Classification of PLTL-definable properties

and their canonical forms




PLTL models and w-languages

Linear models 0 : w — P(L) are w-words in 3¢, where ¥ = P(L).

A property = a set of behaviours of a system = an w-language.

Definition 1 A property L is definable in PLTL if there is a formula ¢ s.t.

L=A{c:0,0 ¢}




Notation

aeX*UXT, BeX*

B=ae (FyeZ?uXh) (B -v=a) — [ is a (proper) prefix of a

pref(a) = {f € ¥ : f < a}
LCYX*or L CX*

A(L) ={a € X% : pref(a) C L}

E(L) ={a € X : pref(a) N L # 0}




More notation

L CY*

As(L)={a e X" :pref(a) C L}
Ef(L)={ae X" :pref(a) N L # 0}

P(L) ={a € X¥ : pref(a) \ L is finite}
R(L) ={a € X% : pref(a) N L is infinite}

Let L =%“\ L, resp. ¥*\ L, for L C X, resp. L C X*.

Exercise 1 Prove that E(L) = A(L), E;(L) = A¢(L) and P(L) = R(L) for all
L CX¥*.

Exercise 2 (monotonicity of A, E, A¢, Ef, R and P) Prove that L C M C ¥*
entails X(L) C X(M) for X € {A,E,As,Ef,R,P}.




Definition of the primitive classes of properties

L C>%isa
safety  property, if for some M C ¥
guarantee

persistence

recurrence




On safety properties

a € A(L) means that at no finite step ¢ we observe ag . ..a; € pref(a) \ L

L - the set of "good” histories;
a is "safe”, if all the histories are good, i.e., nothing "bad” happens.

If m € L is a past formula and o5, € P(L)", o € P(L)%“, then

On + 0¢, |on| — 1 = 7 depends only on oy,.
Definition 2 o}, = 7 stands for 3o, € P(L)“ such that oy, - 04, |on| — 1 = 7.

Let L, denote {oc € P(L)*:0 =7}

Then O defines the safety property A(L,).




The vast majority of practically relevant properties
are safety properties

Liveness is informally regarded as the complement of safety.

Definition 3 L C X% is a liveness property, if for every o € X* there exists a
ol ed¥st. o-0' €L, thatis

Every finite 0 can be extended to a behaviour which has the property L.

Exercise 3 Prove that if L is both a safety and a liveness property, then
L=,

Examlpe 1 O(p = <$q) - "every q is followed by a p" - is a liveness property.

A bound on ¢: "every q is followed by a p within k steps”: O(p = \/ olq)
1<k

Exercise 4 This property is indeed safety. Write it in the form Ox with a past

.




Back to the primitive classes of properties

L C>%isa
safety  property, if for some M C ¥
guarantee

persistence

recurrence




A characterization of safety/guarantee properties

Proposition 1 L = A(pref(L)) for safety properties L.

Proof: Let L = A(M). Then pref(L) C M and A(pref(L)) CA(M)= L. To
prove L C A(pref(L)), note that o € L implies pref(a) C pref(L) by
monotonicity and, consequently oo € A(pref(L)).

Corollary 1 L =E (pref(L)) for guarantee properties L.




Closedness under U and N

of the safety and guarantee classes

ObViOUS|y A(Ll) M A(Lg) = A(Ll M L2) for all Ll, L2 C 2.
Proposition 2 A(L1) UA(L2) = A(Ar(L1) UA#(L2)).

Proof: C: Let i € {1,2}, a € A(L;). Then 3 € pref(a) implies 5 € As(L;),
whence pref(a) C A¢(L;). Then o € A(Af(L;)) CA(Af(L1) UAf(L2)).

O: Let o € A(Af(L1) UAf(L2)). Then pref(a) C Ap(L1) UAf(L2).

Since pref(a) is infinite, either pref(a) NA¢(Ly) or pref(a) NA¢(L2) is infinite.
Let pref(a) NA¢(L;) be infinite. Then pref(a) C Af(L;).

This implies pref(a) C L;, whence o € A(L;).

Finally A(L1) UA(L2) 2 A(Af(L1) UA(Ls)).




Closedness of under U and N of the recurrence and
persistence classes

Obviously
R(L)UR(M)=R(LUM) and P(L)NP(M)=P(LNM)
for all L, M C X",

Definition 4

ex(a, L) ={f € L:a=<p3}
minex(c, L) is the set of the shortest words in ex(«, L)

minex(M, L) U minex(c, L)
acM

Proposition 3 R(M) N R(L) = R(minex(M, L)) for all M, L C »*.

Corollary 2 P(M)UP(L) = P (minex (M, T ) for all M, L C 2.




R(M) N R(L) = R(minex(M, L)): Proof
O: Let @ € R(minex(M, L)), i.e., let pref(a) N minex(M, L) be infinite.
Since minex(M, L) C L, pref(a) N L is infinite too, whence o € R(L).
B1, B2 € pref(a) N minex(M, L) implies 31 < B2 or B2 < (1.

Therefore, different 3 € pref(a) N minex(M, L) are the shortest extensions of
different v € M.

Hence, since pref(a) N minex(M, L) is infinite, pref(a) N M is infinite too, i.e.,
a € R(M).

C: Let « € R(M) N R(L). Then pref(a) N M and pref(a) N L are infinite.

Choose an arbitrary n < w.

There exist 5 € pref(a) N M and v € pref(a) N L s.t. n < |B3], and 3 < 7.
Given such 3 and v, ex(8,L) # () and 8 < 6 =<~ for some ¢ € minex(3, L).
Furthermore § € pref(a) N minex(M, L) and |§]|> n.

Hence pref(a) N minex(M, L) is infinite, i.e. a € R(minex(M, L)).




Inclusions between the classes

Exercise 5 Prove that E(L) = R(Ef(L)) and A(L) = P(A¢(L)) for all
L CX¥*.

Proposition 4 A(L) = R(Af¢(L)) for all L C ¥*.

Proof: DO: Let o € R(A¢(L)). Then pref(a) N A¢(L) is infinite.

Choose an arbitrary G € pref(a).

Then there is a v € pref(a) NAf(L) s.t. B <, which implies 3 € L. Hence
pref(a) C L, i.e., a € A(L).

C: Let a € A(L), that is, pref(a) € L. Then pref(a) C A¢(L).
Since pref(«) is infinite, this entails o € R(Af(L)). -

Corollary 3 E(L) = P(E¢(L)) for all L C ¥*.




Summary

Complementation between the classes
The complement of a safety property is a guarantee property and vice versa.

The complement of a recurrence property is a persistence property and vice

versa.
Closedness under U and N

The classes of safety, guarantee, persistence and recurrence properties are all
closed under U and N.

Inclusion of the classes
A safety property is both a recurrence and a persistence property as well.

A guarantee property is similarly both a recurrence and a persistence property.




The compound classes

Definition 5 L is an obligation property, if L is a combination of safety and

guarantee properties by U and N.

Proposition 5 Every obligation property has the form (JA(L;) U E(M;) for
some L;, M; C >.*.

Corollary 4 Every obligation property is both a recurrence and a persistence

property.

Definition 6 L is a reactivity property, if L is a combination of recurrence and

persisitence properties by U and N.

Proposition 6 Every reactivity property has the form (YR(L;) U P(M;) for
some L;, M; C X.*.




The safety-liveness classification

Definition 7 Recall that L C 3 is a liveness property, if pref(L) = X*.

Proposition 7 Every X C >* has the form S N L for some safety property S
and some liveness property L.

Proof: We put S = A(pref(X)) and L = X UE (pref(X)).

Let 5 € 3*. If 3 € pref(X), then § has an infinite extension in X. Otherwise,
all the infinite extensions of 3 are in E(pref(X)). Hence L is a liveness

property.

Obviously S N E(pref(X)) =0. Hence SNL=SNX. Now SNL =X
follows from X C S = A(pref(X)), which is established by a direct check. -

Definition 8 A(pref(X)) is called the safety closure of X. E(pref(X)) is
called the liveness extension of X.




Back to PLTL

Until now nothing depended on the expressibility of properties in PLTL
Let 3 = P(L).
Recall that L, = {0 € ¥X* : 0 =7} for past w. Then

Af(LW) = LE"ZT and Ef(LW) = Leﬁ.

(Af and E; are about proper prefixes; © and B have the strict interpretation.)

Let

L,={0ceX¥:0,0k=¢}

for o with future temporal operators. Then
A(L;) = Lor, E(L;) = Loy, R(Lx) = Loor and P(L;) = Loox

Proof: Exercise. —




Complementation and closedness under N and U
in terms of PLTL

Af(Lﬂ-) = LE'T(‘ and Ef(Lﬂ-) = L@W
A(L,;) = Lor, E(L;) = Lor, R(Lz) = Loor and P(L;) = Loox

Complementation:

A(L,) = E(L,), P(L,) =R(L,) —O7 & O—m, =007 & 00—

Closedness under N and U:

for safety properties

A(L: )NA(Lr,) =A(Ly, NL;,) Oy A Oy < O(m A o)
A(Lr,)UA(Lr,) =A(Af(Lr,) UA#(Ly,)) Omp VvV Omg < O(Bm V Brg)
for guarantee properties

E(L.,)UE(L;,) =E(Lx, ULpg,) OV Omg & Oy V o)
E(Lr,) NE(Lr,) =E(Ef(Lr,) NEf(Lr,)) OmiAOmy & O(Om A Oma)




Closedness under N and U for recurrence and persistence

Proposition 8 minex(L,,,L,,) ={c € ¥* : 0 =1 A (-7m2571)}

Closedness under N and U:

for recurrence properties
R(Lr,)UR(L;,) =R(Ly;, ULy,)
R(L:,) "R(Ly,) = R(minex(L,,, L,))

for persistence properties
P(Lm) M P(Lm) — P(Lm M Lm)
P(Ln,) UP(Lr,) = P (minex(Lr,, Lr,) )

OCm VOO & |:|<>(7T1 \/7'('2)
OCm A OOy &
D<>(7T1 N\ (_I7T157T2))

SOm A Om, & <>|:|(7T1 /\7'('2)
SO0m vV olm <

<>|:’(7T1 V _1(71'15_'71'2))




Inclusions of the classes in terms of PLTL

A(Lr) =P(Af(Lr)) =R(Af(Lr)) Orn <« OOHm, On e OCHn

E(Ly) = P(E¢(Lx)) = R(Ef(Ly))  ©On & 00O, On & O0OT




Canonical forms for PLTL-definable properties: overview

So far we know that if 7 is past, then
A(L,) = Loy, and therefore O7 defines a safety property

P(L;) = Loox, and therefore OOn defines a persistence property, etc.

It can be shown that, regardless of the syntax of o,
if © defines a safety property, then 0 = ¢ < Ox for some past 7

if © defines a persistence property, then 0 = ¢ < $On for some past T,
etc.

This was first done using w-automata which accept regular w-languages.




Regular w-languages

Definition 9 An w-language L C X% is regular, if it has the form

;- Ly

for some regular M;, L; C X*.
Proposition 9 All PLTL definable properties are regular.

Proposition 10 A property L C >* is regular iff it is accepted by an
w-automaton.




w-Automata
A=(Q,%,46,qy, Acc)
Q) # 0 is a finite set of states, qo € () is the initial state
Y is a finite alphabet (= P(L) in our case)
§:Q xX —P(Q)\ {0} is a transition function

Acc is an acceptance condition

rung(o) ={r € Q¥ :ro = qo and r;41 € 6(r;, 0;) for all i € w}

The standard extension of § to a function of type Q x ¥* — P(Q) \ {0}

d(q, o) is the set of the states that are reachable from ¢ upon reading o.

inf(r) = {q : 7; = q for infinitely many i € w}
Streett automata: Acc C P(Q) x P(Q); Word o € X is accepted, if

(Fr € runy (o)) (V(X,Y) € Ace)(inf(r) N X # ) — inf(r) NY # 0).




Types of automata, depending on Acc

- condition for accepting o € X%, »*
automaton

Mealy d(s0,0) N F #1
(Ir € runyg(o))inf(r) N E # 0

Buchi

generalised (Fr € runa(0))(VE € F)inf(r) N F # ()
Buchi

Miiller Acc CP(Q) (Ir € runy (o)) inf(r) € Acc
Streett Ace C P(Q)? (FIr € rung(0))(V(X,Y) € Acc)
(in
(

inf(r)yN X #£0 — inf(r)NY #£ 0)

dr € runa (o)) min c(q) is even.
g€inf(r)

Reference: Wolfgang Thomas. Automata on infinite objects. In: Handbook of
Theoretical Computer Science, volume B, pp 133-192. Elsevier, 1990.

parity c:Q—{1,...,n}




Canonical forms for regular properties

Theorem 1

If L C X% is a regular safety property, then there exists a regular M C >2* such
that L = A(M).

Similarly, if L is a regular recurrence property, then L. = P(\) for some regular
M.

Every regular property has the form
ﬂ R(M;) U P(N;)

for some regular M,;, N; C X*.




Sketch of the proof
Let automaton A = (Q, X, 6, qo, Acc) accept L. Let

M, ={0€X":0(qo,0) =q} for every ¢ € Q.
For safety L., L = A(M), where
M = U{Mq : ¢ occurs in an accepting run for some o € L}.

For a recurrence L, A can be chosen so that X = @ for all (X,Y) € Acc.

Then L= (] R(UgeyM,).
(Q,Y)YEAcc

For a reactivity property L we have

L = m P(Ugex Mg) UR(Ugey Mg).
(X, Y)eAcc

Reference: Zohar Manna, Amir Pnueli, The anchored version of the temporal
framework. In: LNCS 354, pp. 201-284, 1989.




Canonical forms for PLT[-definable properties

Theorem 2

If L C P(L)* is a PLTL-definable safety property, then there exists a past
formula 7w € L such that L = A(L,), that is, L is defined by Orr.

Similarly, if L is a recurrence property, then there exists a past 7 such that
L =R(L;), that is, L is defined by OOr.

Every PLTL-definable property is definable by a formula of the form

/\ oOm; = o0,
0

where 7;, 7w} are past formulas.




Proofs by means of the separation theorem: safety
Let L = L.

OF p< O09(Ap)and 0 E p < OO(LA ).
Let \/ m; A owp; be a separated equivalent to &(1'A ).

We can assume all the ;s to be satisfiable.

=prrr O (\/ T N ogpi> = O \/m, which implies 0 = p = O \/7%'.

Using that ¢ defines a safety property, we prove that

0O (\/w> = .

)




Let 0,0 = 0\/ ;. Then for every k < w thereis ani < w s.t. gg...0, E 7.
i

Let 0/ € P(L)¥ and let ¢/,0 = ;. Then gqg...0k - o’ is an infinite extension

of 0g...0p and og...0k - ', k = m A op;, which implies that

00...05 0,0 o because 0 = p < O <\/7T7;/\og0i>.
i

Hence every prefix og . ..oy of a o that satisfies \/ 7; has an infinite extension
i

which satisfies . Since ¢ defines a safety property, 0,0 = .

Hence 0 =0 (\/ 7Tz') = .




Proofs by means of the separation theorem: recurrence and

reactivity

There is no syntactical proof for recurrence that | know.

There is a syntactical proof for reactivity, based on separation. (Guelev,
Journal of Logic and Computation, 2008.)

There is an earlier proof for reactivity, by Mark Reynolds, LICS 2000, which is
a mix of semantic transformations and application of another variant of
separation, which applies to Dedekind-complete time models.




A canonical form for PLTL-definable liveness properties

Theorem 3 A PLTL-definable property is a liveness property iff it is definable

by a formula of the form < (\/ 7T A\ ogpi) in which ¢; are satisfiable future

formulas, 7; are past formulas, and \/ 7; is valid.
i

Proof: < - Direct check. — Let ¢ define the considered liveness property and
Y = \/ m; A oyw; be a separated equivalent to ©(I A ). Then for all o € P(L)¥
i

we have both
0,0 E ¢ < <O and 0,0 = p < O,

Let o0 € P(L)*. Since ¢ is a liveness property, there exists a v € P(L)¥ s. t.

o-70FE D(\/Wi/\o%>,

which entails that o = \/ 7;.




The End

32



