
Computer Networks 52 (2008) 1745–1761
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Decentralized detection of global threshold crossings using
aggregation trees

Fetahi Wuhib, Mads Dam, Rolf Stadler *

ACCESS Linnaeus Center, Department of Electrical Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
a r t i c l e i n f o

Article history:
Received 6 August 2007
Received in revised form 19 February 2008
Accepted 26 February 2008
Available online 14 March 2008

Responsible Editor: Prof. J. Neuman de
Souza

Keywords:
Decentralized network management
Threshold crossing alerts
Real-time monitoring
Tree-based aggregation protocols
1389-1286/$ - see front matter � 2008 Elsevier B.V
doi:10.1016/j.comnet.2008.02.015

* Corresponding author. Tel.: +46 8 790 4250.
E-mail addresses: fetahi@kth.se (F. Wuhib), m

stadler@kth.se (R. Stadler).
a b s t r a c t

The timely detection that a monitored variable has crossed a given threshold is a funda-
mental requirement for many network management applications. A challenge is the detec-
tion of threshold crossing of network-wide variables, which are computed from device
counters across the network, using aggregation functions such as SUM, MAX and AVERAGE.
This paper contains a detailed description and a comprehensive evaluation of TCA–GAP, a
protocol for detecting threshold crossings of network-wide aggregates in a distributed way.
Elements of its design include tree-based incremental aggregation for estimating the value
of aggregates, a local hysteresis mechanism to reduce overhead and dynamic recomputa-
tion of local thresholds to ensure correctness. The protocol is evaluated through extensive
simulation using real traces in scenarios with network sizes up to 5232 nodes. From the
measurements, we conclude that the protocol is efficient in the sense that the overhead
is negligible when the aggregate is far from the threshold. It is scalable as the protocol
overhead is independent of the system size for the network sizes and scenario configura-
tions considered. We demonstrate that the local hysteresis parameter can be used to con-
trol the tradeoff between protocol overhead and detection delay. We further report on
results on how node failures impact overhead and detection quality of the protocol.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Threshold crossing alerts (TCAs) indicate to a manage-
ment system that a monitored management variable or
MIB object has crossed a certain preconfigured value –
the threshold. Objects that are monitored for TCAs typically
contain performance-related data, such as link utilization
or packet drop rates. In order to avoid repeated TCAs in case
the monitored variable oscillates, a threshold Tg+ is typically
accompanied by a second threshold Tg� called the hystere-
sis threshold, set to a lower value than the threshold itself.
The hysteresis threshold must be crossed, in order to clear
the TCA and allow a new TCA to be triggered when the
threshold is crossed again (see Fig. 1).
. All rights reserved.

fd@kth.se (M. Dam),
The TCA concept enables a management activity to be
event based, instead of relying on centralized polling. This
results in management applications that scale significantly
better, in addition to being more responsive, as they do not
incur the delay that is associated with polling cycles.

Today, TCAs are generally configured per device, e.g. for
monitoring levels of utilization or packet drop rates on a
particular link. Similarly, service level agreements (SLAs)
are often articulated in terms of parameters that can be
monitored on a per device level, reflecting today’s techni-
cal limitations. However, there are many cases where
cross-device TCAs are essential, whereby local variables
are aggregated across the network or across a network do-
main. Examples include thresholds on network-wide per-
formance parameters, such as the average link utilization,
the current level of p2p traffic, or the number of VoIP flows
in a network domain.

The hard part in determining when to trigger a net-
work-wide TCA is to ensure scalability and fault tolerance

mailto:fetahi@kth.se
mailto:mfd@kth.se
mailto:stadler@kth.se
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Fig. 1. Threshold crossing alerts: an alert is raised when the monitored
variable crosses a given threshold Tg+ from below. The alert is cleared
when the variable crosses a lower threshold Tg� from above.

1746 F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761
of the approach. Traditionally, the aggregation of local vari-
ables from different devices has been performed in a cen-
tralized way, whereby an application, running on a
management station, first retrieves local variables from
agents in network devices and then aggregates them on
the management station. Such an approach has well-
known drawbacks with respect to scalability and fault
tolerance.

This work focuses on detecting threshold crossings of net-
work-wide aggregates in a distributed way, without the need
for a special coordinating node. To this end, we assume
that each network device participates in the monitoring
activity by running a management process, either inter-
nally or on an external, associated device. These manage-
ment processes communicate via an overlay network for
the purpose of monitoring the network threshold.
Throughout the paper, we refer to this overlay as the net-
work graph. A node in this graph represents a management
process together with its associated network device(s).

A straightforward approach to detecting threshold
crossing of network-wide aggregates would be to use a
protocol for distributed state aggregation, e.g. [4,5]. Such
a protocol provides a continuous estimate of the net-
work-wide aggregate on a dedicated root node, by setting
up a spanning tree on the network graph, along which up-
dates are reported. Threshold crossings can then be de-
tected at the root node by continuously evaluating the
aggregate against the threshold. As we show in this paper,
however, such an approach fails to benefit from possible
reduction in overhead when the aggregate is far from the
threshold.

In this paper, we present TCA–GAP, a tree-based proto-
col for detecting TCAs on network-wide aggregates of local
variables. Aggregation functions the protocol supports in-
clude SUM, AVERAGE, COUNT, MAX and MIN. The detec-
tion process is performed in a distributed way, and it
dynamically adapts to the network state. The protocol
has negligible overhead if the aggregate is sufficiently far
from the threshold. It is robust to node and link failures.
It is scalable in network size with respect to protocol over-
head and threshold detection time. Lastly, the tradeoff be-
tween protocol overhead and detection time can be
controlled. The basic concepts behind the protocol are
tree-based, incremental aggregation for estimating the glo-
bal and partial aggregates. Local thresholds and a local hys-
teresis mechanism switch nodes to a passive state
whenever their contribution to threshold detection is not
needed. A local mechanism for dynamic recomputation of
local thresholds, triggered by violation of local invariants,
ensures the detection of threshold crossings.

The paper contains a detailed description of the proto-
col, including a formalization of invariants and correctness
statements, a discussion of different policies for threshold
recomputation and the pseudocode for key parts of the
protocol. In addition, it includes a comprehensive study
of the protocol’s performance in simulation scenarios using
real traces and system sizes up to 5232 nodes. Specifically,
the protocol’s efficiency, scalability and robustness proper-
ties are evaluated. It is demonstrated that the tradeoff be-
tween protocol overhead and detection delay can be
controlled. As part of reviewing related work, the paper
compares the design and performance of the protocol with
that of HRMA [18], a protocol with similar purpose and de-
sign characteristics.

The paper reports on results from our work on thresh-
old detection which has progressed over several years
and produced several intermediate results [6–8]. The idea
for this protocol has first been presented in [6]. In this pa-
per, we gave evidence that the concept of local thresholds
and threshold recomputation can be realized using tree-
based aggregation. We showed, through simulation using
synthetic traces that such a protocol can be efficient, com-
pared to the naïve approach discussed above. In [7], we re-
ported on a testbed implementation and measurements,
which confirmed the simulation results. In the magazine
article [8], the focus is on motivating threshold crossing
alerts for network-wide aggregates and high-level descrip-
tion of the protocol.

The contribution and originality of this paper lies, first,
in a complete and detailed description (as well as im-
proved and extended version) of the protocol outlined in
[6], including some formalization and the pseudocode. Sec-
ond, we provide a comprehensive evaluation of the proto-
col using real traces, and specifically report results on
scalability and robustness for the first time. Third, we show
how the tradeoff between overhead and detection delay
can be controlled through a protocol parameter. Fourth,
we include a comprehensive review of related work and
a comparison with HRMA.

The paper is organized as follows. Section 2 presents the
objective and the design goals of the protocol we present in
this paper. Section 3 presents our protocol, TCA–GAP. Sec-
tion 4 presents the results of the experimental evaluation.
Section 5 presents a review of related work. Finally, section
6 concludes the work.

2. Objective and protocol design goals

We are considering a dynamically changing network
graph G(t) = (V(t), E(t)) in which nodes i 2 V(t) and edges/
links e 2 E(t) � V(t) � V(t) may appear and disappear over
time. To each node i is associated a local state variable
wi(t) (sometimes called weight) that represents the quan-



F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761 1747
tity whose aggregate is being subjected to threshold mon-
itoring. For the remainder of this paper, we assume that lo-
cal variables are non-negative real-valued quantities,
aggregated using SUM. The objective is to raise an alert
on a distinguished root node, when the aggregate local var-
iable

P
iwiðtÞ exceeds a given global threshold Tg+, and to

clear the alert when the aggregate has decreased below a
lower threshold Tg� (see Fig. 1).

We engineer a protocol that realizes the objective de-
scribed above with the following design goals.

� Efficiency: The communication and processing overhead
of the protocol should be small, specifically during peri-
ods where the aggregate is far from the threshold (above
or below).

� Quality of detection: The protocol should achieve small
delays for detecting threshold crossings, and false posi-
tives and false negatives should be extremely rare.

� Scalability: The protocol should allow for efficient oper-
ation with high quality of detection in large networks
with at least thousands of nodes.

� Robustness: The protocol should allow for a continuous
operation after node or link failures, as well as after
addition and removal of nodes.

� Controllability: The protocol should allow for controlling
the tradeoff between quality of detection and protocol
overhead through management parameters that can be
adjusted at runtime.
3. The protocol: TCA–GAP

3.1. Protocol overview

The threshold detection protocol we present in this pa-
per can be seen as a non-trivial, significant extension of a
tree-based aggregation protocol called GAP [4]. GAP cre-
ates and maintains a breadth first spanning tree, along
which aggregation is performed. The protocol is robust to
failures and to topology changes, and it is scalable, thanks
to the use of a rate limitation scheme that prevents nodes
near to the root from becoming overloaded.

The proposed protocol, which we call TCA–GAP, extends
GAP in a number of ways. One extension is that the root
node in TCA–GAP raises and clears alerts. TCA–GAP also al-
lows a node in an active state, where it executes the GAP
protocol, to enter a passive state, where it ceases to propa-
gate updates up the aggregation tree. The transition be-
tween active and passive states is controlled by a local
hysteresis mechanism. To achieve efficiency (i.e. low over-
head), the protocol attempts to maximize the number of
passive nodes through dynamic reallocation of local
thresholds. This reallocation is governed by local invariants
that ensure that threshold crossings will not get unre-
ported. The above mechanism, which reduces overhead
while ensuring the detection of threshold crossings, comes
with some penalties. First, the switching of a node (or more
precisely a subtree) from passive to active state introduces
delays, which reduce the quality of threshold detection.
Second, threshold reallocation introduces a certain amount
of additional overhead. TCA–GAP allows controlling the
tradeoff between protocol overhead and quality of detec-
tion through a parameter of the hysteresis mechanism.

Finally, we observe that there is a symmetry in the hys-
teresis model between upwards crossings of an upper
threshold and downwards crossings of a lower threshold
(see Fig. 1). To exploit this symmetry, we introduce the
concept of dual modes: a ‘‘positive” mode in which the
protocol detects the crossing of the upper threshold and
a symmetric ‘‘negative” mode. Whenever the current glo-
bal threshold is crossed, the root node switches mode
and the new mode is propagated down the aggregation
tree, together with new local thresholds. Generally, if the
root node switches mode, it becomes passive, and conse-
quently all other nodes become passive as well.

As a consequence of the design, the protocol overhead is
usually concentrated to periods just before and just after
threshold crossings.

For simplicity of presentation, the discussion of the pro-
tocol refers to detecting crossing of the upper threshold, i.e.
is restricted to the positive mode. The extension to nega-
tive mode is straightforward.

3.2. The GAP protocol

The generic aggregation protocol (GAP) [4] allows for
continuous monitoring of network-wide aggregates
through the use of an aggregation tree. GAP is an adapted
and extended version of the breadth first spanning (BFS)
tree construction algorithm of Dolev et al. [9]. The protocol
in [9] executes in coarsely synchronized rounds, where
each node exchanges with its neighbors its belief about
the minimum distance to the root and then updates its be-
lief accordingly.

The above protocol by Dolev et al. exhibits similarities
to the 802.1d spanning tree protocol (STP) [10]. STP is a
distributed protocol that constructs and maintains a span-
ning tree among bridges/switches, in order to interconnect
Ethernet segments. Similar to [9], a node in STP chooses its
parent, such that its distance (measured in aggregate link
costs) to the root node is minimized. The initialization
phase though is very different between the two protocols.
While STP uses broadcast in LAN segments and a leader
election algorithm to determine the root node, [9] assumes
a given root node and an underlying neighbor discovery
service. Also the failure discovery mechanism is very dif-
ferent in both protocols.

GAP extends [9] in a number of ways. First, GAP relies
on message passing instead of shared registers. Second,
in GAP, each node maintains a pointer to its parent,
through which the BFS tree is represented. Third, each
node maintains information about its children in the BFS
tree, in order to compute the partial aggregate, i.e. the
aggregate value of the local variable from all nodes of the
subtree where this node is the root. Fourth, GAP is event-
driven. That is, messages are only exchanged as results of
events, such as the detection of a new neighbor, the failure
of a neighbor, an aggregate update, a change in local vari-
able or a change in parent. Fifth, since a purely event-dri-
ven protocol can cause a high load on the root node and
on nodes close to the root, GAP uses a simple-rate limita-
tion scheme, which imposes an upper bound on message



nagement
Station

b
70

c
60

g
40

h
10

e
40

f
10

d
10

l
10

m
20

n
10

j
10

k
10

i
10

root

spanning 
tree

network 
graph

partial 
aggregates

a
140

Ma

Fig. 2. GAP maintains a spanning tree (bold lines) on the network graph
(bold and light lines) that enables incremental aggregation of local vari-
ables on a continuous basis. Each node shows its ID and the partial agg-
regate, for the aggregation function SUM. Local values are 10 for all nodes.

Table 1
Neighbor table in GAP for node c in Fig. 2

Node ID Role Level Partial aggregate

a Parent 1 140
b Peer 2 70
c Self 2 10
f Peer 3 10
g Child 3 40
h Child 3 10

1748 F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761
rates on each link. Finally, GAP is more efficient communi-
cation-wise than [9], since it implements selective propa-
gation of updates.

In GAP, each node maintains a neighborhood table shown
in Table 1, associating a role, a level, and a partial aggregate to
itself and the neighboring nodes on the network graph. The
role field (with values self, child, parent and peer) defines
the structure of the aggregation tree. The value peer denotes
a neighbor on the network graph that is not a neighbor on the
aggregation tree. The field level indicates the distance, in
number of hops, to the root. It is used to construct the BFS
aggregation tree, whereby each node chooses its parent in
such a way that its level is minimal. The partial aggregate field
refers to the cached partial aggregate for child nodes and to
the local variable for the local node.

Aggregation over the spanning tree is performed incre-
mentally through local computations, where each node
computes the partial aggregate of its subtree from the par-
tial aggregates of its children and its own local variable. i.e.
for a node i, the partial aggregate ai is computed as
ai ¼ wi þ

P
jaj where j is a child of node i and wi is the local

variable of i. The value of the partial aggregate at the root
node corresponds to the global aggregate of the aggrega-
tion tree. Fig. 2 shows a spanning tree created by GAP for
this purpose.

A node communicates changes to its neighborhood ta-
ble by sending an update vector to its neighbors. An update
vector of a node contains information about its partial
aggregate, its distance to the root node and the ID of its
parent. Through this mechanism, the topology of the
aggregation tree is maintained and changes to its local var-
iable are propagated from the node to the root along a path
on the aggregation tree.

GAP relies on underlying failure and neighbor discovery
services, which are assumed to be reliable.

3.3. Local threshold and hysteresis mechanism

A key idea in TCA–GAP is to introduce and maintain lo-
cal thresholds that apply to each node in the aggregation
tree. These local thresholds allow nodes to switch between
an active state, where the node executes the GAP protocol
and sends updates of its partial aggregate to its parent, and
a passive state, where the node ceases to propagate updates
up the aggregation tree. The transition between active and
passive state is controlled by a local threshold and a local
hysteresis mechanism.

(We restrict the discussion in Sections 3.3 and 3.4 to the
case where the crossing of the upper global threshold is de-
tected. For reason of readability, we do not write Tg+, but
simply Tg. An extension of the discussion to detecting the
lower global threshold is straightforward, as will be shown
in Section 3.5.)

Each node has a local threshold, which is set by its par-
ent. For the root node, the local threshold is the same as
the global threshold Tg.

Two global parameters 0 6 k2 6 k1 6 1 configure the lo-
cal hysteresis mechanism and control how the node
switches between active and passive state. We first explain
the transition from active to passive. When a node is ac-
tive, then all nodes in the subtree rooted at that node are
also active (how this is achieved is explained below). The
transition from active to passive state takes place when-
ever the partial aggregate ai(t) of a node i is less than k2Ti

(see Fig. 3). When the node turns passive, it assigns a local
threshold Tj to each child j, proportionally to the partial
aggregate aj(t) of the child j: Tj ¼ Ti

aj

wiþ
P

j
aj

.

Second, a node i in passive state becomes active when it
can deduce that its partial aggregate ai must exceed k1Tþi . It
makes this deduction based on the fact that (a) the partial
aggregate of each active child is known to the node and (b)
the node knows that, for each passive child j, the partial
aggregate aj is below k1Tj.

When a node i switches to active, it sets the threshold of
its children to 0. As a consequence, all nodes in the subtree
rooted at node i have their local thresholds recursively set
to 0 and, as a result, become active.

At the start of the protocol, the local thresholds and the
hysteresis mechanisms are initialized as follows. All nodes
start in active state with local threshold 0 and in positive
mode (see section 3.5), which means that they execute the
GAP protocol, i.e. the aggregation tree is constructed, the
partial aggregates are computed on all nodes, and the esti-
mate of the global aggregate is available at the root node.
At the end of the initialization phase, the root node switches
to passive state, sets its local threshold to the global (upper)
threshold Tg and assigns local thresholds to its children pro-
portional to their partial aggregates (see above).



Fig. 3. The local hysteresis mechanism controls the switch between ac-
tive and passive state of a node.

F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761 1749
The parameters k1 and k2 of the hysteresis mechanism
control the tradeoff between the protocol overhead and
the quality of TCA detection. For small values of k1 and
k2, the protocol tends to make nodes active when the
aggregate is relative far from the threshold, hence increas-
ing the overhead. On the other hand, the larger number of
active nodes, the shorter the detection time tends to be-
come. Values for k1 and k2 close to 1 cause the protocol
to keep nodes passive unless the aggregate is close to the
threshold. Though this decreases the protocol overhead,
it generally increases the detection time, since less aggre-
gate updates are reaching the root node.

We close with two comments on the choice of k1 and k2.
First, k2 must be chosen strictly smaller than k1 to achieve
the hysteresis behavior. Second, if k2 = k1 = 0, then the pro-
tocol exhibits the same behavior as GAP, since all nodes are
kept active.

3.4. Local threshold rules and local threshold recomputation

TCA–GAP attempts to reduce the protocol overhead by
keeping as many nodes passive as possible while ensuring
threshold detection. To enable threshold detection at the
root node, we introduce local invariants that must hold on
passive nodes together with threshold recomputation poli-
cies, which are triggered upon violation of these invariants.

Consider a node i in passive state. There are two condi-
tions under which node i may become active. First, it may
be that i’s parent reduces the local threshold Ti assigned to
i (for the purpose of threshold recomputation; see below).
The result may be that Ti becomes strictly smaller than
wi þ

P
j2JTj with Tj being the threshold assigned to child j

and J being the set of children of node i. This can cause the lo-
cal threshold Ti to be crossed without this being detected at
node i, resulting in the possibility of a false negative at the
root node. To prevent such a scenario from happening, we
introduce the following local threshold rule for node i:

ðR1Þ Ti P wi þ
X
j2J

Tj;

where J is the set of children of node i.
The second condition under which node i might need to
switch to active state concerns the situation where one or
more of its children are active. Recall that the local hyster-
esis mechanism ensures that the actual aggregate of a sub-
tree rooted in a passive child j does not exceed Tj (at least
in the approximate sense as computed by the underlying
aggregation protocol, GAP). Thus, a sufficient condition
for the actual aggregate of i’s subtree to not exceed Ti is
that the sum of aggregates reported by active children does
not exceed the sum of the corresponding local thresholds.
This motivates the second local threshold rule:

ðR2Þ
X
j2J0

Tj P
X
j2J0

ajðtÞ;

where J0 is the set of active children of node i.
Rules R1 and R2 together imply the following proposi-

tion, which ensures that local threshold crossings will be
detected. (6 denotes the ancestral relation between
nodes.)

Proposition 1. Suppose that rules R1 and R2 hold for a
passive node i.

If
P

j06jwj0 ðtÞ 6 ajðtÞ whenever j is an active child of i, andP
j06jwj0 ðtÞ 6 Tj0 whenever j is a passive child of i, thenP
j6iwjðtÞ 6 Ti.

Proof. Follows immediately from R1 and R2. h

Corollary. Suppose that rules R1 and R2 hold for all passive
nodes of the aggregation tree and that the root node is
passive.

If
P

j06jwj0 ðtÞ 6 ajðtÞ for all active nodes j, then
P

iwiðtÞ 6
Tg.

Proof. Induction using Proposition 1.

Note that, if we assume no delays in computing partial
aggregates on subtrees with active nodes, the above corol-
lary implies that if R1 and R2 hold on all passive nodes, all
threshold crossings will be detected at the root node.

If one of the rules R1 and R2 fails on node i, then the
node attempts to reinstate the rule by reducing the thresh-
old of one or more passive children. We call this procedure
threshold recomputation. Specifically, if (R1) fails, then the
protocol reduces the threshold of one or more passive chil-
dren by d ¼ wi þ

P
j2JTj � Ti, where J is the set of children

of i. Evidently, this may cause one or more passive children
to become active.

If (R2) fails, then the protocol reduces the threshold of
one or more passive children by d >

P
j2J0 ðaj � TjÞ where J0

is the set of active children, and, at the same time, in-
creases the assigned threshold of one or more active chil-
dren by the same amount, which will reinstate (R2). Such
a reduction is always possible since the node is passive.

There are many possible policies for threshold recom-
putation. For instance, there are several ways to choose
the set of active children whose threshold is increased.
Note though that the amount of threshold increment for
child j must not exceed aj

k2
� Tj. If it does, there exists a sce-

nario in which two children alternately borrow threshold
space from each other and the system oscillates. In TCA–
GAP the protocol identifies the smallest set of active chil-



Fig. 4. The main procedure of TCA–GAP.

1750 F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761
dren j* with the largest values of aj

k1
� Tj from all j 2 j0 so that

P
j2J�

aj

k1
� Tj

� �
>
P

j2J0 ðaj � TjÞ. Then d is chosen such that

d ¼
P

j2J�
aj

k1
� Tþj

� �
and the threshold of a child j is in-

creased by aj

k2
� Tj for all j 2 j*.

There are also options on how to choose the set of pas-
sive children whose threshold is reduced. We give three
examples of such possible policies.

Policy I: The child j with the largest threshold Tj is se-
lected. If d 6 Tj, then j is the only child whose threshold
is reduced. Otherwise, Tj is reduced to 0, and this procedure
is applied to the child with the second largest threshold
and d: = d � Tj. This policy attempts to minimize the over-
head for threshold updating at the cost of increasing the
risk of nodes becoming active. The simulation results in
this paper are based on Policy I.

Policy II: The thresholds of all passive children are re-
duced at the same time, by an amount that is proportional
to the threshold of each child. This policy attempts to min-
imize the risk of children becoming active, while allowing
for a larger overhead for threshold updating.

Policy III: This policy is similar to the policy above in
that all passive children are chosen for threshold reduc-
tion. However, their thresholds are set to 0, in effect mak-
ing the entire subtree of the local node active. This policy
increases the quality of threshold detection at the expense
of a larger overhead.

3.5. Symmetric modes

After detecting an upward crossing of the upper thresh-
old Tg+ the task of threshold detection becomes that of
detecting a downward crossing of the lower threshold
Tg� (see Fig. 1). The protocol design captures this change
by having TCA–GAP execute in one of two symmetric
modes, positive or negative, depending on which threshold
and which direction of threshold crossing it is set to detect.
In the first case, nodes will be passive when aggregates are
small, and the alarm is raised when the global aggregate
becomes too large. In the second case, nodes will be pas-
sive when aggregates are large, and the alarm is cleared
when the global aggregate becomes too small (see Fig. 1).

Whenever the protocol detects a global threshold cross-
ing, the root node switches mode, and the new mode is
propagated down the aggregation tree. If the thresholds
and the control parameters are chosen such that k1

Tg+ > Tg�, then the root node becomes passive after it
switches between modes (and possibly all other nodes be-
come passive as well).

Recall that, in the positive mode, a node i becomes ac-
tive when its partial aggregate exceeds k1Ti, and it switches
to passive when its partial aggregate falls below k2Ti. In the
negative mode, node i becomes active when its partial
aggregate falls below Ti/k1, and it switches to passive when
its partial aggregate exceeds Ti/k2.

3.6. Pseudocode

The main data structure in TCA–GAP is the neighbor-
hood table, which extends the neighborhood table of the
GAP protocol (see Table 1) with a fifth column for thresh-
olds and a sixth one for state. The main message type is up-
date vector, which is used to inform the neighbors of a
node about changes in the neighborhood table. An update
vector is of the form (update, From, Weight, Level, Par-
ent, State, ThresholdList, Mode), where From identi-
fies the sender, Weight is its partial aggregate, Level is
its belief of its distance from the root node, Parent is its
parent in the spanning tree, State is the current state of
the node (‘active’ or ‘passive’), ThresholdList is a list
of (node, threshold)-pairs, and Mode is a binary variable
with values positive or negative.

The protocol assumes underlying services (with associ-
ated message types) for failure detection (fail), neighbor
discovery (new), change of local variable (updateLocal)
and a timer (timeOut).



F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761 1751
The function restoreInvariants() is responsible for
maintaining the protocol invariants. These invariants re-
late to the structure of the spanning tree, the local thresh-
old rules and hysteresis mechanism. If an invariant is
violated, the appropriate action is performed to reinstate
it, e.g. selecting a new parent, switching from passive to ac-
tive state, or recomputing the thresholds of children. The
pseudocode for the main procedure tca-gap() is given
in Fig. 4 and restoreInvariants() in Fig. 5. A summary
of other key functions is given below.

� updateVector(): Generates the update vector.
� TCAGAPinitTimeout(): Returns true at the root node

when TCA–GAP is initialized.
� aggr(): Returns the partial aggregate of the node as

computed over the reported aggregate of active
children.

� thresholdCrossed(): Returns true at the root node
when the threshold is crossed.

� raiseOrClearTCA(): Sends alarms raise/clear signals
to the management station.

� sendToNeighbors(): Sends the update vector to
selected neighbors. If partial aggregate changes then
Fig. 5. The restoreInvariants() function.
parent node is included in the recipient list. If threshold
of a node changes, that node is included. If parent or
level changes, then all neighbors are included.

� usedThresholds(): Returns the sum of the threshold
assigned to children.

� reduceThresholds(): Reduces the thresholds of
selected passive children according to the policy used
(Section 3.4).

As can be seen from Fig. 4, TCA–GAP starts with initial-
izing the neighborhood table table (line 1). For the root
node, an additional entry of a virtual root with level-1 is
added. All nodes initialize in positive mode and active state
(line 2). The various services are initialized (line 3). Then,
the protocol executes the GAP protocol until the initializa-
tion phase completes by a signal from TCAGAPinitTime-

out() on the root node (line 21), at which point the root
sets its local threshold to the global threshold and the
operational phase of the protocol starts.

The protocol executes a loop (line 6–39) in which a
node processes messages that it receives from local ser-
vices and from neighbors (lines 7–20). The protocol pro-
cesses the messages as follows.

� (new, From): this message is sent to the TCA–GAP pro-
cess by the neighbor discovery service when a new node
is detected. The node is added to the neighborhood table
(line 8).

� (fail, From): this message is sent when the failure of
a neighbor is detected. The entry of the failed node in
the neighbor table is removed. If the failed node has
been the parent, the local threshold is also set to 0. (lines
10–13).

� (update, From, . . .): this message contains an update
vector from a neighbor with ID From. This causes the
row corresponding to From in the neighborhood table
to be updated. If From is the parent node, then local-
Threshold and mode are also updated.

� (updateLocal, Weight): this message indicates a
change in the local variable. The protocol updates its
entry in the neighbor table accordingly.

� (timeout): this message is sent by the timer service. It
is used to control maximum message rate on overlay
links.

After processing a message, the protocol performs the
following operations. First, if the node is root, it checks
whether the threshold is crossed (line 24). If it is, it sends
an alert to the management station and switches mode
(lines 24–32). Then, all nodes call restoreInvariants()
to reinstate the protocol invariants, which may have been
violated as a result of processing a message (line 33). Final-
ly, the node computes a new update vector, which is sent
to neighbors, if it differs from the last vector sent and the
maximum message rate allows that (line 35–39).

The restoreInvariants() function in Fig. 5 tests and
possibly reinstates the protocol invariants. First, it ensures
that the current parent has the minimum level among all
neighbors, in order to maintain a BFS spanning tree (line
1). Next, it checks whether a node needs to switch state
from active to passive or vice versa. If the local threshold



1752 F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761
is 0 or if the partial aggregate is larger than the upper hys-
teresis threshold (or smaller than the lower threshold in
negative mode), then the node, if not already active,
switches to active state and resets the threshold of its chil-
dren to 0 (lines 2–5). If the node is active and the aggregate
is below the lower hysteresis threshold (or above the
upper hysteresis threshold in negative mode), then it
switches to passive state and sets the threshold of its chil-
dren (see Section 3.3). Finally, a passive node verifies the
local rules and performs threshold recomputation if
needed (lines 14–25).

4. Experimental evaluation

We have evaluated TCA–GAP on a testbed and through
simulation. The evaluation on testbed has been performed
on Weaver [11], a distributed management platform, and
results have been reported in [7,8]. Simulation studies
have been performed using SIMPSON [12], a discrete
event simulator that allows us to simulate message ex-
changes over large network topologies and message pro-
cessing on the network nodes. (The key reason for
choosing SIMPSON in this study over one of the popular
network simulators like NS2 has been its suitability for
simulating large networks.) The simulation model we
use is quite detailed in the sense that it captures the com-
munication delays of messages on overlay links, process-
ing delays and delays within processor queues, as well as
topology changes including node and link failures. How-
ever it abstracts from lower-level networking issues, such
as physical layer characteristics, packet loss and packet
encapsulation.

In this paper, we present simulation results from vari-
ous scenarios where we evaluate the protocol efficiency,
the latency in threshold detection, scalability with respect
to the number of nodes and the robustness of the protocol
under various failure rates. In contrast to the preliminary
simulation studies reported earlier, all simulation studies
for this paper have been performed using real traces to
simulate the local variables.

4.1. Simulation setup and evaluation scenarios

4.1.1. Evaluation metrics
We evaluate TCA–GAP using the following metrics.

First, we measure the protocol overhead as the average
number of messages processed/sec/node. Second, we eval-
uate the quality of TCA detection by measuring the correct-
ness of the detection and the detection delay. The
correctness of the detection is determined by (a) the ratio
of false negatives (i.e. cases where the protocol fails to raise
an alert although a threshold crossing has occurred) to the
total number of threshold crossings and (b) the ratio of
false positives (i.e. cases where the protocol raises an alert
even though no threshold crossing has occurred) to the to-
tal number of alerts raised by the protocol. We measure
the detection delay as the difference between the time
TCA–GAP reports a crossing and the time the actual cross-
ing occurs. In the graphs illustrating the measurement re-
sults, 95% confidence intervals are given wherever
appropriate.
4.1.2. Local variables
In all scenarios, a local variable represents the num-

ber of HTTP flows that enter the network at a specific
router, and the aggregate of those variables represents
the total number of such flows in the network. We sim-
ulate the behavior of the local variables using packet
traces captured at the University of Twente [13]. The
first trace which we call the UT trace has been created
as follows. We sampled every second the number of
HTTP flows from those original traces, which produced
traces that give the evolution of the number of HTTP
flows over time. Then, we divided the new traces into
segments of 150 s each. From those segments, we con-
structed traces of 1500 s for each node in the simulation,
by randomly selecting and concatenating ten of those
segments. Across all traces, the average value of the local
variables is about 45 flows, and the standard deviation of
the change between two consecutive samples is about
3.4 flows.

The second trace, which we call Periodic UT trace, is ob-
tained by adding a sinusoidal bias to the UT trace wi(t) on a
node i as follows:

wi(t)* = int(wi(t) + 23*(1 + sin(2pt/30 � p/2))) where int()
returns the integer component of its argument. In our sim-
ulations, we use the UT trace to study the behavior of TCA–
GAP in scenarios where no threshold crossing occurs, while
we use the Periodic UT trace in scenarios where multiple
threshold crossings occur.
4.1.3. Overlay topology
The topologies used for the network graphs in our

simulations are generated by GoCast [14], a gossip proto-
col that builds topologies with bidirectional edges and
small diameters. The protocol allows setting the (target)
connectivity of the graph. For the measurements re-
ported in this paper, we do not simulate the dynamics
of GoCast. This means that the topology does not change
during a simulation run. Unless stated otherwise, the
topology used in the simulations has 654 nodes (this is
the size of Abovenet, an ISP [19]). All topologies are gen-
erated with a target connectivity of 5, which, for the 654
node topology we use, produces an average inter-node
distance of 4.3 hops and a diameter of 7 hops in the
graph.

While in [6] we performed the evaluation of TCA–GAP
using an overlay that mirrors the physical topology, in this
study we apply an overlay created by a gossip protocol.
Due to high connectivity of many nodes in the physical
network, using the physical connectivity graph for the
management overlay is generally not suitable. The topo-
logical properties of the overlay topology and the relation-
ship between overlay and underlying physical topologies
are open issues for further work.
4.1.4. Failures
For our simulations, we assume that failure arrivals fol-

low a Poisson process and that a failed node recovers after
30 s. We also assume a failure detection service is available
to TCA–GAP, allowing a node to detect the failure of a
neighbor in the network graph.



F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761 1753
4.1.5. Other simulation parameters
We run the simulations with the following parameters

unless stated otherwise. The choices for the particular val-
ues are based on the configuration and measurements on
our testbed [7], internet measurements, and the need for
a sufficient number of measurement events to obtain sta-
tistically significant simulation results.

� Maximum message rate: 4 msg/s per link.
� Protocol parameters: k1 = 0.9, k2 = 0.85.
� Processing overhead: 1 ms/message.
� Network delay across links of the graph: 20 ms.
� Length of a simulation run: 1500 s, with an initialization

period of 5 s (tree construction starts at t = 2 s and
threshold assignment begins at t = 5 s).

� Threshold values: Tg+ is set at 1.05 times the average
value of the aggregate and Tg� at the average value of
the aggregate.

4.2. Protocol efficiency

We assess the efficiency of TCA–GAP by measuring the
protocol overhead in two scenarios, one in which several
threshold crossings occur, and a second scenario in which
the threshold is not crossed.

In the first scenario, we run the protocol on the 654-
node network graph where the local variables change
according to Periodic UT trace. The simulation is run for
45 s and Fig. 6 shows the trace of the simulation.

Fig. 6 shows the change of the aggregate and the proto-
col overhead over time. During the simulation run, three
threshold crossings occur: at around t = 9 s (upper thresh-
old crossing), t = 23.5 s (lower threshold crossing) and
t = 39 s (upper threshold crossing). Before each threshold
crossing, e.g. between t = 8 s to t = 10 s, we observe a peak
in protocol overhead. This can be explained by an in-
creased level of threshold recomputation during those
periods, as well as the transition of passive nodes to active
state, which includes resetting of thresholds on subtrees.
For each the three threshold crossings, we see a second
Fig. 6. TCA–GAP protocol overhead over time.
peak in the protocol overhead, which relates to the root
node becoming passive and thus distributing new thresh-
old values to all nodes in a recursive manner.

The conclusions from this and other similar experi-
ments we performed are that the protocol overhead is
low whenever the aggregate is far from the threshold. Sec-
ond, the protocol overhead is highest shortly before a
threshold is crossed or for short period after the root node
switches from active to passive state. Third, the protocol
overhead of TCA–GAP during peak periods is comparable
to the average overhead of a tree-based continuous aggre-
gation protocol such as GAP (see Section 3.2). (For the
above scenario, we measured the protocol overhead for
GAP to be 1.7 msgs/s.)

In the second scenario, we study the effect of the dis-
tance of the aggregate from the threshold on the protocol
overhead. To do this, we use the UT trace with the 654-
node topology in a setting where no threshold crossings
occur during the simulation runs. For each simulation
run, we use different threshold values, so that the ratio of
aggregate to the (upper) threshold ranges from 10% to
100%. Each simulation is run for 1500 s, and the average
protocol overhead over this time is measured. Fig. 7 shows
the result.

As can be seen from Fig. 7, the protocol generates al-
most no overhead as long as the ratio between the
aggregate and the threshold is less than 40%, beyond
which, the overhead increases almost exponentially until
90%. We also see that the increase in the protocol over-
head from 90% to 100% is small, which we explain by the
local hysteresis mechanism at the root node which
causes the root node to be active in both cases. At
100%, the overhead is comparable to that of GAP which
is measured to be 1.7 msg/s. (The 95% confidence inter-
vals from these measurements are too small to be visible
in the graph of Fig. 7.)

The scenario illustrates in a quantitative way that the
protocol overhead decreases with the distance of the
aggregate from the threshold. The relationship between
Fig. 7. Protocol overhead in function of average ratio of aggregate to
threshold.



Fig. 8. Cumulative distribution of TCA detection delays.

Table 2
Topological properties of GoCast generated topologies used in the
experiments

Size Diameter Average inter-node distance

82 5 2.9
164 5 3.6
327 6 3.9
654 7 4.3
1308 7 4.8
2616 8 5.3
5232 8 5.8

Fig. 9. Protocol overhead in function of network size.

1754 F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761
the overhead and the distance is non-linear, and until a ra-
tio of some 60%, the overhead is almost negligible.

4.3. Latency for threshold detection

In this scenario we study the delays for detecting a TCA
by TCA–GAP. We simulate the protocol on the 654-nodes
topology with the periodic UT trace. The protocol is run
for 1500 s, resulting in 100 (50 upward and 50 downward)
threshold crossings. The protocol did not exhibit false pos-
itives or false negatives during this simulation run. The
resulting delay distribution is shown in Fig. 8.

The figure shows that, for this particular scenario, all
threshold crossings are detected in between 500 ms and
1.75 s of their occurrence. The shape of this distribution
depends on the dynamics of the local variables, the net-
work size and the topology of the aggregation tree. Mea-
surements from our testbed implementation have shown
that a TCA alert is raised on rare occasions before the actual
threshold crossing occurs [7]. Such rare events are much
more likely to occur in small networks like our lab testbed
(16 nodes) than on larger networks like in our simulation
scenario.

4.4. Correctness

The correctness of TCA–GAP was assessed as part of an
evaluation of a prototype implementation on our testbed
[7,8]. There, we showed that the rate of occurrence of false
positives and false negatives can be controlled by the max-
imum message rate and the control parameters k1 and k2. A
higher message rate or lower values for k1 and k2 result in a
lower probability of false positives or false negatives. This
allows us to control the tradeoff between protocol over-
head and correctness of TCA–GAP.

4.5. Scalability

We study the protocol in two scenarios, where we mea-
sure the protocol overhead and the TCA detection delay as
a function of the network size.
In the first scenario, we use GoCast generated graphs
with target connectivity of 5 for networks of size 82, 164,
327, 654, 1308, 2626 and 5232. Table 2 shows topological
properties of these graphs. We use the UT trace to simulate
the behavior of the local variables. For each topology, the
threshold is set at twice the average of the aggregate dur-
ing a run. The result is shown in Fig. 9.

Each point on the graph is the outcome of a simulation
run. The figure suggests that the protocol overhead, mea-
sured in msg/s/node, for the specific settings of this sce-
nario, does not depend on the network size. Note that
the protocol limits the overhead per node by the maximum
message rate, which is 4 msg/s/link in this scenario. Since
our measurements suggest that the observed overhead is
about two orders of magnitude lower than the imposed
message rate limit, the maximum message rate does not
explain the independence of the protocol overhead on
the system size in this scenario.

From the above discussion, we conclude that TCA–GAP
is scalable in system size with respect to the protocol
overhead.

In the second scenario, we measure the average detec-
tion delay as a function of the network size. We use the
topologies given in Table 2. The local variables are simu-
lated using the periodic UT trace. The result is shown in
Fig. 10.

Each point on the graph is the outcome of a simulation
run. The figure suggests that the average TCA detection de-
lay increases with the logarithm of the system size. Note



Fig. 10. Detection delay in function of network size.

F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761 1755
that a tree-based aggregation protocol, such as GAP, where
threshold detection would be a function of the root node,
would exhibit asymptotically the same average detection
delay as TCA–GAP, however, at a much higher overhead.
Note also that for any tree-based aggregation protocol,
threshold detection cannot be achieved below an average
delay of O(log n), n being the system size. The asymptotic
behavior of the average detection delay for TCA–GAP is
dependent on the dynamics of the local variables and the
choice of the variables k1 and k2. As we discuss in Section
5, it can be O(n) for a rare, worst case.

From the above discussion, we conclude that TCA–GAP
is scalable in system size with respect to detection delay,
for the right values of k1 and k2.

4.6. Robustness

We study the robustness property of TCA–GAP in three
scenarios: first, we measure the protocol overhead as a
function of the rate of node failures. Then, for a fixed failure
rate, we measure the delay in detecting TCAs. Finally, we
evaluate the accuracy of the protocol under node failures.
Fig. 11. Protocol overhead in function of failure rate.
For the first scenario, we use the default 654-node
topology and we simulate local variables with the UT trace.
The threshold is chosen five times the average value of the
aggregate during the run. Then, for failure rates of 0.039,
0.156, 0.625, 2.5 and 10 failure/s/network, we measure
the protocol overhead. The result is shown in Fig. 11.

Each point on the graph is the outcome of a simulation
run. As can be seen from the figure, the protocol overhead
seems to increase with the logarithm of the failure rate. At
this point, we do not have a good explanation why this is
the case. Note that the protocol overhead is limited by
the maximum message rate, and the failure rate cannot
be larger than 22 failures/s since failed nodes recover only
after 30 s (see assumptions at the beginning of section).

An important observation is that failures introduce con-
siderable overhead in the protocol, even for small failure
rates. In Section 4.3, we report on results with the same
topology and trace, which include a measurement with
the same threshold as this scenario. There, the protocol
overhead is virtually 0, which compares to a range of
0.2–1.7 msg/s/node for the failure rates considered in this
experiment. We suspect that the high overhead occurs as
many nodes may become active as a consequence of a
change in the topology of the spanning tree, and the cur-
rent version of the protocol does not attempt to switch ac-
tive nodes into passive state, for example through
threshold recomputation.

For the second scenario, we use the same setting as Sec-
tion 4.3, i.e. we simulate the protocol on the 654-nodes
topology with the periodic UT trace. We produce a simula-
tion run with 1 failure/s/network and measure the detec-
tion delays. Fig. 12 shows the curve from this simulation
run and that from Fig. 8.

As can be seen from the figure, the effect of failures is
that the variance as well as the average of the detection de-
lays increases. In this specific failure scenario, the distribu-
tion is spread from �0.5 s to 3.75 s, compared to from
500 ms to 1.5 s when no failures occur, and the average
detection time increases from 0.78 s to 1.15 s.
Fig. 12. Cumulative distribution of TCA detection delays for 1 failure/s/
network and no failures.



Fig. 13. False positives (as % of raised alarms) in function of failure rate. Fig. 14. k controls the tradeoff between protocol overhead and detection
delay.

1756 F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761
In the last scenario, we run simulations with failure
rates of 0.039, 0.156, 0.625, 1, 2.5 and 10 failure/s/network,
for the same setting as in the experiment above. For each
simulation run, we assess the correctness of the protocol
by determining the number of false negatives and false
positives. The result is shown in Fig. 13.

The figure shows only the curve for false positives, as
there were no false negatives measured during all simula-
tion runs. As can be seen from the figure, the number of
false positives tends to increase as the failure rate in-
creases. We suspect that these false positives are caused
by spikes in the estimate of the aggregate, which can occur
during tree reconstruction in tree-based aggregation
protocols.

4.7. Controllability

We study the controllability of TCA–GAP. Specifically,
we are interested to which extent we can control the
tradeoff between overhead and the quality of TCA detec-
tion. As control parameter, we use the k1, which defines
the upper threshold for the local hysteresis mechanism
(see Section 3.3). (k2 is chosen as 0.95*k1.) For simplicity
reasons we refer to k1 simply as k.

We measure the average protocol overhead and the
average TCA detection delay as functions of k. For the sce-
nario, we use the default parameters for the simulation
(see Section 4.1) except for the maximum message rate,
which is 10 msg/s instead of the default 4/s. We use the
periodic UT trace to generate multiple threshold crossings.
The scenario is run for values of k equal to 0, 0.65, 0.7, 0.75,
0.775, 0.788, 0.8, 0.9, 0.95, 0.975 and 1. The result is shown
in Fig. 14.

The graph shows measurements for the full domain of
k 2 [0.1]. We observe that up to a certain value of k (around
k = 0.775), the overhead reduces without an increase in
detection delay. Beyond this value, the overhead generally
decreases with an increase in the detection delay until k
reaches 1.

For values of k between 0 and 0.667, we expected the
same overhead and detection delays, because 0.667 is the
ratio between the minimum of the aggregate during all
simulation runs and the threshold. As a consequence, for
values of k less than 0.667, all nodes are always active
and the protocol executes GAP.

An interesting phenomenon is that up to a value of
k = k* = 0.775 the measurements do not show an increase
in detection delay while there is a decrease in the over-
head. We conclude that k can be increased above 0.667
to k* such that a system running TCA–GAP exhibits the
same detection delays as a system that runs GAP, although
at a smaller overhead. We speculate that k* depends on the
topology and the dynamics of the local variables.

From this scenario we draw the following conclusions.
First, k is an effective parameter for controlling the tradeoff
between overhead and detection delay. Second, by allow-
ing a small increase over the minimum detection delay,
the overhead can be decreased significantly. Third, for val-
ues of k in the interval [0, k* < 1], TCA–GAP exhibits the
same detection delays as a system that runs GAP, although
a lower overhead for k = k*.

5. Related work

Interest in the problem of detecting network-wide
threshold crossings has built up in recent years. All ap-
proaches known to us use some types of thresholds or fil-
ters on individual nodes to reduce the protocol overhead.
Most proposed protocols exhibit low overhead when the
aggregate is far from the monitored threshold.

Depending on the degree of centralization of the pro-
posed approaches, we classify the related work as either
weakly distributed or strongly distributed, following the clas-
sification in [15]. Most published work has been done in
the area of weakly distributed solutions. They assume a
central coordinator that is responsible for computing local
thresholds and filter parameters for all nodes. The coordi-
nator also performs aggregation of the local variables and
detection of network-wide threshold crossings. A common
drawback of weakly distributed approaches is that the load
on the coordinator increases linearly with the system size,
which limits the scalability of the protocol.



F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761 1757
In strongly distributed approaches such as the TCA–GAP
protocol presented here, local thresholds or filters param-
eters are computed in a fully distributed manner. In partic-
ular, such approaches allow all nodes to interact only with
their immediate neighbors on the network graph over
which the protocol is running.

These solutions can further be divided into two groups.
The first group is composed of protocols that support linear
aggregation functions (e.g. SUM or COUNT) or aggregation
functions that can be derived from such linear functions.
The second group contains protocols that support aggrega-
tion functions beyond simple linear functions.

The earliest result known to us in the context of detect-
ing network-wide threshold crossings is the work by [16],
which presents several weakly distributed protocols for
the SUM aggregation function. In an approach the authors
call simple-value, a local threshold value of T/n where n is
the number of nodes in the network, and T is the global
threshold, is assigned to all nodes. Whenever the local var-
iable crosses this threshold, the node sends a trap with the
local variable to the management station. Periodically, the
management station polls all nodes for the local variables,
if it has received a trap during the last period. Then, it
aggregates the local variables and determines whether
the global threshold has been crossed. We believe that this
scheme performs well for ‘‘small” networks, for which poll-
ing is feasible, where local variables are evenly distributed,
and where the likelihood of a node exceeding its threshold
is small. In the same paper, the authors propose a second
approach, called simple-rate, which assumes an upper
bound on the rate of change of local variables per unit time,
which leads to a protocol with smaller overhead than sim-
ple periodic polling.

In [2], Keralapura et al. present algorithms that include
network-wide threshold detection functionality. The algo-
rithms give an estimate of the count of events in a network,
whenever the count crosses some global threshold. The
estimate should be within a maximum error of d. The basic
approach is to use local thresholds ti,j < t i,j+1, j = 0,1,. . . on
all nodes i. Whenever Ni leaves the interval [ti,j, ti,j+1), node
i contacts the coordinator. The authors propose two ways
of setting the new thresholds. In the first approach, which
they call static thresholding, all nodes are assigned a prede-
termined set of thresholds that do not change over time. In
the second approach, which the authors call adaptive thres-
holding, the coordinator chooses new thresholds.

In contrast to TCA–GAP, this approach includes a central
coordinator and hence is weakly distributed. Apart from
that, the threshold assignment and recomputation in adap-
tive thresholding is similar to TCA–GAP in the sense that
thresholds are assigned proportional to the contribution
of the local variable to the aggregate, using a reactive
scheme.

Huang et al. [1] present an approach for detecting net-
work-wide threshold crossings for non-linear aggregation
functions, which they also call distributed triggers. Similar
to the approaches above, a coordinator continuously com-
putes and distributes the available threshold space, i.e. the
difference between the estimate of the aggregate and the
threshold value, to all nodes, proportional to the variance
of the local values. Each node receives a local threshold
and sends updates to the coordinator whenever that is
exceeded.

The authors illustrate their scheme through the use of
principal component analysis (PCA) on link traffic mea-
surements to identify anomalies in bandwidth consump-
tion [17]. Taking time series of the link loads as input,
the authors apply PCA, a method based on matrix algebra,
to identify anomalous subspaces and to establish a metric
through which anomalies are expressed and compared to a
global threshold. To address the problem of non-linear
aggregation functions, the authors use first-order approxi-
mation. By finding no false negatives in the data set they
use for evaluation of their method, the authors conclude
that their first-order approximation is sufficiently accurate.

While the authors demonstrate how threshold cross-
ings with non-linear aggregation functions can be detected
in an efficient way, their scheme still relies on a central
coordinator, and they do not address the problem on
how such a coordinator can be decentralized.

In [3], Sharfman et al. present an approach where
threshold crossings are detected for a real-valued function
that is computed over the sum of vector-valued local vari-
ables. The authors present a weakly distributed and a
strongly distributed versions of their approach to detection
of threshold crossing. In the first case, a coordinator sends
its estimate of the aggregate vector to all nodes. Each node
continuously evaluates a possible threshold crossing, by
adjusting the estimate of the aggregate vector using its
current local vector and evaluating the aggregation func-
tion within a ball centered at its adjusted estimate. If the
node determines a possible crossing of the global thresh-
old, then it sends a message to the coordinator, together
with its current local value. The coordinator answers with
an updated estimate of the global aggregate which is sent
to a set of nodes. In the strongly distributed version of the
scheme the authors propose, there is no central coordina-
tor, but each node broadcasts its current local vector
whenever it suspects a global threshold crossing.

We comment that the distributed scheme in this work
is of a very limited scalability, as each node broadcasts
its vector to all other nodes when the aggregate is close
to the threshold. We expect that a different distributed ap-
proach would increase the scalability of the scheme, for in-
stance an approach whereby the nodes are organized in a
tree and each node acts as a coordinator for its children.
Such a scheme would be quite similar to the one presented
in this paper.

A strongly distributed solution to a problem closely re-
lated to the one tackled in this paper has been presented
by Breitgand et al. in the context of estimating the size of a
multicast group [18]. The authors address the problem of
determining whether the group size is within an interval
[L, H] for which pricing is constant. They assume a synchro-
nous network with a tree topology. Each leaf node i main-
tains a local variable xi(t) with t = 0,1, 2, . . ., which
represents the number of active multicast receivers at that
node. The authors assume that the aggregate

P
ixiðtÞ is

piece-wise constant in the intervals [t*2 log2n, (t + 1)*2log2n)
where n is the number of nodes. They provide an algorithm,
called HRMA, which detects when

P
ixiðtÞ falls outside [L, H].

Initially, the root node computes local thresholds {l, h} for all



1758 F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761
leaf nodes and multicasts them. Then, every 2log2n time
units, the protocol determines whether the aggregate is
within the interval [L, H]. First, each leaf node checks
whether the local variable is outside of [l, h]. If it is, then
the node sends a trap to its parent, who then polls all its leaf
nodes for their current local values, computes the partial
aggregate for all nodes i in its subtree, and checks whether
the partial aggregate is within the interval

P
ili;
P

ihi
� �

. If it
is inside the interval, then the node stops the process. If it
is outside, then it sends a trap to its parent, etc., in a recursive
fashion. This process continues until a node stops it, or, the
root node is reached, which then checks whether the global
aggregate falls outside [L, H], in which case the threshold is
crossed. In such a case, the root node computes new local
thresholds and multicasts them to all leaf nodes, and the
algorithm starts monitoring the aggregate for the new inter-
val. The authors discuss several modifications to HRMA
which are designed to reduce the protocol overhead.

HRMA makes strong assumptions with respect to the
network model, which is assumed to be synchronous and
does not consider failures, as well as with respect to the
sampling interval, which grows with the system size. Using
these assumptions, HRMA can guarantee the detection of
all threshold crossings. In contrast, TCA–GAP assumes an
asynchronous network model, is robust to node and link
failures, and makes no assumptions about the sampling
interval. However, detection of all threshold crossings can-
not be guaranteed, and false positives can occur, even if
they are rare in our experience. Note though that TCA–
GAP allows controlling the tradeoff between protocol over-
head and the quality of TCA detection through the maxi-
mum message rate and the control parameters k1 and k2.
From the perspective of applicability in a real network
environment, the weak assumptions TCA–GAP makes with
respect to the network model facilitates its implementa-
tion, whereas HRMA is much harder to realize.

We provide a comparison between HRMA and TCA–GAP
with regard to TCA detection times and system sizes. First,
we compare the asymptotic behavior of detection times
with respect the system size. Second, we use a specific sce-
nario to compare the detection times for comparable
overhead.

Table 3 compares the asymptotic behavior of both pro-
tocols. In the case of HRMA, threshold detection is con-
ducted every 2log2n time units, which results in a
maximum detection delay of O(log2n). A case of minimum
detection time occurs when all local thresholds are crossed
at the same time, causing the global threshold to be
crossed. In this case, the threshold crossing is detected in
O(log n) time, as the depth of the spanning tree is O(log n).

For TCA–GAP, if the local variable at the root node
causes the global threshold to be crossed, then this is de-
Table 3
Threshold detection times in function of system size n for HRMA and TCA–
GAP

Protocol Min Max

HRMA O(log n) O(log2 n)
TCA–GAP, k 2 [0,k*] O(1) O(log n)
TCA–GAP, k 2 (k*,1] O(1) O(n)
tected in O(1) time. The maximum detection time of
TCA–GAP depends on the value of k (which stands for the
local hysteresis threshold k1, see Section 4.7). For k 2 [0,
k*], the protocol has the same detection times as GAP with
threshold detection at the root node, namely O(log n). For
larger values of k, i.e. k 2 (k*,1], the maximum detection
time is O(n). The smaller detection time comes at the ex-
pense of a larger overhead, as we have shown in Section
4.7. (The above paragraph relates to TCA–GAP with Policy
I. Policies II and III have other maximum detection times.)

From the discussion of the Table 3 we conclude that
while the minimum detection time in TCA–GAP is asymp-
totically smaller than that of HRMA, the maximum detec-
tion time depends on the control parameter k. It can be
chosen to be smaller or larger at the expense of protocol
overhead.

Fig. 15 gives the average and maximum detection de-
lays for TCA–GAP, taken from measurements for the scala-
bility scenario in section 4.5. It also shows the average
detection time for HRMA, which is analytically computed.
For this purpose, we assume the average detection delay
for HRMA to be log2n time units, which is based on the fact
that threshold detection is performed every 2log2n time
units and on our assumption that a threshold crossing is
equally likely to occur at any time. For computing the aver-
age detection delay, we further assume that the aggrega-
tion tree for HRMA has a branching factor 5. TCA–GAP is
run with a message rate of 4 msg/s and a target connectiv-
ity of 5 for the network graph, which produces a maximum
message rate of 20 msg/s a node has to process. A similar
maximum overhead is achieved when HRMA is executed
at 20 protocol cycles/s, i.e. HRMA progresses 20 time units
per second.

As the average detection time for both protocols de-
pends on the dynamics of the local variables and the topol-
ogy of the aggregation tree, it is generally not possible to
compare the complexities of the detection times for the
average case. In the following, we give a comparison for a
specific scenario in which we compare the protocols for a
similar overhead. As a result, without specific assumptions
regarding these entities, it is generally not possible to give
Fig. 15. TCA detection times: TCA–GAP vs. HRMA.



F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761 1759
the complexity of the detection time in the average case.
For this paper however, we perform a rough comparison
as follows. For TCA–GAP we use the measurement of the
average detection time from Section 4.5.

For HRMA, recall that threshold verification is done
periodically every 2log2n time units. Hence, if we ignore
the time it takes the protocol to detect the threshold cross-
ing once the verification has started, and if we assume that
threshold crossing is equally likely to occur at any time in a
given period, then the average time between the actual
threshold crossing and the start of the threshold verifica-
tion process is half of the length of the period which is
log2n time units. Obviously, this is a lower bound to the
average detection time as it does not take the time the
threshold verification takes into account.

Fig. 15 shows the average and the maximum detection
times of TCAs for the scalability scenario discussed in Sec-
tion 4.5. The figure also gives the average detection time
for HRMA as computed above, assuming for a round length
of 50 ms and a spanning tree that is a full tree with a
branching factor of 5. The round duration is chosen such
that the two protocols have a comparable processing over-
head, in the sense that they execute the same number of
cycles/rounds in a given period. TCA–GAP is run with a
maximum message rate of 4 msg/s and a target connectiv-
ity for the network graph of 5, resulting in a maximum load
on a node of 20 msg/s, which is roughly equivalent to pro-
cessing a message every 50 ms in HRMA.

The graph in Fig. 15 suggests that, for the chosen sce-
nario and parameter range, TCA–GAP outperforms HRMA
with respect to the average detection time. As we already
observed in Section 4.5, the average detection time for
TCA–GAP seems to increase with the logarithm of the sys-
tem size, for the traces and the particular network graph
used in this scenario.

6. Discussion and future work

The contribution of this paper is a detailed description
and a comprehensive evaluation of TCA–GAP, a protocol
for detecting threshold crossings of network-wide aggre-
gates in a distributed way.

The design goals for the protocol outlined in Section 2
relate to efficiency, quality of detection, scalability, robustness
and controllability. Regarding efficiency, the simulation re-
sults show that the protocol overhead is low whenever the
aggregate is far from the threshold. For the series of exper-
iments in Section 4.2, the protocol overhead is negligible
for the runs where the average aggregate is below 60% of
the threshold. The overhead becomes comparable to that
of a tree-based aggregation protocol (such as GAP) when
the aggregate is about to cross the threshold.

Regarding quality of detection, our results show that all
threshold crossings are detected within 2 s for the scenario
in Section 4.3, which uses a network topology with over
600 nodes. Our evaluation further shows that, for all sce-
narios included in this paper, all threshold crossings are in-
deed detected (i.e. no false negatives occurred). There is a
chance of false positives in scenarios with a high rate of
node failures, e.g. in Section 4.6, for failure rates of above
1 node failure/s in a 654-node network.
Our simulation studies suggest that TCA–GAP is scalable
in system size. The results in Section 4.5 show that the pro-
tocol overhead is independent of the system size for the
network sizes and scenario configurations considered. The
observed average message rates of below 0.03 msg/s/node,
for topologies with sizes from 82 to 5232 nodes, are well
below the maximum possible rate of some 20 msg/s/node,
which is imposed by the control parameter for the maxi-
mum message rate. In addition, the detection time of
threshold crossings, for the scenarios in Section 4.5, grows
with the logarithm of the system size. A tree-based aggre-
gation protocol (such as GAP) has the same asymptotic
behavior, although at a much higher overhead (1.7 msg/s/
node compared to 0.025 msg/s/node for a network of 654
nodes in one of the scenarios presented).

Regarding robustness, the protocol overhead increases
(approximately) with the logarithm of the failure rate in
the network in the scenarios considered for our study
(see Section 4.6). We also found that failures introduce
considerable protocol overhead. With regards to detection
times for threshold crossings, we observe that the average
as well as the variance of the detection delays increases
with the failure rate. No false negatives occurred and the
number of false positives increased with the failure rate,
for all simulation runs reported in this paper.

Finally, we demonstrated the controllability of our pro-
tocol. We identified the local hysteresis parameter k as an
effective parameter for controlling the tradeoff between
overhead and detection delay. Increasing k generally in-
creases the detection delay while decreasing the overhead
(see Section 4.7). Specifically, by allowing a small increase
over the minimum possible detection delay, the overhead
can be decreased significantly in the scenario we studied.
We have argued that, for values of k in some interval [0,
k* < 1], TCA–GAP exhibits the same detection delays as a
system that runs GAP with threshold detection at the root
node, with the lowest overhead for k = k*.

We highlight two qualifications regarding the results of
this paper. First, the traces used for the simulation runs are
based on specific measurements from a university network
(See Section 4.1). Had we taken measurements at a differ-
ent time or from a different network, the simulation runs
in this paper might have given different results. What gives
us confidence in the overall conclusions we draw from the
experiments in this paper is that other studies on an earlier
version of TCA–GAP [6,7], which used a different set of
traces, agree on a qualitative level with the measurement
results reported in this paper. Note also that there are char-
acteristics of TCA–GAP that do not depend on properties of
the traces. These include the statements on threshold
detection (Section 3.5) and the statements on the asymp-
totic behavior of threshold detection times (Section 5). Sec-
ond, the current version of TCA–GAP is robust to crash
failures only. Other types of Byzantine faults, which could
be caused by software errors or malicious behavior, can not
be detected and remedied by the protocol. This is an issue
for further study.

The protocol presented in this paper is based on the
concept of a TCA where alerts are instantaneously raised
and cleared when the monitored variable crosses the rele-
vant thresholds. Alternative conditions for raising alerts



1760 F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761
have been proposed. For example, [1] suggests that an alert
be raised based on for how long and/or by how much the
variable stays above the threshold. A further alternative
is raising an alert when the variable is within a specified
interval around the threshold [1–3]. Supporting the above
notions of TCAs can be achieved through straightforward
extensions of TCA–GAP.

While we used the aggregation function SUM through-
out the paper, TCA–GAP can be run with other aggregation
functions, such as AVERAGE, MIN and MAX. For the case of
AVERAGE, a straightforward solution whereby the problem
is converted to that of monitoring a TCA over SUM is as fol-
lows. In addition to the monitored variable, which is aggre-
gated using SUM, the network size is aggregated in the
same way using COUNT. Then, for a given threshold T, an
alert is raised whenever

P
iwiðtÞ > T�, with T* = nT. To run

TCA–GAP with the MAX aggregation function, incremental
aggregation is performed using MAX, and all local thresh-
olds have the same value, which is equal to the global
threshold. Threshold recomputation is never invoked in
this case, since the violation of either threshold rule would
imply that the local, as well as the global threshold is
crossed. k1 and k2 are set to 1, since smaller values would
increase overhead, while the threshold detection time
would remain the same. (For the MIN aggregation function,
incremental aggregation is performed using MIN; other-
wise, the same discussion applies.) In terms of perfor-
mance, we observed in experiments not reported in this
paper that the aggregation functions MIN/MAX show sig-
nificantly smaller overhead than SUM/AVERAGE in the
same scenario. Contributing factors for this difference are
that MIN/MAX does not incur any overhead regarding
threshold recomputation and k1 = k2 = 1 for MIN/MAX.

The performance of TCA–GAP is influenced by the net-
work graph over which the protocol runs. Specifically,
the topology of the network graph influences the detection
delays and the load distribution among the nodes. Our re-
sults from Section 4.5 and 4.7 clearly show that the detec-
tion time of TCAs depends on the depth of the aggregation
tree. Suitable network graph topologies for TCA–GAP are
those that enable a short detection delay and provide a bal-
anced load among nodes. For the simulations reported in
this paper, we used GoCast [14], a gossip protocol which
has the target network connectivity as a configuration
parameter, to create the network graph. In this context,
the question arises, which is a suitable value for the con-
nectivity of a GoCast graph, such that a short detection de-
lay and a balanced load can be achieved. This aspect and
the influence of the overlay topology on the protocol per-
formance in general merits further investigation.

When considering the deployment of TCA–GAP in a pro-
duction environment several issues need to be addressed.
First, the protocol is robust to the failure of any node other
than the root node. There are several practical options on
how to mitigate a potential failure of the root, including
running several instances of TCA–GAP with different root
nodes. A related issue is the protocol execution in the case
of a partitioned network, specifically in a partition without
the root node.

As for future work, we plan on adapting the protocol for
use in highly dynamic networks with continuous changes of
topology or high failure rates. The measurements in Sec-
tion 4.6 show that the protocol overhead can increase sev-
eral orders of magnitude in a highly dynamic environment.
As an alternative to tree-based aggregation protocols, we
plan to consider gossip protocols for threshold detection.
We expect gossip protocols to have a better performance
in dynamic environments as they do not maintain a span-
ning tree.

A second topic we plan to address is the extension of
TCA–GAP towards supporting complex aggregation func-
tions and complex triggers for the purpose of anomaly
detection and in network data mining. [1] provides a good
example where a method called PCA is used to detect vol-
ume anomalies in network traffic. The fundamental chal-
lenge is whether such aggregation functions, or
approximations thereof, can be efficiently computed in a
distributed way inside the network.

Acknowledgement

The authors would like to thank Alex Clemm for his ad-
vice and fruitful discussions throughout this work. This
work has been supported in part by a grant from Cisco Sys-
tems, the EC IST-EMANICS Network of Excellence
(#26854), the EC 7th Framewotk 4WARD project, and the
ACCESS Linnaeus Center at KTH.

References

[1] L. Huang, M. Garofalakis, J. Hellerstein, A. Joseph, N. Taft, Toward
sophisticated detection with distributed triggers, in: Proceedings of
the SIGCOMM 2006 Workshop on Mining Network Data
(MineNet’06), Pisa, Italy, September 11–15, 2006.

[2] R. Keralapura, G. Cormode, J. Ramamirtham, Communication-efficient
distributed monitoring of thresholded counts, in: Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data
(SIGMOD’06), Chicago, IL, USA, June 27–29, 2006.

[3] I. Sharfman, A. Schuster, D. Keren, A geometric approach to monitoring
threshold functions over distributed data streams, in: Proceedings of
the 2006 ACM SIGMOD International Conference on Management of
Data (SIGMOD’06), Chicago, IL, USA, June 27–29, 2006.

[4] M. Dam, R. Stadler, A generic protocol for network state aggregation,
in: Proceedings of the Radiovetenskap och Kommunikation (RVK
2005), Linköping, Sweden, June 14–16, 2005.

[5] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TAG: A Tiny
Aggregation service for ad-hoc sensor networks, in: Proceedings of
the Fifth Symposium on Operating Systems Design and
Implementation (OSDI’02), Boston, MA, USA, December 9–11, 2002.

[6] F. Wuhib, M. Dam, R. Stadler, A. Clemm. Decentralized computation
of threshold crossing alerts, in: Proceedings of the 16th IEEE/IFIP
Workshop on Distributed Systems: Operations and Management
(DSOM 2005), Barcelona, Spain, October 24–26, 2005.

[7] F. Wuhib, R. Stadler, A. Clemm. Implementation and evaluation of a
protocol for detecting network-wide threshold crossing alerts.
Fourth IEEE/IFIP Workshop on End-to-End Monitoring Techniques
and Services (E2EMON), Vancouver, Canada, April 3, 2006.

[8] F. Wuhib, R. Stadler, A. Clemm, Decentralized service level
monitoring using network threshold crossing alerts, IEEE
Communications Magazine 44 (10) (2006) 70–76.

[9] S. Dolev, A. Israeli, S. Moran, Self-stabilization of dynamic systems
assuming only read/write atomicity, in: Proceedings of the Ninth
Annual ACM Symposium on Principles of Distributed Computing
(PODC’90), Quebec City, Quebec, Canada, August 22–24, 1990.

[10] IEEE. ANSI/IEEE Std 802.1D, 1998 Edition, IEEE, 1998.
[11] K.S. Lim, R. Stadler, Weaver – realizing a scalable management

paradigm on commodity routers, in: Proceedings of the Eighth IFIP/
IEEE International Symposium on Integrated Network Management
(IM 2003), Colorado Springs, Colorado, USA, March 24–28, 2003.

[12] K.S. Lim, R. Stadler. SIMPSON – a simple pattern simulator for
networks, <http://www.s3.kth.se/lcn/software/simpson.shtml>,
February 2007.

http://www.s3.kth.se/lcn/software/simpson.shtml


F. Wuhib et al. / Computer Networks 52 (2008) 1745–1761 1761
[13] University of Twente – Traffic Measurement Data Repository,
<http://m2c-a.cs.utwente.nl/>, February 2007.

[14] C. Tang, C. Ward, GoCast: Gossip-enhanced overlay multicast for fast
and dependable group communication, in: Proceedings of the
International Conference on Dependable Systems and Networks
(DSN’05), Yokohama, Japan, June 28–July 1, 2005.

[15] J.P. Martin-Flatin, S. Znaty, A simple typology of distributed network
management paradigms, in: Proceedings of the Eighth IFIP/IEEE
International Workshop on Distributed Systems: Operations and
Management (DSOM’97), Sydney, Australia, October 1997.

[16] M. Dilman, D. Raz, Efficient reactive monitoring, IEEE Journal on
Selected Areas in Communications (JSAC) Special Issue on Recent
Advances in Network Management 20 (4) (2001) 668–676.

[17] A. Lakhina, M. Crovella, C. Diot, Diagnosing network-wide traffic
anomalies, ACM SIGCOMM Computer Communication Review 34 (4)
(2004) 219–230.

[18] D. Breitgand, D. Dolev, D. Raz, Accounting mechanism for
membership size-dependent pricing of multicast traffic, in:
Proceedings of the Fifth International Workshop on Networked
Group Communications (NGC 2003), Munich, Germany, September
16–19, 2003.

[19] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, Measuring ISP
topologies with rocket fuel, IEEE/ACM Transactions on Network 12
(1) (2004) 2–16.

Fetahi Wuhib (www.ee.kth.se/~fzwuhib) is a
Ph.D., candidate at the Royal Institute of
Technology (KTH), Stockholm, Sweden. He
received his B.Sc. degree in Electrical Engi-
neering from Addis Ababa University, Ethio-
pia, his M.Sc. degree in Internet working in
2005 and his Licentiate of Technology degree
in Telecommunications from KTH in 2007. His
current research focuses on protocols for
decentralized monitoring and self-
management.
Mads Dam (www.csc.kth.se/~mfd) is Associ-
ate Professor at the School of Computer Sci-
ence and Communication, the Royal Institute
of Technology (KTH), Sweden, since 1998,
where he is a member of the theory group. He
received his B.Sc. in Information Technology
in 1983, and his M.Sc. in Computer Engi-
neering in 1985 from Aalborg University,
Denmark. In 1990 he received his Ph.D., in
computer science from the University of
Edinburgh, UK, where he remained as a post-
doctoral researcher until 1992 when he

moved to the Swedish Institute of Computer Science (SICS) to work as a
research scientist. During the period 1994–2003 he headed the Formal
Design Techniques Laboratory at SICS. During his research career, he has
made significant contributions in areas such as modal and temporal
logics, process algebra and mobile processes, program verification and
program specification, and computer security. He is a member of NordSec
steering committee and is a frequent member of program committees in
the field of programming languages and security. His current research
focuses partly on network management and autonomic computing, and
partly on language-based approaches to computer security.

Rolf Stadler (www.ee.kth.se/~stadler) is a
professor at the School of Electrical Engi-
neering with the Royal Institute of Technology
(KTH) in Stockholm, Sweden, since 2001,
where he leads the Network Management
Group. He received an M.Sc. degree in Math-
ematics in 1984 and a Ph.D., in Computer
Science in 1990 from the University of Zurich,
Switzerland. In 1991 he was a post-doctoral
researcher at the IBM Zurich Research Labo-
ratory. 1992–1994 he was a visiting scholar at
the Center for Telecommunications Research

at Columbia University, which he joined in 1994 as a research scientist.
1998–1999 he was a visiting professor at ETH Zurich. Over the last 10
years, he has been instrumental in the network management research

community and has been program co-chair for premier IEEE conferences
in the field, including DSOM’99, NOMS’02, and DSOM’07. He currently
serves on the editorial board of IEEE Transactions on Network and Service
Management (TNSM). His current research interests include scalable
networks and systems, autonomous computing and self-management.

His research is supported by Swedish funding agencies (SSF, VINNOVA
STINT), the European Commission, and direct grants from industry (Cisco
Systems, IBM Research).

He is co-director of the Laboratory for Communication Networks (LCN)
at KTH, together with Prof. Gunnar Karlsson. He is affiliated with the
ACCESS Linneus Center at KTH, Wireless@KTH, and the Center for Net-
worked System (CNS) at the Swedish Institute for Computer Science
(SICS).

http://m2c-a.cs.utwente.nl/
http://www.ee.kth.se/~fzwuhib
http://www.csc.kth.se/~mfd
http://www.ee.kth.se/~stadler

	Decentralized detection of global threshold crossings using aggregation trees
	Introduction
	Objective and protocol design goals
	The protocol: TCA-GAP
	Protocol overview
	The GAP protocol
	Local threshold and hysteresis mechanism
	Local threshold rules and local threshold recomputation
	Symmetric modes
	Pseudocode

	Experimental evaluation
	Simulation setup and evaluation scenarios
	Evaluation metrics
	Local variables
	Overlay topology
	Failures
	Other simulation parameters

	Protocol efficiency
	Latency for threshold detection
	Correctness
	Scalability
	Robustness
	Controllability

	Related work
	Discussion and future work
	Acknowledgement
	References


