
Compositional Proof Systems for Model Checking In�niteState ProcessesMads Dam�Swedish Institute of Computer ScienceFebruary 28, 1995AbstractWe present the �rst compositional proof system for checking processes against formu-las in the modal �-calculus which is capable of handling general in�nite-state processes.The proof system is obtained in a systematic way from the operational semantics of theunderlying process algebra. A non-trivial proof example is given, and the proof systemis shown to be sound in general, and complete for �nite-state processes.1 IntroductionIn this paper we address the problem of verifying modal �-calculus properties of generalin�nite-state processes, and we present what we believe to be the �rst genuinely composi-tional solution to this problem.The value of compositionality in program logics has been well understood ever since theadvent of Hoare logic. Compositionality allows better structuring and decomposition of theveri�cation task, it allows proof reuse, and it allows reasoning about partially instantiatedprograms, thus supporting program synthesis. Even more fundamentally it allows, at leastin principle, veri�cation exercises to be undertaken which are beyond the scope of moreglobal approaches because the set of reachable global states grows in an unbounded manner.The problem of how to build compositional proof systems for concurrent systems, however,has long been recognised as a very di�cult one. Many techniques have been suggestedin the literature, such as rely-guarantee pairs, history variables, quotienting, reduction,phantom moves, simulations, edge propositions, quiescent traces, to name but a few. Thesetechniques, however, give only partial and ad-hoc solutions in that they work only forparticular concurrency primitives, static process networks and, most often, linear time logiconly.Much recent research in the area has focused on process algebra and the modal �-calculus. A large number of algorithms, tableau systems, and proof systems for verifyingprocesses against modal �-calculus speci�cations by some form of global state space explo-ration have been given (c.f. [6, 7, 8, 10, 15, 22] and many others). Compositional accountshave been developed based on some form of quotienting, or reduction (c.f. [16, 3, 2]). Theseapproaches, however, are only applicable for �nite-state processes, or at least when theholding of a property depends only on a �nite portion of a potentially in�nite-state process.Finite-state processes, however, are inadequate as modelling tools in many practical sit-uations. Value- or channel passing, for instance, can cause even the simplest processes to�Work partially supported by ESPRIT BRA project 8130 LOMAPS. Author address: SICS, Box 1263,S-164 28 Kista, Sweden. Email: mfd@sics.se. Phone: +46 8 752 1500. Fax: +46 8 751 72301

become in�nite state. While some decidability results can be obtained in the absence of pro-cess spawning (c.f. [9]), in general the model checking problem becomes undecidable, evenin very sparse fragments of, e.g., CCS [11]. Process spawning, however, is needed in manyapplications: Unbounded bu�ers, dynamic resource or process creation/forking, data typesand higher order features in the �-calculus (c.f.[18]). In fact it is hard to conceive of usefulprogram logics for distributed functional languages such as CML [20], Facile [24], Erlang[4], or PICT [19] that can not deal with process spawning, and indeed the development ofsuch logics is one aim of the research reported here.Because of undecidability, and because the modal �-calculus is closed under negation,�nitary proof systems for model checking general in�nite state processes will necessarilybe incomplete. This, however, does not make the model checking problem go away! Thecurrently prevailing �nite-state approaches (whether they are based on iterative or localtechniques) provide little assistance: They are inadequate for even rather simple in�nitestate problems such as the \counter" example considered below. Here we explore insteada compositional approach. Our aim is to obtain a compositional proof system which is (1)sound, (2) practically useful, (3) powerful enough to prove the kinds of in�nite state problemswe would hope to be able to address, and (4) complete for the �nite state fragment. For (1)and (4) we have positive answers, while more work is needed to answer (2) and (3).Compositionality is addressed by taking a more general view of model checking. Insteadof focusing on closed assertions like j= P : � we look at sequents of the form x1 : �1; :::; xn :�n j= P (x1; :::; xn) : �. That is, properties of the open process term P (x1; :::; xn) arerelativised to properties of its free variables x1; :::; xn. This provides a more general proof-theoretical setting which can be used to give a structural account of recursive properties.This is a fairly easy task for those connectives like ^, _, or the modal operators, thatdepend only on \local" behaviour. For the �xed point operators the problem is much moredi�cult. Here we o�er an approach based on loop detection, generalising approaches to localmodel checking of �nite state processes such as that of Stirling and Walker [22]. To guideus towards a general solution we o�er in this paper a formal proof to show that the CCSprocess Counter = up:(Counter j down:0) after any sequence of consecutive up transitionscan only perform a �nite sequence of consecutive down transitions.An important feature of our approach is that, in contrast to other existing compositionalaccounts, the sequent style proof system we obtain is constructed from the operationalsemantics in quite a general and systematic manner. The proof system contains four separateelements: Structural rules, including a cut-rule, to account for sequent structure; logical rulesthat deal with boolean connectives and recursive formulas; dynamical rules that deal withthe modal operators; and �nally a single rule of discharge that is responsible for detecting\safe" recurrences of sequents. Only the dynamical rules are dependent upon the speci�cprocess algebra under consideration. Moreover the dynamical rules are constructed in a waythat one can easily foresee being automated for a range of process algebras.2 CCSOur use of CCS follows [17] closely. An action, �, is either the invisible action � or a label l.A label is either a (port- or channel-) name a, b, say, or a co-name a, b. Generally a and aare identi�ed. We assume that the set of labels is �nite and ranged over by l0; : : : ; lm. Setsof labels are ranged over by L;K. Agent expressions, E; F , are given as follows:E ::= 0 �:E E + E E j E E n L x �xx:E2

where x (and y) range over agent variables. An agent expression is an agent if it containsno free agent variables. Agents are ranged over by P;Q. Note that we do not consider theCCS renaming operator here since it adds little of interest to the present account. We referto [17] for the operational semantics rules.3 The Modal �-CalculusFormulas in the modal �-calculus involve boolean conjunction and disjunction, modal op-erators indexed by actions, and least and greatest �xed points. In addition equality andinequality of actions are useful (though not required), primarily to give a reasonable accountof the � -indexed box operator. Formulas, ranged over by �; ; , are given by� ::= � = � :� � ^ � [�]� X �X:�where X (Y; Z) ranges over propositional variables. To form �xed point formulas �X:� weneed to require the formal monotonicity condition that all occurrences of X in � are withinthe scope of a even number of negation symbols :. We introduce some abbreviations, mostof which are familiar: � 6= � �= :(� = �) (1)� �= � 6= �� _ �= :(:� ^ :) (2)� � �= :� _ h�i� �= :[�]:� (3)�X:� �= :�X::�[:X=X] (4)8�:� �= ^f�(�) j � an actiongwhere in the last case �(�) = �[�=a] substitutes � for a name a in �, and it is required that� does not have free occurrences of the action a so that action terms like � are avoided.The semantics of formulas is determined by the set of agents k�kV where V is a valuationassigning sets of agents to propositional variables. The semantics is given as follows:k� = �kV = (A if � = �; otherwisek:�kV = fP j P 62 k�kVgk� ^ kV = k�kV \ k kVk[�]�kV = fP j 8P 0: if P �! P 0 then P 0 2 k�kVgkXkV = V(X)k�X:�kV = SfA j A � k�kV [X 7! A]g.Instead of P 2 k�kV we sometimes write j=V P : �, or j= P : � if � is closed. Any closedformula can be rewritten, while preserving semantics, into positive form, using negation onlyas needed by use of the derived operators given by (1){(4) above. The proof system belowuses positive forms extensively. 3

4 SequentsThe basic judgment of the proof system is the sequent.De�nition 4.1 (Sequents, declarations, basic assertions) A sequent is an expression of theform � ` t where � is a sequence of declarations of one of the forms x : � or X = �, and tis a basic assertion of one of the forms X = � or E : �.Sequents are ranged over by s. Declarations of the form X = � are called namings, andif s contains the naming X = � then X is said to name � in s. An occurrence of a variableX to the left of the equality sign in a naming X = � is regarded as binding. Namings areused as constants in [22], and serve to keep track of the unfoldings of �xed point formulaoccurrences in the proof system. We use � as a meta-variable over f�; �g. If X names aformula of the form �Y: in s then X is called a �-variable.Declaration sequences and sequents are subject to an inductively de�ned well-formednessconstraint, in order to ensure that (proposition and process) variables are properly declared.This condition states that variables can be declared at most once, and that for a sequent� ` E : �, if a variable occurs freely in E or in � then it is declared in �, and, for a sequent�1; x : �i;�2 ` E : �, if a variable occurs freely in �i then it is declared in �1.De�nition 4.2 (Sequent semantics)1. The sequent ` P : � is V-true if and only if P 2 k�kV2. The sequent ` X = � is V-true if and only if V(X) = k�kV3. The sequent �; x : � ` t is V-true if and only if for all agent expressions E, if � ` E : �is V-true then so is � ` t[E=x].4. The sequent �; X = � ` t is V-true if and only if � ` t is V [X 7! k�kV]-true.If the sequent s is well-formed then the V-truthhood of s is well-de�ned and independentof V . Notice that the quanti�cation over agent expressions in def. 4.2.3 could equivalentlybe replaced by a quanti�cation over agents.5 Local RulesWe are now in a position to present the proof system. It consists of two subsystems, a localand a global one. We �rst introduce the local subsystem. The local subsystem, shown on�g. 1, is subdivided into three groups: Structural rules governing the use of declarations,logical rules responsible for the left and right introduction of logical operators, and �nallydynamical rules for the modal operators which depend on process structure. The �rst twosets of rules require little comment, coming, as they do, straight from proof theory. Onlynoteworthy points are the use of variables to name �xed point formulas, and that symmetricversions of the ^-Left and _-Right rules have been omitted. Similarly, symmetric versionsof the +-3, j-3, and rules derived from +-2 and the rules for parallel composition, obtainedby systematically exchanging the declarations for x and for y, have been omitted.The rationale behind the dynamical rules is best explained through a little example.Suppose we wish to prove ` P j Q : h�i�, because we suspect that (1) P �! P 0 and (2)j= P 0 j Q : �. Our task is to1. guess a property �1 of P 0 and a property �2 of Q,4

Structural rules:Declaration ��1; t;�2 ` t Cut �1;�2 ` E : � �1; x : �;�2 ` F : �1;�2 ` F [E=x] : Logical rules:::-Right � ` E : �� ` E : ::� ::{Left �1; x : �;�2 ` E : �1; x : ::�;�2 ` E : =-Right �� ` E : � = � =-Left ��1; x : � = �;�2 ` E : (� 6= �)6=-Right �� ` E : � 6= � (� 6= �) 6=-Left ��1; x : � 6= �;�2 ` E : ^-Right � ` E : � � ` E : � ` E : � ^ ^-Left �1; x : �;�2 ` E : �1; x : � ^ ;�2 ` E : _-Right � ` E : �� ` E : � _ _-Left �1; x : �;�2 ` E : �1; x : ;�2 ` E : �1; x : � _ ;�2 ` E : �-Right �; Y = �X:� ` E : Y� ` E : �X:� �-Left �1; Y = �X:�; x : Y;�2 ` E : �1; x : �X:�;�2 ` E : Y -Right � ` Y = �X:� � ` E : �[Y=X]� ` E : YY -Left �1 ` Y = �X:� �1; x : �[Y=X];�2 ` E : �1; x : Y;�2 ` E : Dynamical rules:0-2 � ` 0 : [�]� �:-3 �1; x : �;�2 ` x : �1; x : �;�2 ` �:x : h�i �:-2-1 �1; x : �;�2 ` x : �1; x : �;�2 ` �:x : [�] �:-2-2 �� ` �:E : [�]� (� 6= �)+-3 �1; x : �;�2 ` x : �1; x : h�i�;�2 ` x+ F : h�i +-2 �1; x : �1;�2;�3 ` x : �1;�2; y : �2;�3 ` y : �1; x : [�]�1;�2; y : [�]�2;�3 ` x+ y : [�] j-h�i �1; x : �;�2; y : ;�3 ` x j y : �1; x : h�i�;�2; y : ;�3 ` x j y : h�i j-h� i �1; x : �;�2; y : ;�3 ` x j y : �1; x : hli�;�2; y : hli ;�3 ` x j y : h� ij-[�] �1; x : �1;�2; y : 2;�3 ` x j y : �1; x : �2;�2; y : 1;�3 ` x j y : �1; x : �1 ^ [�]�2;�2; y : 1 ^ [�] 2;�3 ` x j y : [�] (� 6= �)j-[�] �1; x : �2(�);�2; y : 1;�3 ` x j y : �1; x : �1;�2; y : 2(�);�3 ` x j y : �1; x : �2(l0);�2; y : 2(l0);�3 ` x j y : ...�1; x : �2(lm);�2; y : 2(lm);�3 ` x j y : �1; x : �1 ^ 8�:[�]�2(�);�2; y : 1 ^ 8�:[�] 2(�);�3 ` x j y : [�]n-2-1 �� ` E nK : [�] (� 2 K) n-2-2 �1; x : �;�2 ` x nK : �1; x : [�]�;�2 ` x nK : [�] n-3 �1; x : �;�2 ` x nK : �1; x : h�i�;�2 ` x nK : h�i (� 62 K) Fix � ` E[�xx:E=x] : �� ` �xx:E : �Figure 1: Local proof rules5

2. prove ` P : h�i�1 and ` Q : �2,3. prove x1 : �1; x2 : �2 ` x1 j x2 : �, and �nally,4. put (2) and (3) together using two cuts and j-h�i to conclude ` P j Q : h�i�.Comparing with local model checking systems such as Stirling and Walker's [22] this accounthas sacri�ced a subformula property (` P j Q : h�i� is proved in terms of processes havingthe property �) in favour of a subprocess property (` P j Q : h�i� is proved in terms ofproperties holding of the processes P and Q). We regard this as quite natural and reectingclosely the compositional nature of the proof system. We do not expect that any of thetasks (1){(3) can be automated, although this is possible in special cases, in particular forthe case of �nite state processes considered later.Note that some slight modi�cations of the proof system are possible. For instance can arule like �:-3 be formulated as a nullary rule:��1; x : �;�2 ` �:x : h�i�The speci�c formulation chosen here is chosen to avoid side-conditions which would otherwisebe required when we come to consider loop detection. Note also that Fix is just a mildgeneralisation of two rules, one dealing with h�i and the other with [�], that adhere moreclosely to the format of the other dynamical rules.6 An Example ProofIn this section we give an example proof to (1) show the local rules at work, and to (2) serveas a setting for discussing termination conditions. The example proves that the in�nite stateprocess Counter = �xx:up:(x j down:0) satis�es the property � = �X:(�Y:[down]Y)^[up]X ,i.e. after any �nite consecutive sequence of up's only a �nite number of consecutive down'sis possible. We use a goal-directed approach. Thus the initial goal is ` Counter : �. We�rst name �, obtaining the sequentU=� ` Counter : U: (5)We then unfold Counter and U , apply Cut and ^-Right, and arrive at the two subgoalsU=� ` up:(Counter j down:0) : (�Y:[down]Y) (6)U=� ` up:(Counter j down:0) : [up]U: (7)Subgoal (6) is easily handled by naming the �-formula, unfolding, and then applying �:-2-2,so we proceed re�ning subgoal (7). First using �:-2-1 we obtainU=� ` Counter j down:0 : UNow let = [down][down]� ^ [up]�, and by two applications of Cut re�ne to the subgoalsU=� ` Counter : U (8)U=� ` down:0 : (9)U=�; x : U; y : ` x j y : U: (10)6

Of these, (9) is eliminated by ^-Right, �:-2-1 and �:-2-2. For (8) our intention is toterminate because (8) has previously been expanded as (5), and U is a �-variable so termi-nation is safe. This indeed is a rough but basically sound interpretation of the terminationconditions, and proof development at the goal (8) can in fact be terminated. Thus, (10) isall that remains. Now, by unfolding and ^-Right we obtain the subgoalsU=�; x : U; y : ` x j y : �Y:[down]Y (11)U=�; x : U; y : ` x j y : [up]U: (12)We delay consideration of (11) and concentrate on (12). First unfold the left hand occurrenceof U to obtain U=�; x : �Y:[down]Y ^ [up]U; y : ` x j y : [up]U: (13)Now the rule j-[�] applies to reduce to the four subgoalsU=�; x : �Y:[down]Y ^ [up]U; y : ` x : [up]U (14)U=�; x : �Y:[down]Y ^ [up]U; y : ` y : [up]� (15)U=�; x : U; y : ` x j y : U (16)U=�; x : �Y:[down]Y ^ [up]U; y : � ` x j y : U (17)Of these, (14) and (15) are easily proved using ^-l and some simple boolean reasoning. (17)is proved using 6=-Left. Finally, (16) is discharged using (10) since U is a �-variable (!). Wethen need to consider (11). We �rst name the right hand �-formula, letting = �Y:[down]Y :U=�; x : U; y : ; V= ` x j y : V:We next unfold the left hand occurrence of U , and after an application of ^-Left we obtainU=�; x : ; y : ; V= ` x j y : V:Now the left hand �-formula is named too:U=�;W=; x :W; y : ; V= ` x j y : V (18)and V is unfolded: U=�;W=; x :W; y : ; V= ` x j y : [down]V: (19)Unfolding W to the left givesU=�;W=; x : [down]W; y : ; V= ` x j y : [down]V: (20)which reduces through Cut, j-[�], and some logical reasoning to the two subgoalsU=�;W=; x :W; y : ; V= ` x j y : V (21)U=�;W=; x : [down]W; y : [down]�; V= ` x j y : V: (22)We now arrive at a key point in the proof where we wish to discharge (21) with reference tosubgoal (18), because even though the �-variable V to the right of the turnstyle has been7

unfolded from (18) to (21) so has another �-variable, W , to the left of the turnstyle. Thus,intuitively, if we assume the left hand side to be true this will ensure that in fact W , andhence V , will only be unfolded a �nite number of times, and hence termination at the point(21) is safe. As above, this is a rough but basically sound interpretation of the terminationconditions which we go on to explain in the next section. Finally the proof is completed,re�ning (22) by �rst unfolding V and then using j-[�] in a very similar way to the way (19)was dealt with. This is left as an exercise for the reader.7 Side-conditions and Global RulesWe proceed to explain the global rules justifying the discharge of hypotheses at steps (8),(16), and (21) in the previous section.A basic proof structure (b.p.s.) B is a proof tree constructed according to the local proofrules. Basic proof structures may contain occurrence of hypotheses. The global subsystemconsists of a single rule of discharge that determines which occurrences of hypotheses can bedischarged, along the lines suggested in section 6. A proof, then, is a basic proof structurefor which all occurrences of hypotheses have been discharged.To arrive at a sound rule of discharge it is necessary to1. consider the ways formulas are \regenerated" along paths through a basic proof struc-ture, and2. count the number of unfoldings of �-variables.The �rst problem is familiar from most accounts of local �xed point unfolding in the modal�-calculus such as Strett and Emerson [23], or Cleaveland [7], where it is handled using asubformula condition, and Stirling and Walker [22] where it is handled using propositionalconstants. Here the problem is more delicate, due, principally, to the Cut rule which admitsa branching of the regeneration relation which is not otherwise possible. The second problemis due to the fact that we are working with left- and right-handed sequents. Let us anticipatethe soundness proof a little. We prove soundness by assuming a proof to be given and asequent in the proof to be false. Let the sequent concerned by of the form � ` E : X ,X a �-variable. We can then �nd a substitution � validating � and making �(X) falsewhen X is annotated by some suitable ordinal. By applications of Cut this annotation maycause occurrences of X to the left of the turnstyle in some \later" sequent �0 ` E 0 : �0 tobe annotated too. Unfolding speci�c occurrences of X may cause the annotation of thatoccurrence to be decreased. We need to arrive at a contradiction even when �0 ` E 0 : �0 isthe conclusion of a nullary rule, say Declaration. But if the annotation of a X to the leftis less than the annotation of X to the right then there is no guarantee of a contradiction,and soundness may fail.7.1 Colouring, Generation, ActivityThe basic device we use for handling regeneration is the concept of colouring.De�nition 7.1 (Colouring) A colouring of a sequent � ` t is an assignment of distinctcolours to formula occurrences either as in a declaration x : or as � when t has the formE : �.Given a colouring of the conclusion of a local proof rule colourings for the antecedentsare derived. A few examples su�ce to illustrate the general pattern. Consider e.g. the8

rule ^-Right as stated above, and assume a colouring of � ` E : � ^ . The antecedent� ` E : � is coloured by keeping the colouring of � unchanged and colouring � as �^ . Theother antecedent � ` E : is coloured similarly. All other rules except the rule Cut arecoloured in a similar fashion. For Cut let a colouring of the conclusion �1;�2 ` F [E=x] : be given. The antecedent �1;�2 ` E : � is coloured by keeping the colouring of �1 and �2unchanged and colouring � as . The antecedent �1; x : �;�2 ` F : , �nally, is coloured bykeeping the colourings of �1, �2, and unchanged and choosing a new colour for �. Now,a coloured basic proof structure is a b.p.s. B which is coloured according to the above rules.De�nition 7.2 (Generation) Let a coloured basic proof structure B and a sequent s1 in Bbe given. Let � = s1; : : : ; sk be a path downwards from s1 to some other sequent sk in B.Whenever formula occurrences �1 in s1 and �k in sk exists that are coloured with the samecolour then �k is said to generate �1 along �.The term \generates" is chosen since we envisage proofs to be constructed in a bottomup fashion from goal to subgoals. Note that the generation relation is independent of choiceof colouring. The notion of generation is important since it respects activity of variables ina sense which we go on to explain.De�nition 7.3 (Activity) Let s = � ` t be a well-formed sequent and let � be any formula.Then a variable X is said to be active in � (with respect to s) if either X is free in � or elsesome Y is free in �, Y names some in s, and X is active in .Note that well-formedness ensures that the \active-in" relation on variables is a preorder.We impose the following side condition on Cut:Proviso 7.4 Applications of Cut are subject to the condition: For any �-variable X , if Xis active in � then X is also active in .We can now show the following crucial property concerning \preservation of activity":Proposition 7.5 In a b.p.s. B let a path downwards from s to s0 be given. Let � (�0) bean occurrence of a formula in s (s0). If �0 generates �, X is declared in s0, and X is activein � then X is active in �0. 27.2 IndexingWe now turn to the counting of unfoldings. An indexing is a partial assignment of indicesn 2 ! to occurrences of names such that for any sequent � ` t, if two occurrences of X inthe same formula in � or t is given then one is indexed n i� the other one is. Only the rules�-Left, �-Right, Y -Right, Y -Left, Declaration, and Cut are a�ected by indexing.The modi�cations needed are the following:1. �-Left and �-Right: Y is indexed by 0 in both rules.2. Y -Right and Y -Left: The occurrence of Y in the conclusion is indexed by n andoccurrences of Y in the antecedent by n+ 1.3. Declaration: If t has the form X = � then there is no change. If t has the formx : � then if X is an n-indexed �-variable in � to the right of the turnstyle then thecorresponding occurrence of X in � to the left of the turnstyle is indexed by somen0 � n.4. Cut: For any �-variable X , if X is active in � then all occurrences of X in � or areindexed by the same index. 9

7.3 Regeneration and the Rule of DischargeWe can now state the property of regeneration and the rule of discharge.De�nition 7.6 (Regeneration) In a b.p.s. B let a path � downwards from s to s0 be given.Suppose that (1) �0 generates � along �, that (2) � and �0 are identical up to indexing ofvariables, that (3) a variable Y is active in �, that (4) Y names the �xed point formula�X: at s0, and that (5) �0 generates Y along some strict su�x of � such that Y resultsfrom the application of one of the rules Y -Right or Y -Left. Then � is �-regenerated along� (through Y).De�nition 7.7 (Rule of Discharge) Let FV(E) = fx1; : : : ; xkg and lets = �(x1 : �1; : : : ; xk : �k) ` E : �be an occurrence of a hypothesis in a given basic proof structure B. Then s can be dischargedprovided there below s is, up to indexing, an occurrence of a sequents0 = �0(x1 : �1; : : : ; xk : �k) ` E : �such that condition (1) below holds along with one of conditions (2) or (3):1. For all �-variables X with respect to s0, if X is active in � with index n and if X isactive in �i, 1 � i � k, with index n0 then n0 � n.2. � is �-regenerated along the path from s0 to s through some X , say. Then it has tobe the case that for all i : 1 � i � k, if �i is �-regenerated along the path from s0 to sthrough some Y which is active in X then Y = X , and if n (n0) is the index of X in� in s (s0) and if m (m0) is the index of Y in �i in s (s0) then m�m0 � n � n0.3. � is �-regenerated along the path from s0 to s. Then it has to be the case for somei : 1 � i � k, that �i is �-regenerated along the path from s0 to s too. Moreover, forall i : 1 � i � k, if �i is �-regenerated along the path from s0 to s through some Ythen Y is not active in �.8 SoundnessWe prove that if � ` E : � is provable then it is true. The proof uses approximation ordinals.A partial �-approximation � of a sequent s = � ` P : � is a partial annotation of ordinalsto free occurrences of variables X in s such that if X occurs in � then X is a �-variable.It is important to keep apart approximation ordinals and indexing. The latter is a purebook-keeping device designed to keep track of the number of times �-variables are unfoldedas one passes upwards in a proof structure. The semantics of formulas is extended slightlyto take variable declarations and approximations into account by the clausekXk�V = k�(�)Y:�k�V (23)when � contains the declaration X = �Y:� and X is annotated by �.De�nition 8.1 (Truth for substitution and partial approximation) The sequent � ` P : �is true for a substitution � of agent variables to agents, and a partial approximation � ifP� 2 k�k� provided for all x which are free in P , if x : �x is the declaration of x in � then�(x) 2 k�xk�. 10

We now embark on the soundness proof proper. Assume that the sequent s0 = �0 ` E0 :�0 is false for a substitution �0 and partial approximation �0. For simplicity we assume that�0 has no free occurrences of variables. Assume also we have given a proof of �0 ` E0 : �0.We trace an in�nite sequence of the form � = (s0; �0; �0); (s1; �1; �1); : : : such that for all i,si is false for �i and �i, and si is the conclusion of a proof rule instance for which si+1 isan antecedent. By use of approximation ordinals, and using the fact that in�nitely manypoints along � must correspond to hypotheses that have been discharged we can then arriveat a contradiction.Suppose the construction has arrived at the sequent si = �i ` Ei : �i. The followingproperties are maintained invariant:Property 8.2 1. Let any two occurrences of a free variable X in �i be given. If oneoccurrence is annotated by �i they both are, and then the annotations are identical.The same holds for any occurring as part of a declaration x : in �i.2. We assume for all �-variables X that if X is active in both �i and �i such that X isactive in a declaration in �i of a variable which is free in Ei, the active occurrence ofX in �i is indexed by n and approximated by �, and the active occurrence of X in �iis indexed by n0 and approximated by �0, then �0 + n0 � �+ n.To motivate the condition 8.2.2 note that n � n0 counts how many more times X tothe right of the turnstyle has been unfolded than the corresponding occurrence to the left.In some cases, however, unfolding to the left may temporarily outpace unfoldings to theright, violating the invariant temporarily. We postpone discussion of this case until we seeit arising.We show how we can identify (si+1; �i+1; �i+1) such that si+1 is false for �i+1 and �i+1by considering each potential rule in turn.Structural rules. The only circumstance in which Declaration could apply is wheresome �-variable occurrence to the left of the turnstyle is annotated by a smaller approxima-tion ordinal than its corresponding occurrence to the right. However, the invariant conditiongives �0 + n0 � � + n and n0 � n (where �, �0, n and n0 are determined as in 8.2.2), hence�0 � �. Suppose then that si results from an application of the rule Cut. Consider theinstance Cut �01;�02 ` E 0 : �0 �01; x0 : �0;�02 ` F 0 : 0�01;�02 ` F 0[E 0=x0] : 0so that si = �01;�02 ` F 0[E 0=x0] : 0. Assume that(i) �01;�02 ` E 0 : �0 is true for �i and �0i where �0i annotates variables in �01 or �02 as �i, andvariables in �0 as the corresponding variables in 0 in si.(ii) �01; x0 : �0;�02 ` F 0 : 0 is true for the substitution �0i and �0i where{ �0i is the substitution for which �0i(y) = �i(y) whenever y 6= x0 and for which�0i(x0) = E 0�i.{ �0i annotates variable occurrences in �01, �02, and 0 as the corresponding occur-rences in si, it annotates no occurrences of �-variables in �0, and it annotates�-variables in �0 as they are annotated in by �i.From (i) and (ii) it follows that si must be true for �i and �i, hence one of them must fail,and we pick as (si+1; �i+1; �i+1) whichever combination that does fail. Note that, due to the11

side-condition concerning activity for Cut, we ensure that if all �-variables are annotatedin 0 then the same is true for �0. Note also that the invariants are maintained true by thisconstruction. Note thirdly that it is this step in the construction that requires �-variablesto be approximated (hence also indexed) both to the right and to the left of the turnstyle.This situation does not arise for �-variables.Logical rules. The delicate case concerns the rule Y -Left, for Y a �-variable. Let �0 be theannotation of Y . If �0 is a successor ordinal �0 can decremented by 1 without a�ecting theinvariant. However, if �0 is a limit ordinal the invariant may have to be broken. This is thesituation, in particular, when n0 � n| i.e. when the left hand side, due to the application ofY -Left is (temporarily) overtaking the right hand side when counting numbers of unfoldingsof Y . In this situation we need in obtaining �i+1 to replace �0 by some �00 < �0. Any suchchoice of �00 is in principle possible. Choose some such �00 at random, and we argue thatby using a little backtracking we can eventually reinstate the invariant. The strategy is thefollowing: In the context of any subsequent choice of sj with j � i + 1 let n refer to theindex of Y to the right of the turnstyle, and n0 refer to the index of Y in that particulardeclaration which is generated by the occurrence of Y which is currently being unfolded.Whenever n � n0 then we can inspect the invariant to see if it is still broken, and if it is thenwe can backtrack and increment our choice of �00 to reinstate the invariant at that particularpoint. We cannot reach a leaf which is not a discharged occurrence of a hypothesis withoutthis situation having arisen. For the same reason neither can we reach a loop sequent |i.e. a sequent which serves as justi�cation for the discharge of a hypothesis. If we reach adischarged occurrence of a hypothesis then, because of conditions 7.7.1{3, we would knowthat n � n0 so the invariant will have been reinstated. But then the backtracking argumentis completed since we can bound how far into the future we will have to go before we canguarantee that the invariant will have been reinstated. This argument is what motivatescondition 7.7.1.Dynamical rules. These cause no real complications and are left to the reader.Global rules. Finally we need to consider the case where si is a discharged occurrenceof a hypothesis. We then �nd a sequent sj , j � i, which is the loop sequent justifying thedischarge of si. si will have the form si = �i(x1 : �i;1; : : : ; xk : �i;k) ` Ei : �i and sj willhave the form sj = �j(x1 : �i;1; : : : ; xk : �i;k) ` Ei : �i where FV(E) = fx1; : : : ; xkg. Weknow that the invariant holds for sj (and that no subsequent backtracking will modify theannotations of sj). In identifying (si+1; �i+1; �i+1) we wish to replace si by sj keeping �i and�i unchanged. We need to check that the invariant is maintained. Let X be any �-variablewhich is active in �i, indexed nj in sj , ni in si, and annotated by, say, � in si. Further, let Xalso be active in one of the �i;j , indexed n0j in sj , n0i in si, and annotated by �0 in si. Sincethe invariant holds for si we know that �0 + n0i � � + ni. There are two cases: Either X isthe �-variable through which �i is regenerated, and then �0+n0j � �0+n0i�ni+nj � �+njas desired. Otherwise �i is regenerated through some other �- or �-variable. In this casewe know that, since X is active in �i that ni = nj . Moreover by conditions 7.7.2 and 3 weknow that, since X is also active in �i;j , that n0i = n0j too. Hence also here �0 + n0j � �+ njand we have shown the invariant to be maintained. Now (si+1; �i+1; �i+1) can be derivedsince one of the local rules apply.Completing the proof. Having built the in�nite sequence � we �nd a �-variable X whichis in�nitely often regenerated to the right of the turnstyle along �. If � = � a contradictionis obtained since the initial annotation of X is in�nitely often decreased along �. If � = �we �nd a �-variable which is in�nitely often unfolded to the left of the turnstyle along �and a similar argument applies, completing the soundness proof.12

9 Completeness for Finite-state ProcessesWhile we view soundness for general processes as the main contribution of the paper, com-pleteness for �nite-state processes is important as a check that no proof power has acciden-tally been sacri�ced.Theorem 9.1 If P is a �nite-state process and j= P : � then ` P : � is provable.Proof: Theorem 9.1 can be proved by embedding the tableau based model checker ofStirling and Walker [22] into the present setting. Consider the proof system obtained byrestricting attention to sequents � ` P : � where only namings are allowed in �, and wherethe dynamical rules are replaced by the following two global rules:h�i-Right � ` P 0 : �� ` P : h�i� (P �! P)[�]-Right f� ` P 0 : � j P �! P 0g� ` P : [�]�The rule of discharge is modi�ed by allowing a sequent s = � ` P : X to be dischargedwhenever X is a �-variable and there strictly below s is another sequent of the form �0 `P : X . Call the proof system ensuing from these changes the Stirling-Walker system, andwrite � `sw P : � for provability in this system. By soundness and completeness [22] weknow that j= P : � i� `sw P : �. So assume that P is �nite-state and that a proof � of`sw P : � is given. Assume for simplicity that P = P1 j P2. We derive by induction in thesize of � formulas �1 and �2 such that `sw P1 : �1 and `sw P2 : �2 by proofs of size notgreater than the size of �, and x1 : �1; x2 : �2 ` x1 j x2 : � is provable in the compositionalsystem. Once a similar result has been proved for restriction (which is quite simple), it isan easy induction in the size of proof of `sw P : � to show that then ` P : � is provable inthe compositional proof system too, establishing the result.As we traverse � from the root upwards we generate pieces of �1 and �2 in a mannerwhich respects the structure of �. The greatest di�culty is to deal with names. Assumethat the rule Y -Right is applied in � to a sequent, say, � `sw P 01 j P 02 : X , and that� `sw X = �Y: , so that the resulting antecedent is � `sw P 01 j P 02 : [X=Y]. Pick twofresh variables X1 and X2. X1 will be used in �1 and X2 in �2. These variables aregenerated whenever we strictly above the sequent occurrence � ` P 01 j P 02 : X reach asequent occurrence of the form �0 ` P 01 j P 02 : X . Let �01; �02 be the formulas generatedby the sequent occurrence � ` P 01 j P 02 : [X=Y]. Let then �i = �Xi:�0i, i 2 f1; 2g. Byone part of the induction hypothesis, `sw P 0i : �0i can be established from the assumption` P 0i : Xi. Thus `sw P 0i : �i. From the second part of the induction hypothesis we have aproof in the compositional system of x1 : �01; x2 : �02 ` x1 j x2 : [X=Y] from the assumptionx1 : X1; x2 : X2 ` x1 j x2 : X , thus obtaining a proof in the compositional system ofx1 : �1; x2 : �2 ` x1 j x2 : �Y: from no assumptions.This deals with the global part of the construction. For the local part we consider thecase where � `sw P1 j P2 : h�i�. Suppose, e.g., that P1 �! P 01 and � `sw P 01 j P2 : �. Byinduction we �nd �1 and �2 such that `sw P 0i : �i, i 2 f1; 2g, `sw P 02 : �2, and x1 : �1; x2 :�2 ` x1 j x2 : �. But then `sw Pi : h�i�i, i 2 f1; 2g, and x1 : h�i�1; x2 : �2 ` h�i� asrequired. 2Notice that | since model checking in the Stirling-Walker system is decidable for �nite-state processes | the proof of Theorem 9.1 gives an e�cient strategy for building proofs.13

Other strategies can be devised, based on e.g. characteristic formulas. Notice also that theproof makes only limited use of the global rules. Termination is needed for greatest �xedpoints only, and the side-conditions concerning activity and indexing can be eliminatedaltogether in favour of the much simpler side-condition for Cut that � is a closed formula.10 ConclusionA precursor of the present work is [1] where a proof system for a process passing calculus ispresented, though recursive speci�cations are not addressed.The main issues left for future work are analyses of the proof power of the generalproof system, and of its practical usefulness. The former is likely to be a di�cult problem.Usefulness is best determined through experimentation. Constructed, as they are, in asystematic way, the local rules may turn out to be quite natural once practice is built up.Moreover, being compositional the proof system is well suited to support macros and derivedrules. The quite complicated side-conditions, on the other hand, may seem disconcerting.The hope is that most of the technicalities concerning indexing and activity can be hiddenfrom the user, in a vein similar to the handling of e.g. ML type inference, or universes inextended versions of the Calculus of Constructions (c.f. [13].The only completeness criterion we have considered here is weak completeness for �nite-state processes. In practice this is too weak, and there are useful rules which we are unableto derive. Examples are ^-_ distribution (x : � ^ (_) ` x : (� ^) _ (� ^)) andmonotonicity under the modal operators (e.g. x : � ` x : implies x : h�i� ` x : h�i).Maybe the approach using so-called well-described formulas explored in [1] can be used toobtain stronger completeness results.An interesting issue is to compare with the proof system of Hungar [14] who succeedsin dealing with non-trivial statically parallel compositions of context-free processes using aglobal approach. It is quite easy based on the present ideas to develop a sound proof systemfor context-free processes. Is this proof system complete? Another issue is to investigateexactly how general our approach is, for instance by investigating arbitrary process calculispeci�ed in one of the various formats for structured operational semantics (c.f. [5, 12]).Related work in this direction was recently reported by Simpson [21] for the case of Hennessy-Milner logic.Acknowledgements. Thanks are due to Roberto Amadio for numerous discussions onrelated topics.References[1] R. Amadio and M. Dam. Reasoning about higher-order processes. SICS Researchreport RR:94{18, 1994. To appear in Proc. CAAP'95.[2] H. Andersen, C. Stirling, and G. Winskel. A compositional proof system for the modal�-calculus. In Proc. LICS'94, 1994.[3] H. Andersen and G. Winskel. Compositional checking of satisfaction. Formal methodsin System Design, 1(4), 1992.[4] J. Armstrong, R. Virding, and M. Williams. Concurrent Programming in Erlang.Prentice-Hall International (UK) Ltd., 1993.14

[5] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can't be traced: Preliminary report.In Proc. 15th POPL, pages 229{239, 1988.[6] J. Brad�eld and C. Stirling. Local model checking for in�nite state spaces. TheoreticalComputer Science, 96:157{174, 1992.[7] R. Cleaveland. Tableau-based model checking in the propositional mu-calculus. ActaInformatica, 27:725{747, 1990.[8] R. Cleaveland, M. Dreim�uller, and B. Ste�en. Faster model checking for the modalmu-calculus. In Proc. CAV'92, Lecture Notes in Computer Science, 663:383{394, 1992.[9] M. Dam. Model checking mobile processes (full version). SICS report RR 94:1, 1994.Prel. version appeared in Proc. Concur'93, LNCS 715, pp. 22{36.[10] E. A. Emerson and C. Lei. E�cient model checking in fragments of the propositionalmu-calculus. In Proc. LICS'86, pages 267{278, 1986.[11] J. Esparza. Decidability of model checking for in�nite-state concurrent systems.Manuscript, 1995.[12] J. F. Groote and F. W. Vaandrager. Structured operational semantics and bisimulationas a congruence. Information and Computation, 100:202{260, 1992.[13] R. Harper and R. Pollack. Type checking with universes. Theoretical Computer Science,89:107{136, 1991.[14] H. Hungar. Local model checking for parallel compositions of context-free processes.In Proc. CONCUR'94, Lecture Notes in Computer Science, 836:114{128, 1994.[15] K. G. Larsen. E�cient local correctness checking. In Proc. CAV'92, Lecture Notes inComputer Science, 663, 1992.[16] K. G. Larsen and L. Xinxin. Compositionality through an operational semantics ofcontexts. Journal of Logic and Computation, 1:761{795, 1991.[17] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.[18] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Infor-mation and Computation, 100(1):1{40 and 41{77, 1992.[19] B. C. Pierce, D. Remy, and D. N. Turner. Pict: An experiment in concurrent languagedesign. Manuscript, available from ftp.dcs.ed.ac.uk/pub/bcp/pict.tar.Z, 1994.[20] J. H. Reppy. CML: A higher-order concurrent language. In Proc. ACM SIGPLAN'91,1991.[21] A. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for an arbi-trary GSOS. Manuscript. To appear in Proc. LICS'95, 1995.[22] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. TheoreticalComputer Science, 89:161{177, 1991.[23] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for thepropositional mu-calculus. Information and Computation, 81:249{264, 1989.[24] B. Thomsen, L. Leth, S. Prasad, T.-M. Kuo, A. Kramer, F. Knabe, and A. Giacalone.Facile antigua release programming guide. Tech. rep. ECRC{93{20, 1993.15

