

PLTL models and ω -languages

Linear models $\sigma: \omega \to \mathcal{P}(\mathbf{L})$ are ω -words in Σ^{ω} , where $\Sigma = \mathcal{P}(\mathbf{L})$.

A property = a set of behaviours of a system = an ω -language.

Definition 1 A property L is definable in PLTL if there is a formula φ s.t.

$$L = \{ \sigma : \sigma, 0 \models \varphi \}.$$

Notation

$$\alpha \in \Sigma^* \cup \Sigma^+, \ \beta \in \Sigma^*$$

$$\beta \prec \alpha \leftrightarrow (\exists \gamma \in \Sigma^\omega \cup \Sigma^+)(\beta \cdot \gamma = \alpha) \qquad -\beta \text{ is a (proper) prefix of } \alpha$$

$$\operatorname{pref}(\alpha) = \{\beta \in \Sigma^* : \beta \prec \alpha\}$$

$$L \subseteq \Sigma^\omega \text{ or } L \subseteq \Sigma^*$$

$$\operatorname{pref}(L) = \bigcup_{\alpha \in L} \operatorname{pref}(\alpha)$$

$$L \subseteq \Sigma^*$$

$$\operatorname{A}(L) = \{\alpha \in \Sigma^\omega : \operatorname{pref}(\alpha) \subseteq L\}$$

$$\operatorname{E}(L) = \{\alpha \in \Sigma^\omega : \operatorname{pref}(\alpha) \cap L \neq \emptyset\}$$

More notation

$$L\subseteq \Sigma^*$$

$$\mathsf{A}_f(L) = \{ \alpha \in \Sigma^* : \mathsf{pref}(\alpha) \subseteq L \}$$

$$\mathsf{E}_f(L) = \{ \alpha \in \Sigma^* : \mathsf{pref}(\alpha) \cap L \neq \emptyset \}$$

$$\mathsf{P}(L) = \{ \alpha \in \Sigma^{\omega} : \mathsf{pref}(\alpha) \setminus L \text{ is finite} \}$$

$$\mathsf{R}(L) = \{ \alpha \in \Sigma^{\omega} : \mathsf{pref}(\alpha) \cap L \text{ is infinite} \}$$

Let $\overline{L} = \Sigma^{\omega} \setminus L$, resp. $\Sigma^* \setminus L$, for $L \subseteq \Sigma^{\omega}$, resp. $L \subseteq \Sigma^*$.

Exercise 1 Prove that $\mathsf{E}(L) = \overline{\mathsf{A}(\overline{L})}$, $\mathsf{E}_f(L) = \overline{\mathsf{A}_f(\overline{L})}$ and $\mathsf{P}(L) = \overline{\mathsf{R}(\overline{L})}$ for all $L \subseteq \Sigma^*$.

Exercise 2 (monotonicity of A, E, A_f, E_f, R and P) Prove that $L \subseteq M \subseteq \Sigma^*$ entails $X(L) \subseteq X(M)$ for $X \in \{A, E, A_f, E_f, R, P\}$.

Definition of the primitive classes of properties

$$L\subseteq \Sigma^\omega$$
 is a

safety property, if
$$L={\sf A}(M)$$
 for some $M\subseteq \Sigma^*$ guarantee -"- $L={\sf E}(M)$ -"- $L={\sf P}(M)$

recurrence -"-
$$L = R(M)$$
 -"-

On safety properties

 $\alpha \in A(L)$ means that at no finite step i we observe $a_0 \dots a_i \in \operatorname{pref}(\alpha) \setminus L$

 ${\cal L}$ - the set of "good" histories;

 α is "safe", if all the histories are good, i.e., nothing "bad" happens.

If $\pi \in \mathbf{L}$ is a past formula and $\sigma_h \in \mathcal{P}(\mathbf{L})^n$, $\sigma_t \in \mathcal{P}(\mathbf{L})^\omega$, then

 $\sigma_h \cdot \sigma_t, |\sigma_h| - 1 \models \pi$ depends only on σ_h .

Definition 2 $\sigma_h \models \pi$ stands for $\exists \sigma_t \in \mathcal{P}(\mathbf{L})^{\omega}$ such that $\sigma_h \cdot \sigma_t, |\sigma_h| - 1 \models \pi$.

Let L_{π} denote $\{\sigma \in \mathcal{P}(\mathbf{L})^* : \sigma \models \pi\}$.

Then $\Box \pi$ defines the safety property $A(L_{\pi})$.

The vast majority of practically relevant properties are safety properties

Liveness is informally regarded as the complement of safety.

Definition 3 $L \subseteq \Sigma^{\omega}$ is a liveness property, if for every $\sigma \in \Sigma^*$ there exists a $\sigma' \in \Sigma^{\omega}$ s.t. $\sigma \cdot \sigma' \in L$, that is

Every finite σ can be extended to a behaviour which has the property L.

Exercise 3 Prove that if L is both a safety and a liveness property, then $L = \Sigma^{\omega}$.

Example 1 $\Box(p \Rightarrow \Diamond q)$ - "every q is followed by a p" - is a liveness property.

A bound on q: "every q is followed by a p within k steps": $\Box(p\Rightarrow\bigvee_{l\leq k}\circ^lq)$

Exercise 4 This property is indeed safety. Write it in the form $\Box \pi$ with a past π .

Back to the primitive classes of properties

$$L\subseteq \Sigma^\omega$$
 is a

safety property, if
$$L=\mathsf{A}(M)$$
 for some $M\subseteq \Sigma^*$ guarantee -"- $L=\mathsf{E}(M)$ -"- persistence -"- $L=\mathsf{P}(M)$ -"- $L=\mathsf{R}(M)$ -"-

A characterization of safety/guarantee properties

Proposition 1 L = A(pref(L)) for safety properties L.

Proof: Let $L = \mathsf{A}(M)$. Then $\mathsf{pref}(L) \subseteq M$ and $\mathsf{A}(\mathsf{pref}(L)) \subseteq \mathsf{A}(M) = L$. To prove $L \subseteq \mathsf{A}(\mathsf{pref}(L))$, note that $\alpha \in L$ implies $\mathsf{pref}(\alpha) \subseteq \mathsf{pref}(L)$ by monotonicity and, consequently $\alpha \in \mathsf{A}(\mathsf{pref}(L))$. \dashv

Corollary 1 $L = \mathsf{E}\left(\overline{\mathsf{pref}(\overline{L})}\right)$ for guarantee properties L.

Closedness under ∪ and ∩ of the safety and guarantee classes

Obviously $A(L_1) \cap A(L_2) = A(L_1 \cap L_2)$ for all $L_1, L_2 \subseteq \Sigma^*$.

Proposition 2 $A(L_1) \cup A(L_2) = A(A_f(L_1) \cup A_f(L_2)).$

Proof: \subseteq : Let $i \in \{1, 2\}$, $\alpha \in A(L_i)$. Then $\beta \in \operatorname{pref}(\alpha)$ implies $\beta \in A_f(L_i)$, whence $\operatorname{pref}(\alpha) \subseteq A_f(L_i)$. Then $\alpha \in A(A_f(L_i)) \subseteq A(A_f(L_1) \cup A_f(L_2))$.

 \supseteq : Let $\alpha \in A(A_f(L_1) \cup A_f(L_2))$. Then $pref(\alpha) \subseteq A_f(L_1) \cup A_f(L_2)$.

Since $pref(\alpha)$ is infinite, either $pref(\alpha) \cap A_f(L_1)$ or $pref(\alpha) \cap A_f(L_2)$ is infinite.

Let $pref(\alpha) \cap A_f(L_i)$ be infinite. Then $pref(\alpha) \subseteq A_f(L_i)$.

This implies $pref(\alpha) \subseteq L_i$, whence $\alpha \in A(L_i)$.

Finally $A(L_1) \cup A(L_2) \supseteq A(A_f(L_1) \cup A_f(L_2))$. \dashv

Closedness of under ∪ and ∩ of the recurrence and persistence classes

Obviously

$$R(L) \cup R(M) = R(L \cup M)$$
 and $P(L) \cap P(M) = P(L \cap M)$

for all $L, M \subseteq \Sigma^*$.

Definition 4

$$ex(\alpha, L) = \{ \beta \in L : \alpha \prec \beta \}$$

 $\operatorname{minex}(\alpha, L)$ is the set of the shortest words in $\operatorname{ex}(\alpha, L)$

$$\operatorname{minex}(M, L) = \bigcup_{\alpha \in M} \operatorname{minex}(\alpha, L)$$

Proposition 3 $R(M) \cap R(L) = R(\min(M, L))$ for all $M, L \subseteq \Sigma^*$.

$R(M) \cap R(L) = R(\min(M, L))$: **Proof**

 \supseteq : Let $\alpha \in \mathsf{R}(\mathsf{minex}(M,L))$, i.e., let $\mathsf{pref}(\alpha) \cap \mathsf{minex}(M,L)$ be infinite.

Since minex $(M, L) \subseteq L$, pref $(\alpha) \cap L$ is infinite too, whence $\alpha \in R(L)$.

 $\beta_1, \beta_2 \in \operatorname{pref}(\alpha) \cap \operatorname{minex}(M, L) \text{ implies } \beta_1 \leq \beta_2 \text{ or } \beta_2 \leq \beta_1.$

Therefore, different $\beta \in \operatorname{pref}(\alpha) \cap \operatorname{minex}(M,L)$ are the shortest extensions of different $\gamma \in M$.

Hence, since $\operatorname{pref}(\alpha) \cap \operatorname{minex}(M,L)$ is infinite, $\operatorname{pref}(\alpha) \cap M$ is infinite too, i.e., $\alpha \in \mathsf{R}(M)$.

 \subseteq : Let $\alpha \in R(M) \cap R(L)$. Then $pref(\alpha) \cap M$ and $pref(\alpha) \cap L$ are infinite.

Choose an arbitrary $n < \omega$.

There exist $\beta \in \operatorname{pref}(\alpha) \cap M$ and $\gamma \in \operatorname{pref}(\alpha) \cap L$ s.t. $n < |\beta|$, and $\beta \prec \gamma$.

Given such β and γ , $ex(\beta, L) \neq \emptyset$ and $\beta \prec \delta \leq \gamma$ for some $\delta \in minex(\beta, L)$.

Furthermore $\delta \in \operatorname{pref}(\alpha) \cap \operatorname{minex}(M, L)$ and $|\delta| > n$.

Hence $\operatorname{pref}(\alpha) \cap \operatorname{minex}(M,L)$ is infinite, i.e. $\alpha \in \mathsf{R}(\operatorname{minex}(M,L))$.

Inclusions between the classes

Exercise 5 Prove that $E(L) = R(E_f(L))$ and $A(L) = P(A_f(L))$ for all $L \subseteq \Sigma^*$.

Proposition 4 $A(L) = R(A_f(L))$ for all $L \subseteq \Sigma^*$.

Proof: \supseteq : Let $\alpha \in R(A_f(L))$. Then $pref(\alpha) \cap A_f(L)$ is infinite.

Choose an arbitrary $\beta \in \operatorname{pref}(\alpha)$.

Then there is a $\gamma \in \operatorname{pref}(\alpha) \cap \mathsf{A}_f(L)$ s.t. $\beta \prec \gamma$, which implies $\beta \in L$. Hence $\operatorname{pref}(\alpha) \subseteq L$, i.e., $\alpha \in \mathsf{A}(L)$.

 \subseteq : Let $\alpha \in A(L)$, that is, $pref(\alpha) \subseteq L$. Then $pref(\alpha) \subseteq A_f(L)$.

Since $pref(\alpha)$ is infinite, this entails $\alpha \in R(A_f(L))$. \dashv

Corollary 3 $E(L) = P(E_f(L))$ for all $L \subseteq \Sigma^*$.

Summary

Complementation between the classes

The complement of a safety property is a guarantee property and vice versa.

The complement of a recurrence property is a persistence property and vice versa.

Closedness under ∪ and ∩

The classes of safety, guarantee, persistence and recurrence properties are all closed under \cup and \cap .

Inclusion of the classes

A safety property is both a recurrence and a persistence property as well.

A guarantee property is similarly both a recurrence and a persistence property.

The compound classes

Definition 5 L is an obligation property, if L is a combination of safety and guarantee properties by \cup and \cap .

Proposition 5 Every obligation property has the form $\bigcap_i A(L_i) \cup E(M_i)$ for some $L_i, M_i \subseteq \Sigma^*$.

Corollary 4 Every obligation property is both a recurrence and a persistence property.

Definition 6 L is a reactivity property, if L is a combination of recurrence and persisitence properties by \cup and \cap .

Proposition 6 Every reactivity property has the form $\bigcap_i R(L_i) \cup P(M_i)$ for some $L_i, M_i \subseteq \Sigma^*$.

The safety-liveness classification

Definition 7 Recall that $L \subseteq \Sigma^{\omega}$ is a liveness property, if $pref(L) = \Sigma^*$.

Proposition 7 Every $X \subseteq \Sigma^{\omega}$ has the form $S \cap L$ for some safety property S and some liveness property L.

Proof: We put $S = \mathsf{A}(\mathsf{pref}(X))$ and $L = X \cup \mathsf{E}\left(\overline{\mathsf{pref}(X)}\right)$.

Let $\beta \in \Sigma^*$. If $\beta \in \operatorname{pref}(X)$, then β has an infinite extension in X. Otherwise, all the infinite extensions of β are in $\mathsf{E}(\overline{\operatorname{pref}(X)})$. Hence L is a liveness property.

Obviously $S \cap \mathsf{E}(\mathsf{pref}(X)) = \emptyset$. Hence $S \cap L = S \cap X$. Now $S \cap L = X$ follows from $X \subseteq S = \mathsf{A}(\mathsf{pref}(X))$, which is established by a direct check. \dashv

Definition 8 A(pref(X)) is called the safety closure of X. E($\overline{\text{pref}(X)}$) is called the liveness extension of X.

Back to *PLTL*

Until now nothing depended on the expressibility of properties in PLTL

Let
$$\Sigma = \mathcal{P}(\mathbf{L})$$
.

Recall that $L_{\pi} = \{ \sigma \in \Sigma^* : \sigma \models \pi \}$ for past π . Then

$$\mathsf{A}_f(L_\pi) = L_{\boxminus_\pi} \text{ and } \mathsf{E}_f(L_\pi) = L_{\diamondsuit_\pi}.$$

(A_f and E_f are about proper prefixes; \Leftrightarrow and \boxminus have the strict interpretation.) Let

$$L_{\varphi} = \{ \sigma \in \Sigma^{\omega} : \sigma, 0 \models \varphi \}$$

for φ with future temporal operators. Then

$$\mathsf{A}(L_\pi) = L_{\Box\pi}, \ \mathsf{E}(L_\pi) = L_{\Diamond\pi}, \ \mathsf{R}(L_\pi) = L_{\Box\Diamond\pi} \ \text{and} \ \mathsf{P}(L_\pi) = L_{\Diamond\Box\pi}$$

Proof: Exercise. ⊢

Complementation and closedness under ∩ **and** ∪ in terms of *PLTL*

$$\mathsf{A}_f(L_\pi) = L_{\boxminus \pi} \text{ and } \mathsf{E}_f(L_\pi) = L_{\diamondsuit \pi}$$

$$\mathsf{A}(L_\pi) = L_{\Box\pi}, \ \mathsf{E}(L_\pi) = L_{\Diamond\pi}, \ \mathsf{R}(L_\pi) = L_{\Box\Diamond\pi} \ \text{and} \ \mathsf{P}(L_\pi) = L_{\Diamond\Box\pi}$$

Complementation:

$$\overline{\mathsf{A}(L_\pi)} = \mathsf{E}(\overline{L_\pi}), \qquad \overline{\mathsf{P}(L_\pi)} = \mathsf{R}(\overline{L_\pi}) \qquad \neg \Box \pi \Leftrightarrow \Diamond \neg \pi, \ \neg \Diamond \Box \pi \Leftrightarrow \Box \Diamond \neg \pi$$

$$\neg \Box \pi \Leftrightarrow \Diamond \neg \pi, \ \neg \Diamond \Box \pi \Leftrightarrow \Box \Diamond \neg \pi$$

Closedness under \cap and \cup :

for safety properties

$$\mathsf{A}(L_{\pi_1}) \cap \mathsf{A}(L_{\pi_2}) = \mathsf{A}(L_{\pi_1} \cap L_{\pi_2}) \qquad \qquad \Box \pi_1 \wedge \Box \pi_2 \Leftrightarrow \Box (\pi_1 \wedge \pi_2)$$

$$\mathsf{A}(L_{\pi_1}) \cup \mathsf{A}(L_{\pi_2}) = \mathsf{A}(\mathsf{A}_f(L_{\pi_1}) \cup \mathsf{A}_f(L_{\pi_2})) \quad \Box \pi_1 \vee \Box \pi_2 \Leftrightarrow \Box(\Box \pi_1 \vee \Box \pi_2)$$

for guarantee properties

$$\mathsf{E}(L_{\pi_1}) \cup \mathsf{E}(L_{\pi_2}) = \mathsf{E}(L_{\pi_1} \cup L_{\pi_2}) \qquad \qquad \Diamond \pi_1 \vee \Diamond \pi_2 \Leftrightarrow \Diamond (\pi_1 \vee \pi_2)$$

$$\mathsf{E}(L_{\pi_1}) \cap \mathsf{E}(L_{\pi_2}) = \mathsf{E}(\mathsf{E}_f(L_{\pi_1}) \cap \mathsf{E}_f(L_{\pi_2})) \qquad \Diamond \pi_1 \wedge \Diamond \pi_2 \Leftrightarrow \Diamond(\Diamond \pi_1 \wedge \Diamond \pi_2)$$

Closedness under \cap and \cup for recurrence and persistence

Proposition 8 minex $(L_{\pi_1}, L_{\pi_2}) = \{ \sigma \in \Sigma^* : \sigma \models \pi_2 \land (\neg \pi_2 \mathsf{S} \pi_1) \}$

Closedness under \cap and \cup :

for recurrence properties

$$\mathsf{R}(L_{\pi_1}) \cup \mathsf{R}(L_{\pi_2}) = \mathsf{R}(L_{\pi_1} \cup L_{\pi_2}) \qquad \qquad \Box \Diamond \pi_1 \vee \Box \Diamond \pi_2 \Leftrightarrow \Box \Diamond (\pi_1 \vee \pi_2)$$

$$\mathsf{R}(L_{\pi_1}) \cap \mathsf{R}(L_{\pi_2}) = \mathsf{R}(\mathsf{minex}(L_{\pi_1}, L_{\pi_2})) \qquad \Box \Diamond \pi_1 \wedge \Box \Diamond \pi_2 \Leftrightarrow \Box \Diamond (\pi_1 \wedge (\neg \pi_1 \mathsf{S} \pi_2))$$

for persistence properties

$$P(L_{\pi_1}) \cap P(L_{\pi_2}) = P(L_{\pi_1} \cap L_{\pi_2}) \qquad \Diamond \Box \pi_1 \wedge \Diamond \Box \pi_2 \Leftrightarrow \Diamond \Box (\pi_1 \wedge \pi_2)$$

$$P(L_{\pi_1}) \cup P(L_{\pi_2}) = P\left(\overline{\min(\overline{L_{\pi_1}}, \overline{L_{\pi_2}})}\right) \qquad \Diamond \Box \pi_1 \vee \Diamond \Box \pi_2 \Leftrightarrow \Diamond \Box (\pi_1 \wedge \pi_2)$$

$$\Diamond \Box (\pi_1 \vee \neg (\pi_1 \mathsf{S} \neg \pi_2))$$

Inclusions of the classes in terms of PLTL

$$\begin{split} \mathsf{A}(L_{\pi}) &= \mathsf{P}(\mathsf{A}_f(L_{\pi})) = \mathsf{R}(\mathsf{A}_f(L_{\pi})) \quad \Box \pi \Leftrightarrow \Diamond \Box \Box \pi, \ \Box \pi \Leftrightarrow \Box \Diamond \Box \pi \\ \mathsf{E}(L_{\pi}) &= \mathsf{P}(\mathsf{E}_f(L_{\pi})) = \mathsf{R}(\mathsf{E}_f(L_{\pi})) \quad \Diamond \pi \Leftrightarrow \Diamond \Box \Diamond \pi, \ \Diamond \pi \Leftrightarrow \Box \Diamond \Diamond \pi \end{split}$$

Canonical forms for PLTL-definable properties: overview

So far we know that if π is past, then

 $\mathsf{A}(L_\pi) = L_{\Box\pi}$, and therefore $\Box\pi$ defines a safety property

 $P(L_{\pi}) = L_{\Diamond \Box \pi}$, and therefore $\Box \Diamond \pi$ defines a persistence property, etc.

It can be shown that, regardless of the syntax of φ ,

if φ defines a safety property, then $0 \models \varphi \Leftrightarrow \Box \pi$ for some past π

if φ defines a persistence property, then $0 \models \varphi \Leftrightarrow \Diamond \Box \pi$ for some past π , etc.

This was first done using ω -automata which accept regular ω -languages.

Regular ω -languages

Definition 9 An ω -language $L \subseteq \Sigma^{\omega}$ is regular, if it has the form

$$\bigcup_{i} M_i \cdot L_i^{\omega}$$

for some regular $M_i, L_i \subseteq \Sigma^*$.

Proposition 9 All PLTL definable properties are regular.

Proposition 10 A property $L\subseteq \Sigma^\omega$ is regular iff it is accepted by an ω -automaton.

ω -Automata

$$A = \langle Q, \Sigma, \delta, q_0, Acc \rangle$$

 $Q \neq \emptyset$ is a finite set of states, $q_0 \in Q$ is the initial state

 Σ is a finite alphabet (= $\mathcal{P}(\mathbf{L})$ in our case)

 $\delta: Q \times \Sigma \to \mathcal{P}(Q) \setminus \{\emptyset\}$ is a transition function

Acc is an acceptance condition

$$\operatorname{run}_A(\sigma) = \{ r \in Q^\omega : r_0 = q_0 \text{ and } r_{i+1} \in \delta(r_i, \sigma_i) \text{ for all } i \in \omega \}$$

The standard extension of δ to a function of type $Q \times \Sigma^* \to \mathcal{P}(Q) \setminus \{\emptyset\}$:

 $\delta(q,\sigma)$ is the set of the states that are reachable from q upon reading σ .

$$\inf(r) = \{q : r_i = q \text{ for infinitely many } i \in \omega\}$$

Streett automata: $Acc \subseteq \mathcal{P}(Q) \times \mathcal{P}(Q)$; Word $\sigma \in \Sigma^{\omega}$ is accepted, if

$$(\exists r \in \operatorname{run}_A(\sigma))(\forall \langle X, Y \rangle \in Acc)(\inf(r) \cap X \neq \emptyset \to \inf(r) \cap Y \neq \emptyset).$$

Types of automata, depending on $Acc\,$

	Acc	condition for accepting $\sigma \in \Sigma^\omega, \Sigma^*$
automaton		
Mealy	$F \subseteq Q$	$\delta(s_0, \sigma) \cap F \neq \emptyset$
Büchi	$F \subseteq Q$	$(\exists r \in \operatorname{run}_A(\sigma)) \operatorname{inf}(r) \cap F \neq \emptyset$
generalised Büchi	$\mathcal{F} \subseteq \mathcal{P}(Q)$	$(\exists r \in \operatorname{run}_A(\sigma))(\forall F \in \mathcal{F}) \inf(r) \cap F \neq \emptyset$
Müller	$Acc \subseteq \mathcal{P}(Q)$	$(\exists r \in \operatorname{run}_A(\sigma)) \operatorname{inf}(r) \in Acc$
Streett	$Acc \subseteq \mathcal{P}(Q)^2$	$(\exists r \in \operatorname{run}_A(\sigma))(\forall \langle X, Y \rangle \in Acc)$
		$\left (\inf(r) \cap X \neq \emptyset \to \inf(r) \cap Y \neq \emptyset) \right $
parity	$c: Q \to \{1, \dots, n\}$	$(\exists r \in \operatorname{run}_A(\sigma)) \min_{q \in \inf(r)} c(q)$ is even.

Reference: Wolfgang Thomas. Automata on infinite objects. In: *Handbook of Theoretical Computer Science*, *volume B*, pp 133-192. Elsevier, 1990.

Canonical forms for regular properties

Theorem 1

If $L \subseteq \Sigma^{\omega}$ is a regular safety property, then there exists a regular $M \subseteq \Sigma^*$ such that $L = \mathsf{A}(M)$.

Similarly, if L is a regular recurrence property, then $L=\mathsf{P}(M)$ for some regular M.

Every regular property has the form

$$\bigcap_{i} \mathsf{R}(M_i) \cup \mathsf{P}(N_i)$$

for some regular $M_i, N_i \subseteq \Sigma^*$.

Sketch of the proof

Let automaton $A = \langle Q, \Sigma, \delta, q_0, Acc \rangle$ accept L. Let

$$M_q = \{ \sigma \in \Sigma^* : \delta(q_0, \sigma) = q \}$$
 for every $q \in Q$.

For safety L, L = A(M), where

 $M = \bigcup \{M_q : q \text{ occurs in an accepting run for some } \sigma \in L\}.$

For a recurrence L, A can be chosen so that X = Q for all $\langle X, Y \rangle \in Acc$.

Then
$$L = \bigcap_{\langle Q, Y \rangle \in Acc} \mathsf{R}(\cup_{q \in Y} M_q).$$

For a reactivity property L we have

$$L = \bigcap_{\langle X, Y \rangle \in Acc} \mathsf{P}(\overline{\cup_{q \in X} M_q}) \cup \mathsf{R}(\cup_{q \in Y} M_q).$$

Reference: Zohar Manna, Amir Pnueli, The anchored version of the temporal framework. In: LNCS 354, pp. 201-284, 1989.

Canonical forms for *PLTL*-definable properties

Theorem 2

If $L \subseteq \mathcal{P}(\mathbf{L})^{\omega}$ is a PLTL-definable safety property, then there exists a past formula $\pi \in \mathbf{L}$ such that $L = \mathsf{A}(L_{\pi})$, that is, L is defined by $\square \pi$.

Similarly, if L is a recurrence property, then there exists a past π such that $L = R(L_{\pi})$, that is, L is defined by $\square \diamondsuit \pi$.

Every PLTL-definable property is definable by a formula of the form

$$\bigwedge_{i} \Diamond \Box \pi_{i} \Rightarrow \Diamond \Box \pi'_{i}$$

where π_i, π'_i are past formulas.

Proofs by means of the separation theorem: safety

Let $L = L_{\varphi}$.

$$0 \models \varphi \Leftrightarrow \Box \Leftrightarrow (\mathsf{I} \land \varphi) \text{ and } 0 \models \varphi \Leftrightarrow \Leftrightarrow (\mathsf{I} \land \varphi).$$

Let $\bigvee_i \pi_i \wedge \circ \varphi_i$ be a separated equivalent to $\Leftrightarrow (\mathsf{I} \wedge \varphi)$.

We can assume all the φ_i s to be satisfiable.

$$\models_{PLTL} \Box \left(\bigvee_i \pi_i \wedge \circ \varphi_i\right) \Rightarrow \Box \bigvee_i \pi_i$$
, which implies $0 \models \varphi \Rightarrow \Box \bigvee_i \pi_i$.

Using that φ defines a safety property, we prove that

$$0 \models \Box \left(\bigvee_{i} \pi_{i}\right) \Rightarrow \varphi.$$

Let $\sigma, 0 \models \Box \bigvee_i \pi_i$. Then for every $k < \omega$ there is an $i < \omega$ s.t. $\sigma_0 \dots \sigma_k \models \pi_i$. Let $\sigma' \in \mathcal{P}(\mathbf{L})^{\omega}$ and let $\sigma', 0 \models \varphi_i$. Then $\sigma_0 \dots \sigma_k \cdot \sigma'$ is an infinite extension of $\sigma_0 \dots \sigma_k$ and $\sigma_0 \dots \sigma_k \cdot \sigma', k \models \pi_i \wedge \circ \varphi_i$, which implies that

$$\sigma_0 \dots \sigma_k \cdot \sigma', 0 \models \varphi \text{ because } 0 \models \varphi \Leftrightarrow \diamondsuit \left(\bigvee_i \pi_i \wedge \circ \varphi_i\right).$$

Hence every prefix $\sigma_0 \dots \sigma_k$ of a σ that satisfies $\bigvee_i \pi_i$ has an infinite extension which satisfies φ . Since φ defines a safety property, $\sigma, 0 \models \varphi$.

Hence
$$0 \models \Box \left(\bigvee_{i} \pi_{i}\right) \Rightarrow \varphi$$
.

Proofs by means of the separation theorem: recurrence and reactivity

There is no syntactical proof for recurrence that I know.

There is a syntactical proof for reactivity, based on separation. (Guelev, Journal of Logic and Computation, 2008.)

There is an earlier proof for reactivity, by Mark Reynolds, LICS 2000, which is a mix of semantic transformations and application of another variant of separation, which applies to Dedekind-complete time models.

A canonical form for PLTL-definable liveness properties

Theorem 3 A PLTL-definable property is a liveness property iff it is definable by a formula of the form $\diamondsuit\left(\bigvee_i \pi_i \land \circ \varphi_i\right)$ in which φ_i are satisfiable future formulas, π_i are past formulas, and $\bigvee_i \pi_i$ is valid.

Proof: \leftarrow - Direct check. \rightarrow Let φ define the considered liveness property and $\psi = \bigvee_i \pi_i \wedge \circ \varphi_i$ be a separated equivalent to $\Leftrightarrow (\mathsf{I} \wedge \varphi)$. Then for all $\sigma \in \mathcal{P}(\mathbf{L})^\omega$ we have both

$$\sigma, 0 \models \varphi \Leftrightarrow \Diamond \psi \text{ and } \sigma, 0 \models \varphi \Leftrightarrow \Box \psi.$$

Let $\sigma \in \mathcal{P}(\mathbf{L})^*$. Since φ is a liveness property, there exists a $\gamma \in \mathcal{P}(\mathbf{L})^{\omega}$ s. t.

$$\sigma \cdot \gamma, 0 \models \Box \bigg(\bigvee_{i} \pi_{i} \wedge \circ \varphi_{i} \bigg),$$

which entails that $\sigma \models \bigvee_i \pi_i$. \dashv

