Quantum Computation - Lecture 12 - Nonlocal Games

Mateus de Oliveira Oliveira

TCS-KTH

February 20, 2013

• π :Probability distribution on $S \otimes T$

- π :Probability distribution on $S \otimes T$
- V: A predicate on $S \times T \times A \times B$

- π :Probability distribution on $S \otimes T$
- V: A predicate on $S \times T \times A \times B$
- Non Local Game $G = G(V, \pi)$

- π :Probability distribution on $S \otimes T$
- V: A predicate on $S \times T \times A \times B$
- Non Local Game $G = G(V, \pi)$
 - ▶ A pair of questions $(s, t) \in S \times T$ is randomly chosen according to π .

- π :Probability distribution on $S \otimes T$
- V: A predicate on $S \times T \times A \times B$
- Non Local Game $G = G(V, \pi)$
 - ▶ A pair of questions $(s, t) \in S \times T$ is randomly chosen according to π .
 - s is sent to Alice.

- π :Probability distribution on $S \otimes T$
- V: A predicate on $S \times T \times A \times B$
- Non Local Game $G = G(V, \pi)$
 - ▶ A pair of questions $(s, t) \in S \times T$ is randomly chosen according to π .
 - *s* is sent to Alice.
 - b is sent to Bob.

- π :Probability distribution on $S \otimes T$
- V: A predicate on $S \times T \times A \times B$
- Non Local Game $G = G(V, \pi)$
 - ▶ A pair of questions $(s, t) \in S \times T$ is randomly chosen according to π .
 - s is sent to Alice.
 - b is sent to Bob.
- Classical Value:

$$\omega_c(G(V,\pi)) = \max_{s,t} \sum_{s,t} \pi(s,t)V(s,t,a(s),b(t))$$

Where the maximum is taken over all functions $a: S \rightarrow A$ and $b: T \to B$.

2 / 13

 \bullet Bipartite state $|\psi\rangle$ shared by Alice and Bob

- \bullet Bipartite state $|\psi\rangle$ shared by Alice and Bob
- A quantum measurement for Alice for each $s \in S$

- ullet Bipartite state $|\psi\rangle$ shared by Alice and Bob
- A quantum measurement for Alice for each $s \in S$
- A quantum measurement for Bob for each $t \in T$

- ullet Bipartite state $|\psi
 angle$ shared by Alice and Bob
- A quantum measurement for Alice for each $s \in S$
- A quantum measurement for Bob for each $t \in T$
- On input (s, t), Alice performs her measurement corresponding to s on her portion of $|\varphi\rangle$ yielding outcome a.

- Bipartite state $|\psi\rangle$ shared by Alice and Bob
- A quantum measurement for Alice for each $s \in S$
- A quantum measurement for Bob for each $t \in T$
- On input (s, t), Alice performs her measurement corresponding to son her portion of $|\varphi\rangle$ yielding outcome a.
- Similarly, Bob Perform his measurement corresponding to t on his portion of $|\psi\rangle$ yielding outcome b.

- ullet Bipartite state $|\psi
 angle$ shared by Alice and Bob
- A quantum measurement for Alice for each $s \in S$
- A quantum measurement for Bob for each $t \in T$
- On input (s, t), Alice performs her measurement corresponding to s on her portion of $|\varphi\rangle$ yielding outcome a.
- Similarly, Bob Perform his measurement corresponding to t on his portion of $|\psi\rangle$ yielding outcome b.
- The results a and b are sent back to the referee.

- Bipartite state $|\psi\rangle$ shared by Alice and Bob
- A quantum measurement for Alice for each $s \in S$
- A quantum measurement for Bob for each $t \in T$
- On input (s, t), Alice performs her measurement corresponding to son her portion of $|\varphi\rangle$ yielding outcome a.
- Similarly, Bob Perform his measurement corresponding to t on his portion of $|\psi\rangle$ yielding outcome b.
- The results a and b are sent back to the referee.
- The referee accepts if V(s, t, a, b) = 1

Formally:

• Given a positive integer n and a unit vector $|\varphi\rangle \in \mathcal{A} \otimes \mathcal{B}$ for \mathcal{A} and \mathcal{B} isomorphic copies of the vector space \mathbb{C}^n .

Formally:

- Given a positive integer n and a unit vector $|\varphi\rangle \in \mathcal{A} \otimes \mathcal{B}$ for \mathcal{A} and \mathcal{B} isomorphic copies of the vector space \mathbb{C}^n .
- ullet A represents Alice's part of $|\psi\rangle$ and ${\cal B}$ represents Bob's part.

Formally:

- Given a positive integer n and a unit vector $|\varphi\rangle \in \mathcal{A} \otimes \mathcal{B}$ for \mathcal{A} and \mathcal{B} isomorphic copies of the vector space \mathbb{C}^n .
- ullet A represents Alice's part of $|\psi\rangle$ and ${\cal B}$ represents Bob's part.
- Two collections of positive semidefinite $n \times n$ matrices.

$$\{X_s^a|s\in\mathcal{S},a\in\mathcal{A}\}$$
 and $\{Y_t^b|t\in\mathcal{T},b\in\mathcal{B}\}$

satisfying

$$\sum_{a \in A} X_s^a = I \text{ and } \sum_{b \in B} Y_t^b = I$$

for every choice of $s \in S$ and $t \in T$ where I denotes the $n \times n$ identity matrix.

• For each $s \in S$, $\{X_s^a | a \in A\}$ describes the measurement performed by Alice on her part of $|\psi\rangle$ when she receives question s.

- For each $s \in S$, $\{X_s^a | a \in A\}$ describes the measurement performed by Alice on her part of $|\psi\rangle$ when she receives question s.
- Likewise, for each $t \in T$ the collection $\{Y_t^b | b \in B\}$ describes Bob's measurements given question t.

- For each $s \in S$, $\{X_s^a | a \in A\}$ describes the measurement performed by Alice on her part of $|\psi\rangle$ when she receives question s.
- Likewise, for each $t \in T$ the collection $\{Y_t^b | b \in B\}$ describes Bob's measurements given question t.
- Given a question $s \in S$ for Alice and a question $t \in T$ for Bob, such a strategy causes Alice to answer with $a \in A$ and Bob to answer with $b \in B$ with probability $\langle \psi | X_{\varepsilon}^a \otimes Y_{\varepsilon}^b | \psi \rangle$

- For each $s \in S$, $\{X_s^a | a \in A\}$ describes the measurement performed by Alice on her part of $|\psi\rangle$ when she receives question s.
- Likewise, for each $t \in T$ the collection $\{Y_t^b | b \in B\}$ describes Bob's measurements given question t.
- Given a question $s \in S$ for Alice and a question $t \in T$ for Bob, such a strategy causes Alice to answer with $a \in A$ and Bob to answer with $b \in B$ with probability $\langle \psi | X_{\varepsilon}^a \otimes Y_{\varepsilon}^b | \psi \rangle$
- The quantum value of G, denoted $\omega_a(G)$ is the supremum of the winning probabilities over all quantum strategies of Alice and Bob.

- For each $s \in S$, $\{X_s^a | a \in A\}$ describes the measurement performed by Alice on her part of $|\psi\rangle$ when she receives question s.
- Likewise, for each $t \in T$ the collection $\{Y_t^b | b \in B\}$ describes Bob's measurements given question t.
- Given a question $s \in S$ for Alice and a question $t \in T$ for Bob, such a strategy causes Alice to answer with $a \in A$ and Bob to answer with $b \in B$ with probability $\langle \psi | X_{\varepsilon}^a \otimes Y_{\varepsilon}^b | \psi \rangle$
- The quantum value of G, denoted $\omega_q(G)$ is the supremum of the winning probabilities over all quantum strategies of Alice and Bob.

$$\omega_q = \sum_{s,t,a,b} \pi(s,t) V(s,t,a,b) \langle \psi | X_s^a \otimes Y_t^b | \psi \rangle$$

Observables

• Let $\Pi_1, ..., \Pi_k$ be a collection of projection matrices for which $\sum_{i} \Pi_{i} = I$, and suppose we associate the outcomes of the measurements with collection of real numbers $\{\lambda_1, ..., \lambda_k\}$. Then the observable corresponding to this measurement is given by

$$A = \sum_{j=1}^{k} \lambda_j \Pi_j$$

Observables

• Let $\Pi_1, ..., \Pi_k$ be a collection of projection matrices for which $\sum_{i} \Pi_{i} = I$, and suppose we associate the outcomes of the measurements with collection of real numbers $\{\lambda_1, ..., \lambda_k\}$. Then the observable corresponding to this measurement is given by

$$A = \sum_{j=1}^{k} \lambda_j \Pi_j$$

• Given A one may determine the corresponding projective measurement by computing the spectral decomposition of A

Observables

• Let $\Pi_1,...,\Pi_k$ be a collection of projection matrices for which $\sum_i \Pi_i = I$, and suppose we associate the outcomes of the measurements with collection of real numbers $\{\lambda_1,...,\lambda_k\}$. Then the observable corresponding to this measurement is given by

$$A = \sum_{j=1}^{k} \lambda_j \Pi_j$$

- Given A one may determine the corresponding projective measurement by computing the spectral decomposition of A
- In the case of binary answers we will associate the real numbers $\{+1,-1\}$ with the values $\{0,1\}$. Thus the observable corresponding to a measurement $\{\Pi_0,\Pi_1\}$ will be $A=\Pi_0-\Pi_1$.

•
$$S = T = A = B = \{0, 1\}$$

•
$$S = T = A = B = \{0, 1\}$$

• π is the uniform distribution on $S \times T$

•
$$S = T = A = B = \{0, 1\}$$

- π is the uniform distribution on $S \times T$
- *V* is the predicate:

$$V(s, t, a, b) = \begin{cases} 1 & \text{if } a \oplus b = s \land t \\ 0 & \text{otherwise.} \end{cases}$$

- $S = T = A = B = \{0, 1\}$
- π is the uniform distribution on $S \times T$
- *V* is the predicate:

$$V(s, t, a, b) = \begin{cases} 1 & \text{if } a \oplus b = s \wedge t \\ 0 & \text{otherwise.} \end{cases}$$

• Classical value of $G(V,\pi)$: $\omega_c(G)=3/4$

Mateus de Oliveira Oliveira (TCS-KTH) Quantum Computation - Lecture 12 - Nonloc

• Quantum value: $\omega_q(G) = \cos^2(\pi/8) \simeq 0.85$

• Quantum value: $\omega_q(G) = \cos^2(\pi/8) \simeq 0.85$

$$|\phi_0(\theta) = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle\rangle$$

- Quantum value: $\omega_q(G) = \cos^2(\pi/8) \simeq 0.85$
 - $|\phi_0(\theta) = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$
 - $|\phi_1(\theta) = -\sin(\theta)|0\rangle + \cos(\theta)|1\rangle$

8 / 13

- Quantum value: $\omega_q(G) = \cos^2(\pi/8) \simeq 0.85$
 - $|\phi_0(\theta) = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle \rangle$
 - $|\phi_1(\theta) = -\sin(\theta)|0\rangle + \cos(\theta)|1\rangle$
 - $X_0^a = |\phi_a(0)\rangle \langle \phi_a(0)|$

- Quantum value: $\omega_q(G) = \cos^2(\pi/8) \simeq 0.85$
 - $|\phi_0(\theta) = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$
 - $|\phi_1(\theta) = -\sin(\theta)|0\rangle + \cos(\theta)|1\rangle$
 - $X_0^a = |\phi_a(0)\rangle \langle \phi_a(0)|$
 - $X_1^a = |\phi_a(\pi/4)\rangle \langle \phi_a(\pi/4)|$

- Quantum value: $\omega_a(G) = \cos^2(\pi/8) \simeq 0.85$
 - $|\phi_0(\theta) = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$
 - $|\phi_1(\theta) = -\sin(\theta)|0\rangle + \cos(\theta)|1\rangle$
 - $X_0^a = |\phi_a(0)\rangle\langle\phi_a(0)|$
 - $X_1^a = |\phi_a(\pi/4)\rangle\langle\phi_a(\pi/4)|$
 - $Y_0^b = |\phi_b(\pi/8)\rangle\langle\phi_b(\pi/8)|$

- Quantum value: $\omega_a(G) = \cos^2(\pi/8) \simeq 0.85$
 - $|\phi_0(\theta) = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$
 - $|\phi_1(\theta) = -\sin(\theta)|0\rangle + \cos(\theta)|1\rangle$
 - $X_0^a = |\phi_a(0)\rangle\langle\phi_a(0)|$
 - $X_1^a = |\phi_a(\pi/4)\rangle\langle\phi_a(\pi/4)|$
 - $Y_0^b = |\phi_b(\pi/8)\rangle\langle\phi_b(\pi/8)|$
 - $Y_1^b = |\phi_b(-\pi/8)\rangle \langle \phi_b(-\pi/8)|$

- Quantum value: $\omega_{\alpha}(G) = \cos^2(\pi/8) \simeq 0.85$
 - $|\phi_0(\theta) = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$

$$|\phi_1(\theta) = -\sin(\theta)|0\rangle + \cos(\theta)|1\rangle$$

- $X_0^a = |\phi_a(0)\rangle\langle\phi_a(0)|$
- $X_1^a = |\phi_a(\pi/4)\rangle \langle \phi_a(\pi/4)|$
- $Y_0^b = |\phi_b(\pi/8)\rangle\langle\phi_b(\pi/8)|$
- $Y_1^b = |\phi_b(-\pi/8)\rangle \langle \phi_b(-\pi/8)|$
- The fact that the strategy is optimal follows from Tsirelson's inequality.

XOR Games:

• In an XOR game the decision of the verifier depends only on $a \oplus b$.

XOR Games:

- In an XOR game the decision of the verifier depends only on $a \oplus b$.
- Thus we write $V(s, t, a \oplus b)$

• Let S and T be finite nonempty sets and let $\{c_{s,t}|(s,t)\in S\times T\}$ be a collection of real numbers in the range [-1,1]. Then the following are equivalent:

- Let S and T be finite nonempty sets and let $\{c_{s,t}|(s,t)\in S\times T\}$ be a collection of real numbers in the range [-1,1]. Then the following are equivalent:
- There exist a collection $\{A_s|s\in S\}$ of ± 1 observables on \mathcal{A} and a collection $\{B_t|t\in T\}$ of ± 1 observables on $\mathcal B$ such that $\langle \psi | A_s \otimes B_t | \psi \rangle = c_{s,t}$ for all $(s,t) \in S \times T$.

- Let S and T be finite nonempty sets and let $\{c_{s,t}|(s,t)\in S\times T\}$ be a collection of real numbers in the range [-1,1]. Then the following are equivalent:
- There exist a collection $\{A_s|s\in S\}$ of ± 1 observables on $\mathcal A$ and a collection $\{B_t|t\in T\}$ of ± 1 observables on $\mathcal B$ such that $\langle\psi|A_s\otimes B_t|\psi\rangle=c_{s,t}$ for all $(s,t)\in S\times T$.
- There exist collections $\{|u_s\rangle|s\in S\}$ and $\{|v_t\rangle|t\in T\}$ of unit vectors such that $\langle u_s|v_t\rangle=c_{s,t}$ for all $(s,t)\in S\times T$.

• Random Strategy: $\tau(G) = \frac{1}{2} \sum_{c \in \{0,1\}} \sum_{s,t} \pi(s,t) V(c|s,t)$

- Random Strategy: $\tau(G) = \frac{1}{2} \sum_{c \in \{0,1\}} \sum_{s,t} \pi(s,t) V(c|s,t)$
- Let $G(V,\pi)$ be an XOR game and $m = \min(|S|,|T|)$. Then

$$\omega_q(\mathcal{G}) - au(\mathcal{G}) = rac{1}{2} \max_{|u_s
angle, |v_t
angle \in \mathbb{R}^m} \sum_{s,t} \pi(s,t) (V(s,t|0) - V(s,t|1)) \langle u_s|v_t
angle$$

- Random Strategy: $\tau(G) = \frac{1}{2} \sum_{c \in \{0,1\}} \sum_{s,t} \pi(s,t) V(c|s,t)$
- Let $G(V,\pi)$ be an XOR game and $m = \min(|S|, |T|)$. Then

$$\omega_q(G) - au(G) = rac{1}{2} \max_{|u_s\rangle, |v_t
angle \in \mathbb{R}^m} \sum_{s,t} \pi(s,t) (V(s,t|0) - V(s,t|1)) \langle u_s|v_t
angle$$

 \triangleright On Input (s, t) the probability that Alice and Bob's answers are equal is

$$\langle \psi | X_s^0 Y_t^0 + X_s^1 Y_t^1 | \psi \rangle = \frac{1}{2} + \frac{1}{2} \langle \psi | A_s \otimes B_t | \psi \rangle = \frac{1}{2} + \frac{1}{2} \langle u_s | v_t \rangle$$

- Random Strategy: $\tau(G) = \frac{1}{2} \sum_{c \in \{0,1\}} \sum_{s,t} \pi(s,t) V(c|s,t)$
- Let $G(V,\pi)$ be an XOR game and $m = \min(|S|, |T|)$. Then

$$\omega_q(G) - au(G) = rac{1}{2} \max_{|u_s\rangle, |v_t
angle \in \mathbb{R}^m} \sum_{s,t} \pi(s,t) (V(s,t|0) - V(s,t|1)) \langle u_s|v_t
angle$$

 \triangleright On Input (s, t) the probability that Alice and Bob's answers are equal is

$$\langle \psi | X_s^0 Y_t^0 + X_s^1 Y_t^1 | \psi \rangle = \frac{1}{2} + \frac{1}{2} \langle \psi | A_s \otimes B_t | \psi \rangle = \frac{1}{2} + \frac{1}{2} \langle u_s | v_t \rangle$$

The probability that they are different is

$$\frac{1}{2} + \frac{1}{2} \langle u_s | v_t \rangle$$

- Random Strategy: $\tau(G) = \frac{1}{2} \sum_{c \in \{0,1\}} \sum_{s,t} \pi(s,t) V(c|s,t)$
- Let $G(V,\pi)$ be an XOR game and $m = \min(|S|, |T|)$. Then

$$\omega_q(G) - au(G) = rac{1}{2} \max_{|u_s\rangle, |v_t
angle \in \mathbb{R}^m} \sum_{s,t} \pi(s,t) (V(s,t|0) - V(s,t|1)) \langle u_s|v_t
angle$$

 \triangleright On Input (s, t) the probability that Alice and Bob's answers are equal is

$$\langle \psi | X_s^0 Y_t^0 + X_s^1 Y_t^1 | \psi \rangle = \frac{1}{2} + \frac{1}{2} \langle \psi | A_s \otimes B_t | \psi \rangle = \frac{1}{2} + \frac{1}{2} \langle u_s | v_t \rangle$$

The probability that they are different is

$$\frac{1}{2} + \frac{1}{2} \langle u_s | v_t \rangle$$

• By Tsirelson's theorem one can find observables A_s and B_t such that $\langle \psi | A_{\mathfrak{s}} \otimes B_{\mathfrak{t}} | \psi \rangle = a_{\mathfrak{s}} b_{\mathfrak{t}}$

• Grothendieck's constant: K_G is the smallest number such that for all integers N > 2 and all $N \times N$ real matrices M if $\|\sum_{s,t} M(s,t) a_s b_t\| \leq 1$ for all numbers $a_1,...,a_N$ and $b_1,...,b_N$ in [-1,1] then

$$\|\sum_{s,t} M(s,t) \langle u_s | v_t \rangle \| \leq K_G$$

for all unit vectors $|u_1\rangle,...|u_N\rangle$ and $|v_1\rangle...|v_N\rangle$ in \mathbb{R}^n .

• Grothendieck's constant: K_G is the smallest number such that for all integers N > 2 and all $N \times N$ real matrices M if $\|\sum_{s,t} M(s,t)a_sb_t\| \leq 1$ for all numbers $a_1,...,a_N$ and $b_1,...,b_N$ in [-1,1] then

$$\|\sum_{s,t} M(s,t) \langle u_s | v_t \rangle \| \leq K_G$$

for all unit vectors $|u_1\rangle,...|u_N\rangle$ and $|v_1\rangle...|v_N\rangle$ in \mathbb{R}^n .

$$1.679 \le K_G \le \frac{\pi}{2\log(1+\sqrt{2})} \simeq 1.7822$$

•
$$\omega_q(G) - \tau(G) \leq K_G[\omega_c(G) - \tau(G)]$$

•
$$\omega_q(G) - \tau(G) \leq K_G[\omega_c(G) - \tau(G)]$$

▶ Suppose |S| = |T| = N. Define an $N \times N$ matrix

$$M(s,t) = \frac{1}{2[\omega_c(G) - \tau(G)]} \pi(s,t) [V(s,t,0) - V(s,t,1)]$$

- $\omega_{\sigma}(G) \tau(G) < K_{G}[\omega_{c}(G) \tau(G)]$
 - ▶ Suppose |S| = |T| = N. Define an $N \times N$ matrix

$$M(s,t) = \frac{1}{2[\omega_c(G) - \tau(G)]} \pi(s,t) [V(s,t,0) - V(s,t,1)]$$

• then $\|\sum_{s,t} M(s,t)a_sb_t\| \leq 1$

- $\omega_{\alpha}(G) \tau(G) < K_{G}[\omega_{c}(G) \tau(G)]$
 - ▶ Suppose |S| = |T| = N. Define an $N \times N$ matrix

$$M(s,t) = \frac{1}{2[\omega_c(G) - \tau(G)]} \pi(s,t) [V(s,t,0) - V(s,t,1)]$$

- then $\|\sum_{s,t} M(s,t)a_sb_t\| \leq 1$
- ► Then $\omega_a \tau(G) = [\omega_c(G) \tau(G)] \max_{|u_s\rangle, |v_t\rangle} M(s, t) \langle u_s | v_t \rangle \le$ $K_G[\omega_c(G) - \tau(G)]$

