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Abstract

BAN logic is an epistemic logic for verifying cryptographic protocols. While BAN
has been quite successful from a practical point of view, the semantics of the epis-
temic modality is controversial. Several Kripke semantics have been proposed, but
they do not attempt at anything beyond a soundness result. Completeness is pre-
vented by the so called logical omniscience problem: Agents in BAN can draw only
feasibly computable consequences of their knowledge, whereas agents in Kripke se-
mantics can draw all logical consequences of their knowledge. To avoid logical
omniscience, we index the epistemic possibility relation of Kripke semantics with a
message renaming, relating how cipher texts at the current state correspond to ci-
pher texts at the epistemically possible state. An agent is said to know a statement
if corresponding statements hold at epistemically possible states. We obtain com-
pleteness with respect to message passing systems and decidability by transferring
canonical model and filtration constructions from Kripke semantics.
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1 Introduction

BAN logic [4] is an epistemic logic proof system for reasoning about crypto-
graphic protocols. Since BAN was introduced in the late eighties, a substan-
tial amount of work has been done applying, varying and clarifying BAN (cf.
[1,2,5,6,8,10,11,12,13,15]). However, BAN’s central language construct, the
epistemic modality, has no agreed upon semantics. The confusion around the
semantics hampers the application of semantically based methods, and makes
it difficult to evaluate variations to the proof system.

Any interpretation of cryptographic knowledge faces the so-called logical
omniscience problem [7]: According to the intended, informal meaning of
knowledge, agents can only perform computationally feasible cryptographic
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calculations, whereas in the standard semantics for knowledge, Kripke se-
mantics, agents draw arbitrary logical inferences, including computationally
unjustified cryptographic calculations. To illustrate, under BAN’s idealized
cryptography we get the validity freshM |= fresh {M}K , which, in Kripke se-
mantics, yields the entailment a knows fresh M |= a knows fresh {M}K . How-
ever, the latter entailment goes against the intended meaning in BAN, since in
BAN agent a can know that M is inside {M}K only when a knows K. From
the point of view of modal logic, the example shows the failure of the rule
of normality that allows inference of an entailment a, knows F |= a knows F ′

from the entailment F |= F ′. We refer to [5] for additional counterexamples
to the rule of normality.

In Kripke semantics, the knowledge of an agent a at a state s is deter-
mined by the data s|a available to a at s. An agent knows a statement if
her available data entail the statement. Thus, logical omniscience (rule of
normality) is inescapable, no matter how s|a is defined. As it happens, all
semantics for BAN-like logics, except for [5], are based on Kripke semantics
[1,6,10,11,12,13,15]. Therefore, as the above example illustrates, every ex-
tension to BAN is incomplete with respect to these semantics, assuming the
extension is faithful to the intended meaning in BAN. Indeed, existing work
have so far been limited to soundness results.

Recently, we proposed a generalized Kripke semantics that avoids logical
omniscience [5]. There, we established some of the basic properties of the
semantics, including soundness. Here we extend this work to show that a
faithful version of BAN is complete with respect to message passing systems
[7], and that it is decidable. We emphasize that completeness for original BAN
[4] cannot be expected, since original BAN, as its authors make clear, leaves
out rules that are validated by any reasonable semantics.

The key intuition is that two different cipher texts can be indistinguish-
able to an agent, due to her limited decryption power. Thus, a cipher text
{M}K which the agent cannot decrypt might as well, for all the agent knows,
be some other cipher text {M ′}K′ . In this sense, {M ′}K′ is an epistemically
possible interpretation of {M}K . More generally, we can think of a 1-1 map-
ping r between messages as a joint interpretation of all messages. For each
state and agent we identify, based on the keys available to the agent, a set
of epistemically possible joint interpretations. We say that agent a knows
a statement F ({M}K) at state s, if for every possible joint interpretation r,
the reinterpreted data r(s|a) entails the reinterpreted statement F (r({M}K)).
This semantics departs from Kripke semantics, in that we check the renamed
cipher text r({M}K) instead of the predicated cipher text {M}K . As a result,
logical omniscience is avoided.

We present an axiomatization of validity with respect to our semantics.
The axiomatization uses standard modal axioms K, T, S4 and S5, but excludes
the rule of necessitation. The latter is weakened so that agents can only infer
“feasibly computable” theorems. The axiomatization employs, in addition,



some axioms specific to message passing systems, including an epistemic axiom
stating that an agent knows if she sent or received a message. We obtain
completeness and decidability by transferring canonical model and filtration
constructions from Kripke semantics.

Our semantics is a variation on counterpart semantics, a semantics for
first order modal logic due to [9]. Epistemically possible mappings between
messages are related to the message congruences of [1], and to the states of
knowledge and belief of [3,14].

2 Message Passing Systems

In a message passing system agents take turns to send messages, receive mes-
sages or perform unspecified internal actions [7]. For the sake of brevity, we
omit the customary initialization action, i.e., a special action that establishes
initial shared or private secrets. We also use a simple, perhaps simplistic,
notion of session along the lines of [1].

Assume a non-empty set of keys K, K ′, ..., a non-empty set of plain-texts
T, T ′, ..., including a finite set A of agent names a, b, ... Messages are generated
by:

M ::= K | T | M ·M | {M}K

where · represents pairing and { } represents symmetric encryption. The sub-
message relation ≥ is the smallest binary relation on messages such that M ≥
M , {M}K ≥ M , {M}K ≥ K, M · M ′ ≥ M and M · M ′ ≥ M ′. A message
space is a non-empty set of messages closed under ≥, i.e., if M ≥ M ′ then the
space contains M ′ if it contains M . We fix a finite message space: A message
M is, from now on, a message in this fixed space.

Actions are:

σ ::= a sendsM | a receivesM | a int M | begin session

where agent a is in A or is the special agent env, the environment, and int
ranges over a finite set of internal action types. Write σ(M) for an action
in the message term M . A history, or action trace, is a finite sequence h of
actions. Write Actions(h) for the set of all actions in h: Actions(ε) = ∅ and
Actions(h · σ) = Actions(h) ∪ {σ}. A message passing system, or system for
short, is a non-empty set H of histories.

The local history of agent a in history h, in symbols h|a, is the sequence of
actions performed by a in h: ε|a = ε, if σ ∈ {a sendsM, a receivesM, a int M}
then (h · σ)|a = h|a · σ else (h · σ)|a = h|a.

A key assignment κ on H assigns a set κ(a, h) of keys, the keys used by a
at h for encryption and decryption, to each agent a ∈ A and history h ∈ H.
A model on H is a pair M = 〈H, κ〉, where κ is a key assignment on H. We
leave κ undefined until Section 5.



3 Language of Full Propositional BAN

An atomic statement is a predicate p applied to a message M :

p(M) ::= a received M | a rec M | a sent M | a sen M | old M

The meaning of atomic statements is straightforward: a received M holds if
agent a received message M from the network, a rec M holds if M is a sub-
message of some message a received. 1 The intended meaning of a sent M and
a sen M are analogous. The statement old M holds if M is a sub-message of
some message sent in an old session, i.e., prior to a begin session event. We
note that, unlike BAN like languages in the literature, atomic statements do
not involve any notion of “feasible cryptographic computation”. In particular,
atomic statements do not depend on the keys used by agents. Statements are
generated by:

F ::= p(M) | ¤aF | F ∧ F | ¬F

where 2a is the epistemic modality for a, read “agent a knows that”. Define
disjunction (∨) and implication (→) in the usual way. Let G ⊆ A. We
introduce BAN predicates as abbreviations, similar to [10]:

• a sees M = 2aa rec M

• a said M = 2aa sen M

• M secret of G =
∧

a6∈G

¬ a sees M

• fresh M = ¬ old M

The language defined above differs somewhat from the original BAN [4].
Firstly, original BAN has some constructs for asymmetric cryptography. Sec-
ondly, there is no negation operator in original BAN. Thirdly, original BAN in-
cludes messages that contain statements, so called idealized messages. Fourth,
we have dropped predicates good and controls ; good is dropped because it is
analogous to secret, and controls is dropped since it becomes superfluous when
the epistemic modality is interpreted as knowledge rather than belief [10].

4 Semantics

In Kripke semantics, the epistemic modality 2a is interpreted through an
epistemic possibility relation −→a between states, in our case histories. In-
tuitively, h −→a h′ means that at history h agent a could, for all she knows,
be at h′. The epistemic possibility relation has a default definition in com-
puter science, due to [7]: h −→a h′, if and only if, h|a = h′|a. However,
because of the the limited decryption power of agents, there may be more
than one way for the agent to interpret the cipher texts she has sent, received

1 If we include initialization actions in histories, a rec M also holds if M is a sub-message
of some “initial secret” of a.



or otherwise acted upon. Consider, for example, a model M0 = 〈H0, κ0〉
where H0 has three execution histories, h0 = b sends {M}K · a receives {M}K ,
h1 = b sends {M ′}K′ · a receives {M ′}K′ and h2 = b sends {M}K , and agent a
does not use any keys, i.e., κ0(a, h0) = κ0(a, h1) = κ0(a, h2) = ∅. Even though
h0|a 6= h1|a, it may still be reasonable to say that at h0, agent a could, for
all she knows, be at h1. Based on such intuitions, the AT semantics [1] and
its descendants [13,15] drop the requirement of local history identity, in effect
hiding cryptographically inaccessible parts of the local history from the agent
herself.

We depart from AT semantics, and from Kripke semantics in general, by
extending the epistemic uncertainty to predicated cipher texts. To illustrate,
the cipher text {M}K at h0 in the above model M0, could, for all agent a
knows, be the cipher text {M ′}K′ at h1. Everything a observes of {M}K at
h0, a also observes of {M ′}K′ at h1. In this sense, {M ′}K′ at h1 corresponds
for a to {M}K at h0. In general, a message sequence M ′

0,M
′
1, · · · at h1 may

correspond for a to another message sequence M0,M1, · · · at h0. In order to
keep track of message correspondences, we therefore relativize the epistemic
possibility relation to a message renaming, a 1 − 1 function r on the set of
messages. Informally, h −→r

a h′ if any message sequence M0,M1, · · · at h
could, for all a knows, be the sequence r(M0), r(M1), · · · at h′. We extend a
renaming to statements by renaming the message terms inside a statement:
r(p(M)) = p(r(M)), r(2aF ) = 2ar(F ), etc. Then renamings are extended to
sets of statements by renaming each statement in a set: r(∆) = {r(F ) | F ∈
∆} for any set ∆ of statements, and, finally, to sets of messages by renaming
each message in a set: r(Π) = {r(M) | M ∈ Π} for any set Π of messages.

Assuming the the relativized epistemic possibility relation, we say that an
agent knows a statement if corresponding statements hold at epistemically
possible histories:

h |=M 2aF ⇔ ∀r : ∀h′ ∈ H : h −→r
a h′ ⇒ h′ |=M r(F )

The break with Kripke semantics should be clear. We check a renamed state-
ment r(F ) at h′, and not the original statement F .

For h −→r
a h′ to hold, we require that r respects the observations (actions)

of a in h as well as the message structure accessible through a:s keys at h.
The former requirement means that

• r(h|a) = h′|a
where r is extended to histories by point-wise renaming each message acted
upon in the history: r(ε) = ε and r(h ·σ(M)) = r(h) ·σ(r(M))). For the latter
requirement, we simply assume a transparency relation /, which determines
if a renaming r respects structure accessible with a set Π of keys: r / Π, if Π
cannot distinguish a message, a history or a statement from its renaming under
r. We leave the definition of / open, merely insisting on four requirements:

• r / Π, Π ⊇ Π′ ⇒ r / Π′ (Monotonicity)



• ι / Π, where ι is identity of messages (Reflexivity)

• r / Π, r′ / r(Π) ⇒ (r′ ◦ r) / Π (Transitivity)

• r / Π ⇒ r−1 / r(Π) (Symmetry)

For example, we may stipulate that r /Π, if and only if, r respects encryption
with keys in Π:

(i) k ∈ Π ⇒ r({M}k) = {r(M)}r(k) (Encryption)

and r respects clear text constructions:

(ii) r(M ·M ′) = r(M) · r(M ′) (Pairing)

(iii) r(T ) = T , plain text T (Plain text)

So defined, / is monotone, reflexive, transitive and symmetric [5]. We say
that / respects encryption, if, for all r and Π, r / Π implies that r respects
encryption with keys in Π. Similarly, we say that / respects pairing/plain
text, if, for all r and Π, r / Π implies that r respects paring/ plain text. Note
that any / is finite. (Since the message space is finite, there are finitely many
sets Π of keys and finitely many renamings r.) Putting the two requirements
on −→r

a together, we stipulate:

h −→r
a h′ in M⇔ r(h|a) = h′|a & r / κ(a, h)

Truth conditions for Boolean operators and atomic statements are as expected:
h |=M ¬F , if and only if, h 6|=M F ; h |=M F ∧F ′, if and only if, h |=M F and
h |=M F ′; h |=M a received M , if and only if, a receivesM ∈ Actions(h);
h |=M a sent M , if and only if, a sendsM ∈ Actions(h); h |=M a rec M ,
if and only if, M is a sub-message of some M ′ such that a receivesM ′ ∈
Actions(h); h |=M a sen M , if and only if, M is a sub-message of some M ′

such that a sendsM ′ ∈ Actions(h); h |=M old M , if and only if, for some h′

and h′′, h = h′ · begin session·h′′ and h′ |=M a rec M ∨ a sen M for some
a ∈ A ∪ {env}. Finally, statement F is valid in model M if h |=M F , for all
h ∈ H.

Returning to the example M0 above, h0 |=M0 2aa received {M}K , since
if h0 −→r

a h0 then r({M}K) = {M}K and if h0 −→r
a h1 then r({M}K) =

{M ′}K′ . On the other hand, h0 6|=M0 2aa rec M , since there is some r such
that h0 −→r

a h1 and r(M) = M , assuming that / is non-degenerate. As the
implication a received {M}K → a rec M is valid, the example illustrates that
agents need not be logically omniscient.

The relativized possibility relation implicitly contains an AT-like possibil-
ity relation: h −→a h′, if and only if, there exists a renaming r such that
h −→r

a h′. Thus, h −→a h′ if h′|a is a possible interpretation of h|a. With the
existential quantification over renamings r we lose the information how cipher
texts at h may correspond for a to cipher texts at h′.



5 Inductive Key Assignment

We left the key assignment κ open. We now stipulate that the keys used are
the keys seen. This requires a recursive definition, since a sees is defined in
terms of 2a, which in turn is interpreted through κ itself. An inductive, rather
than a coinductive definition is appropriate, since κ should assign the set of
keys that the agent has gathered some positive information about. We call a
key assignment κ inductive on system H, if κ is a minimal (with respect to
point-wise subset inclusion) key assignment such that

K ∈ κ(a, h) ⇔ h |=〈H,κ〉 2aa rec K

for all a ∈ A, h ∈ H and keys K. A model 〈H, κ〉 is inductive if κ is inductive
on H.

Theorem 5.1 (Existence of Inductive Key Assignment) There exists a
unique inductive key assignment on every message passing system.

Proof. An inductive key assignment on H is, by definition, a least fixed
point of the following function f assigning a key assignment f(κ) to every
key assignment κ: f(κ)(a, h) = {K | h |=〈H,κ〉 2a a rec K}. Function f is
monotone, as / is monotone and the extension of a rec is independent of the
key assignment. 2 Therefore, f has a unique least fixed point. 2

In inductive models, the relativized epistemic possibility relation general-
izes an equivalence relation on histories.

Lemma 5.2 In inductive models:

(i) h −→ι
a h

(ii) h −→r
a h′, h′ −→r′

a h′′ ⇒ h −→r′◦r
a h′′

(iii) h −→r
a h′ ⇒ h′ −→r−1

a h

Proof. (1): From reflexivity of /. (2): From transitivity of / and fixed point
induction. (3): From symmetry of / and fixed point induction. For more
detail, we refer to [5]. 2

As Lemma 5.2.iii shows, the apparent asymmetry in the definition of the
epistemic possibility relation disappears in inductive models. From now on, if
no key assignment is given, we assume the inductive key assignment: h |=H F ,
if and only if, h |=M F for the inductive model M based on H; F is valid in
H if h |=H F , for all h ∈ H.

Many semantics proposed for BAN logics give a more straightforward,
operational definition of seen messages and used keys. Roughly, a message is
seen if it was received, or if it is the first or second pairing component of a

2 This independence is preserved if we include initialization actions in histories, and make
a rec apply also to sub-messages of “initial secrets” of a.



seen message, or if it is the body of a seen cipher text locked with a seen key.
A key is used if it is seen. To illustrate, at a history h0 = b sends K · {K ′ ·
{K ′′}K′′}K · a receives K · {K ′ · {K ′′}K′′}K agent a uses the keys K and K ′. In
fact, the inductive key assignment is at least as inclusive as this operational key
assignment, assuming that / respects pairing and encryption. For instance,
key K is in the second iteration of the fixed point definition of κ(a, h0), and K ′

is in the third. A forthcoming full version of [5] shows the inclusion and under
what conditions the inductive and the operational key assignments coincide.
We refer to [5] for examples of when the operational key assignment might be
inappropriately weak.

6 BAN Theories

A BAN theory is a set L of statements containing all axioms and closed under
all rules in Table 1, where axiom Taut consists of all tautologies from classical
propositional logic, and a sees Π =

∧
K∈Π

a sees K, with the empty conjunction

abbreviating some tautology. When F ∈ L, we write `L F and say that F is a
theorem of L. The axioms and rules in Table 1 isolate “feasible cryptographic
computation” to one point, namely renaming necessitation (RNec). According
to RNec, an agent knows all theorems that are preserved under renamings
transparent to seen keys. Since there are finitely many renamings, RNec is
finitary, i.e., involves a finite set of premisses. The introspection axiom I says
that an agent knows if she sent or received a message. Axioms K, T, 4 and
5 are standard. The remaining axioms and rule are non-epistemic. Axiom
Mono says that a rec, a sen and old are monotone with respect to ≥. The
disjunctions in axioms R2 and S2 are finite, since there are only finitely many
messages.

Let ∆ be a set of statements, possibly infinite. Write ∆ `L F , if there
is a finite subset {F1, ..., Fn} ⊆ ∆ such that `L F1 → (F2 → (· · · → (Fn →
F ) · · · )). Write 2a∆ for {2aF | F ∈ ∆}. We have the following weakening of
normality.

Lemma 6.1 (Renaming Normality) If r(∆) `L r(F ) for all r / Π, then
a seesΠ, 2a∆ `L 2aF .

Proof. Assume r(∆) `L r(F ), ∀r /Π. Since the message space is finite, there
are only finitely many renamings. Let r1, ..., rn be all renamings r such that
r/Π. For each i ∈ {1, ..., n} there is a finite ∆i ⊆ ∆ such that ri(∆i) `L ri(F ).
Thus for each i ∈ {1, ..., n}: ri(∆1, ..., ∆n) `L ri(F ). Since ∆1, ..., ∆n is finite,
by rule RNec and axiom K : a sees Π, 2a∆1, ..., 2a∆1 `L 2aF . Since ∆i ⊆ ∆:
a sees Π, 2a∆ `L 2aF . 2

Since the renaming normality rule only closes knowledge under “feasibly
computable” logical implications, BAN theories can avoid the absurdities of



K 2a(F → F ′) → 2aF → 2aF
′

T 2aF → F

4 2aF → 2a2aF

5 ¬2aF → 2a¬2aF

RNec
r(F ), ∀r / Π

a sees Π → 2aF

I πa → 2aπa, πa ∈ {a received M , a sent M }
Mono p(M) → p(M ′), M ≥ M ′, p ∈ {a rec, a sen, old}
R a received M → a rec M

S a sent M → a sen M

R2 a rec M → ∨
M ′≥M

a received M ′

S2 a sen M → ∨
M ′≥M

a sent M ′

Taut F , F tautology from propositional logic

MP
F F → F ′

F ′
Table 1

Axioms and Rules

logical omniscience. For instance, a BAN theory need not contain:

a rec M →2aa rec M (1)

2afresh M →2afresh {M}K (2)

This follows from Soundness Theorem 7.1. In contrast, if a BAN theory L
satisfies the rule of normality, i.e., if ∆ `L F implies that 2a∆ `L 2aF , then
L contains (1) and (2); Normality and axioms I, R, R2 and Mono give (1),
while normality and axiom Mono yield (2). As the following fact illustrates,
BAN theories contain a significant part of original BAN [4].

Corollary 6.2 Assume / respects pairing and encryption. Then every BAN
theory contains the following, where sa ∈ {a sees, a said}
(i) 2afreshM → 2afresh (M ·M ′)

(ii) 2afreshM → (a seesK → 2afresh {M}K)

(iii) 2bsa (M ·M ′) → 2bsa M

(iv) 2bsa (M ·M ′) → 2bsa M ′



(v) sa {M}K → (a seesK → sa M)

(vi) sa M → 2asa M

(vii) ¬sa M → 2a¬sa M

(viii) a receivedM → a seesM

Proof. (1), (3) and (4): Axiom Mono, renaming normality (Lemma 6.1) and
/ respects pairing. (2) and (5): Axiom Mono, renaming normality and /
respects encryption. (6): Axiom 4. (7): Axiom 5. (8): Axioms I and R and
renaming normality. 2

The well-known message meaning rule (in our setting: axiom) of BAN is
conspicuously absent in Corollary 6.2. To obtain this axiom for a group G of
agents , we need to assume an origination axiom for G:

K secret of G → (b rec {M}K →
∨
a∈G

(a said {M}K ∧ a sees K) (3)

as well as an honesty axiom for G, where from is some special plain text atom:

¬a said from · b ·M, whenever a 6= b, a ∈ G (4)

Corollary 6.3 (Message Meaning Axiom) Assume / respects pairing, en-
cryption and plain texts. Every BAN theory containing the origination axiom
(3) and honesty axiom (4) for agent group G also contains:

a sees {from · b ·M}K , a seesK, 2aKsecret of G → 2a b saidM, b ∈ G

Proof. Immediate from renaming normality (Lemma 6.1) and that / respects
plain texts, pairing and encryption. 2

The message meaning axiom in Corollary 6.3 weakens the original in [4] by
adding to the antecedent that agent a uses (sees) the key K, as in, for instance,
[1,6,8]. We briefly illustrate BAN theories with protocol specific axioms.

Example 6.4 Consider the Needham-Schröder Shared Key Protocol between
principals a and b and with key server s. If the server sends the cipher text
{N · b ·K ·M}Ka , and Ka is a:s server key, then the server generated K for a
and b:

s sen {N · b ·K ·M}Ka , Ka secret of a · s, fresh N → K secret of a · b · s

If a BAN theory contains this protocol specific axiom, for all keys N , K and
Ka and all messages M , contains the origination axiom 3 for agent group
{a, s}, and assuming / respects pairing, encryption and plain texts, the BAN
theory also contains the authentication specification:



a sees {N · b ·K · {K · a}Kb
}Ka , ¬a said {N · b ·K · {K · a}Kb

}Ka ,

a sees Ka, 2aKasecret of a · s, 2afresh N

→ 2aK secret of a · b · s
stating that if a sees the message from the server, did not send the same
message herself, knows the key to this message, and knows that the nonce
inside is fresh, then a knows that the key provided inside is secret between a,
b and s. The derivation is by way of renaming normality (Lemma 6.1) and
Corollary 6.2.

Corollary 6.3 and Example 6.4 suggest that we might be interested in BAN
theories generated by adding various theory bases, finite sets A of statements.
Note that the origination and honesty schemata in Corollary 6.3, as well as
the protocol specific axiom schemata in Example 6.4, are indeed finite, since
there are only finitely many messages. We define the BAN theory induced by
A, in symbols LA, as the smallest BAN theory containing the finite set A.

7 Main Results

Write ‖∆‖ for the set of all message passing systems validating all statements
in ∆. BAN theory L is sound with respect to a class C of message passing
systems, if C ⊆ ‖L‖. BAN theory L is complete with respect to C, if L contains
all statements valid in all systems in C.

Theorem 7.1 (Soundness) LA is sound with respect to ‖A‖.
Proof. Rule RNec: Since / is monotone. Axioms T, 4 and 5: From Lemma
5.2. Axiom I: Assume h |= a received M , i.e., a receivesM ∈ Actions(h|a).
Pick any h′ ∈ H and renaming r such that h −→r

a h′. Then r(h|a) = h′|a.
Therefore, a receives r(M) ∈ Actions(h′|a), i.e., h′ |= a received r(M). Since
h′ and r were chosen at random, h |= 2aa received M . Analogously for
a sent M . Remaining axioms and rule MP are immediate. 2

Theorem 7.2 (Completeness) LA is complete with respect to ‖A‖.
Proof. Section 8. 2

Thus, the protocol base semantically guarantees a specification only if the
specification is a theorem. Contrast this with the usual verification practice in
BAN, based on an open ended proof system: If your specification is unprov-
able, you conclude that either the base logic or your protocol assumptions are
too weak [4].

Theorem 7.3 (Decidability) LA is decidable.

Proof. Section 8. 2



8 Proof of Completeness and Decidability

We show completeness and decidability by transferring canonical model and
filtration techniques from Kripke semantics. As a first step, we lift the se-
mantics from message passing models to a more general class of structures,
counterpart models. Next, we build a canonical counterpart model CL that
validates precisely the theorems of a given BAN theory L. For any finite set
Γ of statements, CL is transformed, while preserving truth values in Γ, into a
finite message passing system HL,Γ.

8.1 Canonical Counterpart Model

A counterpart model is a triple C = 〈W,−→, I〉, where W is a non-empty
set of worlds (states), −→r

a⊆ W × W for each agent a ∈ A and renaming
r, and I(p, w) is a set of messages, the messages satisfying predicate p at
w. Intuitively, w −→r

a w′ says that any M at w, could, for all a knows, be
r(M) at w′. The semantics of Section 4 is generalized in the obvious way:
w |=C p(M) ⇔ M ∈ I(p, w) and w |=C 2aF ⇔ ∀r∀w ∈ W : w −→r

a w′ ⇒
w′ |=C r(F ). Truth conditions for boolean operators are unchanged.

Counterpart models are used in counterpart semantics for first order modal
logic due to [9]. The truth condition above for knowledge is unorthodox,
treating message terms the way counterpart semantics treats free variables.

Next, we build a canonical counterpart model that validates precisely the
theorems of a given BAN theory. Assume a BAN theory L. A set ∆ of
statements is consistent if there is no statement ¬F such that ∆ ` ¬F and
∆ ` F . ∆ is maximal consistent if there is no consistent set ∆′ such that
∆′ ⊃ ∆. Using the standard Lindenbaum construction we obtain:

Lemma 8.1 (Extension Lemma) If ∆ 6` F , there is a maximal consistent
set ∆′ ⊇ ∆ such that F 6∈ ∆′.

Write Keys(a, ∆) for the set {K | a sees K ∈ ∆}. The canonical counter-
part model for BAN theory L is CL = 〈WL,−→

L
, IL〉 , where

• WL is the set of all maximal L-consistent sets

• w −→r
a

L

w′ ⇔ r / Keys(a, w) ∧ ∀F : 2aF ∈ w ⇒ r(F ) ∈ w′

• IL(w, p) = {M | p(M) ∈ w}
Lemma 8.2 (Truth lemma) w |=CL

F ⇔ F ∈ w.

Proof. By induction in (the number of statement operators in) F , using
renaming normality (Lemma 6.1). The base case, for atomic F , is imme-
diate. The induction step, for boolean operators: uses standard properties
of maximal consistent sets. For the epistemic modality let w|a be the set
{F | 2aF ∈ w}. For the only-if direction first:



2aF 6∈ w

⇒ r(w|a) 6` r(F ) & r / Keys(a, w), ∃r (By renaming normality) (5)

⇒ r(w|a) ⊆ w′ & r(F ) 6∈ w′, ∃w′ ∈ WL (By lemma 8.1) (6)

⇒w′ 6|=CL
r(F ) (By the ind. hyp.) (7)

⇒∀F : 2aF ∈ w ⇒ r(F ) ∈ w′ (By (6)) (8)

⇒w −→r
a

L

w′ (By (5) and (8)) (9)

⇒w 6|=CL
2aF (By (7) and (9))

For the if-direction:

2aF ∈ w & w −→r
a

L

w′ & w′ ∈ WL

⇒ r(F ) ∈ w′

⇒w′ |=CL
r(F ) (By the ind. ass.)

⇒w |=CL
2aF (By the assumptions)

2

8.2 Canonical Message Passing System

Given a finite set Γ of statements, we transform the canonical model into a
finite inductive message passing model, while preserving truth values in Γ.
Each w ∈ WL is transformed, in three steps, into a collection of histories that
satisfy w∩Γ. In the first step, w is collapsed into the finite set w∩Γ. Secondly,
this finite set is sequenced in different ways, yielding a collection of statement
sequences. Thirdly, statements (in the sequences) are replaced by actions that
“ground” them.

The first transformation step is trivial. For the second step, we consider
various enumerations of statements. An enumeration of all statements in the
language is admissible if it makes all atomic statements of the form old M
appear prior to other kind of statements. In what follows, whenever we talk
about an enumeration e we mean an admissible enumeration e. Any e induces
a sequence e(∆) from a set ∆ of statements, obtained by removing all non-
members of ∆ from the enumeration e. For the third transformation step, we
define an internal action to be of the form a intF , where F is any statement
and a ∈ A ∪ {env}. 3 We then take sequences s of statements to histories
under a mapping hist as follows:

(i) hist(ε) = ε

(ii) hist(s · old M) = hist(s) · env sends M · begin session

(iii) hist(s · a received M) = hist(s) · a receives M

(iv) hist(s · a sent M) = hist(s) · a sends M

3 This assumes a slightly more general definition of internal action than that of Section 2.
Alternatively, we could introduce a intF as an abbreviation for an internal action of the
form a int M .



(v) hist(s ·2aF ) = hist(s) · a int F

(vi) hist(s · F ) = hist(s), otherwise

Condition (2) assures that every message which s claims is old, is old at
hist(s) according to the semantics of predicate old. Condition (3) sees to it
that every message that s claims a received, a received at hist(s) according to
the semantics of predicate receive. Analogously for condition (4). Condition
(5) places a token, or evidence, in hist(s)|a, for every statement s claims a
knows.

We denote the set w ∩ Γ by [w]Γ, or simply [w], when Γ is clear from
the context. Write histe([w]) for hist(e([w])). The canonical message passing
model for finite Γ and BAN theory L is ML,Γ = 〈HL,Γ, κL,Γ〉, where

(i) HL,Γ = {histe([w]) | w ∈ WL, ∃e}.
(ii) κL,Γ(a, histe([w])) = Keys(a, [w])

To ensure that condition (2) is well-defined we need some conditions on Γ.
We say Γ is adequate if Γ is finite, Γ is closed under sub-statements (if F ∈ Γ
and F ′ is a sub-statement of F then F ′ ∈ Γ), Γ is closed under renamings (if
F ∈ Γ and r is any renaming then r(F ) ∈ Γ), Γ contains all atomic statements
and contains 2aa received M , 2aa sent M and 2aa rec M , for all a ∈ A and
messages M .

Lemma 8.3 Assume Γ is adequate and w ∈ WL.

(i) oldM ∈ [w] ⇔ ∃M ′ ≥ M : oldM ′ ∈ [w].

(ii) a recM ∈ [w] ⇔ ∃M ′ ≥ M : a receivedM ′ ∈ [w].

(iii) a senM ∈ [w] ⇔ ∃M ′ ≥ M : a sentM ′ ∈ [w].

(iv) a receivedM ∈ [w] ⇔ 2aa receivedM ∈ [w].

(v) a sentM ∈ [w] ⇔ 2aa sentM ∈ [w].

Proof. From axioms R, S, R2, S2, Mono, I and T . We show case (2), the
remaining cases are analogous. a rec M ∈ [w], if and only if (Γ is adequate),
a rec M ∈ w, if and only if (R, R2, Mono, w is maximal consistent set),
∃M ′ ≥ M : a received M ′ ∈ w, if and only if (Γ is adequate), ∃M ′ ≥ M :
a received M ′ ∈ [w]. 2

Lemma 8.4 (Injectivity) Assume Γ is adequate. histe([w]) = histe′([w
′]) ⇒

[w] = [w′], for w, w′ ∈ WL.

Proof. From Lemma 8.3. 2

Lemma 8.4 assures us that the key assignment in ML,Γ is well-defined for
adequate Γ. We proceed to show that the transformation w y histe([w])
preserves truth values from CL to ML,Γ for statements in Γ.

Lemma 8.5 (Reflection) Assume Γ is adequate and w, w′ ∈ WL. The fol-
lowing statements are equivalent:



(i) ∃e′ : histe([w]) −→r
a histe′([w

′]) in ML,Γ

(ii) r / Keys(a, [w]) ∧ ∀F : 2aF ∈ [w] ⇔ 2ar(F ) ∈ [w′].

Proof. From Lemma 8.3. We show the implication from (2) to (1). So as-
sume that r /Keys(a, [w]) ∧ ∀F : 2aF ∈ [w] ⇔ 2ar(F ) ∈ [w′]. We show that
a receives M ∈ Actions(histe([w])|a) iff a receives r(M) ∈ Actions(histe([w

′])|a),
and similarly for internal and send actions. The proofs in the latter cases are
similar and left to the reader. For receive actions:

a receives M ∈ Actions(histe([w])|a)

⇔ a receives M ∈ Actions(histe([w]))

⇔ a received M ∈ [w]

⇔2aa received M ∈ [w] (By lemma 8.3)

⇔2aa received r(M) ∈ [w′] (By the assumption)

⇔ a received r(M) ∈ [w′] (By lemma 8.3)

⇔ a receives r(M) ∈ Actions(histe([w
′]))

⇔ a receives r(M) ∈ Actions(histe([w
′])|a)

We thus conclude that Actions(r(histe([w])|a)) = Actions(histe([w
′])|a). But

then there is an enumeration e′ such that r(histe([w])|a) = histe′([w
′])|a, and

it follows that histe([w]) −→r
a histe′([w

′]) as desired. The implication from (1)
to (2) is immediate from requirement (5) in the definition of hist . 2

Lemma 8.6 (Filtration Lemma) Assume Γ is closed and w,w′ ∈ WL.

(i) w −→r
a

L

w′ ⇒ ∃e′ : histe([w]) −→r
a histe′([w

′])

(ii) histe([w]) −→r
a histe′([w

′]) ⇒ ∀F : 2aF ∈ [w] ⇒ r(F ) ∈ [w′]

(iii) p(M) ∈ [w] ⇔ histe([w]) |=ML,Γ
p(M), any predicate p.

Proof. (3): Immediate from Lemma 8.3 and, in the case of old, the fact that
e is admissible. (1) and (2) depend on axioms T , 4 and 5 and Reflection
Lemma 8.5. For (1), assume w −→r

a
L

w′. First observe that r / Keys(a, [w]).

By Lemma 8.5 it suffices to show 2aF ∈ [w] iff 2ar(F ) ∈ [w′]. For the only-if
direction, if 2aF ∈ [w] then 2aF ∈ Γ ∩ w. By ax. 4, 2a2aF ∈ w, since w is
maximal consistent. Hence 2ar(F ) ∈ w′, and so 2ar(F ) ∈ [w′] as well, since
Γ is closed under renamings. The if-direction uses ax. 5 in a similar way, and
condition (2) uses T. We omit the details. 2

Lemma 8.7 (Truth Lemma for ML,Γ) Assume Γ is adequate and w ∈ WL.
For all F ∈ Γ: histe([w]) |=ML,Γ

F ⇔ F ∈ [w].

Proof. By induction in (the number of statement operators in) F , using Truth
Lemma 8.2 and Filtration Lemma 8.6. Base case, atomic statements: From
Filtration Lemma 8.6.3. Induction step, negation and conjunction: Since Γ is
closed under sub-statements. Induction step, epistemic modality: From Truth
Lemma 8.2 and Filtration Lemma 8.6, since Γ is closed under sub-statements



and renamings. 2

We continue to show that the transformation w y histe([w]) preserves
truth values from CL to HL,Γ for statement in Γ.

Lemma 8.8 (Induction) Assume Γ is adequate. ML,Γ is inductive.

Proof. By Truth Lemma forML,Γ, as Γ contains sees, K ∈ κL,Γ(a, histe([w]))
iff histe([w]) |=ML,Γ

a seesK for all K,w, a. Assume that κ is strictly smaller
than κL,Γ. Then we find some K, w, a such that K 6∈ κ(a, histe([w])) and
K ∈ κL,Γ(a, histe([w])). By the definition of κL,Γ, 2aa rec K ∈ [w]. It fol-
lows that (a int a rec K ) ∈ Actions(histe([w])|a). We want to show that
histe([w]) |=〈HL,Γ,κ〉 2aa rec K, so that the inductive property fails for κ.
To this end assume that histe([w]) −→r

a histe′([w
′]). Then r(histe([w])|a) =

histe′([w
′])|a, and so (a int a rec r(K)) ∈ Actions(histe′([w

′])|a). It follows
that 2aa rec r(K) ∈ [w′], so also a rec r(K) ∈ [w′], by T, since Γ is closed
under sub-statements and w′ is maximal. Then histe′([w

′]) |=ML,Γ
a rec r(K),

by the Truth Lemma 8.7. Since truth of an atomic statement in a mes-
sage passing model is independent of the key assignment, it follows that
histe′([w

′]) |=〈HL,Γ,κ〉 a rec r(K) as well. This is sufficient to establish the
result, as w′ and r were chosen arbitrary. 2

Lemma 8.9 (Truth Lemma for HL,Γ) Assume Γ is adequate and w ∈ WL.
For all F ∈ Γ: histe([w]) |=HL,Γ

F ⇔ F ∈ [w].

Proof. Immediate from Truth Lemma 8.7 for ML,Γ and Induction Lemma
8.8. 2

Corollary 8.10 Assume Γ is adequate. For all F ∈ Γ: |=HL,Γ
F ⇔ F ∈ L.

Proof. Assume F ∈ Γ. Then F ∈ L, if and only if, ∀w ∈ WL : F ∈ w, if and
only if (since F ∈ Γ), ∀w ∈ WL : F ∈ [w], if and only if (by Truth Lemma 8.9
for HL,Γ), |=HL,Γ

F . 2

Theorem 8.11 (Finite Model Property) If 6`LA F , then there is a finite
message passing system H ∈ ‖A‖ such that 6|=H F .

Proof. Assume 6`LA F . Let Γ be the smallest set closed under renamings and
sub-statements and containing F and A, containing all atomic statements,
containing a sees M , 2aa received M and 2aa sent M , for all a ∈ A and
messages M . Then Γ is finite, i.e., Γ is adequate. From Corollary 8.10,
6|=HLA,Γ

F and |=HLA,Γ
A. By construction, HLA,Γ is finite, since Γ is finite. 2

From Finite Model Property 8.11, we immediately get Completeness The-
orem 7.2. By soundness and the proof of completeness it is not difficult to
find a bound n such that F ∈ LA, if and only if, F is valid in all systems
in ‖A‖ with at most n histories, each of size less than n. This is sufficient to
establish Decidability Theorem 7.3.



9 Conclusion

Several Kripke semantics for BAN have been proposed in the literature. How-
ever, no logic faithful to BAN is complete with respect to Kripke semantics,
due to the logical omniscience problem. In fact, there have been no complete-
ness results so far for BAN and related logics.

Adopting a recently proposed generalization of Kripke semantics that avoids
logical omniscience, we have shown that a logic close to BAN, with full boolean
operators, is decidable, and that it is sound and complete with respect to
message passing systems. Completeness and decidability generalize to logics
induced by an arbitrary protocol specific base. The protocol base may express
how participants in a given protocol are expected to behave, or state general
assumptions about the network, such as honesty and origination assumptions.

The results assume a finite message space, thus excluding some systems,
such as systems in which execution proceeds without an end, with agents
constantly generating fresh messages. Also, the language in this paper covers
only the symmetric key fragment of BAN.

In the future, we intend to look for effective decision procedures and to
extend the completeness result in various directions: To an infinite message
space, to asymmetric cryptography, to a description logic extension and to a
reformulation of renaming necessitation using message variables, analogously
to crypto normality in [5], rather than the quantification over renamings.
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