

Preliminaries on proof systems

A proof system - a formal grammar definition of a sublanguage in the logic.

A proof system is

sound, if it produces only valid formulas

complete, if it produces all the valid formulas

We are only interested in sound proof systems.

Typically a proof system consists of

axioms - concrete valid formulas

proof rules - to derive valid formulas from other valid formulas

A Hilbert-style proof system for classical propositional logic

the rule Modus Ponens and the substitutivity rule

$$(MP) \qquad \frac{\varphi \quad \varphi \Rightarrow \psi}{\psi} \qquad (Sub) \qquad \frac{\varphi}{[\psi/p]\varphi}$$

Modus Ponens

$$(MP) \qquad \frac{\varphi \quad \varphi \Rightarrow \psi}{\psi}$$

MP is not terribly convenient in proof search. Must guess a lemma φ .

Exercise 1 Prove $p \Rightarrow p$ in the above system.

The substitutivity rule

$$(Sub) \qquad \frac{\varphi}{[\psi/p]\varphi}$$

Sub derives substitution instances of valid formulas. Alternative to Sub: use axiom schemata such as

$$\varphi \Rightarrow (\psi \Rightarrow \varphi)$$

. . .

Proofs and theorems in an arbitrary proof system ${\cal S}$

A proof in S - a sequence of formulas $\varphi_1, \ldots, \varphi_n$, each φ_i being either: (a substitution instance of) an axiom of Sor derived by a rule of S from formulas among $\varphi_1, \ldots, \varphi_{i-1}$ $\vdash_S \varphi$, if φ appears (in the end of) some proof in SProofs from given premises ψ_1, \ldots, ψ_m : φ_i may be one of ψ_1, \ldots, ψ_m as well $\psi_1,\ldots,\psi_m \vdash_S \varphi$

A Hilbert-style proof system for K

Minimal normal uni-modal logic K:

$$\varphi ::= \bot \mid p \mid (\varphi \Rightarrow \varphi) \mid \Diamond \varphi \mid \Box \varphi$$

$$\langle W, R, V \rangle$$
, $W \neq \emptyset$, $R \subseteq W \times W$, $V : W \to \mathcal{P}(\mathbf{L})$ $M, w \models \Diamond \varphi$ if $M, w' \models \varphi$ for some $w' \in R(w)$, $\Box \varphi \rightleftharpoons \neg \Diamond \neg \varphi$

Any sound and complete proof system for classical propositional logic +

$$(\mathbf{K}) \qquad \Box(p \Rightarrow q) \Rightarrow (\Box p \Rightarrow \Box q) \qquad (N) \qquad \frac{\varphi}{\Box \varphi}$$

The subset of LTL with just \circ and \diamondsuit is the logic of the bi-modal frame

$$\langle \omega, \prec, \leq \rangle$$

where \circ is \diamondsuit_{\prec} and \diamondsuit is \diamondsuit_{\lt} .

A proof system for LTL

$$(A0)$$
 all classical propositional tautologies

$$(A1) \qquad (K_{\square}) \qquad \Box(\varphi \Rightarrow \psi) \Rightarrow (\Box\varphi \Rightarrow \Box\psi)$$

$$(A2)$$
 (Fun) $\neg \circ \varphi \Leftrightarrow \circ \neg \varphi$

$$(A3)$$
 (K_{\circ}) $\circ(\varphi \Rightarrow \psi) \Rightarrow (\circ\varphi \Rightarrow \circ\psi)$

$$(A4) \qquad \Box(\varphi \Rightarrow \circ \varphi) \Rightarrow (\varphi \Rightarrow \Box \varphi)$$

$$(A5) \qquad (\varphi \mathsf{U}\psi) \Leftrightarrow \psi \lor (\varphi \land \circ (\varphi \mathsf{U}\psi))$$

$$(A6) \qquad (\varphi \mathsf{U}\psi) \Rightarrow \Diamond \psi$$

$$(MP) \qquad \qquad \frac{\varphi \qquad \varphi \Rightarrow \psi}{\psi}$$

$$(N_{\square}) \qquad \qquad \frac{\varphi}{\vdash \square \varphi}$$

$$(N_{\circ}) \qquad \frac{\varphi}{\vdash \circ \varphi}$$

The assignment method

$$F = \langle W, R \rangle$$
, $F \models \alpha$, if $\langle W, R, V \rangle$, $w \models \alpha$ for all V, w

 $F \models \alpha$ is defines a property of R. It is equivalent to

 $F \models \forall P_1 \dots \forall P_k \forall w \mathsf{ST}(\alpha)$ in second order predicate logic where

$$\mathsf{ST}(\bot) \rightleftharpoons \bot$$

$$\mathsf{ST}(p_i) \rightleftharpoons P_i(w)$$

$$\mathsf{ST}(\alpha_1 \Rightarrow \alpha_2) \rightleftharpoons \mathsf{ST}(\alpha_1) \Rightarrow \mathsf{ST}(\alpha_2)$$

$$\mathsf{ST}(\Diamond \alpha) \Longrightarrow \exists v (R(w,v) \land [v/w] \mathsf{ST}(\alpha))$$

The assignment method

To prove $\forall P_1 \dots \forall P_k \forall w \mathsf{ST}(\alpha) \Leftrightarrow \beta$ for a first order sentence β , one proves

$$\beta \Rightarrow \mathsf{ST}(\alpha)$$
 in f.o. logic and $\neg \beta \Rightarrow \exists w \exists P_1 \dots \exists P_k \neg \mathsf{ST}(\alpha)$

for suitable assignments to P_1, \ldots, P_k , which is the same as proving

$$F \not\models \beta \to \langle W, R, V \rangle, w \models \neg \alpha \text{ for suitable } w \text{ and } \llbracket p_i \rrbracket = \{w \in W : p_i \in V(w)\}$$

 $\sigma: \omega \to \mathcal{P}(\mathbf{L})$ can be viewed as a bi-modal model $\langle \omega, \prec, \leq, \sigma \rangle$.

Then $\langle \omega, \prec, \leq \rangle \models \alpha$ corresponds to a connection between \prec and \leq .

The meaning of some axioms

Proposition 1 (*Fun*) Let $F = \langle W, R \rangle$ be a frame, $\circ = \diamond_R$. Then

$$F \models \neg \circ p \Leftrightarrow \circ \neg p \text{ iff } R \text{ is a total function. } (\llbracket p \rrbracket_F = \emptyset, \{w_1\} \subset R(w_0))$$

Proposition 2 Let $F=\langle W,R_1,R_2\rangle$ be a frame, $\circ=\diamondsuit_{R_1}=\square_{R_1}$, $\diamondsuit=\diamondsuit_{R_2}$. Then

$$F \models \Box p \Rightarrow \Box \circ p \text{ iff } R_2 \circ R_1 \subseteq R_2 \qquad (\llbracket p \rrbracket_F = R_1(w_0))$$

$$F \models \Box p \Rightarrow p \text{ iff } Id_W \subseteq R_2 \qquad (\llbracket p \rrbracket_F = W \setminus \{w_0\})$$

$$R_2 \circ R_1 \subseteq R_2$$
 and $Id_W \subseteq R_2$ imply $R_1^* \subseteq R_2$

Proposition 3 (A4) Let $R_2 \circ R_1 \subseteq R_2$. Then

$$F \models \Box(p \Rightarrow \circ p) \Rightarrow (p \Rightarrow \Box p) \text{ iff } R_2 \subseteq R_1^* \qquad (\llbracket p \rrbracket_F = R_1^*(w_0))$$

The proof system for LTL again

$$(A0)$$
 all classical propositional tautologies

$$(A1) \qquad (K_{\square}) \qquad \Box(\varphi \Rightarrow \psi) \Rightarrow (\Box\varphi \Rightarrow \Box\psi)$$

$$(A2)$$
 (Fun) $\neg \circ \varphi \Leftrightarrow \circ \neg \varphi$

$$(A3)$$
 (K_{\circ}) $\circ(\varphi \Rightarrow \psi) \Rightarrow (\circ\varphi \Rightarrow \circ\psi)$

$$(A4) \qquad \Box(\varphi \Rightarrow \circ \varphi) \Rightarrow (\varphi \Rightarrow \Box \varphi)$$

$$(A5) \qquad (\varphi \mathsf{U}\psi) \Leftrightarrow \psi \lor (\varphi \land \circ (\varphi \mathsf{U}\psi))$$

$$(A6) \qquad (\varphi \mathsf{U}\psi) \Rightarrow \Diamond \psi$$

$$(MP) \qquad \qquad \frac{\varphi \qquad \varphi \Rightarrow \psi}{\psi}$$

$$(N_{\square}) \qquad \qquad \frac{\varphi}{\vdash \square \varphi}$$

$$(N_{\circ}) \qquad \frac{\varphi}{\vdash \circ \varphi}$$

Some useful admissible rules and theorems in LTL

A proof rule is admissible in a proof system, if it does not contribute new theorems.

Fact 1 If $\varphi_1, \ldots, \varphi_n \vdash_S \psi$, then $\frac{\varphi_1, \ldots, \varphi_n}{\psi}$ is an admissible rule.

Proposition 4 The rules below are admissible in LTL for $L \in \{\Box, \circ\}$:

$$(Mono_{\mathsf{L}}) \qquad \frac{\varphi \Rightarrow \psi}{\mathsf{L}\varphi \Rightarrow \mathsf{L}\psi} \qquad (E_{\mathsf{L}}) \qquad \frac{\varphi \Leftrightarrow \psi}{\mathsf{L}\varphi \Leftrightarrow \mathsf{L}\psi}$$

Proof: Exercise. ⊢

Theorem 1 (syntactical form of replacement of equivalents)

If
$$\vdash_{LTL} \varphi \Leftrightarrow \psi$$
, then $\vdash_{LTL} [\varphi/p]\chi \Leftrightarrow [\psi/p]\chi$.

Proof: Induction on the construction of χ . Use E_{\circ} for $\chi \doteq \circ \theta$. \dashv

For $\chi \doteq (\theta_1 \mathsf{U} \theta_2)$, let $\theta_i' \rightleftharpoons [\varphi/p]\theta_i$ and $\theta_i'' \rightleftharpoons [\psi/p]\theta_i$, i=1,2

1
$$\theta_i' \Leftrightarrow \theta_i''$$

i = 1, 2, ind. hypothesis

$$2 \quad (\theta_1' \mathsf{U} \theta_2') \land \neg (\theta_1'' \mathsf{U} \theta_2'') \Rightarrow$$

$$(\theta_2' \lor (\theta_1' \land \circ (\theta_1' \mathsf{U} \theta_2')) \land \neg (\theta_2'' \lor (\theta_1'' \land \circ (\theta_1'' \mathsf{U} \theta_2''))) \qquad A5$$

$$3 \quad (\theta_1' \cup \theta_2') \land \neg(\theta_1'' \cup \theta_2'') \Rightarrow \circ(\theta_1' \cup \theta_2') \land \neg \circ (\theta_1'' \cup \theta_2'')$$
 1, 2

$$4 \quad (\theta_1' \mathsf{U} \theta_2') \land \neg (\theta_1'' \mathsf{U} \theta_2'') \Rightarrow \circ ((\theta_1' \mathsf{U} \theta_2') \land \neg (\theta_1'' \mathsf{U} \theta_2'')) \qquad 3, \text{ exercises}$$

$$5 \quad \Box((\theta_1' \cup \theta_2') \land \neg(\theta_1'' \cup \theta_2'') \Rightarrow \circ((\theta_1' \cup \theta_2') \land \neg(\theta_1'' \cup \theta_2''))) \quad 4, N_{\Box}$$

$$6 \quad (\theta_1' \cup \theta_2') \land \neg(\theta_1'' \cup \theta_2'') \Rightarrow \Box((\theta_1' \cup \theta_2') \land \neg(\theta_1'' \cup \theta_2'')) \qquad 5, A4$$

$$7 \quad \Box((\theta_1' \mathsf{U} \theta_2') \land \neg(\theta_1'' \mathsf{U} \theta_2'')) \Rightarrow \Box \neg(\theta_1'' \mathsf{U} \theta_2'') \qquad K_{\Box}$$

$$8 \quad \neg(\theta_1'' \cup \theta_2'') \Rightarrow \neg \theta_2''$$
 A5

$$9 \quad \Box((\theta_1' \mathsf{U} \theta_2') \land \neg(\theta_1'' \mathsf{U} \theta_2'')) \Rightarrow \Box \neg \theta_2''$$

$$7, 8, N_{\Box}, K_{\Box}$$

$$10 \quad (\theta_1' \cup \theta_2') \Rightarrow \Diamond \theta_2' \qquad A6$$

$$11 \quad (\theta_1' \mathsf{U} \theta_2') \land \neg (\theta_1'' \mathsf{U} \theta_2'') \Rightarrow \Box \neg \theta_2'' \land \Diamond \theta_2'$$

$$6, 9, 10$$

$$12 \quad \Box \neg \theta_2^{\prime\prime} \land \Diamond \theta_2^{\prime} \Rightarrow \bot \qquad \qquad 1, N_{\Box}, K_{\Box}$$

$$13 \quad (\theta_1' \mathsf{U} \theta_2') \Rightarrow (\theta_1'' \mathsf{U} \theta_2'')$$

$$11, 12$$

Some useful theorems

$$(T1)$$
 $\diamond \varphi \Leftrightarrow (\top \mathsf{U} \varphi)$

$$1 \quad \Box(\circ(\top \mathsf{U}\varphi) \Rightarrow (\top \mathsf{U}\varphi)) \qquad A5, N_{\Box}$$

$$2 \quad \Box(\neg(\top \mathsf{U}\varphi) \Rightarrow \circ \neg(\top \mathsf{U}\varphi)) \Rightarrow (\neg(\top \mathsf{U}\varphi) \Rightarrow \Box \neg(\top \mathsf{U}\varphi)) \quad A4$$

$$3 \quad \circ \neg (\top \mathsf{U}\varphi) \Leftrightarrow \neg \circ (\top \mathsf{U}\varphi)$$
 A2

$$4 \quad \diamondsuit(\top \mathsf{U}\varphi) \land \Box(\circ(\top \mathsf{U}\varphi) \Rightarrow (\top \mathsf{U}\varphi)) \Rightarrow (\top \mathsf{U}\varphi) \qquad 2,3$$

$$5 \quad \diamondsuit(\top \mathsf{U}\varphi) \Rightarrow (\top \mathsf{U}\varphi)$$
 1,4

$$6 \quad \Box(\neg(\top \mathsf{U}\varphi) \Rightarrow \neg\varphi) \qquad A5, N_{\Box}$$

$$7 \quad \Box \neg (\top \mathsf{U}\varphi) \Rightarrow \Box \neg \varphi \qquad \qquad 6, K_{\Box}, MP$$

$$8 \quad \Diamond \varphi \Rightarrow \Diamond (\top \mathsf{U} \varphi)$$

$$9 \quad \Diamond \varphi \Rightarrow (\top \mathsf{U} \varphi)$$
 5,8

$$10 \quad \Diamond \varphi \Leftrightarrow (\top \mathsf{U} \varphi)$$
 $A6, 9$

$(T2) \qquad \Box \varphi \Leftrightarrow \varphi \wedge \circ \Box \varphi$

- $1 \quad \Box \varphi \Leftrightarrow \neg (\top \mathsf{U} \neg \varphi)$
- $2 \quad \neg(\top \mathsf{U} \neg \varphi) \Leftrightarrow \varphi \land \circ \neg(\top \mathsf{U} \neg \varphi) \quad A5$
- $3 \quad \circ \neg (\top \mathsf{U} \neg \varphi) \Leftrightarrow \circ \Box \varphi \qquad 1, E_{\circ}$
- $4 \quad \Box \varphi \Leftrightarrow \varphi \wedge \circ \Box \varphi \qquad \qquad 1, 2, 3$

$(T3) \qquad \Box \varphi \Rightarrow \Box \circ \varphi$

- $1 \quad \Box \varphi \Rightarrow \varphi \qquad \qquad T2$
- $2 \quad \circ \Box \varphi \Rightarrow \circ \varphi \qquad \qquad 1, Mono_{\circ}$
- $3 \quad \Box \varphi \Rightarrow \circ \Box \varphi \qquad \qquad T2$
- $4 \quad \Box \varphi \Rightarrow \circ \varphi \qquad \qquad 2,3$
- $5 \quad \Box \Box \varphi \Rightarrow \Box \circ \varphi \qquad \qquad 4, Mono_{\Box}$
- $6 \quad \Box(\Box\varphi\Rightarrow\circ\Box\varphi) \qquad \qquad 3,N_{\Box}$
- $7 \quad \Box(\Box\varphi\Rightarrow\circ\Box\varphi)\Rightarrow(\Box\varphi\Rightarrow\Box\Box\varphi) \quad A4$
- $8 \quad \Box \varphi \Rightarrow \Box \circ \varphi \qquad \qquad 6,7,5$

T1

Exercises

Exercise 2 Find proofs for the following formulas

$$\circ(\varphi \wedge \psi) \Leftrightarrow \circ\varphi \wedge \circ\psi \tag{1}$$

$$\circ(\varphi \vee \psi) \Leftrightarrow \circ\varphi \vee \circ\psi \tag{2}$$

$$\Box(\varphi \Rightarrow \varphi') \Rightarrow ((\varphi \mathsf{U}\psi) \Rightarrow (\varphi'\mathsf{U}\psi)) \tag{3}$$

$$\Box(\psi \Rightarrow \psi') \Rightarrow ((\varphi \mathsf{U}\psi) \Rightarrow (\varphi \mathsf{U}\psi')) \tag{4}$$

$$(\varphi_1 \land \varphi_2 \mathsf{U}\psi) \Leftrightarrow (\varphi_1 \mathsf{U}\psi) \land (\varphi_2 \mathsf{U}\psi) \tag{5}$$

$$(\varphi \mathsf{U}\psi_1 \lor \psi_2) \Leftrightarrow (\varphi \mathsf{U}\psi_1) \lor (\varphi \mathsf{U}\psi_2) \tag{6}$$

Completeness of the LTL proof system

We prove that if $\not\vdash_{LTL} \neg \varphi$, then φ is satisfiable at a linear model.

Maximal consistent sets of formulas

Fix L. Γ - a set of formulas in L.

 $LTL_{\mathbf{L}}$ - the set of the theorems of LTL written in \mathbf{L} .

$$\operatorname{Cn}(\Gamma) = \{ \psi \in \mathbf{L} : \Gamma \cup LTL_{\mathbf{L}} \vdash_{\mathbf{MP}} \psi \}$$

Lemma 1 $\operatorname{Cn}(\Gamma \cup \{\varphi\}) = \{\psi : \varphi \Rightarrow \psi \in \operatorname{Cn}(\Gamma)\}$

Definition 1 Γ is consistent, if $\bot \notin \operatorname{Cn}(\Gamma)$. φ is consistent if $\{\varphi\}$ is consistent.

Maximal consistent sets

Definition 2 Γ is maximal consistent, if it is not a proper subset of any other consistent set of formulas in L.

Proposition 5 Let Γ be consistent and $\varphi \in \mathbf{L}$. Then either $\Gamma \cup \{\varphi\}$ is consistent, or $\Gamma \cup \{\neg \varphi\}$ is consistent, or both.

Corollary 1 Let Γ be maximal consistent and $\varphi \in \mathbf{L}$. Then either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$.

Proposition 6 (Lindenbaum lemma) Let Γ be consistent. Then there exists a maximal consistent set Γ' in $\mathbf L$ such that $\Gamma \subseteq \Gamma'$.

Proof of the Lindenbaum lemma

Let all the formulas in L occur in the sequence φ_i , $i < \omega$.

We construct a sequence of sets of formulas $\Gamma_0 = \Gamma \subseteq \Gamma_1 \subseteq \ldots \subseteq \Gamma_i \subseteq \ldots$

$$\Gamma_{i+1} = \begin{cases} \Gamma_i \cup \{\varphi_i\}, & \text{if } \Gamma_i \cup \{\varphi_i\} \text{ is consistent} \\ \Gamma_i \cup \{\neg \varphi_i\}, & \text{otherwise.} \end{cases}$$

 Γ_i is consistent for all i. Let $\Gamma' = \bigcup_{i < \omega} \Gamma_i$.

If $\bot \in \operatorname{Cn}(\Gamma')$, then there exist formulas $\psi_1, \ldots, \psi_k \in \Gamma'$, s.t. $LTL_{\mathbf{L}}, \psi_1, \ldots, \psi_k \vdash_{MP} \bot$, whence $\bot \in \operatorname{Cn}(\Gamma_n)$ for n s.t. $\psi_1, \ldots, \psi_k \in \Gamma_n$, which is a contradiction. Hence Γ' is consistent.

Let $\varphi \notin \Gamma'$. If $\varphi = \varphi_i$, then $\neg \varphi \in \Gamma_{i+1}$, whence $\bot \in \operatorname{Cn}(\Gamma_{i+1} \cup \{\varphi\}) \subseteq \operatorname{Cn}(\Gamma' \cup \{\varphi\})$. Hence Γ' is maximal consistent.

$$\circ^{-1}\Gamma$$

 Γ - a set of formulas in \mathbf{L} ; $\circ^{-1}\Gamma = \{\varphi : \circ \varphi \in \Gamma\}$.

Lemma 2 If $LTL_{\mathbf{L}}, \psi_1, \dots, \psi_n \vdash_{MP} \chi$, then $LTL_{\mathbf{L}}, \circ \psi_1, \dots, \circ \psi_n \vdash_{MP} \circ \chi$.

Proof: Induction on the length of the proofs of $LTL_{\mathbf{L}}, \psi_1, \ldots, \psi_n \vdash_{MP} \chi$, using \mathbf{K}_{\circ} . \dashv

Proposition 7 If Γ is consistent, then $\circ^{-1}\Gamma$ is consistent too.

Proof: If $\bot \in \operatorname{Cn}(\circ^{-1}\Gamma)$, then $\circ \bot \in \operatorname{Cn}(\Gamma)$. Besides, $\vdash_{LTL} \circ \bot \Rightarrow \bot$:

- $1 \circ \neg \bot$
- N_{\circ}
- $2 \quad \circ \neg \bot \Rightarrow \neg \circ \bot \quad A2$
- $3 \quad \circ \bot \Rightarrow \bot \qquad 1,2$

A model for an arbitrary given consistent φ

We construct a Kripke model $M = \langle W, R, I, V \rangle$ first.

Then we identify a behaviour s in M s.t. $\sigma_s, 0 \models \varphi$

 $W = \{\Gamma \cap \mathrm{Cl}(\varphi) : \Gamma \text{ is maximal consistent}\}\$

Since φ is consistent, there is an $w_0 \in w$ s.t. $\varphi \in w$.

$$I = \{w_0\}$$

$$w'Rw'' \leftrightarrow \circ^{-1}w' \subseteq w''$$

 $V(w) = \mathbf{L} \cap w$ - the prop. variables appearing in w as atomic formulas

Proposition 8 M is a model, i.e., R is serial, and M is finite.

A model for an arbitrary given consistent φ

 $W = \{\Gamma \cap \operatorname{Cl}(\varphi) : \Gamma \text{ is maximal consistent}\}$

$$I=\{w_0\}$$
, $\varphi\in w_0$, $w'Rw''\leftrightarrow \circ^{-1}w'\subseteq w''$, $V(w)=\mathbf{L}\cap w$

We want to identify a behaviour s in M s.t.

$$s, i \models \psi \text{ iff } \psi \in s_i \text{ for } \psi \in \text{Cl}(\varphi) \text{ and } s, 0 \models \varphi \text{ (because } s_0 = w_0)$$

This holds for s s.t. $(\psi U \chi) \in s_i$ entails $\chi \in s_{i+j}$ for some j.

Therefore,

given any behaviour prefix $s_0 \dots s_n$ and $(\psi \cup \chi) \in s_i$ for some $i \leq n$, we want to be able to extend it to an $s_0 \dots s_n s_{n+1} \dots s_m$ s.t. $\chi \in s_m$.

 \boldsymbol{x} - a finite set of formulas

 $\widehat{x} \rightleftharpoons \bigwedge x$ - the conjunction of all the formulas in x

Lemma 3 If $x \subset \text{Cl}(\varphi)$, then $\vdash_{LTL} \widehat{x} \Rightarrow \bigvee_{w \in W, w \supseteq x} \widehat{w}$.

Proof: We can assume that x is consistent. If $\psi, \neg \psi \in Cl(\varphi) \setminus x$, then

$$\widehat{x} \Leftrightarrow \widehat{x \cup \{\psi\}} \vee \widehat{x \cup \{\neg\psi\}}.$$

$\widehat{w} \rightleftharpoons \bigwedge w$ continued

Lemma 4 If $w \in W$, then $\vdash_{LTL} \widehat{w} \Rightarrow \circ \left(\bigvee_{wRw'} \widehat{w'}\right)$

Proof: wRw' is equivalent to $\circ^{-1}w\subseteq w'$. By the previous lemma

$$\vdash_{LTL} \widehat{\circ^{-1}w} \Rightarrow \bigvee_{wRw'} \widehat{w'}.$$

Now, by N_{\circ} and \mathbf{K}_{\circ} ,

$$\vdash_{LTL} \circ \widehat{(\circ^{-1}w)} \Rightarrow \circ \bigvee_{wRw'} \widehat{w'}.$$

Since $\{\circ\psi:\psi\in\circ^{-1}w\}\subset w$, by the distributivity of \circ over \wedge ,

$$\vdash_{LTL} \widehat{w} \Rightarrow \circ \widehat{(\circ^{-1}w)}.$$

$\widehat{w} \rightleftharpoons \bigwedge w$ continued

Lemma 5 If
$$w \in W$$
, then $\vdash_{LTL} \widehat{w} \Rightarrow \Box \left(\bigvee_{wR^*w'} \widehat{w'}\right)$.

Corollary 2 If $(\psi U \chi) \in w$, then there is a $w' \in R^*(w)$ s.t. $\chi \in w'$.

Proof: Let θ be propositionally equivalent to $\neg \chi$, and $\theta \in Cl(\varphi)$. Assume that

$$\theta \in w'$$
 for all $w' \in R^*(w)$

for the sake of contradiction. Then, by the lemma and \mathbf{K}_{\square} ,

$$\vdash_{LTL} \widehat{w} \Rightarrow \Box \theta$$
, i.e., $\vdash_{LTL} \widehat{w} \Rightarrow \Box \neg \chi$.

This contradicts the consistency of w, because of the instance of A6

$$(\psi \mathsf{U} \chi) \Rightarrow \Diamond \chi.$$

$$1 \quad \widehat{w'} \Rightarrow \circ \left(\bigvee_{w'Rw''} \widehat{w''} \right)$$

$$2 \bigvee_{wR^*w'} \widehat{w'} \Rightarrow \bigvee_{wR_*^*w'} \circ \left(\bigvee_{w'Rw''} \widehat{w''}\right)$$

$$3 \bigvee_{wR^*w'} \widehat{w'} \Rightarrow \circ \left(\bigvee_{wR^*w'} \bigvee_{w'Rw''} \widehat{w''} \right) \qquad 2, \text{ distributivity of } \circ$$

$$4 \quad \circ \left(\bigvee_{wR^*w'} \bigvee_{w'Rw''} \widehat{w''} \Rightarrow \bigvee_{wR^*w'} \widehat{w'} \right)$$

$$4 \circ \left(\bigvee_{wR^*w'} \bigvee_{w'Rw''} \widehat{w''} \Rightarrow \bigvee_{wR^*w'} \widehat{w'} \right) \qquad N_{\circ}, R^* \circ R \subseteq R^* \\
5 \circ \left(\bigvee_{wR^*w'} \bigvee_{w'Rw''} \widehat{w''} \right) \Rightarrow \circ \left(\bigvee_{wR^*w'} \widehat{w'} \right) \qquad 4, \mathbf{K}_{\circ}$$

$$6 \bigvee_{wR^*w'} \widehat{w'} \Rightarrow \circ \left(\bigvee_{wR^*w'} \widehat{w'}\right)$$

$$7 \quad \Box \left(\bigvee_{wR^*w'} \widehat{w'} \Rightarrow \circ \left(\bigvee_{wR^*w'} \widehat{w'} \right) \right)$$

$$8 \bigvee_{wR^*w'} \widehat{w'} \Rightarrow \Box \left(\bigvee_{wR^*w'} \widehat{w'} \right)$$

$$9 \quad \widehat{w} \Rightarrow \Box \left(\bigvee_{wR^*w'} \widehat{w'} \right)$$

previous lemma

1 for every $w' \in R^*(w)$

$$N_{\circ}, R^* \circ R \subseteq R^*$$

$$6, N_{\square}$$

$$8, Id_W \subseteq R^*$$

Conclusion of the completeness proof

$$M = \langle W, R, \{w_0\}, V \rangle$$
, $\varphi \in w_0$,

We want an $s = w_0 w_1 \dots w_n \dots$ s.t. $(\psi \mathsf{U} \chi) \in w_i$ entails $\chi \in w_{i+j}$ for some j.

Let
$$\{(\psi U\chi) : (\psi U\chi) \in Cl(\varphi)\} = \{(\psi_0 U\chi_0), \dots, (\psi_{n-1} U\chi_{n-1})\}.$$

Step 0: We fix s to start at w_0 : $s_0 = w_0$

Step i+1: Let $s_i=w_0\ldots w_k$. Let $j=i \mod n$.

- If $(\psi_j \cup \chi_j) \in w_k$ and $\chi_j \not\in w_k$, we choose $w' \in R^*(w_k)$ s.t. $\chi_j \in w'$ and put $s_{i+1} = s_i w_{k+1} \dots w'$
- Otherwise, $s_{i+1} = s_i w'$ with an arbitrary $w' \in R(w_k)$.

Proposition 9 (Truth Lemma) $\sigma_s, i \models \psi$ iff $\psi \in s_i$ for all $\psi \in \text{Cl}(\varphi)$, $i < \omega$.

