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Abstract

Inline reference monitoring is a powerful technique to enforce secu-

rity policies on untrusted programs. The security-by-contract paradigm

proposed by the EU FP6 S3MS project uses policies, monitoring, and

monitor inlining to secure third-party applications running on mobile

devices. The focus of this paper is on multi-threaded Java bytecode.

An important consideration is that inlining should interfere with the

client program only when mandated by the security policy. In a multi-

threaded setting, however, this requirement turns out to be problem-

atic. Generally, inliners use locks to control access to shared resources

such as an embedded monitor state. This will interfere with application
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program non-determinism due to Java’s relaxed memory consistency

model, and rule out the transparency property, that all policy-adherent

behaviour of an application program is preserved under inlining. In its

place we propose a notion of strong conservativity, to formalise the

property that the inliner can terminate the client program only when

the policy is about to be violated. An example inlining algorithm is

given and proved to be strongly conservative. Finally, benchmarks are

given for four example applications studied in the S3MS project.

Keywords: Security-by-contract; Runtime monitoring; Monitor inlining.

1 Introduction

Program monitoring is a well-established and efficient approach to prevent

potentially misbehaving software clients from causing harm, for instance

by violating system integrity properties, or by accessing data to which the

client is not entitled. Potentially dangerous actions by a client program are

intercepted and routed to a policy decision point (pdp) in order to determine

whether the actions should be allowed to proceed or not. In turn, these

decisions are routed to a policy enforcement point (pep), responsible for

ensuring that only policy-compliant actions are executed.

The Security of Software and Services for Mobile Systems (S3MS) project

has investigated the use of such program monitors for ensuring the security

of communicating mobile applications. This paper focuses on one of the

key scientific results of the S3MS project: the design and implementation of

inlined reference monitors in multithreaded Java.

The idea of monitor inlining is to push policy decision and enforcement

functionality into the client programs themselves, by embedding a security

state into the client program, and using code rewriting to ensure this em-
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bedded state is correctly queried and updated at the appropriate points.

When applicable, such an approach has a number of advantages:

• Overhead for marshalling and demarshalling policy information be-

tween the various decision and enforcement points in the system is

eliminated.

• All information needed for policy enforcement is directly available to

the pdp and the pep.

• Extensions to the trusted computing base (tcb) needed for policy en-

forcement are localized to the client code.

• By proving the inliner correct, in the sense that it enforces the policy

correctly, and that it interferes with program execution only when

necessary, the need for extensions (trust) can to a large extent be

eliminated.

The starting point for much previous work on monitor inlining has been se-

curity automata in the style of Schneider [20]. The PoET/PSLang toolset by

Erlingsson [22] implements monitor inlining for Java. That work represents

security automata directly in terms of Java code snippets, making it difficult

to formally prove correctness properties of the approach. As an alternative

we propose to use a dedicated policy specification language ConSpec [2],

similar to PSLang, but more constrained in order to allow for a decidable

containment problem. The ConSpec language, in particular, is designed to

monitor only accesses to some specific API, determined by the application

program under consideration.

Formal correctness of inlining for the case of sequential bytecode has

been examined in [1] for Java, and in [23] for .NET. In particular, [1] shows
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how to generate bytecode level specification annotations under rather mod-

est assumptions on the inliner, by fixing control points immediately before

and after each method call at which the embedded state must be correctly

updated.

Other recent work on monitoring and monitor inlining includes work

on edit automata [3, 14, 13], security automata that go beyond pure mon-

itoring, as truncations of the event stream, to allow also event insertions,

for instance to recover gracefully from policy violations. Type-based ap-

proaches for security policy enforcement have been considered by a number

of authors, e.g. [21, 24, 4, 9]. Directly related to the work reported here is

the type-based Mobile system due to Hamlen et al [11]. The Mobile system

uses a simple library extension to Java bytecode to help managing updates

to the security state. The use of linear types allows a type system to localize

security-relevant actions to objects that have been suitably unpacked, and

the type system can then use this property to check for policy compliance.

Our contribution is to propose correctness criteria for monitor inlining

in the case of multi-threaded bytecode programs, and to formally prove cor-

rectness for an example inliner. In particular we address the implications of

relaxed memory consistency models in intermediate bytecode languages such

as JVML and MSIL. This turns out to be non-trivial, since locks introduced

by the inliner to control access to shared resources such as the embedded

security state will in general interfere with application program nondeter-

minism, and rule out the transparency property [13], that all policy-adherent

behaviour of an application program is preserved under inlining. In its place

we propose a notion of strong conservativity, to formalise the property that

any complete trace of an inlined program is either a policy-compliant com-

plete trace of the uninlined program, or else it is the truncation of a trace
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of the uninlined program at the point of policy violation.

The paper is structured as follows. In section 2 we survey the S3MS

project context, and briefly introduce the ConSpec language. In section 3

we present those parts of a model for multi-threaded Java bytecode execu-

tion needed to understand the rest of the paper, in particular the concepts

of legal execution and observable trace, and we discuss the treatment of

API calls. Section 4 briefly introduces security automata, to pin down the

key concept of policy compliance. Section 5 present the main results of the

paper: Correctness criteria, example inliner, and the correctness proof. Sec-

tion 6 gives benchmark results for 4 sample mobile applications, and section

7 concludes.

2 Security by Contract

The key objective of the S3MS project [19] is the creation of a framework and

technological solutions for trusted deployment and execution of communi-

cating mobile applications in heterogeneous environments. A contract-based

security mechanism lies at the core of the framework [7, 5] .

Application contracts specify the security behaviour of mobile applica-

tions, and can be matched with device policies specifying acceptable be-

haviour of applications on the device.

This section provides a brief summary of the security-by-contract (SxC)

paradigm developed in the S3MS project. We start by analyzing the require-

ments for a security architecture for mobile applications and services, and

go on to discuss how the SxC paradigm fulfills these requirements. Then we

discuss how monitor inlining fits in this picture, and we show that the con-

tribution of this paper – provably correct monitor inlining for multithreaded

Java – is an essential ingredient of SxC.
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2.1 Security for mobile applications and services

Mobile phones and personal digital assistants have evolved over the past

years to become general purpose computation platforms. Many of these

devices support downloading third party applications built on either the

.NET Compact Framework, or Java Micro Edition. However, supporting

applications from potentially untrustworthy sources comes with a serious

risk: malicious or buggy applications on a phone can lead to denial of service,

loss of money, leaking of confidential information on the device and so forth.

Current devices already provide certain countermeasures against these

threats, with support for sandboxing and code signing. The key idea is that

unsigned code is severely limited in what it can do on the device, i.e. it runs

in a strict sandbox. Code that is signed by a trusted party can break out

of the sandbox. The device has a keystore that contains the public keys of

trusted parties.

This security model has a number of drawbacks. First, it is not flexible:

applications either run in a restricted sandbox, or have full power. Many

interesting types of applications can not run in a sandbox. Examples of case

studies considered in the S3MS project include:

• multiplayer games, where communication between the players and/or

a game server is essential,

• a traffic jam reporter, that interacts with the GPS device and that

sends and receives traffic information to a server,

• social networking applications, where users can track the location of

their friends on their mobile device.

None of these case studies can function in a sandbox. On the other hand,

the risk of giving full power to third party applications is substantial.
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A second disadvantage of the current security model is that no precise

meaning is associated with the signatures of trusted third parties: a signa-

ture either means that the application comes from the software factory of

the signatory or that the signatory vouches for the software, but there is no

clear definition of what guarantees it offers. Hence, device owners trust the

third party both for (a) appropriate vetting of applications, and (b) using

a suitable notion of good behavior. Incidents [18] show that the current

security model is inappropriate.

2.2 Application contracts and policies

The SxC paradigm addresses the shortcomings of the current mobile device

security model.

A key ingredient is the notion of an application security contract. Such

a contract specifies the security behavior of the application. Technically,

a contract is a security automaton in the sense of Schneider [20], and it

specifies an upper bound on the security-relevant behavior of the application:

the sequences of security-relevant events that an application can generate

are all in the language accepted by the security automaton.

Mobile devices are equipped with a security policy, a security automaton

that specifies the behavior that is considered acceptable by the device owner.

The key task of the S3MS device run-time environment is to ensure that all

applications will comply with the device security policy. To achieve this, the

run-time can make use of the contract associated with the application (if it

has one), and of a variety of policy enforcement technologies:

• monitor inlining, a program rewriting technique to ensure that a pro-

gram complies with a given policy,

• contract-policy matching [16], the process of checking whether the se-
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curity behaviour specified in a contract is a subset of the allowed se-

curity behaviour specified in a policy,

• explicit run-time monitoring for compliance with policies.

All these enforcement technologies can run on-device. Some of them (match-

ing and inlining) can also be provided as a web service that the device can

call during the installation of an application on the device.

An application contract is a statement about the behavior of an appli-

cation, and there is no a-priori guarantee that this statement is correct.

Testing and static analysis can be used at development time to increase

confidence in the contract. In addition, monitor inlining of the contract at

development time can provide strong assurance of compliance.

If the device makes security decisions based on the contract (for instance

when it uses contract-policy matching), then there is a clear need to transfer

these development-time guarantees to the device that will eventually execute

the application. Without a secure transfer of these guarantees, it would be

easy for an attacker to modify either the application or the contract. Two

key technologies support this transfer:

1. A cryptographic signature by a trusted third party can vouch for

application-contract compliance. Note the difference with the use of

signatures in the traditional mobile device security model. In the S3MS

approach, a signature has a clear semantics: the third party claims that

the application respects the supplied contract [8]. Moreover, what is

important is the fact that the decision whether the contract is accept-

able or not remains with the end user.

2. Proof-carrying-code techniques can be used, to enable verification on

the mobile device of contract compliance proofs constructed by the
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program developer. Building on [1], we have realized such a framework

for sequential Java, and a publication about this is in preparation.

2.3 Example: Mobile 2-player Chess

As an example application (also used as a case study in the S3MS project),

we consider a two-player chess game running on the .NET Compact Frame-

work. This application supports standalone games (where two players play

chess against each other on the same device), as well as games between two

devices communicating over either a TCP/IP network, or using text mes-

sages (SMS’s). Chess games rarely take more than 70 moves per player to

finish, and the chess program enforces a hard upper limit of 100 moves. As

a consequence, the program’s contract can specify hard upper bounds on its

use of communication resources. One move either takes 20 bytes of TCP

traffic, or 1 SMS. Hence, one run of the program will consume at most 2000

bytes of network traffic, and send at most 100 SMS messages. The contract

in Fig. 1 specifies this.

The contract is expressed in the ConSpec policy language [2]. A ConSpec

specification tells when and with what arguments an API method may be

invoked. If the specification has one or more constraints on a method, the

method is said to be a security relevant method (srm).

The first part of the contract declares the security state. This security

state contains a definition of all the variables that will be used in the con-

tract, and defines the set of states of the corresponding security automaton.

In the example contract, two state variables maintain (1) the number of

bytes that have already been sent over the network, and (2) the number of

SMS messages that have been sent.

The security state declaration is followed by one or more clauses. Each
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clause represents a rule on a security-relevant API method call. These rules

can be evaluated before the method is called, after the method is called, or

when an exception occurs. A clause definition consists of the ’BEFORE’,

’AFTER’ or ’EXCEPTIONAL’ keyword, the signature of the method on

which the rule is defined, and a list of guard/update blocks. The guard is

a boolean expression that is evaluated when a rule is being processed. The

guard may mention variables from the security state declaration, arguments

given in the method call and the return value (if it is part of an after clause).

If the guard evaluates to true, the corresponding update block is executed.

All state changes that should occur can be incorporated in this update block.

When a guard evaluates to true, the evaluation of the following guards (and

consequently the potential execution of their corresponding update blocks)

is skipped.

If none of the guards evaluates to true, this means the contract does not

allow the method call. For example, in Fig. 1, if the current state of the

policy has bytesSent = 2000, then a call to the Send method with an array

of length 20 will fail all the guards.

Note that the contract can be quite specific about the behavior of the

application. For instance, the example contract specifies explicitly that the

application will only send messages consisting of 20 bytes over the TCP/IP

network. The contract also encodes the upper bound of 100 moves enforced

by the application.

The contract in Fig. 1 matches with a device policy that limits network

traffic to (for instance) 10 kilo bytes. Such a policy is shown in Fig. 2. Note

the differences between the contract and the policy: while both are written

in ConSpec, and both semantically correspond to security automata, the

device policy for instance does not make any assumptions about the size
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of messages sent (beyond the fact that the total size of traffic is limited to

10k).

For the remainder of the paper we focus on inlining of policies in multi-

threaded Java bytecode. But, the techniques are equally applicable to con-

tracts (instead of policies) and to .NET (instead of Java) [6].

3 Program Model

We assume that the reader is familiar with Java bytecode syntax, the Java

Virtual Machine (JVM), and formalisations of the JVM such as [10]. Here,

we only present components of the JVM that are essential for the definitions

in the rest of the text. A few simplifications have been made in the presen-

tation. In particular, to ease notation a little we ignore issues concerning

overloading.

Classes, Types and Methods We use c for class names and m for

method names. To simplify notation, method overloading is not consid-

ered, so a method is uniquely identified by a method reference of the form

M = c.m. A method definition is a pair (I,H) consisting of an instruction

array I and an exception handler array H. We use the notation M [L] = ι

to indicate that IL is defined and equal to the instruction ι. The exception

handler array H is a partial map from integer indices to exception handlers.

An exception handler (b, e, t, c) catches exceptions of type c and its subtypes

raised by instructions in the range [b, e) and transfers control to address t, if

it is the topmost handler that covers the instruction for this exception type.

Configurations and Transitions A configuration C = (h,Λ,Θ) of the

JVM consists of a heap h, a lock map Λ, and a thread configuration map Θ
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which maps a thread identifier tid to its thread configuration Θ(tid) = θ.

A thread configuration θ is a stack R of activation records. For normal

execution, the activation record at the top of an execution stack has the

shape (M, pc, s, r), where:

• M is a reference to the currently executing method.

• The program counter pc is an index into the instruction array of M .

• The operand stack s ∈ Val∗ is the stack of values currently being

operated on.

• r is an array of registers, or local variables. These include the param-

eters.

We assume a transition relation →JVM on JVM configurations. A thread

configuration of the shape θ = (M, pc, s, r) :: R is calling, if M [pc] is an

invoke instruction, and it is returning normally, if M [pc] is a return instruc-

tion. For exceptional configurations the top frame has the form (b) where

b is an exception object, i.e. an object of class Throwable. Such a config-

uration is called exceptional. We say that θ is returning exceptionally if θ

is exceptional, and if (h,Λ, θ) →tid (h′,Λ′, θ′) implies that θ′ is exceptional

as well. I.e. the normal frame immediately succeeding the top exceptional

frame in θ is popped in θ′, if θ′ is exceptional as well.

Programs and Types For the purpose of this paper we can view a pro-

gram P as a collection of class declarations determining types of fields and

methods belonging to classes in P . An execution E of a program P is a

(possibly infinite) sequence of JVM configurations C0C1 . . . where C0 is an

initial configuration consisting of a single thread with a single, normal ac-

tivation record with an empty stack, no local variables, M as a reference
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to the main method of P and for each i ≥ 0, Ci →JVM Ci+1. We restrict

attention to configurations that are type safe, in the sense that heap con-

tents match the types of corresponding locations, and that arguments and

return/exceptional values for primitive operations as well as method invo-

cations match their prescribed types. The Java bytecode verifier serves,

among other things, to ensure that type safety is preserved under machine

transitions (cf. [12]).

Field Accesses and Legal Executions In this paper, we wish to rea-

son about the behavior of arbitrary, possibly malicious, multithreaded pro-

grams. Therefore, we cannot assume that the programs we consider are cor-

rectly synchronized. This complicates our execution semantics, because non-

correctly-synchronized programs may exhibit non-sequentially-consistent ex-

ecutions (see Chapter 17 of the Java Language Specification, Third Edition

(JLS3)). An execution is sequentially consistent if there is a total order on

the field accesses in the execution such that each read of a field yields the

value written by the most recent preceding write of that field in this total

order. In order to ensure that our semantics captures all possible executions

of a program, our transition relation →JVM does not constrain the value

yielded by a field read; specifically, it does not imply that this value is the

value in the heap for that field. However, JLS3 does provide some guar-

antees, even for non-correctly-synchronized programs. Therefore, below we

will consider only legal executions. A legal execution is an execution which

satisfies both the transition relation →JVM and the memory consistency

constraints of JLS3.

An important guarantee provided by JLS3 that we will need in this

paper, is that if in some legal execution a given field is protected by a given
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lock, then each read of that field yields the value written by the most recent

preceding write of that field. We say that a given field is protected by a

given lock in a given execution, if whenever a thread accesses the field, it

holds the lock.

The only other assumption we make about JLS3 in this paper is that

JLS3 is monotonic, in the sense that, informally speaking, adding synchro-

nization to a program reduces the set of executions.

API Method Calls The only non-standard aspect of →JVM is the treat-

ment of API methods. We assume a fixed API M, consisting of a set of

classes for which we have access only to the signature, but not the implemen-

tation, of the methods in M. We therefore represent API method activation

records specially. When an API method is called in some thread a special

API method stack frame is pushed onto the call stack. The thread can then

proceed only by either returning or throwing an exception. When the call

returns, an arbitrary return value of appropriate type is pushed onto the

caller’s evaluation stack; alternatively, when it throws an exception, an ar-

bitrary exceptional activation record is returned. We assume that the API

does not declare any fields visible to the client; therefore, in our model, steps

performed by a thread while it is inside an API method activation record

do not modify the heap.

Our approach hinges on our ability to recognize API method calls. This

property is destroyed by the reflect API, which is left out of consider-

ation. Among the method invocation instructions, we discuss here only

invokevirtual; the remaining invoke instructions are treated similarly.

Given an execution E we define the notion of the observable trace ω(E)
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of E, as follows:

ω(C) = ε

ω(CC ′E) = α ω(C ′E) if C
α−→JVM C ′

ω(CC ′E) = ω(C ′E) if C
τ−→JVM C ′

where a transition from C to C ′ performs an observable action α, denoted

C
α−→JVM C ′, if and only if it transitions from the client code to the API or

vice versa. Specifically, we represent a call from a class d �∈ M bound at run

time to a method c.m on an object o with arguments v by a thread tid where

c ∈ M as C
(tid,c.m,o,v)↑−−−−−−−−→JVM C ′, and a normal return from this call with

return value r as C ′′ (tid ,c.m,o,v,r)↓−−−−−−−−−→JVM C ′′′. We represent an exceptional

return from this call with exception object t as C ′′ (tid,c.m,o,v,t)⇓−−−−−−−−−→JVM C ′′′. All

transitions other than the above are non-observable, denoted C
τ−→JVM C ′.

If the action refers to a security relevant method it is said to be a security

relevant action (sra).

There is one exception to the above definition of observable versus non-

observable actions. We consider calls of method System.exit to be non-

observable. (Furthermore, we assume that such a call is always the last

transition of an execution.)

We refer to actions of the form (tid , c.m, o, v)↑, (tid , c.m, o, v, r)↓, and

(tid , c.m, o, v, t)⇓ as before actions, after actions, and exceptional actions,

respectively, and we collect them in sets Ω↑, Ω↓, and Ω⇓.

We denote the set of executions of a program P against an API M as

execM(P ). We define the set T (P ) of the traces of a program P as the
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traces of the executions of P :

T (P ) = {ω(E) | E ∈ execM(P )}

We say an execution is complete if it cannot be extended with an additional

transition. It follows that either the execution is infinite, or it ends with a

call of System.exit , or in the final configuration, all threads are waiting on

a lock held by another thread. We define the set Tc(P ) of complete traces

of a program P as the traces of the complete executions of P .

4 Security Automata

ConSpec policies are formalized in terms of security automata. The notion

of security automata was introduced by Schneider [20]. In this paper we

view a security automaton as an automaton A = (Q, δ, q0) where Q is a

countable (not necessarily finite) set of states, q0 ∈ Q is the initial state,

and δ : Q×Ω ⇀ Q is a (partial) transition function, where Ω = Ω↑∪Ω↓∪Ω⇓

is the set of observable actions. All states q ∈ Q are viewed as accepting.

Notation 1 For a security automaton A = (Q, δ, q0), q
α−→ q′ abbreviates

the condition q′ = δ(q, α).

A security automaton can be derived from a ConSpec policy in the obvious

manner. We refer to [1] for details. We assume tha after clauses of the

Conspec policy to be exhaustive such that an after action can never fail, but

it can update the security state.

Definition 1 (Policy Adherence) The program P adheres to security

policy PA, if for all executions E of P , ω(E) ∈ PA.
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5 Inlining

By inlining we refer to the procedure of compiling a contract into a JVML

based reference monitor and embedding this monitor into a target program.

Formally, an inliner is a function I which for each policy PA and program

P produces an inlined program I(PA, P ). The intention is that the inserted

code enforces compliance with the policy, and otherwise interferes with the

execution of the client program as little as possible.

In this section, we first look at various correctness properties for inliners.

Then, we introduce the design of our inliner and we prove its correctness.

5.1 Inlining Correctness Properties

We first look at the traditional correctness properties for inliners: security,

conservativity, and transparency. Then, we introduce a number of new

correctness properties that deal with complications caused by the setting

of multithreaded Java-like programs: strong conservativity, relative strong

conservativity, and weak transparency.

For an inliner whose only expected functionality is to intercept and abort

execution of an underlying client program in case of policy violation there

are three correctness properties of fundamental interest (cf. [13] for the

case of edit automata). Namely, the inliner should enforce policy adherence

(security), it should not add new behavior (conservativity), and it should

not remove policy-adherent behavior (transparency). More formally:

Definition 2 (Inliner Correctness Properties) An inliner I is:

• Secure if, for every program P , every trace of the inlined program

I(PA, P ) adheres to PA, i.e. T (I(PA, P )) ⊆ PA.
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• Conservative if, for every program P , every trace of the inlined pro-

gram I(PA, P ) is a trace of P , i.e. T (I(PA, P )) ⊆ T (P ).

• Transparent, if every adherent trace of the client program is also a

trace of the inlined program, i.e. if T (P ) ∩ PA ⊆ T (I(PA, P )).

Recall from Section 3 that the set of traces T (P ) of a program P is the

set of the sequences T of observable actions (i.e., API calls and normal and

exceptional returns from API calls) such that there is a (partial or complete)

execution of the program whose observable trace is T .

Unfortunately, in case the client program is not well-synchronized, trans-

parency is infeasible in general, because it is not in general possible to per-

form inlining without introducing extra synchronization and consequently

eliminating certain executions. To illustrate this, consider the program of

Fig. 3. This program is not well-synchronized, since there are data races on

fields beforeA and afterA. Specifically, threads 1 and 2 do not synchronize

their accesses of these fields. In the presence of data races, the semantics of

Java allow field accesses to appear out of order; this is necessary to allow the

JIT compiler (which compiles bytecode to machine code) and the hardware

to perform important optimizations. In the example, suppose the body of

method sra is a simple field assignment. In that case, the JIT compiler

can inline this method and then reorder the field accesses, since they are

independent. This is why an execution where r1 gets the value 1 and r2

gets the value 0 is a legal execution. As a result, the program has a trace

with three sra() calls.

Now, consider the inlined version of this program. In general, the inlined

code needs to access the security state; since multiple security-relevant calls

may occur concurrently, these accesses must be synchronized. This means

that in general, the inliner inserts synchronization constructs before and
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after each sra() call. As a result, the JIT compiler is no longer allowed to

move the accesses of beforeA and afterA across the sra() calls, and the

execution where r1 equals 1 and r2 equals 0 is no longer legal. Therefore,

the inlined program does not have a trace with three sra() calls, which

means that the inliner is not transparent.

For this reason, the transparency property is only really meaningful for

well-synchronized programs. For this restricted case, however, transparency

still serves as a useful correctness check: An inliner which is transparent

for well-synchronized clients (and, which is secure and conservative) must

necessarily exploit race conditions to interfere in an undesirable way with a

client program. However, to allow also for programs that are ill-synchronized

we look for alternative correctness criteria.

Definition 3 The truncation truncPA(T ) of a trace T under a policy PA

is the greatest prefix T ′ of T that adheres to PA.

Thus, if T adheres to PA, truncPA(T ) = T , and otherwise T is of the form

α0 ·αn such that, for some i : 0 ≤ i < n, α0 · · ·αi ∈ PA and α0 · · ·αi+1 �∈ PA.

Definition 4 (Strong Conservativity) An inliner I for a given policy

PA is strongly conservative if, for each program P , every complete trace

of the inlined program I(PA, P ) is the truncation of a complete trace of P

under PA:

Tc(I(PA, P )) ⊆ truncPA(Tc(P ))

Example 1 An abstract version of the program in fig. 3 might have traces

AB, BA, ABC and BAC, all complete and all in PA. Suppose the set of

complete traces of I(PA, P ) is {AB,BA}. The inliner I is strongly con-

servative (for this particular program), but not transparent. As another

example suppose P ′ has traces A, AB, AC, ABC such that A,AB ∈ PA,
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AC,ABC �∈ PA, and AC, ABC, but not A, AB, are complete. Suppose

the only trace of I(PA, P ′) is A (so A is complete). Again, I is strongly

conservative (for the program P ′) but not transparent.

Proposition 1 An inliner which is strongly conservative is secure and con-

servative.

Proof For security assume T ∈ T (I(PA, P )). Then we find T ′ ≥ T such

that T ′ ∈ PA, by strong conservativity, so also T ∈ PA, by prefix closure.

For conservativity the argument is similar. �

Strong conservativity implies that the inliner does not add new termina-

tion or deadlock behavior. But, in a threaded setting inliners typically use

locks to access shared resources, in particular the security state. This may

constrain the order of actions. In particular, as is the case in this paper, if

the security state is locked across the entire security-relevant call, each such

call must be completed before a new security-relevant call can take place.

But this may not be compatible with constraints induced by the API, as the

following example shows.

Example 2 Consider an API M with a barrier method m that allows two

threads to synchronize as follows: When one thread calls m, the thread blocks

until the other thread calls m as well. Suppose this method is considered to

be security-relevant, and the inliner, to protect its state, acquires a global

lock while performing each security-relevant call. This inliner is strongly

conservative: The notion of complete trace simply does not take constraints

induced by the API into account. On the other hand a client program may

consist of two threads, each calling m and then terminating. The inlined

version will have one complete trace where one of the threads enters m and

then blocks. An uninlined complete trace will contain two calls and returns of
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m. Thus the inlined complete trace will not be the truncation of an uninlined

one at the point of policy violation.

So the definition of strong conservativity needs to be amended to take such

order-inducing API calls into account. Note that the JVM semantics of API

calls given in section 3 does not do this.

Definition 5 (Relative Strong Conservativity) For each program P ,

let execc
M(P ) be the set of complete executions of P in the API M. An

inliner I is strongly conservative relative to the API M, if for each policy

PA and each program P ,

ω(execc
M(I(PA, P ))) ⊆ truncPA(ω(execc

M(P ))) .

An implication of this definition is that, if in some execution E in some API

the inliner kicks in and blocks an sra α, then there will be an execution of

the uninlined program which after the trace of E executes α. The condition

does not guarantee, however, that E without the inliner next would have

performed α. This is a consequence of our strictly observational definition of

strong conservativity; if more precision is needed, one needs to take internal

intermediate states into account, e.g. using bisimulation-based techniques.

As we noted above, inliners generally cannot be transparent for ill-

synchronized programs. In fact, some reasonable inliners are not transparent

even for well-synchronized programs, because they force the start action and

the return action of a security-relevant call to occur atomically, for instance

by locking (as we do in this paper). In that case there may be client pro-

gram traces with nonatomic API calls and returns that can not be realized

after inlining, only because of execution constraints induced by the inliner.

However, these inliners may still be transparent after canonicalization of the
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traces with respect to a set of atomic methods:

Definition 6 A method m is atomic in a trace T if, for every normal or

exceptional return action from m performed by a thread t in T , no observable

action by t intervenes between this return action and the corresponding call

action.

Consider for instance methods m and m′ with call and return actions callm(t),

retm(t), etc, performed by thread t. Then m is atomic in the traces callm(t)retm(t)callm′(t)

and callm(t)callm′(t′)retm(t) (with t′ �= t) but not in the trace callm(t)callm′(t)retm(t).

Notice that m is atomic in T is equivalent to stating that m does not perform

callbacks in T .

Definition 7 Let an API M be given. The canonicalization of the trace T

with respect to M is the trace canonM(T ) obtained by moving each normal

or exceptional return action from a method m in M in T right after the

corresponding call action.

The following is an immediate consequence of our assumptions on the JLS3

execution model in section 3:

Proposition 2 Suppose all methods of API M are atomic in all traces of

P . If T is a trace of P so is canonM(T ). �

Proposition 2 presupposes the “order-oblivious” API semantics of section

3, as order-inducing API calls may prevent the shuffling around of return

actions needed for the proof.

For inliners that force atomicity of API calls a suitable weakening of the

transparency conditions restricts attention to canonic traces in the following

way.
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Definition 8 An inliner I is weakly transparent relative to an API M, if

for every policy PA, every program P , and every trace T of P that adheres

to PA, the canonicalization of T equals the canonicalization of some trace

of I(PA, P ), i.e..

canonM(ω(execM(P )) ∩ PA) ⊆ canonM(ω(execM(I(PA, P ))))

Notice that weak transparency only makes sense for policies that are closed

under canonicalization.

5.2 Example Inliner

In order to enforce a policy through inlining, it is convenient to be able to

statically decide whether a given event clause applies to a given call instruc-

tion. Therefore, in this example inliner, we impose the restriction on policies

that they should have simple call matching. We say a policy has simple call

matching if for any security-relevant method c.m, an invokevirtual d.m

call is bound at run time to method c.m if and only if d = c. We deal with

the full inheritance problem in earlier work [1].

For simplicity, we also require that the initial values for the security

state variables specified by the policy are the default initial values for their

corresponding Java types.

The inliner we propose replaces each instruction L : invokevirtual c.m

where c.m is security-relevant by JVML code corresponding to the pseudo

code in Fig. 4. The replacement is referred to as a block of inlined code.

The inliner locks the security state and stores arguments to the virtual

call for use in event handler code. Each piece of event code evaluates guards

by reference to the security state and the stored arguments, and updates
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the state according to the matching clause, or exits, if no matching clause is

found. Before passing control to the API method, the original arguments are

restored, and immediately upon return the return value on the operand stack

is stored to a local variable. On normal return, after successful completion

of the normal return event handler code the security state is unlocked and

the inlined code fragment is exited. On exceptional return the exception is

instead rethrown.

The two main complications which we had to address when designing

this inliner are the possibility of internal exceptions, and the interaction of

our locking strategy with API-induced ordering constraints.

The Java Virtual Machine Specification [15] allows a JVM to throw an

InternalError or UnknownError exception at any time whatsoever. This

means that, e.g. when the JVM attempts to compile a piece of bytecode

about to be executed by a thread to machine code but it does not have

enough memory to store the machine code, it can throw such an internal

exception instead of having to terminate the entire program. Whereas inter-

nal exceptions are useful for JVM implementors, they cause complications

for the design of our inliner. Specifically, for security, we must maintain

the property that whenever no block of inlined code is being executed, the

current security state corresponds to the trace of security-relevant actions

performed previously during the execution. If an internal exception were

to cause control to exit a block of inlined code prematurely, this property

would be violated. Therefore, we catch all exceptions that occur anywhere

in the inlined code and, when any exception is thrown by any instruction

other than the security-relevant call, we exit the program. Notice that this

is secure and conservative but not strongly conservative, since we exit at a

place where the original program does not exit. Below, we prove strong con-
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servativity of our inliner under the assumption that the JVM is error-free,

i.e. it never throws an internal exception.

The other complication is caused by our choice of locking strategy. Since

the program may perform multiple security-relevant calls concurrently, ac-

cesses to the security state by the inlined code must be synchronized. We

do so by protecting the security state using a lock. There are essentially two

ways to do so: acquire the lock for the entire duration of the inlined code

(strong synchronization), or acquire it once when processing the before ac-

tion, release it before performing the security-relevant call, and then acquire

it again for processing the after or exceptional action (weak synchronization,

analogous to the behavior of the PoET/PSLang inliner [22]). In this paper,

we adopted strong synchronization; it has the advantage that both actions

associated with a given security-relevant call (i.e. the before action and

the after or exceptional action) always occur together, whereas in the case

of weak synchronization, the actions from multiple security-relevant calls

may be interleaved, leading to a less intuitive policy semantics. A downside

of strong synchronization, however, is that it is not applicable in the case

where security-relevant methods have synchronization behavior themselves,

as discussed above. Indeed, in that case, strong synchronization may in-

troduce deadlocks that did not exist in the original program. Therefore,

below, we prove strong conservativity under the assumption that security-

relevant methods are non-blocking. Furthermore, strong synchronization is

not appropriate when the security-relevant methods include long-running

operations that benefit from concurrent execution.

We now proceed to state and prove two correctness theorems for our

inliner. The first is general, and applies to both ill-synchronized and well-

synchronized programs. The second additionally states weak transparency
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for well-synchronized programs.

Definition 9 (Non-blocking Method) A method c.m in API M is

non-blocking, if for all programs P and all executions E ∈ execM(P ) either:

1. E is infinite, or

2. E is terminating, or

3. E is deadlocked with final configuration C, and no thread in C is inside

c.m.

Theorem 1 Let I be the inliner of Fig. 4.

1. I is secure and conservative.

2. For an error-free JVM, and relative to an API for which each srm is

non-blocking, the inliner I is strongly conservative.

Proof (Sketch)

We prove only 2 here. The proofs of security and conservativity are similar

but easier. Assume an error-free JVM and let PA and P be given, and

assume that the API is non-blocking with respect to the srms of the policy.

Consider an execution E ∈ execM(I(PA, P )), and let T = ω(E). There

are three cases: Either (1) E is infinite, (2) E is terminating, or (3) E is

deadlocked.

(1) We claim it is possible to extract from E another execution E′ which

replaces each complete execution of an inlined block with the execution

of the single invokevirtual instruction for which the block was inserted,

and which replaces each partial execution with either nothing or the

invokevirtual instruction, depending on whether the instruction con-

cerned is eventually executed in E or not (note that we do not assume
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fairness so it is possible for a thread from some point onwards never

to be scheduled again). Note that this replacement can be done in

parallel, since SecState.class locks all accesses to the security state.

To see how this is done let E have the shape C0 · · ·Cn · · ·Cm · · · such

that Ci = (hi,Λi,Θi) for all i ∈ ω, and such that, for some tid ,

Θn(tid) = (Mn, pcn, sn, rn) :: R, Θm(tid) = (Mn, pcm, sm, rm) :: R,

pcn points to label L in Fig. 4, pcm points to label done, and L ≤

pci ≤ done for all i ∈ [n,m]. This situation corresponds to the nor-

mal, complete execution of the inlined block in 4. Now transform each

configuration Ci as follows:

– If Λi(SecState.class) is set, unset it.

– Whenever pci is less than the pc of the invokevirtual instruction,

replace si by sn, and otherwise replace si by sm.

– Remove all register values inserted by the inliner from all ri.

A similar construction is applied to exceptional, complete executions.

Since virtual machine errors are disregarded, only the invokevirtual in-

struction and the rethrow instruction can raise exceptions. The trans-

formation of exceptional thread configurations is as above, except that

the entire frame is replaced, instead of just the operand stack and part

of registers. Partial executions are handled in the obvious way. The

claim, now, is that the execution thus obtained is an infinite execu-

tion of the inlined program with all inlined instructions replaced by

noop’s and the exception tables restored accordingly. A further trans-

formation step eliminates the noop’s and restores the exception tables

completely, thus obtaining an execution of the original program. It is

clear that the execution remains infinite under this transformation as
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well. This completes the case.

(2) Assume then that E is terminating. We claim that we can extract

an execution E′ for the uninlined program which is terminating as

well, and such that T (E) = truncPA(T (E′)). If E terminates because

of a call to System.exit by an inlined block for a call of a security-

relevant method c.m with target o and arguments v in a thread tid ,

then this can happen only because either all before guards have been

evaluated to false, or all after guards have. The latter cannot happen

since the disjunction of the guards is a tautology, and since the guards

are evaluated correctly on the call parameters. The former can happen

only if the trace T (E)(tid , c.m, o, v) is policy violating. In this case

we can eliminate all inlined blocks from E, as above, and reroute

control flow at the end of (the transformed) E to the invokevirtual

instruction, execution of which was prevented by the exception. In

this way we obtain a prefix of E′ which can be completed to satisfy

the requirements of the statement.

(3) The final case is where E is deadlocked. This can only be the case if

each live thread in the final configuration, say Ck, is waiting at a lock.

The lock can be either SecState.class, or another lock set either from

a client instruction, or from an API method. In the latter case, the

method call is not inlined, since otherwise the method would be non-

blocking. If all locks are set from a client instruction or a non-inlined

API call then we extract from E an uninlined complete execution

with the same trace, as above. Finally, if a thread is waiting at a

security state lock then it must be waiting at the initial monitorenter

instruction of some inlined block. But that can only be the case if some
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other thread is deadlocked inside an inlined block, which is impossible,

as it would then be deadlocked inside a non-blocking srm. �

Lemma 1 Consider a set of methods m ∈ M . If the methods in M are

non-blocking, then M is atomic in any trace T of any program P .

Proof By contradiction. Suppose there is a program P and a trace T of P

such that some method m ∈ M performs a callback in T . Then P can be

modified such that it deadlocks inside the callback. It follows that m is not

non-blocking.

Theorem 2 Relative to an API for which each srm is non-blocking, I

is weakly transparent for well-synchronized programs and policies that are

closed under canonicalization.

Proof Consider a policy PA that is closed under canonicalization, and a

well-synchronized program P . Further consider a trace T of P that ad-

heres to PA. We need to prove that there is a trace of the inlined program

I(PA, P ) whose canonicalization equals the canonicalization of T . Since

each srm is non-blocking, the srms are atomic in T . Choose an execution

E of P . Then, let E′ be the sequence of configurations obtained by mov-

ing each normal or exceptional srm return transition in E right after the

corresponding call transition. Then E′ is an execution of P and its trace

is canonM(T ), the canonicalization of T ; this is always true because the

srms are non-blocking. Now, further transform E′ by inserting the inlined

code prolog operations before each SRM call transition, and by inserting the

inlined code epilog operations after each SRM return transition. The result-

ing sequence of configurations E′′ is a legal execution of the inlined program
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I(PA, P ), because P is well-synchronized and therefore the extra synchro-

nization has no influence on existing field accesses, and because canonM(T )

adheres to PA. It follows that canonM(T ) is a trace of I(PA, P ). Since

canonM is idempotent, canonM(canonM(T )) equals canonM(T ) and we

have proven the theorem.

6 Case Studies and Benchmarks

The inlining algorithm described above has been implemented in Java us-

ing the ASM framework [17]. We present some results and benchmarks

of this inliner in four case studies. All case studies comprise a regular

JavaME application and a relevant security policy and are available at url

http://www.csc.kth.se/~landreas/inlining.

ImageExchange (IE) ImageExchange is a combined server/client applica-

tion that allows users to exchange images over a Bluetooth connection.

The user may choose to act as a server and publish selected images,

or as a client and download published images.

The policy in this case study restricts the program to only send the

file that was last approved by the user. We adapt the bluetooth and

gui API’s slightly to allow this policy to be conveniently formulated.

Snake (SN) This is a classic game of snake in which the player may submit

current score to a server over a network connection.

The policy prevents data from being sent over the network after read-

ing from phone memory.

MobileJam (MJ) The MobileJam application is a Bluetooth GPS based

traffic jam reporter which utilizes the online Yahoo! Maps API.
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The policy prevents the application from connecting to any URLs other

than those starting with http://local.yahooapis.com.

BatallaNaval (BN) BatallaNaval is a multiplayer battleship game that

communicates through SMS messages.

In this case the policy restricts the number of sent SMS’s to a constant.

The applications are taken from the case studies of the S3MS project.

All policies were successfully enforced by our inliner.

The benchmarks for the case studies are summarized in Tab. 1.

6.1 Inlining Overhead

To determine the runtime overhead impact of inlining, a program that in-

voked an empty dummy SRM in a loop was constructed. The execution

time of this loop was then measured before and after inlining. The inlining

caused the execution time to increase from 407 ms to 1358 ms when the

loop iterated 106 times on a Sony-Ericsson W810i. This indicates that the

overhead in this experiment was 951 nanoseconds per security-relevant call.

This suggests that even program that performs many security-relevant calls

can be inlined with a close to negligible performance impact. The sample

policy used mentioned the dummy SRM in one BEFORE and one AFTER

clause with two guards each.

Note, however, that the above experiment did not measure the perfor-

mance impact resulting from the loss of parallelism due to the serialization

of security-relevant calls. Clearly, this impact is highly dependent on the

specific application and its inputs.
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7 Conclusions

We have surveyed the security-by-contract paradigm for mobile application

security proposed by the EU FP6 project S3MS. A main technical component

of this framework is monitoring and monitor inlining, and as the technical

contribution of this paper we have discussed inlining correctness criteria

suitable for multi-threaded bytecode in the style of Java and .NET, and

used the criteria to prove correctness for a concrete inlining algorithm.

The inliner we examine is blocking in the sense that the embedded se-

curity state is locked across the security-relevant call, thus preventing con-

current accesses to those methods. This may cause serious performance

degradation, in particular for methods involving I/O. Indeed, Erlingsson’s

original inliner [22] avoids this problem by unlocking just at the point of

executing the call itself. This, however, is sound only for policies that are

race-free, in the sense of being insensitive to the sequencing of concurrent

actions. In forthcoming work we address this issue and prove correctness of

a non-blocking inliner, but for a restricted policy language. In the present

setting one can alleviate the problem to some extent by splitting the security

state into disjoint components that are locked separately.

A number of extensions of this work merit attention. First, we do not

yet address inheritance. This has been considered for the case of sequential

Java in [1], and multi-threading is not likely to add significant complica-

tions. Security automata as we consider here are allowed to be infinite

state. This poses no problems for inlining, and it is very useful to corre-

late actions as in the IE application considered above. (But, contract-policy

matching becomes undecidable, for obvious reasons.) We do not allow the

heap to be used in policy guards; whereas this would be useful, allowing

it creates significant theoretical and practical problems which merit further
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investigation.

An interesting direction is to consider proof-carrying code (PCC) for

monitor inlining. The advantage of such a framework would be to allow

inlining to be performed outside the application loader’s trust boundary. We

have already realized this for the case of sequential Java, and an extension

to threaded Java is currently under way.
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9 Tables

IE SN MJ BN
Security Relevant Invokes 2 2 4 2
Original Size of Binaries (kb) 39.2 39.6 253.6 234.2
Inlining Duration (s) 0.56 0.49 1.84 1.42
Size increase due to Inlining (%): 1.0 11.0 0.2 1.2

Table 1: Benchmarks for the case studies. Inlining was performed with an
Intel Core 2 CPU at 1.83 GHz with 2 Gb memory.
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10 Figure captions

Fig. 1: A ConSpec contract for the chess game.

Fig. 2: An example device policy.

Fig. 3: Transparency counterexample.

Fig. 4: The inlining replacement of L: invokevirtual c.m.
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11 Figures
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SECURITY STATE
int bytesSent = 0;
int smsSent = 0;

BEFORE System.Net.Sockets.Socket.Send(byte[] array)
PERFORM

array.Length == 20 && bytesSent + array.Length <= 2000 ->
AFTER int sent = System.Net.Sockets.Socket.Send(byte[] array)
PERFORM

true -> bytesSent += sent;
BEFORE Microsoft.WindowsMobile.PocketOutlook.SmsMessage.Send()
PERFORM

smsSent <= 100 ->
AFTER Microsoft.WindowsMobile.PocketOutlook.SmsMessage.Send()
PERFORM

true -> smsSent += 1;

Fig. 1:

40



SECURITY STATE
int bytesSent = 0;

BEFORE System.Net.Sockets.Socket.Send(byte[] array)
PERFORM

bytesSent + array.Length <= 10000 ->
AFTER int sent = System.Net.Sockets.Socket.Send(byte[] array)
PERFORM

true -> bytesSent += sent;

Fig. 2:
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Thread1: beforeA = 1; || Thread2: r1 = afterA;

sra(); // A || sra(); // B

afterA = 1; || r2 = beforeA;

|| if (r1 == 1 && r2 == 0) {sra();}

Fig. 3:
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L: ldc SecState
monitorenter

astore 0
...
astore n − 1

beforeG1 : [eval before G1]

ifeq beforeG2

[before update 1]
goto beforeEnd

.

..
beforeGi : [eval before Gi]

ifeq exit
[before update i]

beforeEnd : aload n − 1
.
..
aload 0

invoke: invokevirtual c.m

invokeDone: astore n

afterG1 : [eval after G1]

ifeq afterG2

[after update 1]
goto afterEnd
...

afterGj : [eval after Gj]

ifeq exit
[after update j]

afterEnd : aload n

ldc SecState
monitorexit

afterReleased : goto done

exceptionalG1 : [eval exceptional G1]

ifeq exceptionalG2

[exceptional update 1]
goto exceptionalEnd

...
exceptinoalGk : [eval exceptional Gk]

ifeq exit
[exceptional update k]

exceptionalEnd : ldc SecState
monitorexit

exceptionalReleased : athrow

exit : iconst −1
invokestatic System.exit

done :

Extra entries in exception handler array:

From To Target Type
invoke invokeDone exceptionalG1 any
L exceptionalReleased exit any
exit done exit any

Fig. 4:
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