho} \rho_{i,j}(g) |\rho, i, j\rangle
\]