
System Description: Veri�cation of DistributedErlang ProgramsThomas Arts1, Mads Dam, Lars-�ake Fredlund, and Dilian Gurov21 Computer Science Laboratory, Ericsson Telecom AB, 126 25 Stockholm, Sweden,E-mail: thomas@cslab.ericsson.se2 Swedish Institute of Computer Science, Box 1263, S-164 28 Kista, Sweden,E-mail: fmfd,fred,diliang@sics.se1 IntroductionSoftware written for telecommunication applications has to meet high qualitydemands. Correctness is one major concern; the activity of proving formally thata system is correct is called veri�cation. Telecommunications software is highlyconcurrent, and testing is often not capable of guaranteeing correctness to asatisfactory degree. The software we are faced with consists of many, relativelysmall modules, written in the functional language Erlang [AVWW96]. Thesemodules de�ne the behaviour of a number of processes operating in paralleland communicating through asynchronous message-passing. New processes canbe generated during execution. Because of the complexity of such software, ourapproach to veri�cation is to prove that the software satis�es a set of propertiescalled speci�cation and formalized in a suitable logic language. The speci�cationlanguage we use is based on Park's �-calculus [Par76,Koz83], extended withErlang-speci�c features. This is a very powerful logic, due to the presence ofleast and greatest �xed point recursion, allowing the formalization of a widerange of behavioural properties. Veri�cation in this context is not decidable, butcan be automated to a large extent, requiring human intervention in a few, butcrucial points.To facilitate veri�cation of Erlang programs of realistic size we are devel-oping a veri�cation tool implementing a tableau-based proof system describedin [DFG98]. Our main objectives are to achieve a satisfactory degree of au-tomation, proof reuse, easy navigation through proof tableaux, and meaningfulfeedback about the current proof state, so as to require user intervention onlywhen this is really necessary, and to assist in taking informed proof decisions.2 The Erlang Programming LanguageWe consider a core fragment of the Erlang programming language with dynamicnetworks of processes operating on data types such as numbers, lists, tuples, orprocess identi�ers (pid's), using asynchronous, �rst-order call-by-value commu-nication via unbounded ordered message queues called mailboxes. Real Erlang



has several additional features such as communication guards, exception han-dling, modules, and a host of built-in functions. The abstract syntax of CoreErlang expressions is summarised as follows:Var := X j Y j Z j : : :Atom := a j b j c j : : :Pid := < 1 > j < 2 > j < 3 > j : : :Pattern := Var j Atom j Pid j fPattern; PatterngMatch := Pattern �> Expr j Match; Pattern �> ExprExpr := Var j Atom j Pid j fExpr; Exprg j [Expr j Expr] jcase Expr of Match end j Expr; Expr jAtom(Expr) j spawn(Atom; Expr) jself j Expr ! Expr j receive Match endCore Erlang expressions are built from variables, atoms (like integers andoperations on integers), process identi�ers (pid's), and patterns by forming tu-ples (pairs), lists, case expressions, sequential composition, function application,generating new processes (spawn), obtaining the identity of the current process(self), as well as constructs for input and output to a speci�ed recipient.3 The Speci�cation LanguageThe property speci�cation logic we use can be summarised as a �rst-order pred-icate logic, extended with labelled \box" and \diamond" modalities, least andgreatest �xed point recursion, and some Erlang-speci�c atomic predicates. Thispowerful logic is capable of expressing a wide range of important system prop-erties, ranging from type-like assertions to complex reactivity properties of theinteraction behaviour of a telecommunication system. For example, the formula�X:(n = 0_9n0:(X(n0)^n = n0+1)) de�nes the type of natural numbers, i.e. theleast predicate which is true at zero and is closed under successor. As anotherexample, �X:(8x:[p?x] (9y: < q!y >X)) expresses the capability of a system toreact to messages received by process p by sending replies to process q. Far morecomplicated properties can be expressed by alternating least and greatest �xedpoints, such as fairness and response properties.4 The Proof SystemA large number of algorithms, tableau systems and proof systems for verifyingprocesses against modal �-calculus speci�cations can be found in literature, e.g.[EL86,SW91,Gur98] to cite but a few. However, most of these approaches areonly applicable for �nite-state processes, or at least processes where propertiesdepend only on a �nite portion of a potentially in�nite-state process. The com-plexity of the software we consider and the properties we want to verify demanda new approach.



We build upon work begun by Dam in [Dam95], where instead of closed cor-rectness assertions of the shape S : � (where S is a system and � a speci�cation),open correctness assertions of the shape � ` S : �, where � expresses a set ofassumptions s :  on components s of S, are considered. Thus, the behaviour ofS is speci�ed parametrically upon the behaviour of its components.This idea of open correctness assertions gave rise to the development of aGentzen-style proof system [DFG98] that serves a the basis for the implementa-tion of the veri�cation tool. On top of a fairly standard proof system we addedtwo rules: the �rst a \cut" rule for decomposing proofs of a system with multipleprocesses to proofs about the components, the second a discharge rule based ondetecting loops in the proof. Roughly, the goal is to identify situations wherea latter proof node is an instance of an earlier one on the same proof branch,and where appropriate �xed points have been safely unfolded. The dischargerule thus takes into account the history of assertions in the proof tree. In termsof the implementation this unfortunately requires the preservation of the prooftree during proof construction. Combined, the cut rule and the discharge ruleallow general and powerful induction and co-induction principles to be applied,ranging from induction on the dynamically evolving architecture of a system, toinduction on �nitary and co-induction on in�nitary datatypes.5 The Erlang Veri�cation ToolFrom a user's point of view, proving a property of an Erlang program using theveri�cation tool involves \backward" (i.e., goal-directed) construction of a prooftree (tableau). The user is provided with commands for de�ning the initial nodeof the proof tree, for expanding a proof tree node (`the current proof node canbe considered proved if the following nodes are proved instead'), for navigatingthrough the proof tree, for checking whether the discharge rule is applicable,and for visualizing the current state of the proof tree using the daVinci graphmanipulation tool [FW94]. Since the whole proof tree is maintained, proof reuseand sharing is greatly facilitated. The veri�cation tool provides also a scriptinglanguage which can be used for automating several proof tasks, such as model-checking of simple formulas.As an example, consider a resource managing process rm, which acceptsrequests req from users u for using resources. The resource manager reacts toeach such request by generating a new resource handling process rh, the onlytask of which is to serve this special request by sending a reply rep to thecorresponding user. Naturally, such a system should not send spontaneous replieswithout having received initiating requests. To keep the example simple, we shallformalise an approximation of this property, namely that the system can neverengage in an in�nite sequence of output actions. This property (let us denote itwith �) can be expressed as �X:�Y:(8u:8req:[u?req]X ^ 8u:8rep:[u!rep]Y ). Ourinitial proof obligation is \` rm : �". By applying a command which attempts tomodel-check process rm until some new process is generated, we automaticallyobtain a new proof obligation of the shape \` rm k rh : �", namely that the



system after generating one request handler also has the same property. So,some form of induction on the global process structure is necessary here. Thisis easily achieved by applying (manually) the cut rule, reducing the previousobligation to \s : � ` s k rh : �" (denote this proof obligation by (�)), namelyto proving that any process s satisfying �, when put in parallel with process rh,also satis�es �. In fact, this is the only point at which human intervention isrequired. By invoking the same command, the tool explores the possible actionsof s and rh, and ultimately completes the proof. If s k rh performs an inputaction, this can only be because of s, and if s evolves thereby to s0, then theresulting proof obligation becomes \s0 : � ` s0 k rh : �" which is automaticallydischarged against (�). Similarly, if s k rh performs an output action, this canonly be because of rh, and since after this action rh ceases to exist, the resultingproof obligation becomes \s : � ` s : �" which is an instance of the usual identityaxiom of Gentzen-style proof systems.At the present point in time a �rst prototype tool has been completed withthe functionality described above. A number of smallish examples have been com-pleted, including, as the largest, a correctness proof concerning trust of a mobilebilling agent reported in [DFG98]. Further information on the project and theprototype implementation can be found at http://www.sics.se/fdt/erlang/.We expect to announce a public release of the system by the end of 1998. Futurework includes bigger case studies, increased support for proof automation, andbetter handling of fairness.References[AVWW96] J. Armstrong, R. Verding, C. Wikstr�om and M. Wiliams, Concurrent Pro-gramming in Erlang. 2:nd edition, Pretence Hall, 1996.[Dam95] M. Dam, Compositional proof systems for model checking in�nite stateprocesses. In Proceedings CONCUR'95, LNCS 962, p. 12{26, 1995.[DFG98] M. Dam, L.-�a. Fredlund and D. Gurov, Toward Parametric Veri�cation ofOpen Distributed Systems. To appear in: H. Langmaack, A. Pnueli, W.-P.De Roever (eds.), Compositionality: The Signi�cant Di�erence, SpringerVerlag, 1998.[EL86] E.A. Emerson and C. Lei, E�cient model checking in fragments of thepropositional mu-calculus. In Proceedings LICS'86, p. 267{278, 1986.[Gur98] D. Gurov, Speci�cation and Veri�cation of Communicating Systems withValue Passing. Ph.D. Thesis, Department of Computer Science, Universityof Victoria, March 1998.[FW94] M. Fr�ohlich and M. Werner. The graph visualization system daVinci {a user interface for applications. Technical Report 5/94, Department ofComputer Science, Bremen University, 1994.[Koz83] D. Kozen, Results on the propositional �-calculus. Theoretical ComputerScience, 27:333{354, 1983.[Par76] D. Park, Finiteness is mu-ine�able. Theoretical Computer Science, 3:173{181, 1976.[SW91] C. Stirling and D. Walker, Local model checking in the modal mu-calculus.Theoretical Computer Science, 89(1):161{177, 1991.


