
A Note On SPKI’s Authorisation Syntax

Olav Bandmann∗

Industrilogik L4i AB
Odengatan 87, SE–113 22 Stockholm, Sweden

olav@L4i.se

Mads Dam†

LECS/IMIT, Royal Institute of Technology (KTH)
KTH Electrum 229, SE–164 40 Kista, Sweden

mfd@kth.se

Abstract

Tuple reduction is the basic mechanism
used in SPKI to make authorisation decisions.
A basic problem with the SPKI authorisation
syntax is that straightforward implementa-
tions of tuple reduction are quadratic in both
time and space. In the paper we introduce
a restricted version of the SPKI authorisa-
tion syntax, which appears to conform well
with practice, and for which authorisation de-
cisions can be made in nearly linear time.

1 Introduction

SPKI [3, 4] is a framework for authori-
sation intended particularly for networked
applications. In SPKI, authority is bound
to principals primarily identified by pub-
lic keys. An SPKI authorisation certificate
<I,S,D,A,V > specifies the following items
of information:

• I: An issuer as a public key.

• S: A subject which is identified primar-
ily through a public key.

∗Work done while at SICS, Swedish Institute of

Computer Science. Project at SICS supported by a

grant from Microsoft Research, Cambridge, U.K.
†Partially supported by the Swedish Agency for

Innovation Systems, project “Policy-Based Network

Management”, and by the Swedish Research Council

grant 621-2001-2637, “Semantics and Proof of Pro-

gramming Languages”

• D: A delegation flag, indicating whether
or not the authorisation at hand is dele-
gable.

• A: A “tag”, or authorisation, determin-
ing the authority assigned to the subject
by the certificate.

• V : A validity field determining optional
intervals and online conditions for valid-
ity.

Authorisations are given in the form of S-
expressions, following on from the work of
Rivest [8]. S-expressions are essentially
parenthesized list expressions in the style of
LISP. To give an example, the right for sub-
jects in the group admin, belonging to unit
finance, to read the income attribute of all
objects of type person might be given as a
nested list structure

X : (obj person

(conds (grp admin)

(unit finance))

(op income read))

Authorisations and requests are given in the
same syntax. If we consider X as a request
a corresponding authorisation might have the
shape e.g.

Y : (obj person

(conds (grp admin))

(op income read))

meaning that all members of the group admin

are permitted read access, not only members

of the finance unit. Or, as another example,
the authorisation might have the shape:

Z : (obj person

(conds (grp admin)

(unit finance))

(op income))

intended to be interpreted such that now the
income attribute can be read and written. In
both cases X should be granted, since, in an
intuitive sense which we make precise in the
paper, X is “more specific than”, or, “autho-
rised by”, both Y and Z. The example gives
the game away: An authorisation expression
becomes more specific by extending lists to
the right.

In order to be able to specify more complex
authorisations in a concise manner, SPKI
adds a number of auxillary constructions to
be interpreted, essentially, as abbreviating
sets of basic S-expressions. The following ex-
tensions are considered:

• (*) is the wildcard.

• (* set X1 · · · Xn) is the union of the
sets X1, . . . , Xn, n ≥ 1.

• (* range R l u) is the set of all X in
the interval determined by the ordering
R, lower limit l and upper limit u.

• (* prefix w) is the set of all strings
having w as prefix.

Thus, to give an example, the authorisation

X ′ : (obj person

(conds (grp admin)

(* set (unit finance)

(unit personnel)))

(op income (* set read write)))

is just an abbreviation for the obvious size 4
set.

In SPKI, authorisation decisions are
made through a process of “tuple reduc-
tion”. Authorisations and requests are
compared by computing their intersection
using the operation AIntersect. As an

example, with X and X ′ as defined above,
AIntersect(X ′,X) = X. The intersec-
tion of X ′ and X is the most permissive
authorisation granted by both X ′ and X.
If AIntersect(X ′,X) = X then the most
permissive authorisation granted by both
X ′ and X is X itself, or in other words, all
authorisation granted by X is also granted
by X ′, i.e. X is authorised by X ′.

Computation of the AIntersect function
is in many cases quite unproblematic, in
particular when one of the arguments lack
one of the special * forms. In general,
however, AIntersect may cause a quadratic
blowup, and this is the basic problem we
address in this note.

The problem arises when comparing * set

forms. The naive algorithm simply expands
an S-expression involving * set forms to
one without them. In many applications
this procedure is in fact quite adequate.
First, it will often be the case that one of the
arguments to AIntersect is without * forms.
Second, requests will often be small, and
a quadratic blow-up will be without much
consequence. The SPKI standard opens
up for implementors to provide set-to-set
transformations to alleviate the problems
that may remain, but no concrete suggestions
are given.

On the other hand one will in fact some-
times want to compute using complex autho-
risations. For instance, one will want to sub-
ject authorisations to simple analyses of the
type:

Q: Is authorisation X stronger than
authorisation Y ?

where X and Y are general S-expressions.
Observe that Q is just a different way
of saying that AIntersect(X,Y) = X.
Secondly, simply by providing the tools to
describe complex authorisations, users may
eventually want to use them, for instance
to precompute sets of authorisations, or to
use the * set notation as a macro facility.

This is discussed in slightly more detail in
section 9. As another example we have, in
the Amanda project at SICS, been exploring
a general mechanism for delegation based on
a modelling of delegation as the constrained
issuance of new authorisations [6, 1]. The
resulting S-expression can become quite
complex, and furthermore the need arises,
in the decision making process, to compare
authorisations of a general shape.

For these reasons we have found a need to
subject the SPKI authorisation syntax to a
deeper analysis. In the paper we obtain the
following main results:

1. A characterisation of the SPKI entail-
ment relation in terms of a partial or-
dering ≤

S
.

2. A weak version of �
S
, which is sound,

so that x �
S

y implies x ≤
S

y.

3. A restricted S-expression syntax for
which the weak relation �

S
is complete,

i.e. coincides with ≤
S
.

4. An efficient algorithm to compute
AIntersect, and a proof that
AIntersect is the greatest lower
bound with respect to the ≤

S
ordering.

The key idea for the restricted S-expression
syntax is simply to require that non-atomic
elements of * set expressions are tagged
with a unique tag (or, in SPKI terminol-
ogy, type). On the evidence we have so
far gathered this is nothing more than a
formalisation of existing SPKI practice, and
all examples in the SPKI documents [3, 4, 5]
stay within the restricted syntax.

The paper is organised in the following
way: In the first sections we describe au-
thorisation trees as the basic form of *-free
S-expressions, and then the syntax and se-
mantics of S-expressions is given as sets of
authorisation trees. The syntax is given in
slightly abstract terms; instead of the con-
crete range and prefix constructions we just
assume a set of primitive set constants, as
this makes the presention less cluttered. In

section 5 we proceed to introduce the partial
orders ≤

S
and �

S
, and in section 6 we relate

≤
S

and �
S

by showing first soundness, and
then pinpointing the condition in the defini-
tion of the weak partial order which causes
completeness to fail for general expressions.
Then, in section 7 we turn to AIntersect, to
establish the results (4) above.

2 Authorisation Trees

We start by defining authorisation trees,
used to give semantics to the complete SPKI
authorisation element. Let A be a denumer-
able set of “atomic” elements ranged over by
a of one or several data types such as strings
or integers. The set T of authorisation trees,
ranged over by t, is determined by the follow-
ing BNF style grammar:

t ::= a | (a t1 · · · tn)

where n ≥ 0.

The intention is that authorisation trees
are positional. Types, in particular the type
of an atom a′ appearing as a subtree ti of
the tree (a t1 · · · tn), are determined by two
pieces of information:

• The position i

• The label a

Types are determined by some external
means; here it suffices to assume some fixed
binding of types to labelled tuple positions.
We define a partial order ≤

T
on T induc-

tively as follows. Let x, y ∈ T .

1. If x ∈ A or y ∈ A then x ≤
T

y if and
only if x = y.

2. If x = (x1 · · · xm) ∈ T and y =
(y1 . . . yn) ∈ T , then x ≤

T
y if and

only if m ≥ n and xi ≤
T

yi for i =
1, . . . , n.

A simple proof by induction shows that ≤
T

is indeed a partial order.

Elements in T represent authorisations,
and the partial order ≤

T
represents the

“is authorised by” relation, which in SPKI
normally is represented in terms of the
AIntersect operation.

Example 1 Consider the authorisation trees
X, Y , and Z of section 1. We obtain that
X ≤

T
Y and X ≤

T
Z, but not Y ≤

T
Z and

neither Z ≤
T

Y . If we let

U : (obj person

(conds (grp admin))

(op income))

then Y ≤
T

U and Z ≤
T

U .

In terms of the partial ordering ≤
T
, the

intended use of authorisation trees is as
follows. Assume that a certain principal
p wants to perform an action a requiring
the authorisation x. Then p has the autho-
risation for a if (and only if) p has some
authorisation y satisfying x ≤

T
y.

A problem here is that the language is too
restricted to be very useful. The solution
is to use sets of authorisation trees instead
of singletons. In the example above, p

has the authorisation for a if p has some
authorisation Y (a set of authorisation trees)
such that there exists a y ∈ Y satisfying
x ≤

T
y.

For this reason SPKI extends the basic S-
expression syntax by notation for sets of au-
thorisation trees.

3 Syntax of S–expressions

S–expressions represent sets of authorisa-
tion trees. Essentially, authorisation trees
are extended with notation for set unions, in
addition to primitive range and prefix con-
structions. To cater for these primitives we
assume a denumerable set B of set constants,
and a mapping Val : B → 2A \ {∅} assigning
to each constant in B the nonempty set of

atoms it represents.

Definition 1 (S–expressions) The set S

of S–expressions, ranged over by X,Y , is de-
termined as follows:

X ::= (*) | a | b | (a X1 · · · Xn) |

(* set X1 · · · Xm)

where a ∈ A, b ∈ B, and n ≥ 0, m ≥ 1.

So, an S-expression can be either an atom (in
A), a primitive set of atoms, a tuple, or a (*

set ...) form, used to denote unions. We
assume, of course, that A does not contain the
special wildcard symbol (*). S-expressions
of the form either a ∈ A or b ∈ B are called
atomic. In SPKI, two types of set constants
are considered:

1. Elements representing ranges of ele-
ments in A. E.g. all strings in A be-
tween “bird” and “fish”, alphabetically,
or all integers in A greater than 5. There
are many options here including type of
interval and type of order. Note that,
by the definition of Val above, we do not
allow empty ranges.

2. Elements representing sets of strings in
A which have a certain strings as pre-

fixes. E.g. all strings in A beginning with
“/pub/”.

4 Semantics of S–expressions

An element X of S represents a non empty
subset of T : the set of trees that are autho-
rised by X.

Definition 2 (S–expression Semantics)
We define the function ‖·‖ : S → 2T \ {∅} as
follows:

1. ‖(*)‖ = T

2. ‖a‖ = {a} for all a ∈ A

3. ‖b‖ = Val(b) for all b ∈ B

4. ‖(X1 · · · Xm)‖ = {(t1 · · · tl) | l ≥
m,∀i:1≤i≤m ti ∈ ‖Xi‖}

5. ‖(* set X1 · · · Xm)‖ = ‖X1‖ ∪ . . . ∪
‖Xm‖

Note that, in (4), X1 and t1 are constrained
to be atoms, by definition 1. We expect ‖X‖
to be lower closed, so that if t ∈ ‖X‖ and
t′ ≤

T
t then also t′ ∈ ‖X‖, or in other words,

if t is authorised by X and t′ is authorised by
t then t′ should be authorised by X as well.
This property is easily verified.

Proposition 1 For all X ∈ S, ‖X‖ is lower

closed.

Proof A trivial induction. 2

The naive way of deciding whether or not
t ∈ ‖X‖ is to rewrite X to a normal form
where all occurrences of the * set construc-
tion are pushed to the outermost level, thus
reducing questions of the form t ∈ ‖X‖ to the
case where X does not have occurrences of
the * set construction. To make this clear,
say that X1 and X2 are equivalent, X1

∼= X2,
if ‖X1‖ = ‖X2‖.

Proposition 2

(X1 · · · (* set Xi,1 · · · Xi,n) · · ·Xm) ∼=
(* set (X1 · · ·Xi,1 · · ·Xm)) · · ·

(X1 · · ·Xi,n · · ·Xm))

Example 2 Let

X = (a (* set b (c (* set d e))))

where all a, b, etc. are atoms in A. This rep-
resents the set of authorisation trees which
are lists of length at least two beginning with
a and having either b or another list t of
length at least two as its second element,
where t begins with c and has d or e as its
second component. Using (2) along with the
obvious idempotency law we obtain:

X ∼= (* set (a (* set b (c d)))

(a (* set b (c e))))

∼= (* set (a b) (a (c d))

(a b) (a (c e)))

∼= (* set (a b) (a (c d))

(a (c e)))

Note that, according to def. 2, the set ‖X‖
includes not only a list such as t = (a (c e)),
but also any authorisation tree t′ for which
t′ ≤

T
t. As an example, t′ can have the shape

(a (c e f) g h).

5 Preorder on S–expressions

Clearly, calculations like the one in exam-
ple 2 are not very efficient. To circumvent
this, we need to be able to decide the follow-
ing problems without actually calculating ‖·‖:

1. Given t ∈ T (an authorisation request)
and an S-expression X (stored, perhaps,
as the authorisation element of some cer-
tificate), does t ∈ ‖X‖ hold?

2. Given S-expressions X and Y , is every
authorisation request granted by X also
granted by Y ?

Observe that both questions can be put in
the same form, since t is trivially represented
as an S-expression denoting the lower closure
of {t}. We thus define a preorder, ≤

S
, on

S-expressions to reflect the semantics of 2.
above:

Definition 3 (S–expression Preorder)
The preorder ≤

S
on S is defined by

X ≤
S

Y ⇐⇒ ‖X‖ ⊆ ‖Y ‖

In other words, whatever is authorised by
X is also authorised by Y . The difficulty in
computing ≤

S
is illustrated by the following

example, which also shows why ≤
S

is not a
partial order.

Example 3 Let X = (a (* set b c)) and
Y = (* set (a b) (a c)). By definition 3,
X ≤

S
Y and Y ≤

S
X, even though X 6= Y

(X and Y are syntactically different). It is
easy to deduce that Y ≤

S
X since (a b) ≤

S

X and (a c) ≤
S

X both hold. To verify
X ≤

S
Y , on the other hand, essentially re-

quires the computation of ‖X‖, to realize that
‖X‖ is the lower closure of the set containing
(a b) and (a c).

This example shows the case which is to be
avoided, namely where the right hand side
of the equality is a set expression with at
least two elements. In order to ameliorate
the worst case behaviour we propose a
weaker preorder on S, which is reasonably
efficient to compute, and which does not rely
on computing ‖·‖ (but it does rely on the
computation of Val, since this function has
not been explicitly defined).

The definition of the weak preorder uses
the operation flt, which uses the equivalences
such as

(* set X1 (* set X2,1 X2,2) X3) ∼=
(* set X1 X2,1 X2,2 X3)

to flatten all immediate nestings of the * set

constructor.

Definition 4 (Weak Preorder) Define
the preorder �

S
on S by induction in the

following way. Let X,Y ∈ S. Then X �
S

Y

if and only if one of the following cases hold:

1. Y = (∗)

2. X,Y ∈ A and X = Y

3. X = a ∈ A, Y = b ∈ B, and a ∈ Val(b)

4. X = b ∈ B, Y = a ∈ A, and Val(b) =
{a} (a rather unusual situation)

5. X,Y ∈ B and Val(X) ⊆ Val(Y)

6. X = (X1 · · · Xm), Y = (Y1 · · · Yn),
m ≥ n, and Xi �

S
Yi for i = 1, . . . , n

7. X = (* set X1 · · · Xm) and Xi �
S

Y for i = 1, . . . ,m

8. X = b∈B,flt(Y) = (* set Y1 · · · Yn),
and Val(X) ⊆

⋃
{‖Yi‖ | 1≤i≤n and Yi

is either atomic, or Yi = (*)}.

9. X is of the form neither b nor * set, Y =
(* set Y1 . . . Yn), and ∃i X �

S
Yi

Referring to example 3 note that Y �
S

X

holds, but X �
S

Y does not. The clause
4.9 is the cause of incompleteness. The
problematic case is when X is a list and
Y a * set expression, as in example 3.
Observe also that 4.8 does in fact appeal
to the function ‖·‖. However this is only a
convenience, and does not introduce extra
computational overhead, since all Yi in
that case are either atoms or sets of atoms.
The reason for using the flt operation is to
avoid otherwise pathological cases such as
b �

S
(* set (* set b)).

Since this is not completely apparent we
check that �

S
indeed defines a preorder.

Theorem 1 The relation �
S

is a preorder.

Proof We must prove that

1. X �
S

X for all X ∈ S, and

2. X �
S

Y and Y �
S

Z implies X �
S

Z

for all X,Y, Z ∈ S.

The first part is proved by a simple induction
over the definition of �

S
. We’ll skip the de-

tails.

The second part is a rather tedious induc-
tion over the structure of first Y , and then X

and Z, as needed. So, assume X �
S

Y and
Y �

S
Z:

Y = (*): Since Y �
S

Z the only cases that
can apply are Z = (*) (which is trivial) and
Z = (* set Z1 · · · Zm) such that, in the
latter case, Y �

S
Zi for some i : 1 ≤ i ≤

m. By the induction hypothesis, X �
S

Zi

whence X �
S

Z as well, completing the case.

Y = (Y1 · · · Yn): In this case Z has one of
the forms Z = (*), Z = (Z1 · · · Zm), or
Z = (* set Z1 · · · Zm). In each case the
proof is easily completed.

Y = (* set Y1 · · · Yn): We may assume
that flt(Y) = Y . One of the following sub-
cases apply:

• X = (* set X1 · · · Xl) and Xi �
S

Y

for all i : 1 ≤ i ≤ l.

• X = b and Val(X) ⊆ ∪{‖Yi‖ | 1 ≤ i ≤
n, Yi atomic, or Yi = (*)}

• X �
S

Yi for some i : 1 ≤ i ≤ n

The first and third subcases are immediately
dismissed by the induction hypothesis. For
the second subcase we know that Yi �

S
Z

for each i : 1 ≤ i ≤ n. We proceed then
by cases on Z, noting that we need only
consider the case of Yi atomic or Yi = (*).
Thus, flt(Z) has one of the forms a, b, (*),
or (* set Z1 · · · Zm) such that, for each
choice of i we find a j such that Yi �

S
Zj .

The former three cases are resolved by a little
calculation. For the latter we may assume
that Zj is either atomic, or Zj = (*). Thus,
since �

S
is sound for atomic expressions,

we know that ‖Yi‖ ⊆ ‖Zj‖. This suffices to
establish the conclusion.

The remaining cases for Y atomic are quite
simple and left to the reader. 2

6 Soundness and Completeness

In this section we relate the definitions of
≤

S
and �

S
. First we show soundness.

Theorem 2 (Soundness of �
S
) For all

X,Y ∈ S

X �
S

Y =⇒ X ≤
S

Y . (1)

Proof By induction over the definition of �
S

(def. 4). We begin with the base cases 1–5.
Assume that X �

S
Y and that one of the

cases 1–5 in definition 4 applies. We want
to show that ‖X‖ ⊆ ‖Y ‖. Consider the five
cases:

1. Y = (*):
‖X‖ ⊆ T = ‖Y ‖

2. X = Y = a ∈ A:
‖X‖ = ‖Y ‖

3. X = a ∈ A, Y = b ∈ B, and a ∈ Val(b):
‖X‖ = ‖a‖ = {a} ⊆ Val(b) = ‖b‖ = ‖Y ‖

4. X = b ∈ B, Y = a ∈ A, and Val(b) =
{a}:
‖X‖ = Val(b) = {a} = ‖a‖ = ‖Y ‖

5. X = b1 ∈ B, Y = b2 ∈ B, and Val(b1) ⊆
Val(b2):
‖X‖ = Val(b1) ⊆ Val(b2) = ‖Y ‖

Hence, cases 1 to 5 are proved. We continue
with the inductive step in cases 6–9:

6. X = (X1 · · · Xm), Y = (Y1 · · · Yn),
m ≥ n, and Xi �

S
Yi for i = 1, . . . , n:

Let t ∈ ‖X‖. Then t has the shape

t = (t1 · · · tl)

l ≥ m, and ti ∈ ‖Xi‖ for all i : 1 ≤ i ≤
m. By the induction hypothesis, tj ∈
‖Yj‖ whenever 1 ≤ j ≤ n and it follows
that t ∈ ‖Y ‖.

7. X = (* set X1 · · · Xm), Y 6= (*),
and Xi �

S
Y for all i : 1 ≤ i ≤ m.

By the induction hypothesis, Xi ≤
S

Y

as well, so X ≤
S

Y follows.

8. X = b∈B, flt(Y) = (* set Y1 · · · Yn),
and Val(X) ⊆

⋃
{‖Yi‖ | 1 ≤ i ≤ n and

Yi is atomic, or Yi = (*)}. By calcula-
tion.

9. X is of the form neither b nor * set,
Y = (* set Y1 . . . Yn), and ∃i X �

S

Yi. By the induction hypothesis, X ≤
S

Yi hence also X ≤
S

Y . 2

As we have pointed out, �
S

is incomplete
in general. To attain completeness the only
change required is to make the final clause of
4 more inclusive.

Definition 5 Define the preorder �′

S

on S

by replacing the clause 9 of def. 4 by the fol-

lowing condition:

9′. X is of the form neither b nor * set,

Y = (* set Y1 . . . Yn), and ‖X‖ ⊆
‖Y ‖.

So, the source of incompleteness is clause 9,
i.e. that there should exists a universal i such
that every element in ‖X‖ is bounded from
above by some element from ‖Yi‖. The result
is that this completely explains the difference
between ≤

S
and �

S
.

Theorem 3 (Soundness and Complete-
ness for �′

S

)

For all X,Y ∈ S

X �′

S

Y ⇐⇒ X ≤
S

Y . (2)

Proof The implication =⇒ is a simple exten-
sion of the soundness proof, taking the mod-
ified clause 9’ into account. This is an easy
exercise.

The completeness argument hinges on the fol-
lowing auxillary observation, namely that if
Y = (* set Y1 · · · Yn) and (*) ≤

S
Y then

(*) ≤
S

Yi for some i : 1 . . . n. For a con-
tradiction suppose that for all i, (*) ≤

S
Yi

does not hold. We may assume that Y is flat-
tened. Each Yi will be either atomic or have
the shape (ai . . .). Pick some a distinct from
all the ai. No authorisation tree of the shape
(a t1 · · · tl) is in ‖Y ‖, so (*) ≤

S
Y cannot

hold.

We now assume X ≤
S

Y and proceed by in-
duction over the structure of Y . First, how-
ever, note using clause 7 of def. 4 we may
assume that X is not a set expression.

1. Y = (*): Since ‖(*)‖ = T the result is
immediate.

2. Y = a. Either X = a as well, or X =
b and Val(b) = {a}. In either case the
proof is complete.

3. Y = b. Either X = a and a ∈ Val(b) or
else X = b′ and Val(b′) ⊆ Val(b). Either
cases are immediate.

4. Y = (Y1 · · · Yn). The only possibil-
ity is X = (X1 · · · Xm), m ≥ n, and
Xi ≤

S
Yi for all i : 1 ≤ i ≤ n. The

result then follows directly from the in-
duction hypothesis.

5. Y = (* set Y1 · · · Yn). By the above
observation we can assume that X 6=
(*). If X = a then X �

S
Yi for some i

and we are done. If X = b then clause 8
can be seen to hold. The final case, then,
is for X of the shape (X1 · · · Xm), and
in this case the modified clause 9’ ap-
plies. The proof is thus completed. 2

7 Restricted S-Expressions

We then turn to the identification of a
syntax fragment for which the weak preorder,
even without the modification of Theorem
3, is complete. The idea is to use tagging:
Every authorisation tree appearing in a set
expression must contain a leading a, making
it distinct from trees appearing in other
elements of that set. Formally, the restricted
syntax can be defined thus:

Definition 6 (Restricted S-expressions)
The set R of restricted S-expressions, ranged
over by r, along with the set of a-restricted

S-expressions, ranged over by ra, a ∈ A, is
defined by the following grammar:

r ::= (*) | a | b | (a r1 · · · rn) |
(* set ra1 . . . ram)

ra ::= a′ | b | (a r1 · · · rn)

where a, a′ ∈ A, b ∈ B, n ≥ 0, m ≥ 1, and
where all ai, 1 ≤ i ≤ m are distinct.

The purpose of the ra form is to ensure that
if ra is actually a list then it is tagged by a.
Choices of ra as atoms or set constants can
be done freely.

Example 4 The S-expression

r = (a1 (* set (a2 c) (a2 d) a2))

is not restricted. The S-expression

s = (a1 (* set (a2 c) (a3 d) a2)),

on the other hand, is restricted, as is the S-
expression

r′ = (a1 (* set (a2 (* set c d)) a2)).

Note that r ∼= r′.

In fact, the restriction appears to merely
codify existing SPKI practice. All the exam-
ples of [3, 4, 5] fit the restricted syntax, and
indeed it is not hard to show that that any
S-expression can be rewritten into restricted
form, by flattening nested * set’s and
pushing tags out of * set’s, as in example
4. Thus, whenever a “real” set union (as
opposed to the disjoint union provided by
the restricted syntax) is needed, it suffices
to use atomic S-expressions only, which is
permitted.

We obtain that the weak preorder is actu-
ally complete for the restricted fragment.

Theorem 4 (Completeness, Restricted
S-expressions)
For all restricted S-expressions r1, r2 ∈ R,

r1 ≤
S

r2 =⇒ r1 �
S

r2

Proof By 3 it suffices to show r1 �′

S

r2 =⇒

r1 �
S

r2. To establish this by induction
it is sufficient to show that, for restricted
expressions, condition 3.9’ implies condition
4.8. We may thus assume that r2 has the
form (* set ra1 · · · ram), and for r1 there
are three cases to consider:

• r1 = (*). Since r2 is restricted the only
possibility is that rai = (*) as well for
some i.

• r1 = a′. Either rai = a′ for some i, or
else rai = b for some i and b ∈ B such
that a′ ∈ Val(b). In either case we are
done.

• r1 = (a r1,1 · · · r1,n), n ≥ 0. Since
all ai are distinct, we can infer that
(a,r1,1,. . .,r1,n) ≤

S
rai for some i :

1 ≤ i ≤ m, and we are done by 4.9. 2

8 SPKI’s AIntersect

In this section we show that SPKI’s
AIntersect behaves as we expect when ≤

S

is interpreted as set containment, and when

applied to the restricted syntax.

Since AIntersect is not completely
defined in the SPKI documents we define
this operation ourselves below. It is quite
straigthforward to verify that our version
fits the examples given in the draft standards.

To define AIntersect in the present
slightly abstracted setting we need to assume
that intersections exist at least on the level
of set constants b ∈ B. That is, for all
b1, b2 ∈ B there is a b, denoted b1 ∩ b2, such
that Val(b) = Val(b1) ∩ Val(b2). We assume
that b1 ∩ b2 can be computed in time linear
in the size of representation of b1 and b2.

Now, to define the AIntersect operation
the set S is extended by the special constant
⊥, denoting failure. For lists, if one of the
argument positions is ⊥, the entire list is ⊥.
For unions, if one of the argument positions
is ⊥ that argument is ignored. With these
comments, the definition is given on fig. 1.
In the figure a few symmetric cases are left
out, in order not to clutter up the picture un-
necessarily. Note that AIntersect is indeed
well-defined as an operation on S ∪ ⊥. For
time complexity we obtain:

Proposition 3 AIntersect(r1,r2) is com-

putable in time O(n log n) where n is the sum

of the lengths of r1 and r2.

Proof Start by sorting the input such that
elements of set expressions appear in order.
This can be done in time O(n log n). Once
ordered, the computation of AIntersect is
linear. 2

Observe that proposition 3 applies to the
restricted syntax only. Notice also that if
authorisations can be assumed to be already
sorted, a linear scan of the expressions
suffices.

Finally we need to show that AIntersect is
indeed the greatest lower bound with respect

AIntersect((*),r) = r

AIntersect(r,(*)) = r

AIntersect(⊥,r) = ⊥

AIntersect(r,⊥) = ⊥

AIntersect(a,a) = a

AIntersect(a,b) = a, if a ∈ Val(b)

AIntersect(a,b) = ⊥, if a 6∈ Val(b)

AIntersect(a,(a′ r1 · · · rn)) = ⊥

AIntersect(a,(* set r1 · · · ri = a · · · rn)) = a

AIntersect(a,(* set r1 · · · ri = b · · · rn)) = a, if a ∈ Val(b)

AIntersect(a,(* set r1 · · · ri · · · rn)) = ⊥, if none of above two cases apply

AIntersect(b,b′) = b ∩ b′

AIntersect(b,(a,r1 · · · rn)) = ⊥

AIntersect(b,(* set r1 · · · rn))

= (* set AIntersect(b,r′1) · · · AIntersect(b,r′m)),

where r′1, . . . , r
′
m is the sequence of atomic elements in r1, . . . , rn

AIntersect((a r1 · · · rn),(a r′1 · · · r′n r′n+1 · · · r′m))

= (a AIntersect(r1,r
′
1) · · · AIntersect(rn,r

′
n) r′n+1 · · · r′m),

where m ≥ n

AIntersect((a r1 · · · rn),(a
′ r′1 · · · r′m)) = ⊥, if a 6= a′

AIntersect((a r1 · · · rn),(* set r′1 · · · r′i · · · r′k))

= AIntersect((a r1 · · · rn),r
′
i), if r′i has tag a

AIntersect((a r1 · · · rn),(* set r′1 · · · r′m)) = ⊥,

if no r′i has tag a

AIntersect((* set r1 · · · rn), r as (* set r′1 · · · r′m))

= (* set AIntersect(r1,r) · · · AIntersect(rn,r))

Figure 1: Definition of AIntersect

to ≤
S

for the restricted syntax. This verifies
that

• The operation AIntersect behaves as
we expect of an intersection operation

• The preorder ≤
S

behaves as we expect
with respect to AIntersect

For this purpose recall that a semilattice is
a structure with a binary operation which is
idempotent, commutative, and associative.
Further, we extend ‖·‖ to the domain S ∪ ⊥
by ‖⊥‖ = ∅.

Theorem 5 (Correctness of AIntersect)

1. (S, AIntersect) is a semilattice.

2. For all r1, r2 ∈ R,

‖AIntersect(r1, r2)‖ = ‖r1‖ iff

r1 ≤
S

r2.

Proof Both proofs are routine inductions.
We leave out the proof of (1) altogether. For
(2) we proceed by induction on the structure
of r1. We cover a couple of representative
cases:

r1 = (a r1,1 · · · r1,n): We proceed by cases
in r2. The cases where r2 is one of (*), ⊥,
or atomic are resolved by symmetric counter-
parts of equations in fig. 1. Remaining are:

• r2 = (a′ r2,1 · · · r2,m): If a 6= a′ then
‖AIntersect(r1, r2)‖ = ∅ 6= ‖r1‖ and
‖r1‖ 6⊆ ‖r2‖. If a = a′ we can assume
that m ≥ n the case otherwise is sym-
metric. The conclusion now follows di-
rectly by the induction hypothesis.

• r2 = (* set r2,1 · · · r2,m): We obtain
‖AIntersect(r1, r2)‖ 6= ∅ just in case ex-
actly one r2,i has tag a, which is sufficient
to establish the case. 2

9 Conclusion

We have shown how a restricted syntax
for the SPKI authorisation element can be

defined such that general authorisations and
entailments between authorisations can be
decided in almost linear time. Moreover, the
restricted syntax appears to follow existing
SPKI practice, so no real restriction in
expressive power or usage is incurred.

To which extent our results are important
in practice can be discussed. The computa-
tion of AIntersect is simplified when queries
do not involve unions, i.e. the * set con-
struct. This is the assumption made, for in-
stance, in the Pisces implementation (see url:
www.cnri.reston.va.us/software/pisces/). At
any rate, as long as authorisation expres-
sions and certificate chains remain small,
the overhead may be negligible. More-
over, SPKI’s simple delegation model enables
chaining to be decided in polynomial time [2].

So one may argue that the problem is in
practice negligible. We do not think this
point of view is necessarily valid. First,
we have not found such a thing as a clear
and well-established SPKI practice. Nothing
in the draft standards prohibits the use of
unions in requests, and this capability might
very well be used in practice. Several exam-
ples can be given. For instance, an applica-
tion programmer might wish to exploit the
revocation predictability built into the SPKI
framework by computing a set of requests in
advance. Or, as another example, it might be
deemed useful to use the union construction
to introduce macros. For instance, USLocs,
MidWestLocs, etc., might be introduced as
macros (at the application level) representing
S-expressions of the form e.g.

MidWestLocs =

(* set

...

(location Nebraska Lincoln)

(location Kansas Topeka Centre)

(location Kansas Topeka North)

(location Kansas Wichita)

...)

There is no prior reason why such a macro
might not appear as part of a request, say,
to determine whether access to Midwestern
branch office sales statistics is permitted or
not. The result, however, can be serious per-

formance degradation at request time.

Going beyond SPKI as it currently stands
there is also the possibility that new mecha-
nisms, for instance for delegation (cf. [1, 6,
7]), will be introduced which require compar-
isons to be made between authorisations of a
general shape. An important purpose of the
present paper is to set the stage for further
studies in this direction, in terms of an eval-
uation model with good computational prop-
erties.

Acknowledgements Thanks to Dieter Goll-
mann, Microsoft Research, Cambridge, also
to Babak Sadighi and Roland Hedberg, SICS,
and to Thom Birkeland at IMIT/KTH.

References

[1] O. Bandmann, M. Dam, and B. Sadighi
Firozabadi. Constrained delegation. In
Proc. 23rd Annual Symp. on Security and

Privacy, 2002. To appear.

[2] Dwaine Clarke, Jean-Emile Elien, Carl
Ellison, Matt Fredette, Alexander Mor-
cos, and Ronald L. Rivest. Certificate
chain discovery in SPKI/SDSI, 1999.

[3] Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI Certificate Theory,
May 1999. RFC 2693, expired. URL:
ftp://ftp.isi.edu/in-notes/rfc2693.txt.

[4] Carl M. Ellison, Bill Frantz, But-
ler Lampson, Ron Rivest, Brian M.
Thomas, and Tatu Ylonen. Sim-
ple public key certificate, July
1999. Internet Draft, expired. URL:
http://world.std.com/ cme/spki.txt.

[5] Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI examples, March
1998. Internet Draft, expired. URL:
http://world.std.com/ cme/examples.txt.

[6] B. Sadighi Firozabadi, M. Sergot, and
O. Bandmann. Using Authority Certifi-
cates to Create Management Structures.
To appear in Proc. 9th Security Protocols
Workshop, Cambridge, UK, April 2001.

[7] Jon Howell and David Kotz. A formal se-
mantics for SPKI. In Proc. 6th European

Symposium on Research in Computer Se-

curity, 2000.

[8] Ron Rivest. S-expressions, May
1997. Internet Draft, expired. URL:
http://theory.lcs.mit.edu/ rivest/sexp.txt.

