Introduction to Temporal Logic

Mads Dam
Theoretical Computer Science
KTH, 2009

About the Course

- Lecturers
- Content
- Examination
- Lecture material
- Registration

What is TL About?

Formalised properties of time-varying systems

- What time-varying systems?
- What properties?
- Algorithms
- Proof systems

This is why we think formalisation pays off

Some form of tractability
Our tasks:

- Show we can do useful stuff with this
- Understand and compare set-ups for expressiveness and tractability

What Time-Varying Systems?

- Continuous real-valued functions?
- Discrete program traces?
- Execution trees?
- Automata?
- Markov chains?
- Java code?
- Distributed processes?
- Real time? Or implicit time?
- Histories or future?
- Finite or infinite?
- Linear or branching? Tree shaped? Graph shaped?

Default Choice - Traces/Paths/Runs

Time is discrete
Starts at 0
Goes on forever

Time points decorated by events

Or conditions/truth assignments/valuations

How Are Traces Produced?

- Maximal runs through a transition system/automaton
- (Q,R,Q Q_{0})
- Q set of states
$-\mathrm{R} \subseteq \mathrm{Q} \times \mathrm{Q}$ transition relation, total
$-\mathrm{Q}_{0} \subseteq \mathrm{Q}$ initial states
- Traces/runs w = $q_{0} R q_{1} R \ldots R q_{n-1} R q_{n} R \ldots$

In practice:

- Take your favourite programming/modeling language
- Equip it with discrete transition semantics
- Determine what should be observable events / conditions / execution states
- (Add looping at the end to get traces to be infinite)
- Off you go

Example - Concurrent While Language

Commands:
Cmd ::= skip | x := e | Cmd;Cmd | if e Cmd Cmd | while e Cmd | await e Cmd | spawn Cmd | Cmd || Cmd

Stores $\sigma \in \mathrm{X} \mapsto_{\text {fin }} \mathrm{V} \in \mathrm{Val}$

Configurations c ::= $\sigma \mid<$ Cmd, $\sigma>$

Example II

Transitions:

- $\sigma->\sigma$ (.. just to get looping ...)
- <skip, $\sigma>->\sigma$
- <x:=e, $\sigma>$-> $\sigma[x \mapsto\|e\| \sigma]$
- $<\mathrm{Cmd}_{1} ; \mathrm{Cmd}_{2}, \sigma>-><\mathrm{Cmd}_{1} ; \mathrm{Cmd}_{2}, \sigma^{\prime}>$
if $\left\langle\mathrm{Cmd}_{1}, \sigma>-><\mathrm{Cmd}_{1}{ }^{\prime}, \sigma^{\prime}>\right.$
- $\left\langle\mathrm{Cmd}_{1} ; \mathrm{Cmd}_{2}, \sigma\right\rangle->\left\langle\mathrm{Cmd}_{2}, \sigma^{\prime}\right\rangle$
if <Cmd ${ }_{1}, \sigma>->\sigma$ '
- (... remaining rules in class ...)

Conditions: Boolean/FO expressions in $\operatorname{dom}\left(\sigma_{1}\right)$
Traces: $\mathrm{c}_{0}->\mathrm{c}_{1}->\mathrm{c}_{2}->\ldots-\mathrm{c}_{\mathrm{n}-1}->\mathrm{c}_{\mathrm{n}}->\ldots$

Linear Time Temporal Logic, LTL

Logic of temporal relations between events in a trace:

- Invariably (along this execution) $x \leq y+z$
- Sometime (along this execution) an acknowledgement packet is sent
- If thread T is infinitely often enabled (along this execution) then T is eventually executed

By no means the last word:

- Last packet received along channel a (along this execution) had the shape (b,c,d) (past)
- For all executions (from this state) there is an execution along which a reply is eventually sent (branching)
- No matter what choice B made in the past, it would necessarily come to pass that $\psi \quad$ (historical necessity)

LTL

Syntax:

$\phi::=\mathrm{P}|\neg \phi| \phi \wedge \phi|\mathrm{F} \phi| \mathrm{G} \phi|\phi \cup \phi| \mathrm{O} \phi$

Intuitive semantics:

- P: Propositional constant P holds now/at the current time instant
- $\mathrm{F} \phi$: At some future time instant ϕ is true
- G ϕ : For all future time instants ϕ is true
- $\phi U \psi$: ϕ is true until ψ becomes true
- $O \phi$: ϕ is true at the next time instant

Pictorially

$F \phi:$

$\mathrm{G} \phi:$

| ϕ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\phi \cup \psi:$

$\mathrm{O} \phi:$

Semantics

Run w
Satisfaction relation $w \vDash \phi$
Assume valuation v
$v(P)$: Set of states for which P holds
w^{k} : k'th suffix of w
$w \vDash P$ iff $w(0) \in v(P)$
$\mathrm{w} \vDash \neg \phi$ iff not $w \vDash \phi$
$w \vDash \phi \wedge \psi$ iff $w \vDash \phi$ and $w \vDash \psi$
$w \vDash F \phi$ iff exists $k \geq 0 . w^{k} \vDash \phi$
$w \vDash G \phi$ iff for all $k \geq 0 . w^{k} \vDash \phi$
$w \vDash \phi \cup \psi$ iff exists $k \geq 0 . w^{k} \vDash \psi$ and for all $i: 0 \leq i<k . w^{i} \vDash \phi$
$w \vDash O \phi$ iff $w^{1} \vDash \phi$

For transition system $\mathrm{T}=\left(\mathrm{Q}, \mathrm{R}, \mathrm{Q}_{0}\right)$ and all valuations v :
$\mathrm{T} \vDash \phi$ iff for all runs w of $\mathrm{T}, \mathrm{w} \vDash \phi$

Some LTL Formulas

- $\phi \vee \psi=\neg(\neg \phi \wedge \neg \psi)$
- $\phi \rightarrow \psi=\neg \phi \vee \psi$
- $\mathrm{F} \phi=\operatorname{true} U \phi$
- $\mathrm{G} \phi=\neg \mathrm{F} \neg \phi$
- $\phi \vee \psi=[] \psi \vee(\psi \cup(\phi \wedge \psi))$
- (sometimes called "release")
- FG ϕ
- ϕ holds from some point forever $=\phi$ holds almost always
- GF ϕ
- ϕ holds infinitely often (i.o.)
- GF $\phi \rightarrow$ GF ψ
- if ϕ holds infinitely often then so does ψ
- Is this the same as $\mathrm{G}(\mathrm{F} \phi \rightarrow \mathrm{F} \psi)$? As $\mathrm{GF}(\phi \rightarrow \psi)$? As $\mathrm{FG} \neg \phi \vee$ $\mathrm{GF}(\phi \wedge \mathrm{F} \psi)$?

Spring Example

Conditions: extended, malfunction

Sample paths:

- $q_{0} q_{1} q_{0} q_{1} q_{2} q_{2} q_{2} \ldots$
- $q_{0} q_{1} q_{2} q_{2} q_{2} \ldots$
- $q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots$

Satisfaction by Single Path

For r:
extended?
Oextended?
OOextended?
Fextended?
Gextended?
FGextended?
FGmalfunction?

GFextended?
extended U malfunction?
(\neg extended) \cup extended?
(Fextended) U malfunction?
($F \neg$ extended) U malfunction?
G(\neg extended \rightarrow Oextended)

Satisfaction by Transition System

For T :
extended?
Oextended?
OOextended?
Fextended?
Gextended?
FGextended?
FGmalfunction?

GFextended? extended U malfunction? (\neg extended) U extended?
(Fextended) U malfunction?
($\mathrm{F} \neg$ extended) U malfunction?
G $(\neg$ extended \rightarrow Oextended $)$

Example: Mutex

Assume there are 2 processes, P_{I} and P_{r} State assertions:

- tryCS ${ }_{\mathrm{i}}$: Process i is trying to enter critical section E.g. tryCS: $\mathrm{pc}_{1}=\mathrm{I}_{4}$
- inCS ${ }_{i}$: Process i is inside its critical section
E.g. inCS, $\mathrm{pc}_{1}=\mathrm{I}_{5} \vee \mathrm{pc}_{1}=\mathrm{I}_{6}$

Mutual exclusion:

$$
\mathrm{G}\left(\neg\left(\mathrm{inCS}_{\mathrm{l}} \wedge \mathrm{inCS}_{\mathrm{r}}\right)\right)
$$

Responsiveness:

$$
\mathrm{G}\left(\operatorname{tryCS}_{\mathrm{i}} \rightarrow \mathrm{~F} \text { inCS }{ }_{\mathrm{i}}\right)
$$

Process keeps trying until access is granted:

$$
\mathrm{G}\left(\text { tryCS }_{\mathrm{i}} \rightarrow\left(\left(\text { tryCS }_{\mathrm{i}} \cup \mathrm{inCS}_{\mathrm{i}}\right) \vee \text { GtryCS }_{\mathrm{i}}\right)\right)
$$

Example: Fairness

States: Pairs (q, α)
α label of last transition taken, so

$$
\frac{\mathrm{q} \rightarrow \rightarrow^{\alpha} \mathrm{q}^{\prime}}{(\mathrm{q}, \beta) \rightarrow^{\alpha}\left(\mathrm{q}^{\prime}, \alpha\right)}
$$

Σ : Finite set of labels partitioned into subsets P
P: "(finite) set of labels of some process"

State assertions:

- en n_{P} : Some transition labelled $\alpha \in \mathrm{P}$ is enabled
i.e. $(q, \beta) \in v\left(e n_{\alpha}\right)$ iff $\exists q^{\prime} . q^{\alpha} q^{\prime}$
- exec. : Label of last executed transition is in P
i.e. $(q, \alpha) \in v\left(e x e c_{p}\right)$ iff $\alpha \in P$

Note: $\mathrm{en}_{\mathrm{P}} \leftrightarrow \vee_{\alpha \in \mathrm{P}} \mathrm{en}_{\{\alpha\}}$ and $\mathrm{exec}_{\mathrm{P}} \leftrightarrow \vee_{\alpha \in \mathrm{P}} \mathrm{exec}_{\{\alpha\}}$

Fairness Conditions

Weak transition fairness:

$$
\wedge_{\alpha \in \Sigma} \neg \mathrm{FG}\left(\mathrm{en}_{\{\alpha\}} \wedge \neg \mathrm{exec}_{\{\alpha\}}\right)
$$

Or equivalently

$$
\wedge_{\alpha \in \Sigma}\left(\mathrm{FGen}_{\{\alpha\}} \rightarrow \text { GFexec }_{\{\alpha\}}\right)
$$

Strong transition fairness:

$$
\wedge_{\alpha \in \Sigma}\left(\text { GFen }_{\{\alpha\}} \rightarrow \text { GFexec }_{\{\alpha\}}\right)
$$

Weak process fairness:

$$
\wedge_{\mathrm{P}} \neg \mathrm{FG}\left(\mathrm{en}_{\mathrm{P}} \wedge \neg \mathrm{exec}_{\mathrm{P}}\right)
$$

Strong process fairness:

$$
\wedge_{\mathrm{P}}\left(\text { GFen }_{\mathrm{P}} \rightarrow \text { GFexec }_{\mathrm{P}}\right)
$$

(Many other variants are possible)

Exercise: Figure out which implications hold between these four fairness conditions. Draw a picture

Branching Time Logic

Sets of paths?

Or computation tree?

Computation Tree Logic - CTL

Syntax:

$\phi::=P|\neg \phi| \phi \wedge \phi|A F \phi| A G \phi|A(\phi \cup \phi)| A X \phi$

Formulas hold of states, not paths

A: Path quantifier, along all paths from this state

So:

- AF ϕ : Along all paths, at some future time instant ϕ is true
- AG ϕ : Along all paths, for all future time instants ϕ is true
- A($\phi \cup \psi)$: Along all paths, ϕ is true until ψ becomes true
- $A X \phi: \phi$ is true for all next states

Note: CTL is closed under negation so also express dual modalities
EF, EG, EU, EX (E is existential path quantifier). Check!

CTL, Semantics

Valuation v: $\mathrm{P} \mapsto \mathrm{Q}{ }^{\prime} \subseteq \mathrm{Q}$ as before
$q \vDash P$ iff $q \in v(P)$
$\mathrm{q} \vDash \neg \phi$ iff not $\mathrm{q} \vDash \phi$
$\mathrm{q} \vDash \phi \wedge \psi$ iff $\mathrm{q} \vDash \phi$ and $\mathrm{q} \vDash \psi$
$q \vDash A F \phi$ iff for all w such that $w(0)=q$ exists $k \in \mathbb{N}$ such that $w(k) \vDash \phi$
$q \vDash A G \phi$ iff for all w such that $w(0)=q$, for all $k \in \mathbb{N}, w(k) \vDash \phi$
$q \vDash A(\phi \cup \psi)$ iff for all w such that $w(0)=q$, exists $k \in \mathbb{N}$ such that $w(k) \vDash$ ψ and for all i: $0 \leq i<k . w(i) \vDash \phi$
$q \vDash A X \phi$ iff for all w such that $w(0)=q, w(1) \vDash \phi$
(iff for all q' such that $q \rightarrow q^{\prime}, q^{\prime}=\phi$)
For transition system $\mathrm{T}=\left(\mathrm{Q}, \mathrm{R}, \mathrm{Q}_{0}\right)$:
$\mathrm{T} \vDash \phi$ iff for all $\mathrm{q}_{0} \in \mathrm{Q}_{0}, \mathrm{q}_{0} \vDash \phi$

CTL - LTL: Brief Comparison

LTL in branching time framework:

- $\phi \mapsto \mathrm{A} \phi$ (ϕ to hold for all paths)

CTL \nsubseteq LTL: EF ϕ not expressible in LTL

LTL \nsubseteq CTL: FGP not expressible in CTL

CTL*: Extension of CTL with free alternation A, F, G, U, X
Advantages and disadvantages:

- LTL often "more natural"
- Satisfiability: LTL: PSPACE complete, CTL: DEXPTIME complete
- Model checking: LTL: PSPACE complete, CTL: In P

Adding Past

Add to LTL pasttime versions of the LTL future time modalities
Previously, some time in the past, always in the past, since
Theorem (Gabbay's separation theorem): Every formula in LTL + past is equivalent to a boolean combination of "pure pasttime" or "pure future time" formulas
Note: This applies regardless of whether time starts at 0 or at $-\infty$
Theorem (Elimination of past): Pasttime modalities do not add expressive power to LTL
But:
Theorem (Succinctness, LMS'02): LTL + past is exponentially more succinct than LTL

Expressive Completeness

LTL is easily embedded into FOL + linear order

FOL + linear order: First-order logic with 0 and <, unary predicate symbols, and interpreted over ω

Theorem (Kamp'68, GPSS'80, Expressive completeness) If L is definable in FOL + linear order then L is definable in LTL

So Are We Done?

What about "every even state"

P	$\neg P$	P	P		$\neg P \quad P \quad P$	
0	1	2	3	\ldots		

Theorem: A"every even state"P is not expressible in LTL, CTL, CTL*

One solution:

- LTL formulas determine infinite words
- So: skip temporal logic (... temporarily ...) and use automata on infinite words instead

Automata Over Finite Words

Finite state automaton $A=(\mathrm{Q}, \Sigma, \Delta, \mathrm{I}, \mathrm{F})$:

- Q: Finite set of states
- Σ : Finite alphabet
- $\Delta \subseteq \mathrm{Q} \times \Sigma \times \mathrm{Q}$: Transition relation

Write $\mathrm{q} \rightarrow^{\mathrm{a}} \mathrm{q}^{\prime}$ for $\Delta\left(\mathrm{q}, \mathrm{a}, \mathrm{q}^{\prime}\right)$ as before
$-I \subseteq Q:$ Start states

- $\mathrm{F} \subseteq \mathrm{Q}$: Accepting states

Word $a_{1} a_{2} \ldots a_{n}$ is accepted, if there is sequence

$$
\mathrm{q}_{0} \rightarrow^{\mathrm{a}_{1}} \mathrm{q}_{1} \rightarrow^{\mathrm{a} 2} \ldots \rightarrow^{\mathrm{a}_{\mathrm{n}}} \mathrm{q}_{\mathrm{n}}
$$

such that $q_{0} \in I$ and $q_{n} \in F$

Automata Over Infinite Words

Letters $\mathrm{a} \in \Sigma$ can represent events, conditions, states

Infinite word $w \in \Sigma^{\omega}$:

- Function w: $\omega \rightarrow \Sigma$
- Equivalently: Infinite sequence $w=a_{0} a_{1} a_{2} \ldots a_{n} \ldots$
- Terminology: ω-words
- ω-words are traces / paths / runs

Buchi automaton: Finite state automaton, but on infinite words
ω-word w is accepted if accepting state visited infinitely often
ω-language $L \subseteq \Sigma^{\omega}$ is Buchi definable if L is the set of ω words accepted by some B. A.

Example

Which infinite words are accepted?

- ababab ... (= $\left.(a b)^{\circ}\right)$?
- aaaaaa... (= $\left.\mathrm{a}^{\omega}\right)$?
- bbbbbb... (= b ${ }^{\omega}$) ?
- aaabbbbb... (= aaab ${ }^{\omega}$) ?
- ababbabbbabbbba... ?

Nondeterminism

- What is the language accepted by this automaton?
- What is the corresponding LTL property if $b=i n C S$ and $\mathrm{a}=\neg \mathrm{b}$?

Another Example

Letters represent propositions

Example: GFinCS, $a=$ inCS, $b=\neg$ inCS

Yet More Examples

- $\mathrm{a}=\mathrm{inCS}_{1} \wedge \mathrm{inCS}_{2}$
- $\mathrm{b}=\neg \mathrm{a}$
- c = true

- Property: $G \neg$ a

Or just:

- Property: $\mathrm{G}(\mathrm{d} \rightarrow \mathrm{Fe})$
- Idea:
- q_{0}; Have seen $\neg \mathrm{d} \vee \mathrm{e}$
- q_{1} : Saw d, now wait for e

Even More...

Property: $\mathrm{G}(\mathrm{a} \rightarrow(\mathrm{bUc}))$
Idea:

- q_{0} : Body of G immediately ok
$-\mathrm{q}_{1}$: Awaiting c

Property: $\neg \mathrm{G}(\mathrm{a} \rightarrow(\mathrm{bUc}))=\mathrm{F}(\mathrm{a} \wedge \neg(\mathrm{bUc}))$
Idea:

- \quad (bUc): b becomes false some time without c having become true first
- q_{0} : Waiting ...
$-q_{1}$: Have seen a with b and $\neg c$
- q_{2} : Committing ...

Generally

Theorem: If L is $L T L$ definable then L is the set of words accepted by some B.A.
Why? The set of B.A. recognizable languages is closed under all LTL connectives

Hard case is complementation [Safra'88]

BTW then we can do LTL model checking:

- Represent model as B.A. A 1
- Represent LTL spec as A_{2}
- Emptiness of $L(A)=\{w \mid A$ accepts $w\}$ is polynomially decidable
- $L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$ iff $L\left(A_{1}\right) \cap \neg L\left(A_{2}\right)$ is empty
- Example: The SPIN model checker

Aside: Deterministic Buchi Automata

Consider $\phi=$ FGa where $\Sigma=\{a, b\}$

Suppose A recognizes ϕ

A deterministic
A reaches accepting state on some input $a^{\text {n1 }}$
And on $\mathrm{a}^{\mathrm{n} 1} \mathrm{ba}{ }^{\mathrm{n} 2}$
And on $a^{n 1} b a^{n 2} b a^{n 3}$
And on $a^{n 1} b a^{n 2} b a^{n 3} b \ldots b . . . b$...
So: Nondeterministic Buchi automata strictly more
expressive than deterministic ones
And: Deterministic B. A. not closed under complement

Temporal Equations

Idea: Extend LTL with solutions of equations

- $\underline{F} \phi=\phi \vee O \underline{F}$
- $\underline{G} \phi=\phi \wedge$ OG ϕ
- $\phi \cup \psi=\psi \vee(\phi \wedge O(\phi \cup \psi))$
- Even $\phi=\phi \wedge$ OOEven ϕ

Complication: Solutions are not unique

Exercise: How many solutions (as sets L of traces/words w) can you find to the above four equations?

The Linear Time μ-calculus, L_{μ}

Formula $\phi(X)$ in free formula variable X determines function $\phi: L \mapsto \phi(\mathrm{~L})$

If $\phi(X)$ is monotone in X then $\|\phi\|$ is monotone as function on $\left(\left\{L \mid L \subseteq \Sigma^{\omega}\right\}, \subseteq\right)$

Theorem (Tarski's fixed point theorem): A monotone function on a complete lattice has a complete lattice of fixed points

So, for each monotone $\phi(X)$ can find a largest and a smallest solution of equation $X=\phi(X)$

L_{μ}

Notation:

- $\mu \mathrm{X} . \phi(\mathrm{X})$: Least solution of $\mathrm{X}=\phi(\mathrm{X})$
- $\quad v \mathrm{X} . \phi(\mathrm{X})$: Greatest solution of $\mathrm{X}=\phi(\mathrm{X})$

Note:

- $\mathrm{F} \phi=\mu \mathrm{X} . \phi \vee \mathrm{OX}$
- $G \phi=\nu X \cdot \phi \wedge O X$
- $\phi \cup \psi=\mu X . \psi \vee(\phi \wedge O X)$
- Even $\phi=\nu X . \phi \wedge$ OOX

Exercise: Exchange μ and v in the 4 examples above. What property is defined?
Hint: Which is the largest, resp. smallest L that solves the equation?

Expressiveness of L_{μ}

Theorem: An ω-language is definable in L_{μ} iff it is recognized by a B.A.
Direct proof:
\Leftarrow : Represent B.A. in L_{μ} (easy)
\Rightarrow : Show that B.A. definable languages are closed under all L_{μ} connectives. Hard part is μ, cf. (Dam, 92)

But many alternative characterizations exist

Alternative Characterizations

S1S: Monadic second order logic of successor
$\exists X(0 \in X \wedge \forall y \forall z(\operatorname{succ}(y, z) \rightarrow(y \in X \leftrightarrow \neg z \in X))$
$\wedge \forall y(y \in X \rightarrow a(y)))$
(all even symbols are a's)

QPLTL: LTL with propositional quantification

$$
\exists X((X \wedge G(X \leftrightarrow O \neg X) \wedge G(x \rightarrow a))
$$

ω-regular expressions

$$
a((a \cup b) a)^{\omega}
$$

Theorem (Buchi et al): An ω-language is recognized by a B.A. iff it is definable in one of L_{μ}, S1S, QPLTL, or as an ω-regular expression

What About Branching Time?

More difficult. Starting point are binary trees:

Theorem (Rabin): S2S (the monadic second-order theory of two successors) is decidable

For more general structures use e.g.

- Alternating tree automata
- Modal Imu-calculus
- Parity games

Much activity in the past 10 years
But this is outside the scope of this course

