
Classification of PLTL-definable properties

and their canonical forms
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PLTL models and ω-languages

Linear models σ : ω → P(L) are ω-words in Σω, where Σ = P(L).

A property = a set of behaviours of a system = an ω-language.

Definition 1 A property L is definable in PLTL if there is a formula ϕ s.t.

L = {σ : σ, 0 |= ϕ}.
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Notation

α ∈ Σ∗ ∪ Σ+, β ∈ Σ∗

β ≺ α ↔ (∃γ ∈ Σω ∪ Σ+)(β · γ = α) − β is a (proper) prefix of α

pref(α) = {β ∈ Σ∗ : β ≺ α}
L ⊆ Σω or L ⊆ Σ∗

pref(L) =
⋃

α∈L

pref(α)

L ⊆ Σ∗

A(L) = {α ∈ Σω : pref(α) ⊆ L}

E(L) = {α ∈ Σω : pref(α) ∩ L 6= ∅}
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More notation

L ⊆ Σ∗

Af (L) = {α ∈ Σ∗ : pref(α) ⊆ L}
Ef (L) = {α ∈ Σ∗ : pref(α) ∩ L 6= ∅}

P(L) = {α ∈ Σω : pref(α) \ L is finite}
R(L) = {α ∈ Σω : pref(α) ∩ L is infinite}

Let L = Σω \ L, resp. Σ∗ \ L, for L ⊆ Σω, resp. L ⊆ Σ∗.

Exercise 1 Prove that E(L) = A(L), Ef (L) = Af (L) and P(L) = R(L) for all

L ⊆ Σ∗.

Exercise 2 (monotonicity of A, E, Af , Ef , R and P) Prove that L ⊆ M ⊆ Σ∗

entails X(L) ⊆ X(M) for X ∈ {A,E, Af , Ef , R, P}.
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Definition of the primitive classes of properties

L ⊆ Σω is a

safety property, if L = A(M) for some M ⊆ Σ∗

guarantee -”- L = E(M) -”-

persistence -”- L = P(M) -”-

recurrence -”- L = R(M) -”-
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On safety properties

α ∈ A(L) means that at no finite step i we observe a0 . . . ai ∈ pref(α) \ L

L - the set of ”good” histories;

α is ”safe”, if all the histories are good, i.e., nothing ”bad” happens.

If π ∈ L is a past formula and σh ∈ P(L)n, σt ∈ P(L)ω, then

σh · σt, |σh| − 1 |= π depends only on σh.

Definition 2 σh |= π stands for ∃σt ∈ P(L)ω such that σh · σt, |σh| − 1 |= π.

Let Lπ denote {σ ∈ P(L)∗ : σ |= π}.

Then 2π defines the safety property A(Lπ).
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The vast majority of practically relevant properties

are safety properties

Liveness is informally regarded as the complement of safety.

Definition 3 L ⊆ Σω is a liveness property, if for every σ ∈ Σ∗ there exists a

σ′ ∈ Σω s.t. σ · σ′ ∈ L, that is

Every finite σ can be extended to a behaviour which has the property L.

Exercise 3 Prove that if L is both a safety and a liveness property, then

L = Σω.

Examlpe 1 2(p ⇒ 3q) - ”every q is followed by a p” - is a liveness property.

A bound on q: ”every q is followed by a p within k steps”: 2(p ⇒ ∨
l≤k

◦lq)

Exercise 4 This property is indeed safety. Write it in the form 2π with a past

π.
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Back to the primitive classes of properties

L ⊆ Σω is a

safety property, if L = A(M) for some M ⊆ Σ∗

guarantee -”- L = E(M) -”-

persistence -”- L = P(M) -”-

recurrence -”- L = R(M) -”-
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A characterization of safety/guarantee properties

Proposition 1 L = A(pref(L)) for safety properties L.

Proof: Let L = A(M). Then pref(L) ⊆ M and A(pref(L)) ⊆ A(M) = L. To

prove L ⊆ A(pref(L)), note that α ∈ L implies pref(α) ⊆ pref(L) by

monotonicity and, consequently α ∈ A(pref(L)). a

Corollary 1 L = E
(
pref(L)

)
for guarantee properties L.
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Closedness under ∪ and ∩
of the safety and guarantee classes

Obviously A(L1) ∩ A(L2) = A(L1 ∩ L2) for all L1, L2 ⊆ Σ∗.

Proposition 2 A(L1) ∪ A(L2) = A(Af (L1) ∪ Af (L2)).

Proof: ⊆: Let i ∈ {1, 2}, α ∈ A(Li). Then β ∈ pref(α) implies β ∈ Af (Li),
whence pref(α) ⊆ Af (Li). Then α ∈ A(Af (Li)) ⊆ A(Af (L1) ∪ Af (L2)).

⊇: Let α ∈ A(Af (L1) ∪ Af (L2)). Then pref(α) ⊆ Af (L1) ∪ Af (L2).

Since pref(α) is infinite, either pref(α)∩Af (L1) or pref(α)∩Af (L2) is infinite.

Let pref(α) ∩ Af (Li) be infinite. Then pref(α) ⊆ Af (Li).

This implies pref(α) ⊆ Li, whence α ∈ A(Li).

Finally A(L1) ∪ A(L2) ⊇ A(Af (L1) ∪ Af (L2)). a
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Closedness of under ∪ and ∩ of the recurrence and

persistence classes

Obviously

R(L) ∪ R(M) = R(L ∪M) and P(L) ∩ P(M) = P(L ∩M)

for all L,M ⊆ Σ∗.

Definition 4

ex(α, L) = {β ∈ L : α ≺ β}
minex(α,L) is the set of the shortest words in ex(α, L)

minex(M, L) =
⋃

α∈M

minex(α,L)

Proposition 3 R(M) ∩ R(L) = R(minex(M, L)) for all M, L ⊆ Σ∗.

Corollary 2 P(M) ∪ P(L) = P
(
minex(M, L)

)
for all M, L ⊆ Σ∗.
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R(M) ∩ R(L) = R(minex(M, L)): Proof

⊇: Let α ∈ R(minex(M, L)), i.e., let pref(α) ∩minex(M,L) be infinite.

Since minex(M,L) ⊆ L, pref(α) ∩ L is infinite too, whence α ∈ R(L).

β1, β2 ∈ pref(α) ∩minex(M, L) implies β1 ¹ β2 or β2 ¹ β1.

Therefore, different β ∈ pref(α) ∩minex(M, L) are the shortest extensions of

different γ ∈ M .

Hence, since pref(α) ∩minex(M, L) is infinite, pref(α) ∩M is infinite too, i.e.,

α ∈ R(M).

⊆: Let α ∈ R(M) ∩ R(L). Then pref(α) ∩M and pref(α) ∩ L are infinite.

Choose an arbitrary n < ω.

There exist β ∈ pref(α) ∩M and γ ∈ pref(α) ∩ L s.t. n < |β|, and β ≺ γ.

Given such β and γ, ex(β, L) 6= ∅ and β ≺ δ ¹ γ for some δ ∈ minex(β, L).

Furthermore δ ∈ pref(α) ∩minex(M,L) and |δ|> n.

Hence pref(α) ∩minex(M, L) is infinite, i.e. α ∈ R(minex(M, L)).
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Inclusions between the classes

Exercise 5 Prove that E(L) = R(Ef (L)) and A(L) = P(Af (L)) for all

L ⊆ Σ∗.

Proposition 4 A(L) = R(Af (L)) for all L ⊆ Σ∗.

Proof: ⊇: Let α ∈ R(Af (L)). Then pref(α) ∩ Af (L) is infinite.

Choose an arbitrary β ∈ pref(α).

Then there is a γ ∈ pref(α) ∩ Af (L) s.t. β ≺ γ, which implies β ∈ L. Hence

pref(α) ⊆ L, i.e., α ∈ A(L).

⊆: Let α ∈ A(L), that is, pref(α) ⊆ L. Then pref(α) ⊆ Af (L).

Since pref(α) is infinite, this entails α ∈ R(Af (L)). a

Corollary 3 E(L) = P(Ef (L)) for all L ⊆ Σ∗.
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Summary

Complementation between the classes

The complement of a safety property is a guarantee property and vice versa.

The complement of a recurrence property is a persistence property and vice

versa.

Closedness under ∪ and ∩
The classes of safety, guarantee, persistence and recurrence properties are all

closed under ∪ and ∩.

Inclusion of the classes

A safety property is both a recurrence and a persistence property as well.

A guarantee property is similarly both a recurrence and a persistence property.
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The compound classes

Definition 5 L is an obligation property, if L is a combination of safety and

guarantee properties by ∪ and ∩.

Proposition 5 Every obligation property has the form
⋂
i

A(Li) ∪ E(Mi) for

some Li,Mi ⊆ Σ∗.

Corollary 4 Every obligation property is both a recurrence and a persistence

property.

Definition 6 L is a reactivity property, if L is a combination of recurrence and

persisitence properties by ∪ and ∩.

Proposition 6 Every reactivity property has the form
⋂
i

R(Li) ∪ P(Mi) for

some Li,Mi ⊆ Σ∗.
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The safety-liveness classification

Definition 7 Recall that L ⊆ Σω is a liveness property, if pref(L) = Σ∗.

Proposition 7 Every X ⊆ Σω has the form S ∩ L for some safety property S

and some liveness property L.

Proof: We put S = A(pref(X)) and L = X ∪ E
(
pref(X)

)
.

Let β ∈ Σ∗. If β ∈ pref(X), then β has an infinite extension in X. Otherwise,

all the infinite extensions of β are in E(pref(X)). Hence L is a liveness

property.

Obviously S ∩ E(pref(X)) = ∅. Hence S ∩ L = S ∩X. Now S ∩ L = X

follows from X ⊆ S = A(pref(X)), which is established by a direct check. a

Definition 8 A(pref(X)) is called the safety closure of X. E(pref(X)) is

called the liveness extension of X.
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Back to PLTL

Until now nothing depended on the expressibility of properties in PLTL

Let Σ = P(L).

Recall that Lπ = {σ ∈ Σ∗ : σ |= π} for past π. Then

Af (Lπ) = L¯π and Ef (Lπ) = L3−π.

(Af and Ef are about proper prefixes; 3− and ¯ have the strict interpretation.)

Let

Lϕ = {σ ∈ Σω : σ, 0 |= ϕ}

for ϕ with future temporal operators. Then

A(Lπ) = L2π, E(Lπ) = L3π, R(Lπ) = L23π and P(Lπ) = L32π

Proof: Exercise. a
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Complementation and closedness under ∩ and ∪
in terms of PLTL

Af (Lπ) = L¯π and Ef (Lπ) = L3−π

A(Lπ) = L2π, E(Lπ) = L3π, R(Lπ) = L23π and P(Lπ) = L32π

Complementation:

A(Lπ) = E(Lπ), P(Lπ) = R(Lπ) ¬2π ⇔ 3¬π, ¬32π ⇔ 23¬π

Closedness under ∩ and ∪:

for safety properties

A(Lπ1) ∩ A(Lπ2) = A(Lπ1 ∩ Lπ2) 2π1 ∧2π2 ⇔ 2(π1 ∧ π2)

A(Lπ1) ∪ A(Lπ2) = A(Af (Lπ1) ∪ Af (Lπ2)) 2π1 ∨2π2 ⇔ 2(¯π1 ∨¯π2)

for guarantee properties

E(Lπ1) ∪ E(Lπ2) = E(Lπ1 ∪ Lπ2) 3π1 ∨3π2 ⇔ 3(π1 ∨ π2)

E(Lπ1) ∩ E(Lπ2) = E(Ef (Lπ1) ∩ Ef (Lπ2)) 3π1 ∧3π2 ⇔ 3(3−π1 ∧3−π2)
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Closedness under ∩ and ∪ for recurrence and persistence

Proposition 8 minex(Lπ1 , Lπ2) = {σ ∈ Σ∗ : σ |= π2 ∧ (¬π2Sπ1)}

Closedness under ∩ and ∪:

for recurrence properties

R(Lπ1) ∪ R(Lπ2) = R(Lπ1 ∪ Lπ2) 23π1 ∨23π2 ⇔ 23(π1 ∨ π2)

R(Lπ1) ∩ R(Lπ2) = R(minex(Lπ1 , Lπ2)) 23π1 ∧23π2 ⇔
23(π1 ∧ (¬π1Sπ2))

for persistence properties

P(Lπ1) ∩ P(Lπ2) = P(Lπ1 ∩ Lπ2) 32π1 ∧32π2 ⇔ 32(π1 ∧ π2)

P(Lπ1) ∪ P(Lπ2) = P
(
minex(Lπ1 , Lπ2)

)
32π1 ∨32π2 ⇔
32(π1 ∨ ¬(π1S¬π2))
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Inclusions of the classes in terms of PLTL

A(Lπ) = P(Af (Lπ)) = R(Af (Lπ)) 2π ⇔ 32¯π, 2π ⇔ 23¯π

E(Lπ) = P(Ef (Lπ)) = R(Ef (Lπ)) 3π ⇔ 323−π, 3π ⇔ 233−π
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Canonical forms for PLTL-definable properties: overview

So far we know that if π is past, then

A(Lπ) = L2π, and therefore 2π defines a safety property

P(Lπ) = L32π, and therefore 23π defines a persistence property, etc.

It can be shown that, regardless of the syntax of ϕ,

if ϕ defines a safety property, then 0 |= ϕ ⇔ 2π for some past π

if ϕ defines a persistence property, then 0 |= ϕ ⇔ 32π for some past π,

etc.

This was first done using ω-automata which accept regular ω-languages.
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Regular ω-languages

Definition 9 An ω-language L ⊆ Σω is regular, if it has the form
⋃

i

Mi · Lω
i

for some regular Mi, Li ⊆ Σ∗.

Proposition 9 All PLTL definable properties are regular.

Proposition 10 A property L ⊆ Σω is regular iff it is accepted by an

ω-automaton.
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ω-Automata

A = 〈Q, Σ, δ, q0,Acc〉
Q 6= ∅ is a finite set of states, q0 ∈ Q is the initial state

Σ is a finite alphabet (= P(L) in our case)

δ : Q× Σ → P(Q) \ {∅} is a transition function

Acc is an acceptance condition

runA(σ) = {r ∈ Qω : r0 = q0 and ri+1 ∈ δ(ri, σi) for all i ∈ ω}
The standard extension of δ to a function of type Q× Σ∗ → P(Q) \ {∅}:

δ(q, σ) is the set of the states that are reachable from q upon reading σ.

inf(r) = {q : ri = q for infinitely many i ∈ ω}
Streett automata: Acc ⊆ P(Q)× P(Q); Word σ ∈ Σω is accepted, if

(∃r ∈ runA(σ))(∀〈X, Y 〉 ∈ Acc)(inf(r) ∩X 6= ∅ → inf(r) ∩ Y 6= ∅).
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Types of automata, depending on Acc

. . . -

automaton

Acc condition for accepting σ ∈ Σω, Σ∗

Mealy F ⊆ Q δ(s0, σ) ∩ F 6= ∅

Büchi
F ⊆ Q (∃r ∈ runA(σ)) inf(r) ∩ F 6= ∅

generalised

Büchi

F ⊆ P(Q) (∃r ∈ runA(σ))(∀F ∈ F) inf(r) ∩ F 6= ∅

Müller Acc ⊆ P(Q) (∃r ∈ runA(σ)) inf(r) ∈ Acc

Streett Acc ⊆ P(Q)2 (∃r ∈ runA(σ))(∀〈X,Y 〉 ∈ Acc)

(inf(r) ∩X 6= ∅ → inf(r) ∩ Y 6= ∅)
parity c : Q → {1, . . . , n} (∃r ∈ runA(σ)) min

q∈inf(r)
c(q) is even.

Reference: Wolfgang Thomas. Automata on infinite objects. In: Handbook of

Theoretical Computer Science, volume B, pp 133-192. Elsevier, 1990.
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Canonical forms for regular properties

Theorem 1

If L ⊆ Σω is a regular safety property, then there exists a regular M ⊆ Σ∗ such

that L = A(M).

Similarly, if L is a regular recurrence property, then L = P(M) for some regular

M .

Every regular property has the form
⋂

i

R(Mi) ∪ P(Ni)

for some regular Mi, Ni ⊆ Σ∗.
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Sketch of the proof

Let automaton A = 〈Q, Σ, δ, q0,Acc〉 accept L. Let

Mq = {σ ∈ Σ∗ : δ(q0, σ) = q} for every q ∈ Q.

For safety L, L = A(M), where

M =
⋃
{Mq : q occurs in an accepting run for some σ ∈ L}.

For a recurrence L, A can be chosen so that X = Q for all 〈X, Y 〉 ∈ Acc.

Then L =
⋂

〈Q,Y 〉∈Acc

R(∪q∈Y Mq).

For a reactivity property L we have

L =
⋂

〈X,Y 〉∈Acc

P(∪q∈XMq) ∪ R(∪q∈Y Mq).

Reference: Zohar Manna, Amir Pnueli, The anchored version of the temporal

framework. In: LNCS 354, pp. 201-284, 1989.
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Canonical forms for PLTL-definable properties

Theorem 2

If L ⊆ P(L)ω is a PLTL-definable safety property, then there exists a past

formula π ∈ L such that L = A(Lπ), that is, L is defined by 2π.

Similarly, if L is a recurrence property, then there exists a past π such that

L = R(Lπ), that is, L is defined by 23π.

Every PLTL-definable property is definable by a formula of the form
∧

i

32πi ⇒ 32π′i

where πi, π
′
i are past formulas.
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Proofs by means of the separation theorem: safety

Let L = Lϕ.

0 |= ϕ ⇔ 23−(I ∧ ϕ) and 0 |= ϕ ⇔ 33−(I ∧ ϕ).

Let
∨
i

πi ∧ ◦ϕi be a separated equivalent to 3−(I ∧ ϕ).

We can assume all the ϕis to be satisfiable.

|=PLTL 2

(∨

i

πi ∧ ◦ϕi

)
⇒ 2

∨

i

πi, which implies 0 |= ϕ ⇒ 2
∨

i

πi.

Using that ϕ defines a safety property, we prove that

0 |= 2

(∨

i

πi

)
⇒ ϕ.
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Let σ, 0 |= 2
∨
i

πi. Then for every k < ω there is an i < ω s.t. σ0 . . . σk |= πi.

Let σ′ ∈ P(L)ω and let σ′, 0 |= ϕi. Then σ0 . . . σk · σ′ is an infinite extension

of σ0 . . . σk and σ0 . . . σk · σ′, k |= πi ∧ ◦ϕi, which implies that

σ0 . . . σk · σ′, 0 |= ϕ because 0 |= ϕ ⇔ 3

(∨

i

πi ∧ ◦ϕi

)
.

Hence every prefix σ0 . . . σk of a σ that satisfies
∨
i

πi has an infinite extension

which satisfies ϕ. Since ϕ defines a safety property, σ, 0 |= ϕ.

Hence 0 |= 2

(∨
i

πi

)
⇒ ϕ.
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Proofs by means of the separation theorem: recurrence and

reactivity

There is no syntactical proof for recurrence that I know.

There is a syntactical proof for reactivity, based on separation. (Guelev,

Journal of Logic and Computation, 2008.)

There is an earlier proof for reactivity, by Mark Reynolds, LICS 2000, which is

a mix of semantic transformations and application of another variant of

separation, which applies to Dedekind-complete time models.
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A canonical form for PLTL-definable liveness properties

Theorem 3 A PLTL-definable property is a liveness property iff it is definable

by a formula of the form 3

(∨
i

πi ∧ ◦ϕi

)
in which ϕi are satisfiable future

formulas, πi are past formulas, and
∨
i

πi is valid.

Proof: ← - Direct check. → Let ϕ define the considered liveness property and

ψ =
∨
i

πi ∧ ◦ϕi be a separated equivalent to 3−(I ∧ ϕ). Then for all σ ∈ P(L)ω

we have both

σ, 0 |= ϕ ⇔ 3ψ and σ, 0 |= ϕ ⇔ 2ψ.

Let σ ∈ P(L)∗. Since ϕ is a liveness property, there exists a γ ∈ P(L)ω s. t.

σ · γ, 0 |= 2

( ∨

i

πi ∧ ◦ϕi

)
,

which entails that σ |= ∨
i

πi. a
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The End
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