A Hilbert style proof system for LTL

The meaning of individual axioms. Completeness




Preliminaries on proof systems

A proof system - a formal grammar definition of a sublanguage in the logic.
A proof system is
sound, if it produces only valid formulas
complete, if it produces all the valid formulas
We are only interested in sound proof systems.
Typically a proof system consists of
axioms - concrete valid formulas

proof rules - to derive valid formulas from other valid formulas




A Hilbert-style proof system for classical propositional logic
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the rule Modus Ponens and the substitutivity rule
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Modus Ponens

© =1
(0

M P is not terribly convenient in proof search. Must guess a lemma .

(MP)

Exercise 1 Prove p = p in the above system.

The substitutivity rule

©
(Sub) [ /ple

Sub derives substitution instances of valid formulas. Alternative to Sub: use

axiom schemata such as

0= (V=)




Proofs and theorems in an arbitrary proof system S

A proof in S - a sequence of formulas ¢1,..., @,
each ; being either:

(a substitution instance of) an axiom of S

derived by a rule of S from formulas among ©1,...,p; 1
s ¢, if o appears (in the end of) some proof in S
Proofs from given premises 11, ..., Un:

©; may be one of ¥,...,1,, as well

¢17---7¢m l_SQO




A Hilbert-style proof system for K

Minimal normal uni-modal logic K:

pu=L]p|(p=9)|Cp|Dp

(W, R VY, W#D RCW xW,V:W — P(L)
M,w = O if M,w' = ¢ for some w’ € R(w), Op = Oy

Any sound and complete proof system for classical propositional logic +

Y

(K) B(p=4q = (Op=0q) (N) 0o

The subset of LTL with just o and < is the logic of the bi-modal frame

(w, <, <)

where o is & and O is O«




A proof system for LTL
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The assignment method

=(W,R), F = a, if (W R, V), w k= « for all V,w

« is defines a property of R. It is equivalent to

= VP, ... VP,VwST(«) in second order predicate logic where

ST
ST

L L

pi) = Pi(w)
a1 = 042) — ST(Oél) = ST(O(Q)

) =
) =

(
(
(
(

ST(Ca) = Fv(R(w,v) A [v/w]ST(a))




The assighment method

To prove VP, ...VP,YwST(«) < (3 for a first order sentence 3, one proves
B = ST(«a) in f.0. logic and =3 = Jw3P; ... IP, ST («)
for suitable assignments to Py, ..., P, which is the same as proving

F¥EB— (W R V) wkE -« for suitable w and [p;] ={w e W :p; € V(w)}

o :w — P(L) can be viewed as a bi-modal model (w, <, <, o).

Then (w, <, <) = a corresponds to a connection between < and <.




The meaning of some axioms

Proposition 1 (Fun) Let F' = (W, R) be a frame, o = Oi. Then

F |E—op <& opiff Ris a total function. ([p]r = 0,{w1} C R(wy))

Proposition 2 Let F' = (W, Ry, Rs) be a frame, o = Op, = 0p,, & =<p,.
Then

F’: DpiDopiffRQOngRg ([[p]]F:Rl(wo))
F =0Op=piff Idyw C Rs ([plr = W \ {wo})

Ry o Ry C Ry and Idw C Ry imply RY C Ry

Proposition 3 (A4) Let Ry o Ry C Ry. Then
F =0(p = op) = (p= Op) iff Ry C R} ([p]r = Ri(wo))




The proof system for LT[ again

N
=)

all classical propositional tautologies
O(p = ¢) = (Be = O9)

T 0 & O

o(p = ) = (op = oy)

O(p = op) = (¢ = By)

(eUy) < bV (o Ao(pUy))

(pUY) = Oy

A N
N

S
() SEENTEN

(
(
(
(A3
(
(
(

@)

/N
N N N N N N N N N N

Z =




Some useful admissible rules and theorems in LTL

A proof rule is admissible in a proof system, if it does not contribute new
theorems.

P15 Pn
¥

Fact 1 If pq,..., 0, Fg ¥, then is an admissible rule.

Proposition 4 The rules below are admissible in LTL for L € {0, 0}:

© =P © =P

M
(Monor) 2710 Ly < Li

(EL)

Proof: Exercise. —

Theorem 1 (syntactical form of replacement of equivalents)

If Fr7rr o, then Frrp [p/plx < [/plx-

Proof: Induction on the construction of y. Use E, for x = of. -




For x = (01U6,), let 0 = [¢/pl6; and 07 = [1/pl6;, i = 1,2




0, < 0. i = 1,2, ind. hypothesis
0,U6L) A —(67UY) =
V (07 A o(07U05)) A —=(05 Vv (07 A o(07U07))) A5
0,U0L) A —(8YUBY) = o(B,UBL) A —o (6/U6Y) 1,2
01U05) A —(07U05) = o((01U05) A —(67U65)) 3, exercises
O((07U05) A =(07U0Y) = o((07U05) A =(07UBS))) 4, N
(0LUB)) A —(67U6Y) = O((6,U8L) A —(07U6Y)) 5, Ad
O((0,U6) A —(67U6Y)) = O—(67U6Y) Ko
~(07U6Y) = —0 A5
O((0,U0%) A ~(07U6Y)) = 06
(01U03) = O, A6
(01U05) A =(07U05) = O=05 A OO
005 A <O = |
(01U05) = (67'U05)
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Some useful theorems
(Tl) Sp & (—I—ng)

O(e(TUp) = (TUp))

O(=(TUp) = o=(TUp)) = (=(TUp) = O0-(TUyp))
o=(TUyp) < —o (TUp)

O(TUp) AO(o(TUp) = (TUp)) = (TUyp)
O(TUp) = (TUp)

O(=(TUyp) = )

O=(TUp) = O-¢p

S = O(TUy)

Cp = (TUyp)

Cp < (TUyp)
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(T2) Oy < @ A olyp

Op < —(TU=p)

=(TU=p) < o Ao=(TU—yp)
o (TU=p) < oDy

Oy < ¢ Aolp

Oy = 0oy

Hp = ¢
o0y = oy
Ly = olp
Dy = op
O0p = Ooyp
O(Op = oOy)

O(Op = oly) = (Op = O0y)

1
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4
5
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O = 0oy




Exercises

Exercise 2 Find proofs for the following formulas

o(p AN1p) < op A oy
o(p V1h) < op V oy

O(p = ¢') = ((pUy) = (¢'Uy

O = ¢') = ((pUh) = (U’

(01 A p2Ut) & (91U) A (p2Uy
(pUth1 V iha) < (pUth1) V (



Completeness of the LTL proof system

We prove that if /71, =@, then @ is satisfiable at a linear model.

Maximal consistent sets of formulas

Fix L. I' - a set of formulas in L.
LTLy, - the set of the theorems of LTL written in L.
CD(F) = {w ceL:TULTLy, Fyp w}

Lemma 1l Con(T'U{p}) ={Y:p= 1 € Cn(l)}

Definition 1 T is consistent, if L ¢ Cn(I"). ¢ is consistent if {¢} is consistent.




Maximal consistent sets

Definition 2 I' is maximal consistent, if it is not a proper subset of any other
consistent set of formulas in L.

Proposition 5 Let I" be consistent and ¢ € L. Then either I' U {¢} is
consistent, or I' U {—} is consistent, or both.

Corollary 1 Let I' be maximal consistent and ¢ € L. Then either ¢ € I" or
N I'

Proposition 6 (Lindenbaum lemma) Let I' be consistent. Then there exists a

maximal consistent set IV in L such that ' C T".




Proof of the Lindenbaum lemma

Let all the formulas in L occur in the sequence ;, 1 < w.

We construct a sequence of sets of formulas I'o =1'C 11y C ...

[y U{pi}, if Iy U{p;} is consistent

I'iv1 = _
['; U{—y;}, otherwise.

I'; is consistent for all . Let IV = [ J T7;.
<w
If L € Cn(I"), then there exist formulas 1, ..., € TV, s.t.
LTLy,, Y1, ...,¢Yr Farp L, whence L € Cn(Fn) for n s.t. Vi,..., 0 €1,
which is a contradiction. Hence I'/ is consistent.

Let o € IV, If v = ;, then = € I';11, whence
1 eCn(lir1 U{p}) € Cn(I"U {p}). Hence I is maximal consistent.




o 1T
" - a set of formulas in L; o7 !'I' = {p : op € T'}.

Lemma 2 If LTLL,@Dl, co ,@Dn |—Mp X then LTLL,Owl, .. .,O@Dn '_MP ox.

Proof: Induction on the length of the proofs of LTLy,,v¥1,...,%, Fymp X,
using K,.

Proposition 7 If T is consistent, then o~ !T" is consistent too.

Proof: If 1 € Cn(o™'T"), then ol € Cn(T"). Besides, -y ol = L:

1 ol NO
2 onl=-0l A2
3 ol=1 1,2




A model for an arbitrary given consistent ¢

We construct a Kripke model M = (W, R, I, V) first.
Then we identify a behaviour s in M s.t. 04,0 F ¢
W ={I'NCl(p) : ' is maximal consistent}

Since ¢ is consistent, there is an wg € w s.t. p € w.

I = {wo}
w/Rw// JEIN O—lw/ g ’LU”

V(w) =L Nw - the prop. variables appearing in w as atomic formulas

Proposition 8 M is a model, i.e., R is serial, and M is finite.




A model for an arbitrary given consistent ¢

W ={I'NCl(p) : I' is maximal consistent}

I ={wy}, ¢ € wy, w'Rw"” + o~ Cw”, V(w)=LNw

We want to identify a behaviour s in M s.t.
s, i = iff ¢ € s; for yp € Cl(p) and s,0 = ¢ (because sy = wy)

This holds for s s.t. (¢ Uyx) € s; entails x € s;4; for some j.
Therefore,

given any behaviour prefix sg...s, and (¢)Uy) € s; for some i < n,

we want to be able to extend it to an sg...S,Sn41...Sm S.t. X € S




w
x - a finite set of formulas

T = / x - the conjunction of all the formulas in z

Lemma 3 If x C Cl(y), then FrrL T = V w.
weWwDax

Proof: We can assume that z is consistent. If ¢, 1) € Cl(p) \ z, then




w = /\ w continued
Lemma 4 If w € W, then

Proof: wRw' is equivalent to o~1w C w’. By the previous lemma

=7l o/—ivi \/ ’L/U\/
wRw’
Now, by N, and K,

~r7I © (O_lw) = O \/ w’.

w Rw’

Since {0 : ¢ € o~ 1w} C w, by the distributivity of o over A,

=1L W = o (o_lw) :




w = /\ w continued

Lemma 5 If w € W, then I—LTL@:>D( \/ ”(/U\/>

w R*w’

Corollary 2 If (¢pUx) € w, then there is a w’ € R*(w) s.t. x € w'.

Proof: Let 6 be propositionally equivalent to =y, and 6 € Cl(y). Assume that
6 € w' for all w' € R*(w)

for the sake of contradiction. Then, by the lemma and K,
- w = 00, e, Frpp w = O-y.

This contradicts the consistency of w, because of the instance of A6

(YUx) = Ox.




w R*w’

wR*w’
O

wR*w’ w Rw'’ w R*w’

vV V 27)7’>2>o(\/

wR*w’ w’ Rw'’

—

\V ’(/U\/:>O( Voow
wR*w’ wR*w’

D( \/ {U\’io(
wR*w’

wR*w

w

/

previous lemma

1 for every w' € R*(w)
2, distributivity of o
N,,R*o R C R*

4, K,

3,5

6, No

7, A4

8, Idyw C R*




Conclusion of the completeness proof

M = <W7 R7 {’UJQ},V>, Y € Wo,

We want an s = wowy ... wy, ... s.t. (YUyx) € w; entails x € w;4; for some j.

Let {(Ux) : (¥Ux) € Cl(p)} = {(oUx0), - - -+ (Pn-1Uxn-1)}.

Step 0: We fix s to start at wp: sg = wy
Step i+ 1: Let s; = wg...wi. Let 7 =4 mod n.
e If (1;Ux,) € wy and x; & wy,
we choose w' € R*(wy) s.t. x; € w’ and put ;41 = S;Wgy1 ... W'

e Otherwise, s;11 = s;w’ with an arbitrary w’ € R(wy).

Proposition 9 (Truth Lemma) o,7 = v iff ¢ € s; for all ¢ € Cl(p), i < w.




The End
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