
On the Secure Implementation of

Security Protocols 1

Pablo Giambiagi and Mads Dam

Swedish Institute of Computer Science, Box 1263, S-164 49 Kista, Sweden

Abstract

We consider the problem of implementing a security protocol in such a manner that
secrecy of sensitive data is not jeopardized. Implementation is assumed to take place
in the context of an API that provides standard cryptography and communication
services. Given a dependency specification, stating how API methods can produce
and consume secret information, we propose an information flow property based on
the idea of invariance under perturbation, relating observable changes in output to
corresponding changes in input. Besides the information flow condition itself, the
main contributions of the paper are results relating the admissibility property to a
direct flow property in the special case of programs which branch on secrets only
in cases permitted by the dependency rules. These results are used to derive an
unwinding theorem, reducing a behavioural correctness check (strong bisimulation)
to an invariant.

Key words: Semantics-based security, confidentiality, information flow, protocol
implementation, admissibility, security policy

1 Introduction

We consider the problem of securely implementing a security protocol given an
API providing standard services for cryptography, communication, key- and
buffer management. In particular we are interested in the problem of confi-
dentiality, that is, to show that a given protocol implementation which uses

Email addresses: pablo@sics.se (Pablo Giambiagi), mfd@sics.se (Mads
Dam).
1 This material is based upon work partially supported by the European Office
of Aerospace Research and Development, Air Force Office of Scientific Research,
Air Force Research Laboratory, under Contract No. F61775-01-C0006, and by the
European IST project VerifiCard.

Preprint submitted to Science of Computer Programming 14 November 2003

standard features for encryption, random number generation, input-output
etc. does not leak confidential information provided to it, either because of
malicious intent, or because of bugs.

Both problems are real. Malicious implementations (Trojans) can leak inter-
cepted information using anything from simple direct transmission to, e.g.,
subliminal channels, power, or timing channels. Bugs can arise because of
field values that are wrongly constructed, mistaken representations, nonces
that are reused or generated in predictable ways, or misused random number
generators, to give just a few examples.

Our work starts from the assumption that the protocol and the API are known.
The task, then, is to ensure that confidential data is used at the correct times
and in the correct way by API methods. The constraints must necessarily
be quite rigid and detailed. For instance, a non-constant time API method
which is made freely available to be applied to data containing secrets can
immediately be used in conjunction with otherwise legitimate output to create
a timing leak, even without data-dependent branching.

Our approach is to formulate a dependency specification, a set of rules that
determines the required dependencies between those API method calls that
produce and/or consume secrets. An example of such a dependency rule might
be

send(v,OUT)← k 2 key BOB , m2 get IN , v 2 enc(m, k)

indicating that, if upon its last invocation of the get method with argument
IN the protocol received m (and analogously for key, BOB , and k), then
the next invocation of send with second parameter OUT must, as its first
parameter, receive the encryption of m with key k.

A dependency specification defines an information flow property by charac-
terizing the set of allowed flows. For example, the rule above allows the flow
of the secret plaintext m to public channel OUT only if m is first encrypted
using BOB ’s key. Assurance, then, must be given that no other flows involving
secrets exist. Our approach to this is based on the notion of admissibility, in-
troduced first in [1]. The idea is to extract from the dependency specification a
set of system perturbation functions g which will allow a system s processing
a secret v to act as if it is actually processing another value of that secret,
v′. Then, confidentiality is tantamount to showing that system behaviour is
invariant under perturbation, i.e. that

s[g] ∼ s,

where [g] is the system perturbation operator. One problem is that, provided

2

this is licensed by the dependency rules, secrets actually become visible at the
external interface. For this reason, the perturbation operator [g] must be able
to identify the appropriate cases where this applies, so that internal changes
in the choice of secret can be undone.

It is worth pointing out that the approach presented here, like any semantics-
based characterization of information flow, can only deal with flows that are
observable within the semantic model. Covert channels may exist that exploit
the unavoidable gap between model and reality. For example, probabilistic and
timing covert channels may run on undetected if probabilistic, resp. timing,
aspects are not modeled. Even when the examples in this paper assume a
possibilistic and untimed semantic model, this is not a prerequisite of the
approach. The idea of invariance under perturbation is parametric in, precisely,
the definition of invariance (i.e. ∼).

The paper has two main contributions. First, we show how the idea can be re-
alized in the context of a simple sequential imperative language, IMP. Secondly
we establish results which provide efficient (thought not yet fully automated)
verification techniques, and give credence to the claim that admissibility is a
good formalisation of confidentiality in this context. In particular, we show
that, for the special case of programs which branch on secrets only in cases
permitted by the dependency rules, admissibility can be reduced to a direct
flow property (an invariant) which we call flow compatibility. Vice versa, we
show that under some additional assumptions, flow compatibility can be re-
duced to admissibility.

This work clearly has strong links to previous work in the area of informa-
tion flow theory and language-based security (cf. [2]). The idea of invariance
under perturbation and logical relations underpins most work on secrecy and
information flow theory (see [3]), though not always very explicitly (cf. [4–7]).
The main point, in contrast e.g. to work by Volpano [8], is that we make no
attempt to address information flow of a cryptographic program in absolute
terms, but are satisfied with controlling the use of cryptographic primitives
according to some external protocol specification. This is obviously a much
weaker analysis, but at the same time it reflects well, we believe, the situation
faced by the practical protocol implementor.

The rest of the paper is structured as follows. In Section 2, we present IMP and
introduce the main example used in the paper, a declassifier which will leak
a secret provided it has been authorized to do so by some external agent. In
Section 3 we introduce an annotated semantics, used in Section 4 to formalise
the dependency rules. The notion of flow compatibility is presented in Section 5
to describe the direct information flow required by a protocol specification. In
Section 6 the main information flow condition, admissibility, is introduced. In
Section 7 we state and prove the unwinding theorem, while in Section 8 we

3

Basic values (BVal) b ::= n | a | true | (b1, . . . , bn)

Values (Val) v ::= b | xcpt

Functions (Fun) f ::= pf | h

Expressions (Expr) e ::= v | x | (e1, . . . , en) | f e

Commands (Com) c ::= ∗ | skip | throw | x := e | c0; c1 |

if e then c0 else c1 |

while e do c end | try c0 catch c1

Fig. 1. IMP Syntax

further investigate the relation between flow compatibility and admissibility.
Finally Section 9 concludes with discussion and related work.

2 A Sequential Imperative Language

In this section we introduce IMP, the language we use for protocol implemen-
tation. The intention is to formalise the basic functionality of simple protocol
implementations in as uncontroversial a manner as possible.

Figure 1 defines the syntax of IMP, with variables x ∈ Var , including the
anonymous variable , primitive function and procedure calls, and primitive
data types including natural numbers (n ∈ Nat) and channels (a ∈ Chan).
The set of primitive function symbols, ranged over by pf , includes the stan-
dard arithmetic and logical operators as well as tuple projectors (πi). Each
primitive function pf :Val → Val is assumed to satisfy pf (xcpt) = xcpt (i.e.
primitive function invocations propagate exceptions from arguments to re-
sults). Moreover, primitive functions are assumed to execute in constant time,
regardless of their arguments, and to have no side effects. Communication
effects are brought out using transition labels in the next section. There are
also non-primitive (or API) functions, ranged over by h, for (nondeterministic
and non-malleable) encryption (enc), decryption (dec), extracting a key from
a keystore (key), and receiving resp. sending a value on a channel (get and
send). Considering the commands of the language, ∗ represents the empty
command that is used only to ease the presentation of the semantics. It is as-
sumed that ∗ satisfies the following structural congruences: ∗; c ≡ c; ∗ ≡ c and
try ∗ catch c ≡ ∗. Observe that, while skip can be executed in one step, ∗ is
not to be executed at all. While exceptions do not enhance in any fundamental
way the expressiveness of the language, a simple exception mechanism helps
approximate the way cryptographic protocols are coded in real-life imperative

4

Message 1 C → DCL : {secret}KC,D

Message 2 DCL→ C : {decl , secret}KC,D

Message 3 C → PUBLIC : secret if decl = YES

Fig. 2. A Declassification Protocol

programming languages. Furthermore, the possibility of exceptions introduces
unobvious control branching points which, in turn, may induce implicit infor-
mation flows.

As a running example we use a simple declassifier, representative of applica-
tions which are required to input a collection of data, some sensitive, some not,
perform some cryptographic operations on the data, and occasionally transmit
the results on a public channel.

2.1 A Declassification Protocol

This protocol involves three agents, a client (C), a declassifier (DCL), and
the public (PUBLIC). The client is interested in declassifying a secret to the
public, but this needs the approval of the declassifier. Following the protocol,
the client sends the secret to the declassifier for consideration; the declassifier
examines it and decides whether to approve or not the request. The declas-
sifier’s response, decl , is sent back to the client together with the secret. The
client can then communicate the secret to the public only if the response was
affirmative (i.e. decl = YES). A description of the protocol using the standard
(and informal) notation appears in Figure 2.

According to the protocol, all communication between the client and the de-
classifier is to be encrypted using a key, KC,D shared between the client and
the declassifier. It is also assumed that the secret contains enough information
so that the declassifier can identify it properly.

Figure 3 shows what a simple implementation of the Client’s side of the de-
classification protocol might look like in IMP. Keywords in uppercase letters
denote constant variables, e.g. SECRET identifies the channel that provides
the secret data to the client. In general, an implementation needs to deal with
a lot more issues than what are explicitly addressed at the protocol specifi-
cation level. These include: initialisation and use of cryptographic services,
where and how data is stored and addressed, communication services, and er-
ror handling. Further, in some applications the protocol implementation may
well be bundled with the user interface, in which case a further set of issues

5

1: key := key DCL ;
2: while true do
3: secret := get SECRET ;
4: outPacket := enc(secret , key);
5: := send(outPacket , DCL) ;
6: encResp := get DCL ;
7: try
8: resp := dec(encResp, key) ;
9: if π1(resp) = YES and π2(resp) = secret
10: then := send(secret , PUBLIC)
11: else skip
12: catch skip
13: end

Fig. 3. Client - sample implementation

arise.

It may be instructive to also show some of the means available to implementa-
tions wishing to violate confidentiality. For instance, a hostile implementation
might “forget” to fully verify the Declassifier’s response by replacing line 9 of
Figure 3 with

9: if π2(resp) = secret then

Essentially, this would declassify the secret even when the Declassifier may
explicitly forbid the operation. The implementation might also try to replace
good keys by bad ones, for instance by replacing line 1 with

1: key := key ATTACKER ;

In the following example, the execution of line 8.2 may look innocuous by
itself, but in the context of the conditional statement it creates an indirect
leak of secret information:

8.1: if secret = FIXEDVAL then
8.2: := send(DUMMY, PUBLIC)
8.3: else skip ;

There are many other simple ways of building covert channels, such as timing
channels, for instance by introducing data-dependent delays, either explicitly,
or by exploiting timing properties of library functions.

6

3 Annotated Semantics

The first challenge is to identify the direct flows and computations on secret
and critical data (an example of the latter is a public key needed to encrypt
a secret before communication on a public channel. Since a malicious imple-
mentation could simply use a different key for encryption, it is also necessary
to track its origins). Once this is accomplished, other techniques based on
non-interference are brought to bear to handle the indirect flows. The direct
flows are tracked using annotations. In particular, we need to identify:

(1) The operations that cause critical values to enter the system (such as
execution of get a for some given value of a).

(2) The operations that are applied to secrets, once they have been input.

To account for this we provide IMP with an annotated semantics. Annotations
are intended to reveal how a value has been computed, from its point of entry
into the system. For instance, the annotated value

347 : enc(717 : get a, 101 : key 533)

is intended to indicate that the value 347 was computed by applying the API
function enc to the pair (717, 101) for which the left hand component was
computed by evaluating get a, and so on.

Annotated expressions and values are obtained by changing the definition of
expressions (resp. values) in Figure 1:

Annotated basic values (aBVal) β ::= b | (β1, . . . , βn) | b : ϕ

Annotated values (aVal) w ::= β | xcpt | xcpt : ϕ

Annotated expressions (aExp) ε ::= w | x | (ε1, . . . , εn) | f ε

Annotations (Ann) ϕ ::= f w

Annotations are erased using the operation [[w]] which recursively removes
annotations in the obvious way.

Table 1 defines the small-step semantics for expression evaluation. The tran-
sition relation has the shape

σ ` ε α−→ ε′ ,

7

Table 1
Annotated semantics, expressions

σ ` x
τ−→ σ(x)

σ ` ε
α−→ ε′

σ ` (. . . , ε, . . .)
α−→ (. . . , ε′, . . .)

[[w]] = xcpt

σ ` (. . . , w, . . .)
τ−→ w

σ ` ε
α−→ ε′

σ ` f ε
α−→ f ε′

pf ([[w]]) = v

σ ` pf w
τ−→ v : pf w

σ ` h w
v 2 h w−−−−−−→ v : h w

where α is an action of the form τ (internal computation step) or v 2 hw
(h is applied to the annotated value w resulting in the value v), and σ is an

annotated store, a partial function σ ∈ aStore
∆
= [Var → aBVal]. In particular

notice that internal computation corresponds either to evaluation of primitive
function calls or to the propagation of exceptions out of tuples.

Annotated values give only static information in the style “the value v′ was
computed by evaluating key(v : get a)”, but no information concerning which
actual invocations of the key and get functions were involved. However, our
dependency specifications (introduced on p. 2 and formalised by Def. 3) require
that we can identify value annotations that correspond to last invocations. For
that purpose we introduce a notion of context to record the last value returned
by some given annotated function call (i.e. annotation).

Definition 1 (Context) A context is a partial function s : [Ann → Val].

So, if s is a context then s ϕ is the last value returned by the annotated function
call ϕ. Observe that it is the semantics of the dependency specification what
determines the contextual (or historical) information that should be collected.
Richer specification languages than the one used in this paper could certainly
require more contextual information (e.g. the result of all function invocations,
their relative order or even the moment in time in which each event took place).

Contexts form part of program configurations in the annotated semantics:

Definition 2 (Annotated Configuration)
An annotated configuration is a triple 〈c, σ, s〉 where c is a command, σ ∈
aStore and s ∈ Context . We use 〈σ, s〉 as abbreviation of 〈∗, σ, s〉.

The annotated command-level semantics is shown in Table 2. We use σ[β/x]
to denote store update (i.e. σ[β/x](x) = β and σ[β/x](y) = σ(y) for y 6= x).
The same notation is applied for context updates. To lift transitions between
expressions to transitions between configurations, we use reduction contexts
r[·] ::= x := · | if · then c0 else c1.

8

Table 2
Small-step semantics for annotated commands

` 〈skip, σ, s〉 τ−→ 〈σ, s〉 ` 〈x := β, σ, s〉 τ−→ 〈σ[β/x], s〉

` 〈c0, σ, s〉 α−→ 〈c′0, σ′, s′〉

` 〈c0; c1, σ, s〉 α−→ 〈c′0; c1, σ′, s′〉

[[β]] = true

` 〈if β then c0 else c1, σ, s〉 τ−→ 〈c0, σ, s〉

[[β]] 6= true

` 〈if β then c0 else c1, σ, s〉 τ−→ 〈c1, σ, s〉

` 〈while ε do c end, σ, s〉 τ−→ 〈if ε then c;while ε do c end else skip, σ, s〉

` 〈c0, σ, s〉 α−→ 〈c′0, σ′, s′〉

` 〈try c0 catch c1, σ, s〉 α−→ 〈try c′0 catch c1, σ′, s′〉

` 〈try throw catch c1, σ, s〉 τ−→ 〈c1, σ, s〉

σ ` ε
τ−→ ε′

` 〈r[ε], σ, s〉 τ−→ 〈r[ε′], σ, s〉

σ ` ε
v 2 ϕ−−−−→ ε′

` 〈r[ε], σ, s〉 v 2 ϕ−−−−→ 〈r[ε′], σ, s[v/ϕ]〉

[[w]] = xcpt

` 〈r[w], σ, s〉 τ−→ 〈throw, σ, s〉

4 Dependency Rules

Our approach to confidentiality is to ensure that the direct flows of information
follow the protocol specification, and then use information flow analysis to
protect against indirect flows. In this section we introduce dependency rules
to formalise the permitted, direct flows.

Definition 3 (Dependency Specification) A dependency specification is a
pair P = 〈H,A〉 where H ⊆ Ann is a set of annotations of the form hw, and
A is a finite set of rules of the form

h e← x1 2 h1 e1, . . . , xn 2 hn en when ψ (1)

where none of the expressions e, e1, . . . , en mention functions or exceptions,
variables in ei do not belong to {xi, . . . , xn}, and ψ is a boolean condition with

9

eval(w) = [[w]]

eval(ψ1, . . . , ψn) =

(eval(ψ1), . . . , eval(ψn)) if ∀i. eval(ψi) 6= xcpt

xcpt otherwise

eval(pf ψ) = pf (eval(ψ))

eval(ψ1 ≡ ψ2) = (eval(ψ1) = eval(ψ2))

Fig. 4. Evaluation of boolean conditions in dependency rules

free variables in {x1, . . . xn} and syntax given by

Boolean conditions (Ψ) ψ ::= w | x | (ψ1, . . . , ψn) | pf ψ | ψ1 ≡ ψ2 .

The intention is that H represents a set of secret entry points (such as:
get SECRET), and that the rules in A determine a bound to the secret
data flows that are allowed in an implementation.

A rule in the specification declares an API function invocation h e to be ad-
missible if the conditions to the right of the arrow are satisfied. Informally,
conditions of the form xi 2 hi ei are satisfied if variable xi matches the last
value returned by hi ei. Restricting attention to last invocations helps keep
specification rules simple, a decision motivated by the fact that most crypto-
graphic protocol sessions involve a reduced number of (mostly distinct) API
invocations. More importantly, notice that dependency specifications cannot
allow/reject flows on the basis of temporal constraints such as the order of
function calls.

The boolean expression ψ represents an extra condition that relates the values
returned by the different API function invocations, and that may be evaluated
using function eval : Ψ → Val (see Fig. 4). Recall that primitive functions pf
include the standard arithmetic and logical operators. Moreover, since pf is
required to preserve exceptions we obtain that xcpt ≡ xcpt evaluates to true,
but xcpt = xcpt evaluates to xcpt.

To formalise the semantics of a dependency specification, we need one more
definition. Let a context s be given. A valid substitution for rule (1) is an
annotated store ρ ∈ aStore such that

(1) ρ(xi) = s(hi (eiρ)):hi (eiρ) for all i : 1 ≤ i ≤ n ,
(2) if x does not appear in xi 2 hi ei (∀i. 1 ≤ i ≤ n), then ρ(x) has no

annotation in H,
(3) eval(ψρ) = true .

10

That is, the value bound to xi by ρ should be equal to the last value returned by
the annotated function call hi (eiρ); all variables that are not thus determined
by the context s must not have secret annotations; and the boolean condition
should be satisfied. By eρ we mean the annotated ground expression (aExpr)
that results from substituting ρ(x) for every variable x in e. It is easy to check
that the restrictions on e (resp. ei) in Def. 3 guarantee that eρ (resp. eiρ) is an
annotated (basic) value. Notation: When eval(ψρ) = true regardless of the
substitution ρ, we usually drop ψ and the preceding keyword when from the
dependency rule (1).

We can now determine whether a particular function invocation is admitted
by the dependency specification.

Definition 4 (Admissible Invocation) Let α be an annotated action of
the form v 2 hw. A dependency specification P = 〈H,A〉 admits annotated
action α in context s iff either

(1) no annotation in w belongs to H (that is, the actual parameters do not
directly depend on any secret), or

(2) there is a rule h e← x1 2h1 e1, . . . , xn 2hn en when ψ in A and a valid
substitution ρ for this rule such that eρ = w.

If any one of these conditions is satisfied we write P, s ` α ok .

Observe that the concept of admissible action covers both those actions whose
execution is required by the protocol specification, as well as those that do
not (explicitly) involve any sensitive data. In particular, internal τ transitions
are always admissible (i.e. P, s ` τ ok). Notice as well that the definition of
P, s ` v 2 hw ok is independent of the value of v.

Example 5 (Dependency Specification for the Declassifier’s Client)
For the declassification protocol, the only pieces of information that the Client
should protect are the secret itself (obtained through channel SECRET , and
all the keys it shares with other principals. Therefore, H = {get SECRET} ∪
{key w | w ∈ aVal}, and A consists of rules for encryption, for decryption, for
sending encrypted packets to the declassifier, and for declassifying the secret.

enc(s , k) ← s 2 get SECRET , k 2 key DCL (2)

send(o,DCL) ← o 2 enc x (3)

dec(m, k) ← m 2 get DCL, k 2 key DCL (4)

send(s ,PUBLIC) ← s 2 get SECRET , r 2 dec(m, k) (5)

when π1 (r) = YES ∧ π2 (r) = s

11

According to rule (2), each time the encryption function (enc) is invoked with
some sensitive parameter (i.e. a value with an annotation in H), it must be
the case that the plaintext is the secret which was received last (by means of
function get), and that the encryption key is the Declassifier’s. By rule (3)
all sensitive information sent to the Declassifier must be encrypted. There
is no need to further restrict the argument (i.e. x) passed to enc, for that
is already constrained by rule (2). Since key DCL ∈ H, rule (4) is needed
to admit the decryption operation implicit in the processing of Message 2 (cf.
Fig. 2). Finally, by rule (5) a secret may be declassified provided the decrypted
message both says so and correctly matches the current secret. 2

As the example shows, dependency specifications are very low-level objects.
They are not really meant as external specifications of confidentiality require-
ments, but rather as intermediate representations of flow requirements, gener-
ated from some more user-friendly protocol specification once a specific run-
time platform has been chosen.

5 Flow Compatibility

Dependency specifications determine, through Definition 4, when a function
invocation is admissible. In this section we tie this to the transition semantics
to obtain an account of the direct information flow required by a dependency
specification.

Let the relation

〈c, σ, s〉 ⇒ 〈c′, σ′, s′〉

be the reflexive, transitive closure of the annotated transition relation, i.e.
the smallest relation such that 〈c, σ, s〉 ⇒ 〈c′, σ′, s′〉 holds iff either c = c′,
σ = σ′ and s = s′ or else c1, σ1, s1 exists such that 〈c, σ, s〉 ⇒ 〈c1, σ1, s1〉 and

〈c1, σ1, s1〉
α−→ 〈c′, σ′, s′〉.

Definition 6 Let the dependency specification P = 〈H,A〉 be given. The
command c ∈ Com is flow compatible with P for initial store σ and initial

context s, if whenever 〈c, σ, s〉 ⇒ 〈c1, σ1, s1〉
α−→ 〈c2, σ2, s2〉 then P, s1 `

α ok .

Example 7 (Flow Compatibility for the Declassifier’s Client)
The program of Figure 3 is flow compatible with the Declassifier’s Client
dependency specification of Example 5, for any initial store σ. This is seen by
proving that appropriate invariants hold each time execution reaches one of

12

the statements in lines 4, 5, 8 and 10. For example, at line 10 the store σ and
context s can be shown to always satisfy, for suitable choices of v1, . . . , v4,

σ(secret) = v1 : get SECRET σ(key) = v2 : key DCL

σ(encResp) = v3 : get DCL s(dec(σ(encResp), σ(key)) = v4

π1(v4) = YES π2(v5) = v1

It is then a simple matter to check P, s ` send(v1 : get SECRET , PUBLIC) ok
using rule (5) in Example 5 and the following valid substitution ρ:

ρ(s) = σ(secret) ρ(k) = σ(key)

ρ(m) = σ(encResp) ρ(r) = v4 : dec(ρ(m), ρ(k))

Consider now the three malicious implementations discussed by the end of
Section 2.1. In the first two cases, flow compatibility is violated, as expected.
On the other hand, the third malicious implementation is flow compatible,
also as expected, since the indirect leak will not be traced by the annotation
regime. 2

6 Admissibility

If there is an admissible flow of information from some input, say get acc,
to some output, say, send(. . . , enc((. . . , acc), . . .), . . .) then by perturbing the
input, corresponding perturbations of the output should result, and only those.
In this section we formalise this idea.

In the context of multilevel security it is by now quite well understood how to
model absence of information flow (from a high security level –or clearance–
to a lower one) as invariance of system behaviour under perturbation of secret
inputs (cf. [4–7], see also [9] for application of similar ideas in the context
of protocol analysis). For instance, the intuition supporting Gorrieri and Fo-
cardi’s Generalized Noninterference model is that there should be no observ-
able difference (i.e. behaviour should be invariant) whether high-level inputs
are blocked or allowed to proceed silently. So the perturbation of high-level
inputs, in this case, is whether or not they take place at all.

Here the situation is somewhat different since the multilevel security model is
not directly applicable: There is no meaningful way to define security levels
reflecting the intended confidentiality policy, not even in the presence of a

13

trusted downgrader. On the contrary, the task is to characterize the admissible
flows from high to low level in such a manner that no trust in the downgrader
(i.e. the protocol implementation) will be required.

The idea is to map a dependency specification to a set of system perturbations.
Each such function is a permutation on actions and configurations which will
make a configuration containing a secret, say x, appear to the external world
as if it actually contains another secret, say x′. If the behaviour of the original
and the permuted configuration are the same, the external world will have no
way of telling whether the secret is x or x′.

At the core of any configuration permutation there is a function permuting
values (e.g. x and x′). This leads to the following definition:

Definition 8 (Value Permutation) A bijection g: aVal → aVal is a value
permutation if it preserves the structure of annotated values:

(1) g(v) = v ,
(2) g(β1, . . . , βn) = (g(β1), . . . , g(βn)) ,
(3) g(v : f w) = v′ : f g(w), for some suitable value v′ ;

and the meaning of primitive functions:

(4) v = pf ([[w]]) iff v′ = pf ([[w′]]), given g(v : pf w) = v′ : pf w′ .

We do not require the meaning of non-primitive functions to be preserved
by value permutations. Since we do not want to prescribe any particular be-
haviour for API implementations, our semantics does not actually assign a
meaning to non-primitive functions in the first place, so formally there is
nothing to preserve. This is so, since API implementations in our framework
are trusted: Dependency specifications simply state under what conditions an
API function may be invoked, regardless of how it is actually implemented.

We extend value permutations over transition labels and contexts. In the first

case, let g(τ)
∆
= τ and g(v2ϕ)

∆
= v′2ϕ′, where g(v : ϕ) = v′ : ϕ′. For contexts,

define

g(s)(f w)
∆
= [[g(s(f w′) : f w′)]] , where w′ = g−1(w) . (6)

The following lemma establishes the coherence of the above definitions. It
states that the relation between contexts s and g(s) is preserved after the
execution of API function ϕ, resp. g(ϕ).

Lemma 9 If g(v 2 ϕ) = v′ 2 ϕ′ then g(s[v/ϕ]) = g(s)[v′/ϕ′].

Not all value permutations are interesting for our purposes. In fact, we are

14

only interested in those that permute secrets as dictated by a dependency
specification.

Definition 10 (Secret Permuter) Assume given a dependency specifica-
tion P = (H,A). A secret permuter for P is a value permutation g satisfying
the following conditions:

(1) if w does not contain annotations in H then g(w) = w ,
(2) ρ is a valid substitution for rule r ∈ A and context s if and only if

ρ′(x)
∆
= g(ρ(x)) is a valid substitution for rule r and context g(s) ,

(3) g(xcpt : hw) = xcpt : h g(w) , for every API function h ,

As expected, a secret permuter affects only secret values. This is implied by
the first condition in Definition 10. Condition (10.2) implies that a secret
permuter must respect the restrictions imposed by the boolean conditions in
each dependency rule. On the other hand, we assume that the exceptional
behaviour of an API function is always observable. Thus, if the execution of
h w raises an exception, we should not consider those cases where h g(w) does
not raise an exception. This is reflected by condition (10.3).

The following lemma and proposition further characterize the set of secret
permuters associated to a dependency specification.

Lemma 11 Let g be a secret permuter. Then

(1) g−1(g(s)) = s ,

(2) g−1 is a secret permuter, and

(3) if P, s ` α ok then P, g(s) ` g(α) ok .

Proposition 12 (Composition of Secret Permuters) Given a dependen-
cy specification, the set of secret permuters is closed under functional compo-
sition.

Example 13 (Secret Permuter for the Declassification Example)
Here we give an example of a secret permuter for the dependency specification
in Example 5. First we verify that it is a value permutation (Def. 8), and then
that it is indeed a secret permuter (Def. 10).

Let g: aVal → aVal exchange annotated values as follows:

v1 : get SECRET ↔ v′1 : get SECRET

v2 : key DCL↔ v′2 : key DCL

v4 : dec(v3 : get DCL, v2 : key DCL)↔
v′4 : dec(v3 : get DCL, v′2 : key DCL)

15

v1 : π2(v4 : dec(v3 : get DCL, v2 : key DCL))↔
v′1 : π2(v

′
4 : dec(v3 : get DCL, v′2 : key DCL))

for some fixed basic values vi and v′j satisfying vi 6= v′i, π1(v4) = π1(v
′
4) = YES ,

π2(v4) = v1 and π2(v
′
4) = v′1. On all other values, g acts in accordance with

conditions in Defs. 8 and 10. Conditions (8.1)–(8.4), (10.1) and (10.3) are
easily validated. To verify condition (10.2) consider rule (5) in the dependency
specification of the Declassifier’s Client (Ex. 5). Given a context s such that:

s(get SECRET) = v1 s(dec(v3 : get DCL, v2 : key DCL)) = v4

s(key DCL) = v2

assume ρ is a valid substitution for s and the mentioned rule. Let ρ′(x)
∆
=

g(ρ(x)). We need to show that ρ′ satisfies conditions (1)-(3) in the definition
of valid substitution within context g(s). Condition (2) holds trivially. Let us
illustrate the verification of condition (1) with variable s in rule (5).

ρ′(s) = g(ρ(s)) = g(s(get SECRET) : get SECRET)

= g(v1 : get SECRET) = [[g(v1 : get SECRET)]] : get SECRET

= g(s)(get SECRET) : get SECRET

Notice that [[ρ′(s)]] = v′1. In the same manner it can be checked that [[ρ′(n)]] =
[[ρ(n)]] and [[ρ′(r)]] = v′4, which is enough to verify condition (3) in the definition
of valid substitution. Therefore g is a secret permuter for the Client in our
declassification protocol. 2

We have extended secret permuters over transition labels and contexts. Stores
and commands can equally be permuted. The extension of a secret permuter
g over a store is given by the equation g(σ)(x) = g(σ(x)). For a command c,
define g(c) to preserve the structure of the command, down to the level of sin-
gle annotated values which are permuted according to g. For example, g(r :=
dec(b : get DCL, b′ : key DCL)) = r := dec(b : get DCL, g(b′ : key DCL)).
Commands like these occur naturally during the course of expression evalua-
tion, which is governed by a small-step semantics.

The idea now is to compare the behaviour of a given command on a given store
and context with its behaviour where secrets are permuted internally and then
restored to their original values at the external interface, i.e. at the level of
actions. For this purpose we introduce a new construct at the command level,
perturbation c[g], somewhat reminiscent of the CCS relabelling operator, with

16

the following transition semantics

〈c, σ, s〉 α−→ 〈c′, σ′, s′〉

〈c[g], σ, s〉 [[g(s, α)]]−−−−−−→ 〈c′[g], σ′, s′〉
(7)

where [[v 2 hw]] = v2h [[w]], and g(s, α) permutes α only if it is an admissible
invocation (i.e. g(s, α) = g(α), if P, s ` α ok ; and g(s, α) = α, otherwise).
So a perturbed command is executed by applying the secret permuter at the
external interface, and forgetting annotations. The latter point is important
since the annotations describe data flow properties internal to the command
at hand; the externally observable behaviour should depend only on the func-
tions invoked at the interface, and the values provided to these functions as
arguments.

Notice the use of g(s, α) in (7). The effect of this condition is that actions are
only affected by the permuter when they are “ok”. Secret input actions are
generally always “ok”, and so in general cause the internal choice of secret to
be permuted. Output actions that are not “ok”, however, are not affected by
g(s, α), and so in this case a mismatch between value input and output may
arise.

Thus, if the behaviour of a command is supposed to be invariant under per-
turbation, the effect is that it must appear to the external world to behave
the same whether or not a secret permuter is applied to the internal values.
This is reflected in the following definition.

Definition 14 (Admissibility) A command c ∈ Com is admissible for the
store σ and context s, the dependency specification P , if for all secret per-
muters g for P :

〈c[I], σ, s〉 ∼ 〈g(c)[g−1], g(σ), g(s)〉 (8)

where I is the identity secret permuter and ∼ is the standard Park-Milner
strong bisimulation equivalence.

Observe that the effect of perturbing a command with the identity secret
permuter is just to erase annotations at the interface, but keeping all values
intact.

Example 15 Recall the definition of secret permuter g for the Declassifier’s
Client in Example 13. If we modified only slightly our assumptions so that
π2(v

′
4) = xcpt and π1(v4) /∈ {YES ,xcpt}, we could define a secret permuter

g′ just as we did with g. This means that the dependency specification of
Example 5 expects the behaviour of a Client implementation to be invariant

17

under, among other permuters, g′. This is not true of the implementation
shown in Figure 3. There is one possible trace where control branches from
line 9 to line 11 (if [[σ(resp)]] = v4) and another where it branches to line 12 (if
[[σ(resp)]] = v′4). In other words, the occurrence of an exception in executing
line 9 may leak inadmissible information about the relation between resp and
secret . If this information were considered innocuous, we could simply add one
more rule to the dependency specification:

∗ ← s 2 get SECRET , r 2 dec(m, k) (9)

when π1 (r) = xcpt ∨ π2 (r) = xcpt

where ∗ represents some arbitrary h e where e does not mention any variable
on the right-hand side of the rule. Its purpose is not to declare admissible cer-
tain invocations of the function h (h can always be invoked with non-sensitive
arguments) but to introduce a constraint on the set of secret permuters. Ob-
serve that, in the presence of rule (9), g′ is no longer a valid secret permuter
for the extended dependency specification. 2

7 Local Verification Conditions

Applying the definition of admissibility out of the box can be quite arduous,
since it is tantamount to searching for, and checking, a bisimulation relation
for each possible secret permuter. In case the control flow is not affected by the
choice of secrets one may hope to be able to do better, since only data-related
properties need to be checked. In this section we give such a local condition.

Definition 16 (Stability for Commands) Let a dependency specification
P be given. Let 4 be the smallest reflexive and transitive relation over com-
mands such that c0 4 c0; c1 and c0 4 try c0 catch c1, for all commands c0
and c1. The command c ∈ Com is stable if for all c′ 4 c and for all secret
permuters g,

(1) if c′ = if β then c2 else c3, then [[β]] = [[g(β)]] , and
(2) if c′ = r[ε] and w ∈ aVal is a subterm of ε, then [[w]] = xcpt iff [[g(w)]] =

xcpt ,

where r[·] ::= x := · | if · then c0 else c1 .

For stable commands we obtain strong properties concerning the way secret
permuters can affect the state space.

Lemma 17 Suppose that c ∈ Com is stable w.r.t. dependency specification

P . Then, 〈c, σ, s〉 α−→ 〈c′, σ′, s′〉 iff 〈g(c), g(σ), g(s)〉 g(α)−−−→ 〈g(c′), g(σ′), g(s′)〉 .

18

Definition 18 (Stability for Configurations) Let a dependency specifi-
cation be given. The configuration 〈c, σ, s〉 is stable if whenever 〈c, σ, s〉 ⇒
〈c′, σ′, s′〉, then c′ is a stable command.

Theorem 19 If c ∈ Com is flow compatible with dependency specification P
for store σ and context s, and 〈c, σ, s〉 is stable, then c is admissible (for σ,
s, P and ∼).

Theorem 19 does not provide necessary conditions. In fact, there are admissible
programs whose control flow is affected by the perturbations. However, the
import of Theorem 19 is that, in order to verify Admissibility it is sufficient
to check that the flow of control is not affected by the relabelling of secret
inputs and of admissible outputs. Furthermore, it suffices to check this for a
(smaller) subset of the reachable configurations.

To formalise this, consider a dependency specification P and an initial con-
figuration 〈c0, σ0, s0〉. For each configuration 〈c, σ, s〉 define g(〈c, σ, s〉) as
the configuration that results from applying g to all three components, i.e.
g(〈c, σ, s〉) = 〈g(c), g(σ), g(s)〉. Then assume the existence of a set of pro-
gram configurations {ξi}i∈I where 0 ∈ I ⊆ N, which satisfies the following
properties:

P1) ξ0 = 〈c0, σ0, s0〉,
P2) for all i ∈ I, if ξi = 〈c, σ, s〉 then c is a stable command,

P3) for all i ∈ I and for all actions α such that ξi
α−→ q, then

• q = g(ξj), for some j ∈ I and some secret permuter g for P , and

• P, s ` α ok , if ξi = 〈c, σ, s〉 .

Under these conditions, we obtain our main verification result with the aid of
Lemma 17 and Theorem 19:

Theorem 20 Let P be a dependency specification and 〈c0, σ0, s0〉 an initial
configuration. If there is a set of configurations {ξi}I satisfying P1–P3, then
c0 is admissible (for σ0, s0, P and ∼).

8 Admissibility vs. Flow Compatibility

In general, admissibility does not imply flow compatibility. At a first glance
this may seem somewhat surprising. The point, however, is that flow com-
patibility provides a syntactical tracing of data flow, not a semantical one.
Consider for instance the command

SECRET := get a1 ;

19

if SECRET = 0 then := send(SECRET , a2) else := send(0, a2)

in the context of a dependency specification P = 〈{get a1}, ∅〉.

This command is clearly admissible for P (for any store and context), but not
flow compatible for quite obvious reasons. However, if the control flow does
not permit branching on secrets, we can show that in fact flow compatibility
is implied. For this purpose some additional assumptions need to be made
concerning the domains and functions involved.

Clearly, if constant functions are allowed there are trivial examples of direct
flows which violate flow compatibility without necessarily violating admissi-
bility.

However, we are able to establish the following result as a partial converse to
Theorem 19.

Lemma 21 Suppose 〈c0, σ0, s0〉 is stable and admissible for dependency spec-
ification P . Then for all behaviours

〈c0, σ0, s0〉 ⇒ 〈c1, σ1, s1〉
v 2 hw−−−−−→ 〈c2, σ2, s2〉

of minimal length such that P, s1 6` v 2 hw ok, the set

{[[g(w)]] | g is a secret permuter}

is finite.

Thus, if we can guarantee infinite variability of the set in Lemma 21 (which
we cannot in general), flow compatibility does indeed follow from admissibility
and stability.

9 Discussion and Conclusions

We have studied and presented conditions under which an implementation is
guaranteed to preserve the confidentiality properties of a protocol. We first
determine, using annotations, the direct flow properties. If all direct depen-
dencies are admitted by the policy, we use an extension of the admissibility
condition introduced first in [1] to detect the presence of any other dependen-
cies. If none are detected we conclude that the implementation preserves the
confidentiality properties of the protocol.

20

As our main results we establish close relations between the direct and the indi-
rect dependency analysis in the case of programs which mirror the “only-high-
branching-on-secrets” condition familiar from type-based information flow
analyses (cf. [6,7]). In fact, in our setting the condition is more precisely cast as
“only-permitted-branching-on-secrets”, since branching on secrets is admissible
as long as its “observational content” is allowed by the dependency rules. The
correspondence between the direct and the indirect dependency analysis pro-
vides an “unwinding theorem” which can be exploited to reduce a behavioural
check (in our case: strong bisimulation equivalence) to an invariant.

The notion of admissibility has relations to representation independence. The
latter concerns the problem of showing, for a given program, that its behaviour
depends only on abstract values, not on details concerning their concrete rep-
resentation. This is typically handled using logical relations (cf. [10]). The
task is to give a relation that describes how different concrete representations
implement the same abstraction, and to show that if all methods preserve this
relation then it will be preserved by any client program. If one can show that,
along a suitably defined external interface, the relation is the identity, then
one can conclude that no client program which respects this interface can leak
representation dependent information. The analogy with e.g. the PER model
of Sabelfeld and Sands [11] is clear, except that, in the case of representation
independence, finer variability at base types is required. On the other hand,
variability across the external interface is prohibited (or, in the case of data re-
finement [12], required to preserve the implementation ordering), and one can
in fact view the present paper as offering one scenario, and possible approach,
for lifting this restriction.

One of the main goals of our work is to arrive at information flow analyses
which can control dependencies in a secure way, rather than prevent them alto-
gether, since this latter property excludes too many useful programs. Other at-
tempts in this direction involve the modeling of observers as resource-bounded
processes following well-established techniques in Cryptography (cf. [8,13]).
The scope of approaches such as these remains very limited, however.

Intransitive noninterference [14] is a generalization of noninterference that ad-
mits downgrading through a trusted downgrader. Although it prevents direct
downgrading (i.e. flows around the downgrader), it does not prevent Trojan
Horses from exploiting legal downgrading channels to actively leak secret in-
formation. A solution is to resort to Robust Declassification [15], which pro-
vides criteria to determine whether a downgrader may be exploited by an
attacker. Unfortunately, this technique considers attackers whose observation
power turns out to be too strong in the presence of cryptographic functions, so
that the approach cannot be applied without major changes to our examples.

Dependency specifications are abstract in the sense that they do not request

21

compliance with many functional properties of the security protocol. For exam-
ple, the Client specification (Example 5) does not prevent an implementation
from submitting the same secret, over and over, to the Declassifier. This is
quite safe, as we assure that aspects like the number of retransmissions, or
their timing properties, cannot be used to create covert channels.

However, there are occasions in which compliance with functional behaviour
is critical. In particular, one important property which our approach does
not handle satisfactorily is nonce freshness. Our formalism has, as yet, no
way (except by the introduction of artificial data dependencies) of expressing
constraints such as “x was input after y”, and thus we must at present resort
to external means for this check.

One worry of more practical concern is the amount of detail needed to be
provided by the dependency rules. It is quite possible that this problem can
be managed in restricted contexts such as JavaCard. In general, though, it is
not a priori clear how to ensure that the rules provide enough implementation
freedom, nor that they are in fact correct. It may be that the rules can be
produced automatically from abstract protocol and API specifications, or,
alternatively, that they can be synthesized from the given implementation
and then serve as input for a manual correctness check.

A Proofs

Lemma 9 If g(v 2 ϕ) = v′ 2 ϕ′ then g(s[v/ϕ]) = g(s)[v′/ϕ′].

PROOF. Let ϕ = f w and ϕ′ = f w′ where w′ = g(w). We need to show that
g(s[v/f w]) = g(s)[v′/f w′] . Let f1 w1 ∈ Ann. Assume first f1 w1 = f w′. We
compute:

g(s[v/f w])(f w′) = g(s[v/f w])(f g(w))

= v′ (by (6))

= g(s)[v′/f w′](f w′)

In case f1 w1 6= f w′, let v′′
∆
= s[v/f w](f1 g

−1(w1)) = s(f1 g
−1(w1)) . We

obtain:

g(s[v/f w])(f1 w1) = [[g(v′′ : f1 g
−1(w1))]]

= g(s)(f1 w1)

= g(s)[v′/f w′](f1 w1). 2

22

Lemma 11 Let g be a secret permuter. Then

(1) g−1(g(s)) = s ,

(2) g−1 is a secret permuter, and

(3) if P, s ` α ok then P, g(s) ` g(α) ok .

PROOF.

(1) Notice first that (6) is equivalent to

g(s)(f w) : f w = g(s(f g−1(w)) : f g−1(w)) (A.1)

Given f w ∈ Ann, let w′ ∆
= g(w). Then

g−1(g(s))(f w) : f w = g−1(g(s)(f w′) : f w′) (by (A.1))

= g−1(g(s(f w) : f w)) (by (A.1))

= s(f w) : f w

Therefore, g−1(g(s))(f w) = s(f w) for all f w ∈ Ann .
(2) This is a simple check, using that g, when extended over contexts, is a

bijection (a consequence of item (1)).
(3) Let P = 〈H,A〉. Assume α = v2hw where w has (at least) an annotation

in H (all other cases are trivial). Since P, s ` α ok , there must be a rule
h e← x1 2 h1 e1, . . . , xn 2 hn en when ψ in A and a valid substitution
ρ for this rule such that eρ = w (Def. 4).

By Def. 10.2, ρ′(x)
∆
= g(ρ(x)) is also a valid substitution for the rule

above. Assume g(v : hw) = v′ : hw′. It then only remains to notice
that, by induction on the structure of e, eρ′ = g(eρ) = w′ and therefore
P, g(s) ` g(α) ok . 2

Corollary A.1 Let g be a secret permuter for dependency specification P . If
P, s ` α ok then g−1(g(s), g(α)) = α .

PROOF.

g−1(g(s), g(α)) = g−1(g(α)) (by Lemma 11.3, P, g(s) ` g(α) ok)

= α 2

23

Proposition 12 (Composition of Secret Permuters) Given a dependen-
cy specification, the set of secret permuters is closed under functional compo-
sition.

PROOF. Let g and g′ be two secret permuters. We need to prove that

t = g ◦ g′ is a secret permuter too (where g ◦ g′(x) ∆
= g(g′(x))). That t is

a value permutation (Def. 8) is straightforward. It is also immediate that t
satisfies (10.3).

The key observation needed to check that t satisfies (10.1) is that if f w
contains no annotation in H then neither does f g′(w). This is so because w
cannot have an annotation in H and, since g′ is a secret permuter, g′(w) = w
(also by (10.1)).

Finally, for condition (10.2) it is enough to check that t(s) = g(g′(s)) (observe
that here t is a function over contexts, so the equality is not immediate from
the definition of t as a function over annotated values). Given f w ∈ Ann, let

w′ ∆
= g−1(w) and w′′ = g′−1(w′) = t−1(w). Then

g(g′(s))(f w) : f w = g(g′(s)(f w′) : f w′) (by (A.1))

= g(g′(s(f w′′) : f w′′)) (by (A.1))

= t(s(f t−1(w)) : f t−1(w)))

= t(s)(f w) : f w (by (A.1))

Therefore, t(s)(f w) = g(g′(s))(f w) for all f w ∈ Ann . 2

Remark A.2 For a fixed dependency specification, if c′ ∈ Com is stable and
c 4 c′, then c is stable.

Lemma A.3 Let a dependency specification be given. Then, for all secret per-
muters g, c ∈ Com is stable iff g(c) is stable.

PROOF. Follows from Prop. 12. 2

Lemma A.4 Suppose that r[ε0] is a stable command and ε is a subterm of ε0.

If σ ` ε α−→ ε′ then g(σ) ` g(ε) g(α)−−−→ g(ε′).

PROOF. The proof proceeds by induction on the structure of derivations of

24

σ ` ε α−→ ε′.

• Case ε = x:

Since ε′ = σ(x), α = τ , g(x) = x, and g(σ) ` x τ−→ g(σ)(x), it is immediate

that g(σ) ` g(x) g(α)−−−→ g(σ(x)).

• Case ε = (. . . , ε1, . . .) and σ ` ε1
α−→ ε′1:

From the annotated semantics for expression evaluation (Table 1)

σ ` (. . . , ε1, . . .)
α−→ (. . . , ε′1, . . .)

Using that ε1 is a subterm of ε0, by the inductive hypothesis, g(σ) `
g(ε1)

g(α)−−−→ g(ε′1). Since g(. . . , η, . . .) = (. . . , g(η), . . .), we conclude that

g(σ) ` g(. . . , ε1, . . .)
g(α)−−−→ g(. . . , ε′1, . . .)

• Case ε = (. . . , w, . . .) with [[w]] = xcpt:
According to the semantics in Table 1, ε′ = w and α = τ . Since w is a
subterm of ε0, by (16.2), [[g(w)]] = xcpt. We can then infer that

g(σ) ` (. . . , g(w), . . .)
α−→ g(w)

• Case ε = f ε1 and σ ` ε1
α−→ ε′1:

Since ε1 is a subterm of ε0, by the inductive hypothesis, g(σ) ` g(ε1)
g(α)−−−→

g(ε′1). It is then immediate that

g(σ) ` g(f ε1)
g(α)−−−→ g(f ε′1)

• Case ε = pf w with pf ([[w]]) = v:
From Table 1, ε′ = v : pf w and α = τ . Therefore g(ε) = pf g(w) and
g(α) = τ . If g(v : pf w) = v′ : pf g(w), then pf ([[g(w)]]) = v′ (by (8.4)), so
that

g(σ) ` pf g(w)
g(α)−−−→ g(v : pf w)

• Case ε = hw:
From Table 1, ε′ = v : hw and α = v 2 hw. Therefore g(ε) = h g(w). Let
g(v : hw) = v′ : h g(w). Then g(ε′) = v′ : h g(w) and

g(σ) ` g(hw)
v′ 2 h g(w)−−−−−−−−→ g(v : hw) 2

Lemma 17 Suppose that c ∈ Com is stable w.r.t. dependency specification

P . Then, 〈c, σ, s〉 α−→ 〈c′, σ′, s′〉 iff 〈g(c), g(σ), g(s)〉 g(α)−−−→ 〈g(c′), g(σ′), g(s′)〉 .

25

PROOF. Note first that, because of Lemmas A.3 and 11, only one implica-
tion needs to be shown. The proof proceeds by induction on the structure of

the derivation of 〈c, σ, s〉 α−→ 〈c′, σ′, s′〉.

• Case c = skip:
In this case, c′ = ∗, σ = σ′, s = s′ and α = τ . Then

〈g(c) = skip, g(σ), g(s)〉 τ = g(α)−−−−−−→ 〈g(c′), g(σ′), g(s′)〉

• Case c = x := β:
Here, c′ = ∗, σ′ = σ[β/x], s′ = s, and α = τ . Then

〈g(c), g(σ), g(s)〉

‖
〈x := g(β), g(σ), g(s)〉 τ = g(α)−−−−−−→ 〈∗, g(σ)[g(β)/x], g(s)〉

‖

〈g(c′), g(σ′), g(s′)〉

• Cases c = c0; c1 (where c0 6= ∗) and c = try c0 catch c1 (where c0 6= throw):
Note that c0 4 c and therefore, by Rem. A.2, c0 is stable.

The derivation of 〈c, σ, s〉 α−→ 〈c′, σ′, s′〉 has respectively the forms:

〈c0, σ, s〉
α−→ 〈c′0, σ′, s′〉

〈c, σ, s〉 α−→ 〈c′0; c1, σ′, s′〉

〈c0, σ, s〉
α−→ 〈c′0, σ′, s′〉

〈c, σ, s〉 α−→ 〈try c′0 catch c1, σ
′, s′〉

By the inductive hypothesis, 〈g(c0), g(σ), g(s)〉 α−→ 〈g(c′0), g(σ′), g(s′)〉.
The result follows from g(c0; c1) = g(c0); g(c1), and g(try c0 catch c1) =
try g(c0) catch g(c1).
• Case c = if β then c0 else c1:

We only consider the case when [[β]] = true. The case when [[β]] 6= true is
completely analogous.
From the only semantics rule applicable at this instance, α = τ , c′ = c0,
σ′ = σ, and s′ = s. Moreover, g(c) = if g(β) then g(c0) else g(c1). Since c
is stable, by (16.1), [[g(β)]] = true. Finally, using the semantics rule for the
if command,

〈if g(β) then g(c0) else g(c1), g(σ), g(s)〉 τ−→ 〈g(c0), g(σ), g(s)〉

• Case c = while ε do c0 end:
In this case, c′ = if ε then c0; c else skip, α = τ , σ′ = σ and s′ = s. Since
g(c) = while g(ε) do g(c0) end and g(c′) = if g(ε) then g(c0);g(c) else skip,
the result follows trivially.

26

• Case c = try throw catch c1:
Note that α = τ , c′ = c1, σ

′ = σ, s′ = s. The result follows trivially from
g(c) = try throw catch g(c1).

• Case c = r[ε] and σ ` ε α−→ ε′:

Here, c′ = r[ε′], σ′ = σ, and s′ =

s if α = τ

s[v/hw] if α = (v 2 hw)

By Lemma A.4, g(σ) ` g(ε) g(α)−−−→ g(ε′). We can then derive

〈g(r)[g(ε)], g(σ), g(s)〉 g(α)−−−→ 〈g(r)[g(ε′)], g(σ), s′′〉

where we have extended the permutation of commands over reduction con-
texts (so that g(r)[·] is like r[·] only that annotated values have been per-
muted according to g) and

s′′ =

g(s) if g(α) = τ

g(s)[v′/hw′] if g(α) = (v′ 2 hw′)

=

g(s′) if α = τ

g(s[v/hw]) if α = (v 2 hw) (by Lemma 9)

= g(s′)

Notice finally that g(r)[g(ε′)] = g(r[ε′]) = g(c′), and g(σ) = g(σ′).
• Case c = r[w], where [[w]] = xcpt:

We know that 〈r[w], σ, s〉 τ−→ 〈throw, σ, s〉. Since c is stable, [[g w]] =
xcpt (16.2). This and g(r[w]) = g(r)[g(w)] imply that

〈g(r[w]), g(σ), g(s)〉 τ−→ 〈throw, g(σ), g(s)〉

2

Theorem 19 If c ∈ Com is flow compatible with dependency specification P
for store σ and context s, and 〈c, σ, s〉 is stable, then c is admissible (for σ,
s, P and ∼).

PROOF. Let g be an arbitrary secret permuter for P , and define:

R
∆
= { (〈c1[I], σ1, s1〉, 〈g(c1)[g−1], g(σ1), g(s1)〉) |

27

〈c, σ, s〉 ⇒ 〈c1, σ1, s1〉 }

Suppose that 〈c1[I], σ1, s1〉 R 〈g(c1)[g−1], g(σ1), g(s1)〉, and suppose first
that

〈c1[I], σ1, s1〉
γ−→ 〈c′, σ2, s2〉

From the semantic definition of the relabelling operator (7), there must exist
α and c2 such that γ = [[I(s1, α)]] = [[α]], c′ = c2[I] and

〈c1, σ1, s1〉
α−→ 〈c2, σ2, s2〉 (A.2)

Since c1 is a stable command (because 〈c, σ, s〉 is stable and c1 is reachable
from 〈c, σ, s〉 by definition of R) Lemma 17 can be applied to equation (A.2)
to yield:

〈g(c1), g(σ1), g(s1)〉
g(α)−−−→ 〈g(c2), g(σ2), g(s2)〉 (A.3)

Since P, s1 ` α ok (by Flow Compatibility), g−1(g(s1), g(α)) = α (Lemma A.1).
From equation (7),

〈g(c1)[g−1], g(σ1), g(s1)〉
γ−→ 〈g(c2)[g−1], g(σ2), g(s2)〉

and 〈c2[I], σ2, s2〉 R 〈g(c2)[g−1], g(σ2), g(s2)〉.

Suppose now that 〈g(c1)[g−1], g(σ1), g(s1)〉
γ−→ 〈c′, σ′, s′〉. There must

exist c2, σ2, s2 and α such that equation (A.3) holds, together with γ =
[[g−1(g(s1), g(α))]], c′ = g(c2)[g

−1], σ′ = g(σ2) and s′ = g(s2). Equation (A.2)
follows from Lemma 17, and the result is then obtained like in the previously
analyzed case. 2

Lemma A.5 Consider a set {ξi}i∈I satisfying conditions P1–P3 (p. 19).
Then, for each configuration ξ = 〈c, σ, s〉 that is reachable from ξ0 , there
is an i ∈ I and a secret permuter g such that ξ = g(ξi) .

PROOF. By induction on the length of the shortest path from ξ0 to ξ. If
the path has length zero, take i = 0 and g = I. Otherwise, let ξ′ be on the

path such that ξ′
α−→ ξ. By the inductive hypothesis, there must exist j ∈ I,

ξj = 〈c′, σ′, s′〉 and g such that g(ξj) = ξ′. By P2, c′ is a stable command.

28

Then g(c′) is also stable (Lemma A.3) and therefore g−1(ξ′)
g−1(α)−−−−−→ g−1(ξ)

(Lemma 17). Note that g−1(ξ′) = g−1(g(ξj)) = ξj. Using P3, choose i ∈ I
and permuter g′ so that g−1(ξ) = g′(ξi). Then, ξ = (g ◦ g′)(ξi), and the result
follows from Prop. 12. 2

Theorem 20 Let P be a dependency specification and 〈c0, σ0, s0〉 an initial
configuration. If there is a set of configurations {ξi}I satisfying P1–P3, then
c0 is admissible (for σ0, s0, P and ∼).

PROOF. By Theorem 19, it suffices to show that ξ0 is both stable and flow
compatible. Assume ξ0 ⇒∗ ξ = 〈c, σ, s〉. By Lemma A.5, ξ = g(ξi) where
ξi = 〈c′, σ′, s′〉 for some i ∈ I .

• (Stability) By P2, c′ is stable. Since c = g(c′), c is stable (Lemma A.3).

• (Flow compatibility) If ξ
α−→ q, then ξi

g−1(α)−−−−−→ g−1(q) (Lemma 17). By P3,
P, s′ ` g−1(α) ok . That is, P, s ` α ok (Lemma 11). 2

Lemma A.6 For all c, σ, s, α, the sets

δα(〈c, σ, s〉) = {〈c′, σ′, s′〉 | 〈c, σ, s〉 α−→ 〈c′, σ′, s′〉}

Acts(〈c, σ, s〉) = {f w | ∃c′, σ′, s′, v.〈c, σ, s〉 v 2 f w−−−−−−→ 〈c′, σ′, s′〉}

are finite.

Lemma 21 Suppose 〈c0, σ0, s0〉 is stable and admissible for dependency
specification P . Then for all behaviours

〈c0, σ0, s0〉 ⇒ 〈c1, σ1, s1〉
v 2 f w−−−−−→ 〈c′1, σ′1, s′1〉

of minimal length such that P, s1 6` v 2 f w ok, the set

{[[g(w)]] | g is a secret permuter}

is finite.

PROOF. Say

〈c′, σ′, s′〉 Θ⇒ 〈c′′, σ′′, s′′〉

29

iff

〈c′, σ′, s′〉 = 〈c′0, σ′0, s′0〉
α1−→ · · · αn−−→ 〈c′n, σ′n, s′n〉 = 〈c′′, σ′′, s′′〉

and Θ is the sequence α1, . . . , αn. Define [[Θ]] as the sequence [[α1]], . . . , [[αn]],
and g(Θ) as the sequence g(α1), . . . , g(αn). Let

δΘ(〈c, σ, s〉) = {〈c′, σ′, s′〉 | 〈c, σ, s〉 Θ⇒ 〈c′, σ′, s′〉}

and it follows from Lemma A.6 that δΘ(〈c, σ, s〉) and even δ[[Θ]](〈c[I], σ, s〉) is
finite.

Take any Θ of minimal length such that

〈c0, σ0, s0〉
Θ⇒ 〈c1, σ1, s1〉

α−→ 〈c′1, σ′1, s′1〉 (A.4)

and P, s1 6` α ok . Notice that, by requiring the length of Θ to be minimal, it is
guaranteed that every action in Θ is admissible at its corresponding context
in (A.4).

Let now g be any secret permuter. Given that 〈c0, σ0, s0〉 is stable, it follows
from Lemma 17 that

〈g(c0), g(σ0), g(s0)〉
g(Θ)⇒ 〈g(c1), g(σ1), g(s1)〉
g(α)−−−→ 〈g(c′1), g(σ′1), g(s′1)〉

(A.5)

Then, by Lemma 11, every action in g(Θ) is admissible at its correspond-
ing context in (A.5) and P, g(s1) 6` g(α) ok . By the definition of [g−1] and
Corollary A.1,

〈g(c0)[g−1], g(σ0), g(s0)〉
[[Θ]]⇒ 〈g(c1)[g−1], g(σ1), g(s1)〉

[[g(α)]]−−−−→ 〈g(c′1)[g−1], g(σ′1), g(s
′
1)〉

By admissibility,

〈c0[I], σ0, s0〉
[[Θ]]⇒ 〈c2[I], σ2, s2〉

[[g(α)]]−−−−→ 〈c′2[I], σ′2, s′2〉 (A.6)

W.l.o.g. assume α = v2 f w. Then [[g(α)]] = [[v′ 2 f g(w)]] = v′ 2 f [[g(w)]] for

30

some value v′, and therefore (A.6) shows that, for each secret permuter g,

f [[g(w)]] ∈
⋃

〈c2[I], σ2, s2〉∈δ[[Θ]](〈c0[I], σ0, s0〉)
Acts(〈c2[I], σ2, s2〉)

The set on the right is a finite union of finite sets, by Lemma A.6, and is
therefore finite. Therefore, there is only a finite number of distinct [[g(w)]]. 2

References

[1] M. Dam, P. Giambiagi, Confidentiality for mobile code: The case of a
simple payment protocol, in: Proceedings of 13th IEEE Computer Security
Foundations Workshop, IEEE, Cambridge, England, 2000, pp. 233–244.

[2] A. Sabelfeld, A. C. Myers, Language-Based Information-Flow Security, IEEE
Journal on Selected Areas in Communications 21 (1) (2003) 5–19.

[3] M. Abadi, A. Benerjee, N. Heintze, J. G. Riecke, A core calculus of dependency,
in: Proceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), ACM, San Antonio, TX, 1999,
pp. 147–160.

[4] E. S. Cohen, Information transmission in sequential programs, in: R. A.
DeMillo, D. P. Dobkin, A. K. Jones, R. J. Lipton (Eds.), Foundations of Secure
Computation, Academic Press, 1978, pp. 297–335.

[5] R. Focardi, R. Gorrieri, A classification of security properties for process
algebras, Journal of Computer Security 3 (1) (1995) 5–33.

[6] D. Volpano, G. Smith, C. Irvine, A sound type system for secure flow analysis,
Journal of Computer Security 4 (3) (1996) 167–187.

[7] A. Sabelfeld, D. Sands, A per model of secure information flow in sequential
programs, Higher Order and Symbolic Computation 14 (1) (2001) 59–91.

[8] D. Volpano, Secure introduction of one-way functions, in: Proceedings of 13th
IEEE Computer Security Foundations Workshop, IEEE, Cambridge, England,
2000, pp. 246–254.

[9] M. Abadi, A. D. Gordon, A bisimulation method for cryptographic protocols,
Nordic Journal of Computing 5 (4) (1998) 267–303.

[10] J. C. Mitchell, Foundations for Programming Languages, MIT Press, 1996.

[11] A. Sabelfeld, D. Sands, A PER model of secure information flow in sequential
programs, in: Proceedings of the 8th European Symposium on Programming,
Vol. 1576 of LNCS, Springer, Amsterdam, 1999, pp. 40–58.

31

[12] D. Naumann, Soundness of data refinement for a higher order imperative
language, Theoretical Computer Science 278 (2002) 271–301.

[13] P. Laud, Handling encryption in an analysis for secure information flow,
in: Proceedings of Programming Languages and Systems, 12th European
Symposium On Programming, ESOP 2003, no. 2618 in LNCS, Springer, 2003,
pp. 159–173.

[14] A. W. Roscoe, M. H. Goldsmith, What is intransitive noninterference?, in:
Proceedings of 12th IEEE Computer Security Foundations Workshop, IEEE,
Mordano, Italy, 1999, pp. 228–238.

[15] S. Zdancewic, A. Myers, Robust declassification, in: Proceedings of 14th IEEE
Computer Security Foundations Workshop, IEEE, Nova Scotia, Canada, 2001,
pp. 15–23.

32

