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Abstract—We investigate the use of gossip protocols to detect
threshold crossings of network-wide aggregates. Aggregates are
computed from local device variables using functions such as
SUM, AVERAGE, COUNT, MAX and MIN. The process of
aggregation and detection is performed using a standard gos-
siping scheme. A key design element is to let nodes dynamically
adjust their neighbor interaction rates according to the distance
between the nodes’ local estimate of the global aggregate and the
threshold itself. We show that this allows considerable savings in
communication overhead. In particular, the overhead becomes
negligible when the aggregate is sufficiently far above or far
below the threshold. We present evaluation results from simu-
lation studies regarding protocol efficiency, quality of threshold
detection, scalability, and controllability.

I. INTRODUCTION

Threshold crossing alerts (TCAs) indicate to a management
system that a monitored management variable, for instance a
MIB object, has crossed a preconfigured value—the thresh-
old. Variables that are monitored for TCAs typically contain
performance-related data, such as link utilization or packet
drop rates. In order to avoid repeated TCAs in case the
monitored variable oscillates, a threshold T g+ is typically
accompanied by a second threshold T g− called the hysteresis
threshold, set to a lower value. The hysteresis threshold must
be crossed, in order to clear the TCA and allow a new TCA
to be triggered when the threshold is crossed again (see fig.
1).

Fig. 1. Threshold Crossing Alerts: an alert is raised when a monitored
variable crosses a given threshold T g+ from below. The alert is cleared when
the variable crosses a lower threshold T g− from above.

In this paper, the management variables monitored for TCAs
are network-wide aggregates. They are computed from local
device variables across the network (or across a network
domain). Examples of such aggregates include the average link
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utilization, the current resource consumption by p2p traffic, or
the total number of VoIP flows in the network.

Traditionally, aggregating local variables from individual
devices has been performed in a centralized way, whereby an
application, running on a management station, first retrieves
local variables from agents in network elements and then
aggregates the values on the management station. To avoid the
well-known drawbacks of this approach—poor scalability and
fault tolerance—this work follows a distributed approach to
detecting threshold crossings. We assume that each network
device participates in the monitoring activity by running a
management process, either internally or on an external, asso-
ciated device. These management processes communicate via
an overlay network for the purpose of monitoring for threshold
crossings. Throughout the paper, we refer to this overlay as the
network graph. A node in this graph represents a management
process together with its associated network device.

In order to monitor an aggregate for threshold crossings,
a mechanism is needed that estimates the current value of
the aggregate. Such a mechanism is usually realized in two
ways: (1) using a tree-based protocol whereby the aggregate
is computed with the help of a spanning tree whose nodes are
the above-mentioned management processes (e.g.,[1], [2]), and
(2) using a gossip protocol whereby each node on the network
graph maintains an estimate of the global aggregate by means
of periodically exchanging state information with its neighbors
(e.g., [3], [4], [5]).

This paper focuses on gossip protocols for detecting thresh-
old crossings of aggregates. While some tree-based protocols
have been proposed for this purpose (e.g., [6], [7]), no work
on gossip protocols has been reported to date, and this paper
thus presents the first results.

A key idea is to dynamically throttle neighborhood interac-
tion rates for nodes whose local estimate of the aggregate is far
from the threshold. This allows a threshold detection protocol
to run with a very low overhead in typical situations where the
global aggregate is far from the threshold. On the other hand,
when the global aggregate approaches the monitored threshold,
the protocol temporarily adjusts to higher rates needed to
obtain good accuracy in TCA generation.

For many network management applications such a behavior
is highly beneficial. For example, when the monitored quantity
reflects some kind of critical network property, focusing man-
agement traffic to the point of entering a critical state allows



to save management overhead both under normal operation
(when the aggregate is far from the threshold), as well as once
the critical state has been entered—i.e. when the threshold has
been crossed. Also, when threshold crossing is a rare event, it
allows a management application to statistically multiplex the
monitoring of multiple uncorrelated TCAs.

The difficulty is to engineer such message rate adapta-
tion schemes while obtaining good performance, i.e. short
detection times, and low probabilities for false positives and
false negatives. In this paper we examine the design space
for gossip-based protocols augmented with a rate adaptation
scheme using push-synopses, a gossip protocol for computing
aggregates introduced by Kempe et al. [3], as the baseline.

This research is part of our agenda of performing a com-
parative assessment of tree-based vs. gossip-based approaches
to threshold detection (and, more generally, to real-time mon-
itoring). We have recently developed a tree-based protocol for
threshold detection with the same design goals as the protocols
given in this paper [7]. While we briefly describe our current
understanding on how the tree-based and gossip protocols
compare in terms of performance, a thorough comparison is
planned for future work.

The paper is organized as follows. Section II presents
related work. Section III presents the objective for and the
design space of a gossip-based protocol for detecting threshold
crossing. Section IV presents protocols selected from this
design space. Section V presents the results of the experi-
mental evaluation of some of the protocols. Finally, section
VI discusses the results and concludes the work.

II. RELATED WORK

The traditional approach to the detection of threshold
crossings of network-wide aggregates is using an aggregation
protocol to continuously compute the aggregate on a node and
to evaluate on that node the threshold conditions every time the
aggregate is updated. Several results, both centralized ([8], [9],
[10], [11]) and decentralized ([7], [6]), that improve on this
approach have been published recently. The common goal is
achieving efficiency by reducing protocol overhead, compared
to the traditional approach, when the aggregate is far from the
threshold. In general, local thresholds define conditions under
which nodes refrain from sending updates of their local states,
thereby reducing the protocol overhead.

In a recent work [7], we proposed the protocol TCA-GAP
which augments a spanning tree-based aggregation protocol
with a rate adaptation scheme for TCA generation. The key
idea is to recursively assign local thresholds to subtrees, and to
introduce a scheme for reassignment of these local thresholds
once the threshold conditions are violated.

In this paper, we use gossip protocols for detecting threshold
crossings of network-wide aggregates. Gossip protocols, also
known as epidemic protocols, are protocols that generally
execute in periodic rounds. They can be characterized by asyn-
chronous and often randomized communication among nodes
in a network ([12], [3]). Originally, they have been proposed
for disseminating information in large dynamic environments

[12], and, more recently, they have been applied to various
other tasks, including the construction of robust overlays ([13],
[14]), estimation of network size [15], and computation of
network-wide aggregates ([3], [5], [4], [16], [17]).

III. OBJECTIVE AND PROTOCOL DESIGN

We are considering a network graph G(t) = (V(t), E(t))
with nodes i ∈ V(t) and edges/links e ∈ E(t) ⊆ V(t) ×
V(t). To each node i is associated a local state variable (or
local variable) xi(t) ≥ 0 that represents the quantity whose
aggregate is being subjected to threshold monitoring. The local
variables are time-invariant if each xi(t) is a constant function.
We assume that local variables are non-negative real-valued
quantities.

A. Design Goals

The objective is to engineer a protocol that raises an alert on
a distinguished node, referred to as the root node, whenever
the aggregate Fixi(t) crosses a given global threshold T g+

from below, and to clear the alert when the aggregate crosses
a corresponding lower threshold T g− from above (see fig.
1). F denotes a generic aggregation function. Aggregation
functions we consider in this context include AVERAGE,
SUM, COUNT, MAX and MIN.

The main design criteria are:
• Efficiency: The communication and processing overhead

of the protocol should be small, specifically during pe-
riods where the aggregate is far (above or below) the
threshold.

• Quality of detection: The protocol should achieve short
delays for detecting threshold crossings, and false posi-
tives and false negatives should be rare.

• Scalability: The protocol should allow for efficient op-
eration with high quality of detection in large networks
with at least thousands of nodes.

• Controllability: The protocol should allow for controlling
the tradeoff between quality of detection and protocol
overhead through management parameters that can be
adjusted at runtime.

B. The Design Space

The key idea in adapting a gossip-based aggregation proto-
col to threshold detection is to dynamically adjust the message
rate of a node (the rate at which a node communicates updates
of its local state) according to the distance of its local estimate
of the aggregate from the current threshold. To develop this
idea three largely orthogonal problems need to be resolved:

1) What is the underlying mechanism for dynamic rate
adjustment?
N) No rate adjustment. This is used as a reference point

to which the refined protocols are compared.
R) Rate reduction. Rates for nodes with aggregates far

from the threshold are reduced, but not completely
eliminated. This ensures that the estimate of the
aggregate on all nodes is updated, at least with the
reduced rate.
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S) Rate suppression. Nodes with aggregates far from
the threshold completely refrain from sending up-
dates to their neighbors. Care must be taken to
ensure that nodes, that have stopped interaction
with their neighbors in this way, would not cause
estimation errors in the aggregate that could result
in false positives or false negatives.

2) How are TCA’s triggered and cleared? Triggering TCA’s
on the basis of the local aggregates only is likely to need
some amount of filtering to obtain acceptable levels of
false positives and false negatives. The problem is to
eliminate local bias: For example, a sudden jump in the
local variable can produce, for a short amount of time,
a significant error in the local estimate of the aggregate.
This problem is common to gossip protocols used for
continuous monitoring. We consider three options:
N) No filtering. This is again used as a reference point.
L) Local filtering. The local aggregates are low-pass

filtered before being used for TCA generation. In
this paper we use a simple policy of requiring the
local aggregate to have crossed the threshold for a
minimum number waitmax rounds before a TCA
is generated. A large value of waitmax has the
effect of reducing the probability of false positives
while causing threshold crossings of short duration
to remain undetected and resulting in an increase in
the detection delay.

G) Global snapshot. The gossip mechanism is used as
a trigger for a global snapshot computation. That
is, the local detection of a threshold crossing at the
root node triggers a computation of the snapshot of
the monitored aggregate using a distributed polling
algorithm that gives an accurate estimate of the
aggregate in a short period. An Echo algorithm [18],
[19] can be used for this purpose. Alarms are raised
or cleared based on the accurate estimate that the
snapshot provides, hence eliminating false positives.
The local detection of a threshold crossing can be
done though local filtering discussed above. In this
case, a smaller value of waitmax, compared to the
simple local filtering, can be chosen since false
positive is not an issue any more. Note that the per-
round overhead of the baseline protocols is typically
similar to that of Echo: in either case two messages
traverse each link, one in either direction.

3) How is the duality of upper and lower threshold cross-
ings exploited? The assumption of a distinguished root
node allows a relatively simple solution to this problem,
using TCA’s detected at the root node to trigger mode
switches, and using the gossiping infrastructure to prop-
agate these mode switches throughout the network. We
consider two alternatives:
N) No mode switching. Only threshold crossings in

one direction is considered. We include this option
mainly for presentation purposes.

M) Mode switching. The main concern is to ensure
global agreement of modes (i.e., which hysteresis
threshold to monitor) at all times since inconsistent
mode assignment in the presence of rate adaptation
can cause local estimates to diverge arbitrarily from
the true aggregates.

We use the following naming convention for the protocols.
A protocol name is composed of three characters. The first
character represents the rate adjustment mechanism used (N,R
or S), the second the triggering mechanism (N,L or G) and the
third mode switching (N or M). The character ‘x’ is used as
a wildcard.

Altogether we identify a design space of 18 protocols,
ranging from a baseline design NNN using a baseline protocol
for detecting threshold crossings in one direction without
filtering, to the most complex design SGM, implementing
a rate suppression scheme using global snapshots for TCA
generation, with mode switching. Table I lists all protocols
with mode switching.

TABLE I
LIST OF PROTOCOLS WITH MODE SWITCHING.

In the following section we explore some of this design
space, concentrating on three points in this space which we
have found most interesting, namely the protocols NNM, RxM
and SxM.

IV. PROTOCOL SCHEMES

In this section we detail the protocol design space that was
presented in the previous section, in terms of pseudocode.
The protocols are presented for the aggregation function AV-
ERAGE. An adaptation of the aggregation function to SUM,
COUNT and linear synopses is straightforward [3]. For time-
invariant input, MAX/MIN is straightforward, and for time-
varying input MAX/MIN can be approximated by a log-sum-
exp approximation (e.g., MAXxi log (

∑n
i=1 e

xi)), which then
can be computed in a straightforward way using the protocols.

We give the protocols for a partially asynchronous network
model whereby nodes communicate with each other via mes-
sage passing and where communication and processing delays
are bounded. All nodes execute the protocol in rounds using
local, non-synchronized clocks. We assume that there is one
root node in the network (possibly elected by some (leader
election) algorithm [18]), and that all nodes know T g+ and
T g−.
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A. The Baseline Protocol

The baseline protocol shown in fig. 2 is a straightforward
extension of ‘push-synopses’ [3]. The push-synopses protocol
is an instance of a general iterative update scheme which
has been examined by Tsistiklis et al. (cf. [20], [21]). Push-
synopses results from the baseline protocol by dropping the
initialization of the sign variable and dropping step 3 in each
iteration. The choice of push-synopses is not critical: other
baseline protocols can be used without substantially affecting
the conclusions of this paper.

In [21], it is shown that for a time-invariant matrix A =
(αi,j) (see step 4 of fig. 2), mild assumptions on A suffice
to ensure polynomial-time convergence of push-synopses to
the average, and [3] shows logarithmic convergence of push-
synopses for the special case of complete graphs and uniform
gossip (i.e., αi,i = αi,j = 0.5 for j 6= i randomly chosen).

round 0 {
1) si=xi,0; wi=1; sign=1
2) send (si, wi) to self

}
round r > 0 {

1) let {(s∗l , w∗l )} be all pairs sent to i
during round r

2) si=(xi,r − xi,r−1) +
∑
l s
∗
l ; wi=

∑
l w

∗
l

3) if root() && sign ∗ si

wi
> sign∗th(sign)

{ raise_alert(sign); sign *= −1 }
4) choose shares αi,j ≥ 0 for all nodes j

such that
∑
j αi,j = 1

5) for all j|αi,j 6= 0 send (αi,j ∗ si, αi,j ∗ wi)
to j

}

Fig. 2. The baseline protocols NNM: pseudocode for node i

The protocol works as follows. In round 0, nodes initialize
their local state variables as shown in fig. 2. Then, for all
later rounds nodes aggregate shares they have received in the
previous round to update their state. Step 3 is executed only
by the root node which raises an alert and switches mode if
a local threshold crossing event is determined to have taken
place. Finally, in steps 4 and 5, a node partitions its local state
into shares and transmits these shares to its neighbors and
itself. The choice of coefficients αi,j is subject to the network
constraint that αi,j 6= 0 only if there is a link between nodes i
and j. Note that we generally assume the network adjacency
matrix to be reflexive, i.e. all nodes are linked to themselves.

The variable sign determines the current mode: 1 means
that there is no alert and the protocol would raise alert when
the aggregate grows above the threshold while -1 means that
there is an alert and the protocol clears the alert when the
aggregate falls below the threshold. The function th(sign)
returns T g+ or T g− according to the value of sign . The
function root() returns true on the distinguished node and
false everywhere else.

B. Rate Reduction

The efficiency of the baseline protocol of fig. 2 can be
improved by reducing the message rate for nodes whose local
estimate of the aggregate is far from the threshold. This can
be done in a variety of ways. Here we propose, as an example,
a binary approach: when the local estimate of the aggregate
(of the node itself, or one of its neighbors) is sufficiently close
to the threshold, messages are transmitted at the normal rate
(i.e. each round). When the local estimates are far from the
threshold, the message rate is reduced by a constant factor
delaymax. Whether the aggregate is far from the threshold T
or not (the predicate close in fig. 3 below) is determined by
a factor k ∈ [0, 1] such that, for positive values of sign , the
local estimate a is close to T , if a ≥ k ∗ T , and for negative
values of sign , if a ≤ T/k.

round 0 {
1) si = xi,0; wi = 1; delay = delaymax; sign =

1
2) send (si, wi) to self

}
round r > 0 {

1) let {(s∗l , w∗l )} be all pairs sent to i
during round r

2) si = (xi,r − xi,r−1) +
∑
l s
∗
l ; wi =

∑
l w

∗
l

3) if root() && tc( si

wi
,th(sign),sign)

raise_alert(sign)
4) if ∃l.close(s∗l /w∗l ,th(sign),sign)

delay = 0 else delay--
5) choose shares αi,j ≥ 0 for all nodes

j such that
∑
j αi,j = 1

6) if delay==0 then {for all j|αi,j 6= 0
send (αi,j ∗ si, αi,j ∗ wi) to j;
delay=delaymax}
else send (si, wi) to self.

}

Fig. 3. RxN: Rate reduction, positive mode. Pseudocode for node i

Fig 3 presents the pseudocode for this protocol. The
function tc implements an alert triggering mechanism (e.g.,
unfiltered local (N), filtered local (L), or global snapshot (G):
see section III-B) for the given estimate of the aggregate ( si

wi
),

threshold (th(sign)) and sign (sign).
In step 4) of fig 3, operation at the high rate is determined

not by the ratio si/wi but by s∗l /w
∗
l ‘closest’ to the threshold.

The consequence of this is that all neighbors of a node with an
estimate close to the aggregate operate at high rates, allowing
a faster convergence of the aggregate.

Note that the protocol of fig. 3 is given for the case of
positive signs only. In the next section we consider the problem
of propagating sign changes to allow dual mode operation.

C. Dual Mode Operation

Global agreement about the current mode must exist among
all nodes in the network for dual mode operation to produce
good performance. For instance, for the rate reduction protocol
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fig. 3, if the root node has positive sign, an increase in the local
estimate of some other node i should cause the node to run at a
higher rate so that this increase would be propagated faster to
the root. However, if the sign of node i is negative, it causes
i to operate at the slower rate, delaying the detection of a
possible threshold crossing. Several strategies are possible for
mode switching. The design choice made in this paper is to
let threshold crossings detected at the root node control mode
switching throughout the network. In fig. 4 we highlight the
changes needed to be made to the rate-reduction protocol in
fig. 3 to implement mode switching. ... represents part of
the pseudocode of fig. 3 that does not change.

round 0 {
1) ...; switched = 0
2) ... (si, wi, sign) ...

}
round r > 0 {

1) ... (s∗l , w
∗
l , sign

∗
l ) ... triples ...

2) ...; tsgn = sgn(sign∗l ,sign)
3) if root() && tc( si

wi
,th(sign),sign)

{ raise_alert(sign); sign *= −1;
switched = 1 }
if not(root()) && tsgn 6= sign
{ sign *= −1; switched = 1 }

4), 5) ...
6) if delay == 0 or switched then ...

(αi,j ∗ si, αi,j ∗ wi, sign) ...
... (si, wi, sign) ...

7) switched = 0
}

Fig. 4. RxM: Rate reduction, dual mode. Pseudocode for node i

The protocol uses the auxiliary function sgn which either
returns 1 or −1 based on the current sign and the sign
variables received from neighbors. If a sign received from
neighbors is different from the current sign then it returns
the sign from neighbors. Otherwise it keeps the current sign
unchanged. Note that a necessary and sufficient condition for
this solution to work correctly under all operating conditions
is that all mode switches initiated by the root are separated
by a minimum of d rounds where d is the diameter of the
network. A simple way of enforcing this condition is by
using local filtering (L) for triggering of the TCAs and using
waitmax > d.

D. Rate Suppression

As discussed in section III-B, a more efficient alternative
to rate reduction is to completely suppress message exchange
for nodes with aggregates that are far from the threshold. Such
a protocol replaces lines 4)–6) in fig. 4 by the corresponding
lines in fig. 5. The main idea is that nodes fully participate
in message exchanges (i.e., become active) only if either their
local estimate of the aggregate is close to the threshold, or the
mode has just switched. Otherwise, they exchange messages
only with those neighbors that are close to the threshold. Note

4) active = close(s∗i /w
∗
i ,th(sign),sign)

5) if active or switched
{ choose αi,j ≥ 0 for all nodes j
such that

∑
j αi,j = 1 }

else
{ choose αi,j ≥ 0 whenever j = self
or close(s∗j/w

∗
j,th(sign),sign), and

let αi,j = 0 otherwise }
6) for all j|αi,j 6= 0 send

(αi,jsi, αi,jwi, sign) to j

Fig. 5. SxM: The rate suppression protocol with dual mode. Pseudocode for
node i

that, similar to the RxM protocol, this allows activeness (i.e.,
the property that nodes do not suppress update messages) to
spread faster to nodes that are not active, allowing them to
participate in the computation of the aggregate, hence allowing
for a faster convergence of the aggregate.

V. EVALUATION

We have evaluated key points in the design space outlined
above through simulation using SIMPSON [22], a discrete
event simulator that allows us to simulate message exchanges
over large network topologies and message processing on the
network nodes. (The key reason for choosing SIMPSON in
this study over one of the popular network simulators like
NS2 has been its suitability for simulating large networks.)
Here, we present simulation results from various scenarios
where we evaluate the efficiency, the quality of threshold
detection, scalability with respect to the number of nodes and
the controllability of the protocols. All simulation studies for
this paper have been performed using real traces or derivatives
of real traces to simulate the local variables.

A. Simulation setup and evaluation scenarios

1) Evaluation metrics: We evaluate the protocols using the
following metrics. First, we measure the protocol overhead as
the average number of messages processed/sec/node (Note that
this value is fixed for baseline NNx protocols and depends only
on the overlay graph and the protocol round rate). Second,
we evaluate the quality of threshold crossing detection by
measuring the detection delay and accuracy of detection. The
detection delay is measured as the difference between the
time the protocol reports a crossing and the time the actual
crossing occurs, as explained below. The accuracy of detection
is measured by computing the fractions of false positives
(alerts raised by the protocol without no corresponding actual
alerts occurring) and false negatives (cases where the protocols
fail to raise alerts when actual crossings have occurred). In
graphs illustrating the measurement results, 95% confidence
intervals are given wherever appropriate.

2) Local variables: In all scenarios, a local variable rep-
resents the number of HTTP flows that enter the network
at a specific router, and the aggregate of those variables
represents the average number of such flows in the network.
We simulate the behavior of the local variables using packet
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traces captured at the University of Twente [23]. The first trace,
which we call the UT trace, has been created as follows. We
sampled every second the number of HTTP flows from those
original traces, which produced traces that give the evolution
of the number of HTTP flows over time. Then, we divided
the new traces into segments of 150sec each. From those
segments, we constructed traces of 1500sec for each node in
the simulation, by randomly selecting and concatenating ten
of those segments. Across all traces, the average value of the
local variables is about 45 flows, and the standard deviation
of the change between two consecutive samples is about 3.4
flows.

The second trace, which we call Periodic UT trace, is
obtained by adding a sinusoidal bias to the UT trace wi(t) on
a node i as wi(t)∗ = int

(
wi(t) + 23 ∗

(
1 + sin( 2πt

30 −
π
2 )
))

where int() returns the integer component of its argument. In
our simulations, we use the UT trace to study the behavior of
the protocols in scenarios where no threshold crossing occurs,
while we use the Periodic UT trace to induce multiple, clearly
defined threshold crossings.

3) Overlay topology: The topologies used for the network
graphs in our simulations are generated by GoCast [14],
a gossip protocol that builds topologies with bidirectional
edges and small diameters. The protocol allows setting the
(target) connectivity of the graph. Unless stated otherwise, the
topology used in the simulations has 654 nodes.(This number
is chosen so that our results here are directly comparable with
our earlier work on threshold detection [7]). All topologies are
generated with a target connectivity of 5, which, for the 654
node topology we use, produces an average internode distance
of 4.3 hops and a diameter of 7 hops in the graph.

4) Other Simulation Parameters: We run the simulations
with the following default parameters unless stated otherwise:
• Aggregation function: AVERAGE
• Maximum message rate: 4 msg/sec per link.
• Protocol parameter: k=0.9
• Processing overhead: 1ms/message
• Network delay across links of the graph: 5ms
• Length of a simulation run: 1500sec, with an initialization

period of 10sec
• Threshold values: T g+ is set at 1.05 times the average

value of the aggregate and T g− at the average value of
the aggregate.

• waitmax=5 for triggering through local filtering and
waitmax=2 for triggering through global snapshot.

The above values are set based on experience with our testbed
[24], internet measurements, and the need for a sufficient num-
ber of measurement events to obtain statistically significant
simulation results.

B. Protocol efficiency

In this scenario, we assess the efficiency of the SGM
and NNM protocols by measuring the protocol overhead
in a scenario where several threshold crossings occur. We
run the protocols on the 654-node network graph where the
local variables change according to Periodic UT trace. The

simulation is run for 45 seconds and fig. 6 shows the trace of
the simulation.

Fig. 6. The protocol overhead over time for the SGM and NNM protocols

Fig. 6 shows the change of the aggregate and the protocol
overhead over time. During the simulation run, three threshold
crossings occur: at around t=8.3sec (upper threshold cross-
ing), t=24sec (lower threshold crossing) and t=38.2sec (upper
threshold crossing). For the baseline NNM protocol, since
no message throttling is employed, the protocol overhead is
constant (at around 20msg/sec/node). For the SGM protocol,
around the time of each threshold crossing, (e.g., between
t=7sec to t=10sec) we observe a peak in protocol overhead,
as the number of nodes sending messages increases.

We also observe spikes in the SGM protocol when the
aggregate crosses the threshold, which are attributed to the
overhead of the Echo algorithm. The heights of the spikes
from the peaks are approximately equal to that of the peaks
themselves, confirming our assessment that the overhead of
Echo and the baseline gossip protocol is comparable.

From the above observations, we conclude that the protocol
overhead is low whenever the aggregate is far from the
threshold while it is highest during the period shortly before
a threshold is crossed and for short period after. Third, since
a baseline protocol would always send out messages at the
highest rate, the protocol overhead of the SGM protocol during
peak periods is equal to the overhead of a baseline protocol.

We have achieved a very similar result for the SLM pro-
tocol. The main difference is that SLM does not exhibit the
spikes since it does not use global snapshots.

C. Quality of detection: Latency and accuracy

In this scenario we study the delays for detecting threshold
crossings by SGM, SLM and the baseline NNM protocol. We
simulate the protocols on the 654-nodes topology with the
periodic UT trace, resulting in 100 (50 upward and 50 down-
ward) threshold crossings. The resulting delay distributions are
shown in fig. 7.

The figure shows that, for this particular scenario, NNM
detects the threshold crossings in between -1 and 0.7secs,
SGM in between 0.3 and 1.1 seconds and SLM in between
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Fig. 7. Cumulative distribution of the detection
delays for NNM, SLM and SGM protocols.

Fig. 8. Protocol overhead and detection delay
for the SGM protocol in function of network
size.

Fig. 9. k controls the tradeoff between pro-
tocol overhead and detection delay in the SGM
protocol.

0.8 and 1.7secs. The shape of this distribution depends on
the dynamics of the local variables, the network size and the
topology of the network graph.

For this and other experiments in this paper, we are able
to unambiguously associate detected threshold crossings to
actual threshold crossings (and hence measure the delay) by
considering only TCA’s occurring within a short (i.e., 2sec)
interval of the actual threshold crossing. The negative detection
delays thus obtained for the case of the NNM protocol reflects
a propensity to false positives for this protocol. In this scenario,
of all alerts raised, 4% were false positives. This number was
as high as 14% for other scenarios in our experiments. On the
other hand, neither SGM nor SLM exhibited false positives in
our experiments. (Indeed, the use of global snapshots makes
it highly unlikely for SGM to raise false positives.) None of
the protocols exhibited false negatives in all scenarios of our
experiments.

D. Scalability

We study the protocols in two scenarios, where we measure
the protocol overhead and the detection delay of threshold
crossings as a function of the network size for the SGM
protocol.

For both scenarios, GoCast is used to generate graphs with
target connectivity of 5 for networks of size 82, 164, 327, 654,
1308, 2626 and 5232. The diameter of the graphs range from
5 (for the 82 node network) to 8 hops (for the 5232 network).

For the first scenario, we use the UT trace to simulate
the behavior of the local variables. For each topology, the
threshold is set at twice the average value of the aggregate
during a run. The result is shown in fig. 8. Each point on
the graph is the outcome of 10 simulation runs of 150sec on
different graphs (of same size and connectivity).

The figure suggests that the protocol overhead, measured
in msg/sec/node, for the specific settings of this scenario, is
largely independent of the network size. Note also that the
observed overhead is about two orders of magnitude lower
than that of the baseline protocol.

In the second scenario, we measure the average detection
delay as a function of the network size. The local variables
are simulated using the periodic UT trace. The result is also
shown in fig. 8.

The figure suggests that the average detection delay of
threshold crossings is largely independent of the system size.
In the general case, for synthetic traces generated by the same
(random) process, if we ignore the time it takes to complete
an Echo, we would expect such a result. (For this scenario,
the completion time of Echo increases by 50ms between the
smallest and largest network.)

From the two scenarios above, we conclude that for the
parameters space investigated, SGM is highly scalable in the
sense that the detection delay and the protocol overhead is
largely independent of system size.

E. Controllability

We next examine the controllability of SGM. As control
parameter, we use k. The average protocol overhead and the
average TCA detection delay is measured as functions of
k. For the scenario, we use the default parameters for the
simulation. The periodic UT trace is used to generate multiple
threshold crossings. The scenario is run for values of k equal
to 0, 0.6, 0.7, 0.8, 0.9, 0.95, and 1. The result is shown in fig.
9.

We observe that up to a certain value of k (around k = 0.9),
the overhead reduces without a major increase in detection
delay. We speculate that the specific value of k for which this
holds depends on the topology and the dynamics of the local
variables. Beyond k = 0.9, the protocol overhead decreases
with an increase in the detection delay until k reaches 1.

VI. DISCUSSION AND CONCLUSION

We have explored the use of gossip-type aggregation pro-
tocols for distributed detection of threshold crossings of ag-
gregates. Gossip protocols iteratively refine a local estimate
of a global aggregate by nearest neighbor interactions. The
key idea in our protocols is to let nodes dynamically adjust
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the protocol rate according to how far their local estimate
of the aggregate is from the threshold. We have identified a
family of protocols, organized according to the rate adjustment
mechanism, the mechanism for triggering threshold crossing
alerts, and whether or not the protocol exploits the symmetry in
TCA detection by implementing a hysteresis-like functionality
(dual modes). Key points in the design space have been
evaluated, by simulation, for efficiency, quality of detection,
scalability, and controllability. The results, at least for the
choice of aggregation function and local variables in our
simulations, are promising: when the aggregate is far from
the threshold the protocol overhead is negligible, and when the
aggregate is close to the threshold the overhead is comparable
with that of the underlying aggregation protocol. We obtained
small detection delays and, for the scenarios considered in this
paper, absence of false positives and false negatives. Regarding
scalability, at least for the scenarios considered in this paper,
we did not observe any significant dependence of detection
delay on system size. Finally, we have identified a protocol
parameter that allows to control the tradeoff between overhead
and detection delay.

In [7], we have performed a similar evaluation of the
performance of TCA-GAP, a tree-based protocol for detecting
threshold crossings. Preliminary comparison of the gossip-
based protocols presented here with TCA-GAP suggests that
tree-based protocols are more efficient (with up to an order of
magnitude lesser overhead) while gossip-based protocols have
smaller detection delays (up to 50% of TCA-GAP) that are
less dependent on the system size. We plan to investigate this
further.

A formal analysis of the convergence properties of our
protocols is currently underway and will be reported at a later
stage.

This paper considers static networks only. Adaptations of
gossip-based aggregation to dynamic networks have been
considered by several authors [16], [5], [4]. The modifications
needed to handle dynamic networks appear largely orthogonal
to the ideas put forward here. Whether that is really so remains,
however, to be seen.
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