
Regular SPKI

Mads Dam?

LECS/IMIT, Royal Institute of Technology (KTH)
KTH Electrum 229, SE–164 40 Kista, Sweden

mfd@kth.se

Abstract. SPKI is a certificate-based framework for authorisation in
distributed systems. The SPKI framework is extended by an iteration
construct, essentially Kleene star, to express constraints on delegation
chains. Other possible applications, not explored in the paper, include
multidomain network routing path constraints. The main decision prob-
lems for the extended language are shown to correspond to regular lan-
guage membership and containment respectively. To support an efficient
decision algorithm in both cases we give a sound and complete inference
system for a fragment of the language which is decidable in polynomial
time. We finally show how to use the extended syntax to represent con-
strained delegation in SPKI.

1 Introduction

SPKI (Simple Public-Key Infrastructure) [EFL+99] is a framework for autho-
risation based on the idea that authorisations and names are bound to public
keys by signed certificates. SPKI uses LISP-like S-expressions [Riv97] to express
authorisations. As an example, the S-expression

(object document (attributes (name doc1) (loc EU))

(op read) (subject (users orgA))) (1)

might express the authority of orgA users to read objects of type document
which have name doc1 and are located in the EU1.

The treatment of delegation in SPKI is rudimentary. Authorisations are
equipped with a flag which, when set, enable holders of authorisations uncon-
strained delegation rights for that authority. In [BDF02] we argued that such
unconstrained delegation right are not always desirable, and we proposed a mech-
anism, constrained delegation, which uses regular expressions to control the way
authority is propagated between principals along a delegation chain. It is the ob-
jective of the present paper to examine how the constrained delegation approach
can be handled within the SPKI framework.

? Work supported by Vinnova, the Swedish Agency for Innovation Systems, project
“policy-based network management”.

1 In fact, proper SPKI treats such authorisations using a specialised 5-tuple syntax.
This, though, is of little consequence for the present discussion.

In [BDF02], delegation chain constraints are expressed by regular expressions.
As a simple example, the chain constraint admin∗users expresses the set of
delegation chains which have a prefix in admin and terminate in users. This
chain constraint would capture the situation where a group of administrators
are given authority to create some management structure within the group for
administering, say, the access rights of users.

Our proposal for handling this within the SPKI framework is to extend the
SPKI syntax by a new primitive, (* path ...), denoting, roughly, Kleene star.
To see how this might be done, consider the following S-expression:

(object document (attributes (name doc1) (loc EU))

(op read) (delegation (* path (admin)) (users)) (2)

In this example2 the subject component of (1) is replaced by a component
delegation that represents delegation chain constraints. Here delegation is li-
censed through admin in any number of steps, but the read permissions that are
ultimately granted must be under users control.

Built in to SPKI is the idea of possibly refining, at each step of delegation,
the authority received in the previous step. The basic mechanism for refinement
is to recursively append further constraints to each list. In the presence of path
expressions, unfolding must be added to this mechanism. As an example, (2)
could be used to justify:

(object document (attributes (name doc1)

(loc EU France)) (op read) (delegation (admin domain1)

(* path (admin domain2)) (users)))

restricting documents to the location France, and allowing administrators in
domain1 to delegate through administrators in domain2 an arbitrary number
of steps. In turn, this S-expression can be further refined, and the delegated
authority discharged, to ultimately result in authorisations similar to (1) above.
Below, in section 7, we give an example showing this process of delegation in
more detail.

In the paper we discuss mechanisms which could be used for such a regu-
lar language extension to SPKI. At the basic level two extensions are required:
S-expression concatenation, and Kleene star (path). We show how this can be
done, and how basic questions concerning S-expressions can then be reduced to
corresponding questions for regular languages. This is sufficient to efficiently an-
swer simple authorisation queries. Refinement, however, corresponding to regular
language containment, will require exponential time. Chain discovery, then, will
also be exponential. To address this we introduce a restricted syntax for which
refinement is decidable in polynomial time. We present an inference system for
entailment (containment) for this fragment which is based on fixed point induc-
tion. The inference system is shown to be sound and complete. The completeness

2 Which is actually wrong: Using the notation introduced in the paper,
the delegation component should properly be written (delegation (* path

(admin));((users))) where ; is list concatenation.

proof, in particular, allows the decision procedure to be extracted. We then show
how to use the regular expression facility to represent constrained delegation,
and how name resolution and delegation can be handled in this framework.

2 S-Expressions

A SPKI expression denotes a set of S-expressions [Riv97]. Let A be a denumer-
able set of “atomic” elements ranged over by a of one or several data types such
as strings, octets, or integers. The set S of S-expressions, ranged over by s, is
determined by the following BNF style grammar:

s ::= a | (s1 · · · sn)

where n ≥ 0. In other words, S is the tuple algebra over A, and, e.g., (a1 a2) is
the tuple with left hand component a1 ∈ A and right hand component a2 ∈ A. To
account for authorisation we introduce a partial ordering ≤ on S. Let s1, s2 ∈ S.

1. If s1 ∈ A or s2 ∈ A then s1 ≤ s2 if and only if s1 = s2.
2. If s1 = (s1,1 · · · s1,m) ∈ S and s2 = (s2,1 . . . s2,n) ∈ S, then s1 ≤ s2 if

and only if m ≥ n and s1,i ≤ s2,i for i = 1, . . . , n.

That is, s1 ≤ s2 just in case s1 is more specific (more constrained, or authorised
by) s2, and that the process of becoming “more specific” is by appending more
information to the end of sublists.

Example 1.

(object document (attributes (name doc1) (loc EU France)

(author NN)))

≤ (object document (attributes (name doc1) (loc EU)))

If s represents a policy authorised for a principal x, and s′ represents a request
of x such that s′ ≤ s, then and only then should the request s′ be granted. In
the SPKI literature this idea is usually treated not using the partial order ≤,
but through the associated operation of glb, or intersection, such that s′ ≤ s iff
s ∩ s′ = s′ (cf. [BD02]).

In SPKI, S-expressions are usually required to begin with an atom. The
leading atom, which we refer to as a “tag” below, serves as a type indicator.
That is, the type of an element si of a list (a s1 · · · sn) will in standard SPKI
be determined by the tag a and the position i. These type associations are
determined by some external means; here it suffices to assume some fixed such
binding, when it applies.

3 Syntax of Regular SPKI Expressions

S-expressions provide a basic syntax for expressing constrained authorisation,
but the notation is not really versatile enough for practical use. For this reason
the SPKI authorisation syntax extends S-expressions with the following features:

– Constructs to denote sets of atoms (the SPKI prefix and range constructs).
These constructs are left out of the present treatment, but they can be added
without substantial complications.

– Constructs to denote sets of lists (the wildcard (*) and the * set construct).

To this constructs we add the following two:

– An iterator, * path, basically Kleene star.

– Composition of S-expressions, denoted by semicolon.

Definition 1 (Regular SPKI Expressions). The set S of regular SPKI ex-

pressions, ranged over by σ, is determined as follows:

σ ::= (*) | a | (σ1 · · · σn) | σ1;σ2 |

(* set σ1 · · · σn) | (* path σ)

where a ∈ A, b ∈ B, and n ≥ 0.

Essentially, SPKI expressions can be regarded as abbreviations of sets of S-
expressions. This is brought out by the semantics, fig. 1.

‖(*)‖ = S

‖a‖ = {a} for all a ∈ A

‖(σ1 · · · σn)‖ = {(s1 · · · sn) | ∀i : 1 . . . n.si ∈ ‖σi‖}
‖σ1;σ2‖ =

{(s1,. . .,sn) | ∃i : 1 . . . n.(s1 · · · si) ∈ ‖σ1‖, (si+1 · · · sn) ∈ ‖σ2‖}
‖(* set σ1 · · · σm)‖ = ‖σ1‖ ∪ . . . ∪ ‖σm‖
‖(* path σ)‖ = {(s1 · · · sn) | ∀i : 1 . . . n.si ∈ ‖σ‖}

Fig. 1. Regular SPKI expressions, semantics

Let σ1
∼= σ2 iff ‖σ1‖ = ‖σ2‖. General lists are definable in terms of composi-

tion (;) and singleton lists, since

(σ1 · · · σn) ∼= (σ1) ; · · · ; (σn). (3)

Definability the other direction does not hold. This is easily seen, as the list
constructor strictly increases depth of nesting which composition does not. As a
consequence we only need to consider the empty list (()) and singletons ((σ))
as primitive. This is exploited heavily below. It is important, however, to bear
equation (3) in mind, since it will allow the composition operator to be eliminated
in favour of the more standard list syntax in all “reasonable” cases, except those
that specifically involve path expressions.

Example 2. Let σ = (a (* path b) c). We compute:

‖σ‖ = {(s1 s2 s3) | s1 ∈ ‖a‖, s2 ∈ ‖(* path b)‖, s3 ∈ ‖c‖}

= {(a (s1 · · · sn) c) | ∀i.si ∈ ‖b‖}

= {(a (b · · · b) c)}

Compare with σ′ = (a);(* path b);(c):

‖σ′‖ = {(s1 · · · sn) | n ≥ 2, s1 ∈ ‖a‖,

(s2,. . .,sn−1) ∈ ‖(* path b)‖, sn ∈ ‖c‖}

= {(a s2 · · · sn−1 c) | n ≥ 2, ∀i : 1 . . . n.si ∈ ‖b‖}

= {(a b · · · b c)} .

The semantics of fig. 1 is not the only one possible. A different semantics, ‖σ‖′,
would introduce ; as concatenation of s-expression lists, and then define ‖σ‖′ as
in fig. 1 except that:

‖(* path σ)‖′ = {s1; · · · ;sn | ∀i : 1 ≤ i ≤ n.si ∈ ‖σ‖}. (4)

The two semantics are easily related, since obviously

‖(* path σ)‖ = ‖(* path (σ))‖′.

We prefer the semantics of fig. 1 since the notation in the latter case seems to
contribute not much more than the need to add a few extra parentheses.

The partial ordering ≤ on S-expressions is extended to regular SPKI expres-
sions in the following way:

σ1 ≤ σ2 iff ∀s1 ∈ ‖σ1‖.∃s2 ∈ ‖σ2‖.s1 ≤ s2 (5)

To see that this definition makes sense, let

↓σ = {s | ∃s′ ∈ ‖σ‖.s ≤ s′} .

The set ↓σ is the “downwards closure” of ‖σ‖ according to ≤. In the intuitive
sense of section 2 it is the set of all S-expressions which are authorised by some
element in ‖σ‖. The following is standard:

Proposition 1. σ1 ≤ σ2 iff ↓σ1 ⊆ ↓σ2 ut

In other words, σ1 ≤ σ2 just in case every S-expression authorised by σ2 is
also authorised by σ2.

Two problems are of central interest:

1. P1, membership: Given a request formulated as an S-expression s and an
authorisation policy σ, is s ∈ ↓σ?

2. P2, entailment: Given authorisation policies σ1, σ2, is σ1 authorised by σ2

(i.e. does σ1 ≤ σ2 hold)?

It is not very difficult to cast these problems in terms of regular languages.
Define an ancillary ordering on S by s1 v s2 iff either ∃a ∈ A.s1 = a = s2 or else
s1 = (s1,1 · · · s1,m), s2 = (s2,1 · · · s2,m), and s1,i ≤ s2,i for all i : 1 ≤ i ≤ m.
That is, v acts just as ≤ except that appending rightmost list elements to the
outermost list is not permitted. Let then

⇓σ = {s | ∃s′ ∈ ‖σ‖.s v s′}

Now, consider S-expressions as given in the form (s1);· · ·;(sm) instead of (s1

· · · sm), and consider (;) and Kleene star closure (·)∗ as operations on sets C

of S-expressions as follows:

C1;C2 = {s1;s2 | s1 ∈ C1, s2 ∈ C2}

C∗ = {s1; · · · ;sn | ∀i : 1 ≤ i ≤ n.si ∈ C}

We obtain the following characterisation of closure sets (proof is given in the
appendix):

Proposition 2.

1. ⇓(*) = ‖(*)‖
2. ⇓() = ()

3. ⇓(σ) = {(s) | s ∈ ↓σ}
4. ⇓σ1;σ2 = ⇓σ1;⇓σ2

5. ⇓(* set σ1 · · · σm) = ⇓σ1 ∪ · · · ∪ ⇓σm

6. ⇓(* path σ) = (⇓σ)∗

7. ↓σ = ⇓σ;Σ∗ ut

This proposition provides a direct representation of regular SPKI expressions as
“ordinary” regular expressions, and so we obtain:

– ↓σ is a regular language
– P1 is regular language membership. Thus P1 is decidable in time O(|s||σ|).

Moreover, since there is a trivial logspace reduction of regular language mem-
bership to P1, P1 is also complete for NLOGSPACE.

– P2 is regular language containment. This follows directly from fact 1. Thus
P2 is in EXPTIME and complete for PSPACE.

4 EOL Markers

There is a basic tension between the introduction of path expressions and the
basic S-expression syntax. In particular, S-expressions are intended to be posi-
tional in the sense explained in section 2. But this positionality breaks down in
the context of path expressions. Consider the following example:

σ = (mysequence);((start));(* path (hop));((end)) (6)

An S-expression in ↓σ can have a shape like

s = (mysequence (start here) (hop there) (hop and-there)

(end over-here) (unintended bit)). (7)

The SPKI authorisation discipline will admit s as authorised by σ, since the
extra component (unintended bit) is appended to the right of the list and so
just represents one further constraint. But in the context of path expressions
this is counter-intuitive, since we may not have a preconceived idea of what the
last element of a path is, and so we may not know whether (end over-here)

or (Unintended bit) represents that element. For instance, were the ((end))

item to be missing from σ, an attacker could insert new hops at the end of σ

at will. The example also gives away the solution: Simply assume elements with
some given tag to represent the end of the list. Any application-dependent choice
will do, but we may also introduce a general-purpose atom EOL to represent the
end of the list. In this manner we will represent σ as

σ′ = (mysequence);((start));(* path (hop));((end));(EOL). (8)

Observe that the addition of the EOL atom does not interfere with the semantics
in any way.

5 An Efficient Syntax for Entailment

Through the characterisation of SPKI expression in terms of regular languages
we obtain a reasonably efficient procedure for deciding the problem P1, is a
given S-expression s authorised by the regular SPKI expression σ. The problem
P2, however, remains intractable. It may be argued, as is sometimes done in the
SPKI literature, that requests will in practice not need to involve the problematic
constructions (in the absence of path expressions this means set expressions),
but a closer examination of this issue reveals this to be false in many applications
(cf. [BD02] for a brief discussion). At any rate the entailment problem is in our
view of independent interest, for instance to allow users to efficiently determine
the effects of their policy decisions. To address this problem we introduce in this
section a restricted syntax for which an efficient decision procedure also for P2
is possible.

In [BD02] we addressed this issue for the basic SPKI authorisation syntax,
and obtained an n log n asymptotic complexity for P2 in this case. The idea was
to restrict occurrences of set expressions to those of the form

σ = (* set a1;σ1 · · · an;σn)

where all ai are required to be distinct atoms. This allows queries of the form
a;σ′ ≤ σ to be directly reduced to the query σ′ ≤ σi where a = ai, if such an ai

exists, and if it does not, the query is rejected. This syntactical restriction is just
a formalisation of existing SPKI practice (to the extent such a thing exists): It

does not in any way reduce the expressiveness of the basic SPKI authorisation
syntax.

To extend this approach also to path expressions the idea is simply to tag
path expressions as well as sets in such a manner that it becomes immediate
how to match a path expression with its unfoldings. For instance, the presence
of the hop atom makes it trivial to determine that s in (7) is authorised by σ of
(6), as is the regular SPKI expression

(mysequence);((start));((hop));(* path (hop));((end)) (9)

whereas an expression such as

(mysequence);((start));(* path (hop));(* path (hop));((end)) (10)

would be more difficult to accomodate in principle. This solution we propose is
to replace uniqueness at the level of tags with uniqueness at the level of initial
segments, as in the following expression:

(mysequence);((start));(* path (hop domain1));

(* path (hop domain2));((end)) . (11)

We proceed to introduce the restricted syntax which makes such a tagging dis-
cipline enforceable.

Definition 2 (Restricted Expressions). The set R of restricted expressions,
ranged over by r, is given as follows:

r ::= (a);p | (* set ra1 · · · ram)

ra ::= (a);p

p ::= () | q;p

q ::= (a) | (r) | (* path r)

where a ∈ A, m ≥ 1, and all ai, 1 ≤ i ≤ m, are distinct.

We generally let (a) abbreviate (a);().

Example 3. Keep in mind the definition of list expressions, def. 3. The following
regular SPKI expressions are restricted:

– (a (b c)) = (a);((b);(c))

– (* set (a foo) (b);(bar)) = (* set (a);(foo) (b);(bar))

– (a);(* path (b);(* path (c)))

The following regular SPKI expressions are not restricted:

– a, b, (*)
– ((a b)) = ((a);(b))

– (* set (a b) (a c)) = (* set (a);(b) (a);(c))

– (a (* path b)) = (a);((* path b))

– (a);(* path (* path b))

The function tags computes the set of tags of expressions r and q respectively:

– tags ((a1);· · ·;(am);q1;. . .;qn) = {(a1 · · · am)}, where q1 is not of the
shape (a) for any a

– tags ((* set ra1,. . .,ram)) = tags (ra1) ∪ · · · ∪ ram

– tags ((a)) = ∅
– tags ((r)) = tags (r)
– tags ((* path r)) = tags (r)

Definition 3 (Well-formed Restricted Expressions). The restricted ex-
pression r is well-formed if whenever r contains a subexpression of the shape
r′ = (a);q1;· · ·;qn and qi has the shape (* path r′′) then for all j > i,

tags (qj) ∩ tags (r′′) = ∅ .

Example 4. The expressions (9) and (11) are well-formed. The expression (10)
is ill-formed, as is the expression

(mysequence);((start));(* path (hop));((hop));((end)) (12)

6 Inference System

We proceed to give, in fig. 2, an inference system for proving entailments of
the form r1 � r2, intended as syntactical correlates of the entailment relation
r1 ≤ r2. Call an expression e of one of the forms r1 � r2 or p1 � p2 an entailment

expression. Judgments have the shape Γ ` e where e is an entailment expression
and Γ is a set of entailment expressions. The proof system implements a form of
fixed point induction, in the style of Kozen [Koz83]. It is designed to be used in
a bottom-up fashion, and can in fact be read just as a logic program. To show
the proof system in action we give a couple of example derivations.

Proposition 3. The following entailments are derivable:

1. ` (* path (a b)) � (* path (a)).
2. ` (* path (a b));(* path (a c)) � (* path (a)).

Proof. 1. Reduce first using IX to obtain the subgoals

` () � (* path (a)) (13)

(* path (a b)) � (* path (a)) `

((a b));(* path (a b)) � (* path (a)). (14)

Subgoal (13) is resolved using VII and II. Subgoal (14) is resolved by VIII first
to

(* path (a b)) � (* path (a)) `

((a b));(* path (a b)) � ((a));(* path (a)) (15)

I
·

Γ, p1 � p2 ` p1 � p2

II
·

Γ ` p � ()

III
Γ ` p1 � p2

Γ ` (a);p1 � (a);p2

IV
Γ ` (a);p � rai

Γ ` (a);p � (* set ra1,. . .,ran)
1 ≤ i ≤ n

V
Γ ` ra1 � r · · · Γ ` ran � r

Γ ` (* set ra1,. . .,ran) � r

VI
Γ ` r1 � r2 Γ ` p1 � p2

Γ ` (r1);p1 � (r2);p2

VII
Γ ` p1 � p2

Γ ` p1 � (* path r);p2

VIII
Γ ` p1 � (r);(* path r);p2

Γ ` p1 � (* path r);p2

IX
Γ ` p1 � p2 Γ, (* path r);p1 � p2 ` (r);(* path r);p1 � p2

Γ ` (* path r);p1 � p2

Fig. 2. Inference system

then VI to

(* path (a b)) � (* path (a)) ` (a b) � (a) (16)

(* path (a b)) � (* path (a)) `

(* path (a b)) � (* path (a)) (17)

which are resolved using III and II, respectively I.
2. The proof reduces, using IX, to

` (* path (a c)) � (* path (a)) (18)

(* path (a b));(* path (a c)) � (* path (a)) `

((a b));(* path (a b));(* path (a c)) � (* path (a)) (19)

Subgoal (18) is an instance of 1. The proof of (19) follows that of (14). ut

The proof system is well-behaved with respect to restricted syntax in the sense
that, when used in a bottom-up fashion, if the initial judgment is well-formed
then subsequent judgments will be well-formed as well.

Proposition 4. Let
Γ1 ` e1 · · · Γn ` en

Γ ` e

be any instance of one of the proof rules I–IX. If Γ ` e is well-formed then so

are all Γi ` ei, 1 ≤ i ≤ n. ut

We proceed to consider soundness and completeness. Say that Γ is valid if r1 ≤ r2

whenever r1 � r2 ∈ Γ (p1 � p2 ∈ Γ), and say that Γ ` r1 � r2 is valid, written
Γ |= r1 � r2, if Γ valid implies r1 ≤ r2. Similar definitions apply to terms of the
form p1, p2. Soundness holds for arbitrary regular SPKI expressions, not only for
restricted ones. This is readily apparent from the soundness proof given in the
appendix.

Theorem 1 (Soundness). If Γ ` r1 � r2 then Γ |= r1 ≤ r2 ut

Completeness, however, holds only for well-formed, restricted expressions. Prob-
lematic cases are the rules for sets (rule IV) and paths (rule VII and VIII)
which make use of the restricted format in an essential way.

Theorem 2 (Completeness). Suppose that r1, r2 are well-formed restricted

expressions. If r1 ≤ r2 then r1 � r2. ut

The completeness proof is constructive, and provides an algorithm which can
be used to decide entailments. If used as-is this algorithm is quadratic: In the
worst case, at each step as the input expressions r1 and r2 are scanned, set
expressions must be scanned against each other. This can easily be brought
down to O(n log n) if set expressions are sorted according to their tags. So we
obtain:

Theorem 3 (Worst-Case Complexity). The relation r1 ≤ r2 is decidable in

time O(n log n) where n is the sum of the lengths of r1 and r2.

Proof The completeness proof provides an O(n log n) algorithm, provided the
expressions are sorted. If the input expressions are unsorted, a preprocessing
phase of O(n log n) brings them into sorted form first. ut

7 Constrained Delegation in SPKI

In this section we discuss how path expressions can be used to represent con-
strained delegation in SPKI.

SPKI has both a naming and an authorisation component. If we ignore va-
lidity checking issues we can, for the purpose of the present discussion, view a
SPKI name certificate as a triple

(k,n,s) (20)

where k is an S-expression representing a key, n is a string atom, and s is an
S-expression representing a key or a SDSI name, an S-expression of the form

(name k1 n1 · · · nm) .

For instance, if n is the atom personnel-dept and s is the SDSI name (name

k1 head-office personnel-dept section1) then the certificate (20) should
be read as

“k’s personnel-dept is k1’s head-office’s personnel-dept’s section1”.

Delegation chains will refer to principals, as keys or as SDSI names. Hence
entailment must be extended to take name resolution into account. Curiously,
this aspect is ignored in standard SPKI. There, authorisation expressions 3 are
taken as primitive S-expressions, and there is no defined mechanism for resolving
a name appearing as part of a standard SPKI authorisation expression.

Entailment is easily extended to take name resolution into account, using a
rewriting approach akin to that of [CEE+01]. One rule and a rule schema needs
to be added:

X
·

Γ ` s;(EOL) � (name k n EOL)
(k,n,s) is valid

XI
Γ ` s1;(EOL) � s′1;(EOL) Γ ` s1 � s1;s

′

2

Γ ` s2 � s′1;s
′

2

Observe that rule (XI), with the rules of fig. 2 but in the absence of (X), is
admissible, because of completeness. Thus, the only new entailments provable
are those arising because of naming (schema (X)).

A SPKI authorisation certificate (auth cert) can be viewed as a 4-tuple (again
we ignore validity checking):

(k,s,d,t) (21)

where k is a key, s is a SDSI name, d is a delegation flag, and t is a SPKI
tag, a SPKI authorisation expression. There are several ways to adapt the SPKI
certificate format to constrained delegation. In this section we consider the case
of replacing the d flag with a regular SPKI expression determining a delegation
constraint. An alternative would be to include the delegation constraint in the
authorisation tag t, as indicated in section 1. This would gain some backwards
compatibility at the expense of some notational clarity.

An extended auth cert would thus be a certificate as (21) except that d and
t would both be regular SPKI expressions, and d, in particular, would represent
lists of a form such as

(delegation τ1;(s1) · · · τn;(sn)) (22)

where τ1, . . . , τn are tags (in the sense of section 5) and s1, . . . , sn are SDSI
names, or possibly the empty list () in case no further delegation is possible.

The latter situation arises when k authorises s for t directly, and the former
applies when s receives from k the power to pass an authorisation down the
delegation chain. This chaining relation can be accounted for in terms of a rewrite
relation → on auth certs such that if

(k,s,d,t)→ (k′,s′,d′,t′)

3 Tags, in SPKI terminology, not to be confused with tags as used above

then the validity of (k′,s′,d′,t′) follows from the validity of (k,s,d,t) (if they
have been issued). The single rule governing delegation chaining will be the
following:

` k′;(EOL) � s;(EOL) ` (delegation τ;(s′));d′ � d ` t′ � t

(k,s,d,t)→ (k′,s′,d′,t′)

where τ is a tag.

Example 5. We give an example based on delegated facility access administra-
tion. Two organisations are involved, orgA and orgB with associated keys KA

and KB . The task is for orgA to grant its administrator the right to engage
orgB to perform some access management on behalf of orgA staff. Assume the
following name certs:

(KA,orgB,KB)

(KA,admin,KA,1)

(KA,staff,KA,2)

(KB,staff,KB,1)

(KA,2,somebody,KA,3)

Let

d = (delegation (* path (contractor (name KA orgB)));

((target (name KA staff))))

d′ = (delegation (* path (contractor (name KB staff)));

((target (name KA staff))))

Assume the initial auth cert

(KA,(name KA admin),d,(tag access))

Then the following is a valid certificate chain authorising access for KA,3:

(KA,1,(name KB),d,(tag access))

(KB,(name KB staff),d′,t)

(KB,1,KA,2,(),(tag access))

8 Concluding Remarks

We have suggested extending the basic syntax of SPKI with a facility for express-
ing regular languages, and explored its application in the context of constrained
delegation. Constrained delegation is by no means the only conceivable applica-
tion of such a regular language extension. Another example could be constraints

on multidomain routing paths. Also, the extension may open up for more com-
plex authorisation schemes, useful, for instance, in the context of web services
orchestration. An example is sequential constraints on authorisation whereby
one authorisation (to enter some facility, say) can be made subject to another
authorisation having been previously enacted (say, to have been granted some
ticket).

The question remains if the extension is too rich, and whether there are other,
equally valid ways of achieving the same ends. We doubt, for instance, whether
there is much use for nested path expressions. Also, some of the effects which
can be obtained with constrained delegation can be obtained equally well by
threshold certificates. For instance, for example 5, a similar effect (to avoid orgB

delegating outside orgA) could be achieved by orgA initially issuing a threshold
cert ensuring that final authorisations can only be applied to orgA staff. A
systematic investigation of this issue is left for future work.

We proposed also a restricted syntax for which chaining can be decided in
polynomial time, as opposed to the exponential worst case running time ob-
tained by a straightforward reduction to regular language containment. Most
examples above remain within the restricted fragment, most notably example 5.
The algorithm given in the paper does not take name resolution into account.
We expect that the techniques of either [CEE+01] or [JR02] can be applied to
address the more general problem without substantial problems.

References

[BD02] O. Bandmann and M. Dam. A note on SPKI’s authorisation syntax. In
Proc. 1st Annual PKI Research Workshop, 2002.

[BDF02] O. Bandmann, M. Dam, and B. Sadighi Firozabadi. Constrained delegation.
In Proc. 23rd Annual Symp. on Security and Privacy, 2002.

[CEE+01] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest.
Certificate chain discovery in spki/sdsi. Journal of Computer Security,
9:285–322, 2001.

[EFL+99] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and
T. Ylonen. SPKI Certificate Theory, May 1999. RFC 2693, expired. URL:
ftp://ftp.isi.edu/in-notes/rfc2693.txt.

[JR02] S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model check-
ing. In Proc. IEEE Computer Security Foundations Workshop, pages 129–
146, 2002.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer

Science, 27:333–354, 1983.
[Riv97] R. Rivest. S-expressions, May 1997. Internet Draft, expired. URL:

http://theory.lcs.mit.edu/ rivest/sexp.txt.

Appendix

Proposition 5.

1. ⇓(*) = ‖(*)‖
2. ⇓() = ()
3. ⇓(σ) = {(s) | s ∈ ↓σ}
4. ⇓σ1;σ2 = ⇓σ1;⇓σ2

5. ⇓(* set σ1 · · · σm) = ⇓σ1 ∪ · · · ∪ ⇓σm

6. ⇓(* path σ) = (⇓σ)∗

7. ↓σ = ⇓σ;Σ∗

Proof. 1. Trivial
2. s ∈ ⇓() iff s ≤ () iff s ∈ Σ∗.
3. s ∈ ⇓(σ) iff ∃s1 ∈ ‖(σ)‖ such that s ≤ s1 iff ∃s2.s ≤ (s2) and s2 ∈ ‖σ‖

iff ∃s′2, s3.s = (s′2);s3, s′2 ∈ ↓σ, and s3 ∈ Σ∗ iff s ∈ {(s′) | s′ ∈ ↓σ};Σ∗.
4. s ∈ ⇓(σ1;σ2) iff ∃s1 ∈ ‖σ1‖, s2 ∈ ‖σ2‖.s ≤ s1;s2 iff ∃s1 ∈ ⇓σ1, s2 ∈ ⇓σ2.s =

s1;s2 iff s ∈ ⇓σ1;⇓σ2

5. s ∈ ⇓(* set σ1 · · · σm) iff s ∈ ⇓σ1 ∪ · · · ∪ ⇓σm

6. s ∈ ⇓(* path σ) iff s = (s1);· · ·;(sn);s
′, ∀i : 1 ≤ i ≤ n.si ∈ ⇓σ, s′ ∈ Σ∗

iff s ∈ (⇓σ)∗;Σ∗

7. Immediate by the definition. ut

Theorem 4 (Soundness). If Γ ` r1 � r2 then Γ |= r1 ≤ r2

Proof. We prove the statement for both sequents of the form Γ ` r1 � r2 and
Γ ` p1 � p2 by induction on the structure of proof. All cases except IX are
routine. We go through the non-trivial cases one by one.

III Suppose Γ and Γ ` p1 � p2 are both valid. Let s ∈ ↓((a);p1). By proposition
2, s = (a s1 · · · sn), and s′ = (s1 · · · sn) ∈ ↓p1. By the assumption and fact
1, s′ ∈ ↓p2, so s ∈ ↓(a);p2, as desired.

VI. Suppose that Γ , Γ ` r1 � r2 and Γ ` p1 � p2 are all valid, and assume
that s ∈ ↓((r1);p1). By proposition 2, s has the shape (s1 s2 · · · sn) such that
s1 ∈ ↓r1 and (s2 · · · sn) ∈ ↓p1. But then s1 ∈ ↓r2 and (s2 · · · sn) ∈ ↓p2 as
well, so s ∈ ↓((r2);p2) as we wanted.

VII. Suppose that Γ and Γ ` p1 � p2 are both valid. Assume also that s ∈ ↓p1.
Then s ∈ ↓((* path r);p2) as well, since () ∈ ↓(* path r) for any r and k.

VIII. Assume that Γ and Γ ` p1 �m (r);(* path r);p2 are both valid,
and that s ∈ ↓p1. Then s = (s1 · · · sh sh+1 · · · sk sk+1 · · · sl) such that
(s1 · · · sh) ∈ ↓r, (sh+1 · · · sk) ∈ ↓((* path r);p2), and (sk+1 · · · sl) ∈ p2.
It follows, by proposition 2, that (s1 · · · sh sh+1 · · · sk) ∈ ↓((* path r);p2),
so s ∈ (* path r);p2 as desired.

IX. This is the only slightly tricky case. We now assume that a proof is given, but
that the conclusion of the proof is false. From these assumptions a contradiction
is derived. Define

C0 = ()

Cn+1 = Cn ∪ Cn;C

Obviously, C∗ =
⋃

n∈ω Cn. We use these n’s to annotate path expressions in the
proof, in this way deriving the contradiction. The annotation uses expressions
(* path r)n which denote (↓ r)n.

Assume now that Γ ` p1 � p2 and

Γ, (* path r);p1 � p2 ` (r);(* path r);p1 � p2

are all valid, but Γ ` (* path r);p1 � p2 is not. Then Γ must valid and
(* path r);p1 6≤ p2, i.e. (↓r)∗;↓p1 6⊆ ↓p2. Then we find an n ∈ ω such that
(↓r)n;↓p1 ⊆ ↓p2 but not (↓r)n+1;↓p1 ⊆ ↓p2. The application of IX we are
considering is now annotated as follows:

Γ ` p1 � p2 Γ, (* path r)n;p1 � p2 ` (r);(* path r)n;p1 � p2

Γ ` (* path r)n+1;p1 � p2

The annotation of the proof is completed simply by letting annotations prop-
agate, using the annotated version of IX in place of IX proper. Now, for the
annotated proof, except possibly for instances of I, if the parent (the conclusion)
of a rule instance is invalid, then so is one of the children. As a consequence
we can trace a path from the invalid proof node Γ ` (* path r);p1 � p2 to
a leaf, an instance of I, using only invalid sequents. We may assume that there
are no further applications of rule IX along this path (otherwise it suffices to
consider a proper suffix). It follows that the invalid leaf node must have the
shape Γ, (* path r)n;p1 � p2 ` (* path r)n;p1 � p2, but this node is valid,
a contradiction. It follows that no proof can lead to a false conclusion, which is
what we had to show. ut

Theorem 5 (Completeness). Suppose that r1, r2 are well-formed restricted

expressions. If r1 ≤ r2 then r1 � r2

Proof. We assume that r1 ≤ r2 and give a bottom-up strategy for building a
proof of r1 � r2.

r1 = (). Refine using II.

r2 = (). Any other case than r1 = () is a contradiction.

r1 = (a);p1, and r2 = (a′);p2. The case where a 6= a′ is a contradiction.
Otherwise we must have p1 ≤ p2, and we refine using III.

r1 = (a);p, r2 = (* set ra1 · · · ran). We must have a = ai for exactly one i,
and r1 ≤ ra. Refine using IV.

r1 = (* set ra1 · · · ran), r2 = (a);p2. This case is not very interesting. We
must have n = 1, a1 = a and ra ≤ r2, and we refine according to V.

r1 = (* set r
a1,1

1 · · · r
a1,n1

1), r2 = (* set r
a2,1

2 · · · r
a2,n2

2). In this case let
αi = {ai,1, · · · , ai,ni

}, i ∈ {1, 2}. We must have α1 ⊆ α2 and for each a ∈ α1 it
will be the case that ra

1 ≤ ra
2 . Consequently we refine using first V, then IV.

We then proceed by assuming p1 ≤ p2. Consider first the cases where p1 has the
shape (a);p′1, and p2 has one of the shapes (r);p′1 or (* path r);p′1, or vice
versa. These cases are contradictions and so cannot occur. We proceed:

p1 = (r1);p
′

1, p2 = (r2);p
′

2. In this case we obtain r1 ≤ r2 and p′1 ≤ p′2, and we
refine using VI.

p1 = (r1);p
′

1, p2 = (* path r2);p
′

2. Since p1 ≤ p2, either tags (r1)∩ tags (r2) =
∅ or else tags (r1) ⊆ tags (r2). In the first case we obtain that p1 ≤ p′2 di-
rectly, and refine using VII. In the second case note first that we may as-
sume that tags (r1) 6= ∅ since otherwise the first subcase applies. Assume that
p′2 = q1; · · · ;qn. If n = 0, i.e. p′2 = (), then we obtain directly that p1 ≤
(r2);(* path r2);p

′

2 and so refine by VIII. Thus we can assume that n > 0. By
the properties of Kleene star we know that ↓p1 ⊆ (↓p′2)∪((↓r2);(↓r2)

∗;(↓p′2)). By
well-formedness we know that tags (r2)∩tags (q1) = ∅. Then tags (r1)∩tags (q1) =
∅ too, so ↓p1∩↓p′2 = ∅, whence we may conclude that p1 ≤ (r2);(* path r2);p

′

2

and refine by VIII.

p1 = (* path r1);p
′

1 and either p2 = (r2);p
′

2 or p2 = (* path r2);p
′

2. If we
find that p1 � p2 is in the current set Γ proof construction terminates. Otherwise,
by p1 ≤ p2 we obtain directly that p′1 ≤ p2 and that (r1);(* path r1);p

′

1 ≤ p2,
and so refine by IX.

We have thus defined a procedure which constructs a proof from a valid sequent.
Our task is to show that the procedure terminates. This is not difficult to see.
Let a proof structure (i.e. a tree, possibly infinite, rooted in a sequent, say,
Γ ` r1 � r2, and constructed according to the proof rules) be given. Let N be
the set of all expressions r and p appearing somewhere in this proof structure.
This set will be finite. Now, if the procedure fails to terminate it will be possible
to trace a path through the (infinite) proof structure starting from the root
which infinitely often visits a sequent Γ ` p1 � p2 for fixed choices of p1 and p2.
We can assume that p1 has the shape p1 = (* path r1);p

′

1, and that in each
case the next rule applied is rule IX. But then, already at the second occurrence
of this sequent, I will be applicable, a contradiction. ut

