Compositional Proof Systems for Model Checking Infinite
State Processes

Mads Dam*

Swedish Institute of Computer Science

February 28, 1995

Abstract

We present the first compositional proof system for checking processes against formu-
las in the modal p-calculus which is capable of handling general infinite-state processes.
The proof system is obtained in a systematic way from the operational semantics of the
underlying process algebra. A non-trivial proof example is given, and the proof system
1s shown to be sound in general, and complete for finite-state processes.

1 Introduction

In this paper we address the problem of verifying modal p-calculus properties of general
infinite-state processes, and we present what we believe to be the first genuinely composi-
tional solution to this problem.

The value of compositionality in program logics has been well understood ever since the
advent of Hoare logic. Compositionality allows better structuring and decomposition of the
verification task, it allows proof reuse, and it allows reasoning about partially instantiated
programs, thus supporting program synthesis. Even more fundamentally it allows, at least
in principle, verification exercises to be undertaken which are beyond the scope of more
global approaches because the set of reachable global states grows in an unbounded manner.
The problem of how to build compositional proof systems for concurrent systems, however,
has long been recognised as a very difficult one. Many techniques have been suggested
in the literature, such as rely-guarantee pairs, history variables, quotienting, reduction,
phantom moves, simulations, edge propositions, quiescent traces, to name but a few. These
techniques, however, give only partial and ad-hoc solutions in that they work only for
particular concurrency primitives, static process networks and, most often, linear time logic
only.

Much recent research in the area has focused on process algebra and the modal p-
calculus. A large number of algorithms, tableau systems, and proof systems for verifying
processes against modal p-calculus specifications by some form of global state space explo-
ration have been given (c.f. [6, 7, 8, 10, 15, 22] and many others). Compositional accounts
have been developed based on some form of quotienting, or reduction (c.f. [16, 3, 2]). These
approaches, however, are only applicable for finite-state processes, or at least when the
holding of a property depends only on a finite portion of a potentially infinite-state process.

Finite-state processes, however, are inadequate as modelling tools in many practical sit-
uations. Value- or channel passing, for instance, can cause even the simplest processes to

*Work partially supported by ESPRIT BRA project 8130 LOMAPS. Author address: SICS, Box 1263,
S-164 28 Kista, Sweden. Email: mfd@sics.se. Phone: 446 8 752 1500. Fax: +46 8 751 7230

become infinite state. While some decidability results can be obtained in the absence of pro-
cess spawning (c.f. [9]), in general the model checking problem becomes undecidable, even
in very sparse fragments of, e.g., CCS [11]. Process spawning, however, is needed in many
applications: Unbounded buffers, dynamic resource or process creation/forking, data types
and higher order features in the m-calculus (c.f.[18]). In fact it is hard to conceive of useful
program logics for distributed functional languages such as CML [20], Facile [24], Erlang
[4], or PICT [19] that can not deal with process spawning, and indeed the development of
such logics is one aim of the research reported here.

Because of undecidability, and because the modal p-calculus is closed under negation,
finitary proof systems for model checking general infinite state processes will necessarily
be incomplete. This, however, does not make the model checking problem go away! The
currently prevailing finite-state approaches (whether they are based on iterative or local
techniques) provide little assistance: They are inadequate for even rather simple infinite
state problems such as the “counter” example considered below. Here we explore instead
a compositional approach. Our aim is to obtain a compositional proof system which is (1)
sound, (2) practically useful, (3) powerful enough to prove the kinds of infinite state problems
we would hope to be able to address, and (4) complete for the finite state fragment. For (1)
and (4) we have positive answers, while more work is needed to answer (2) and (3).

Compositionality is addressed by taking a more general view of model checking. Instead
of focusing on closed assertions like = P : ¢ we look at sequents of the form xy : ¢y, ..., 2, :
¢n = P(z1,...,2,) + ¢. That is, properties of the open process term P(z1,...,z,) are
relativised to properties of its free variables zq, ..., 2,. This provides a more general proof-
theoretical setting which can be used to give a structural account of recursive properties.
This is a fairly easy task for those connectives like A, V, or the modal operators, that
depend only on “local” behaviour. For the fixed point operators the problem is much more
difficult. Here we offer an approach based on loop detection, generalising approaches to local
model checking of finite state processes such as that of Stirling and Walker [22]. To guide
us towards a general solution we offer in this paper a formal proof to show that the CCS
process Counter = up.(Counter | down.0) after any sequence of consecutive up transitions
can only perform a finite sequence of consecutive down transitions.

An important feature of our approach is that, in contrast to other existing compositional
accounts, the sequent style proof system we obtain is constructed from the operational
semantics in quite a general and systematic manner. The proof system contains four separate
elements: Structural rules, including a cut-rule, to account for sequent structure; logical rules
that deal with boolean connectives and recursive formulas; dynamical rules that deal with
the modal operators; and finally a single rule of discharge that is responsible for detecting
“safe” recurrences of sequents. Only the dynamical rules are dependent upon the specific
process algebra under consideration. Moreover the dynamical rules are constructed in a way
that one can easily foresee being automated for a range of process algebras.

2 CCS

Our use of CCS follows [17] closely. An action, «, is either the invisible action 7 or a label .
A label is either a (port- or channel-) name a, b, say, or a co-name @, b. Generally @ and «a
are identified. We assume that the set of labels is finite and ranged over by ly,....[,. Sets
of labels are ranged over by L, K. Agent expressions, F, F, are given as follows:

E:=0|a.E|E+E|E|E|E\L|2|fixe.E

where z (and y) range over agent variables. An agent expression is an agent if it contains
no free agent variables. Agents are ranged over by P, (). Note that we do not consider the
CCS renaming operator here since it adds little of interest to the present account. We refer
to [17] for the operational semantics rules.

3 The Modal y-Calculus

Formulas in the modal p-calculus involve boolean conjunction and disjunction, modal op-
erators indexed by actions, and least and greatest fixed points. In addition equality and
inequality of actions are useful (though not required), primarily to give a reasonable account
of the T-indexed box operator. Formulas, ranged over by ¢,1, v, are given by

pu=a=0|-0¢|lons]|lae]| X |vX.e

where X (Y, 7) ranges over propositional variables. To form fixed point formulas v.X.¢ we
need to require the formal monotonicity condition that all occurrences of X in ¢ are within
the scope of a even number of negation symbols =. We introduce some abbreviations, most
of which are familiar:

a#f 2 ~(a=p) (1)
i 2 a#a
oV 2 A(=p A) (2)
$OY 2 =gV
(@) = =la]-o (3)
pX.p 2 wX.—g[-X/X] (4)
Va.¢ = /\{(b(a) | & an action}

where in the last case ¢(a) = ¢[a/a] substitutes a for a name a in ¢, and it is required that

¢ does not have free occurrences of the action @ so that action terms like 7 are avoided.
The semantics of formulas is determined by the set of agents ||¢||V where V is a valuation

assigning sets of agents to propositional variables. The semantics is given as follows:

B A ifa=p
lor = Bl[V = {) otherwise

=V ={P| P &llolIV}

o AV = o[V (2]

lla]o||lV = {P |VYP".if P> P’ then P’ € ||¢||V}
X[V =V(X)

v X0V =U{A[AC [|9[|V[X — A}.

Instead of P € ||¢]|V we sometimes write Fy P : ¢, or |= P : ¢ if ¢ is closed. Any closed
formula can be rewritten, while preserving semantics, into positive form, using negation only
as needed by use of the derived operators given by (1)-(4) above. The proof system below
uses positive forms extensively.

4 Sequents
The basic judgment of the proof system is the sequent.

Definition 4.1 (Sequents, declarations, basic assertions) A sequent is an expression of the
form I' F ¢ where I is a sequence of declarations of one of the forms x : ¢ or X = ¢, and ¢
is a basic assertion of one of the forms X = ¢ or F : ¢.

Sequents are ranged over by s. Declarations of the form X = ¢ are called namings, and
if s contains the naming X = ¢ then X is said to name ¢ in s. An occurrence of a variable
X to the left of the equality sign in a naming X = ¢ is regarded as binding. Namings are
used as constants in [22], and serve to keep track of the unfoldings of fixed point formula
occurrences in the proof system. We use o as a meta-variable over {v,u}. If X names a
formula of the form oY.%) in s then X is called a o-variable.

Declaration sequences and sequents are subject to an inductively defined well-formedness
constraint, in order to ensure that (proposition and process) variables are properly declared.
This condition states that variables can be declared at most once, and that for a sequent
I'F E: ¢, if a variable occurs freely in F or in ¢ then it is declared in I', and, for a sequent
I'y,2: ¢,y F FE ¢, if a variable occurs freely in ¢; then it is declared in I'y.

Definition 4.2 (Sequent semantics)
1. The sequent - P : ¢ is V-true if and only if P € ||¢||V
2. The sequent - X = ¢ is V-true if and only if V(X)) = ||¢||V

3. The sequent I',z : ¢ - ¢ is V-true if and only if for all agent expressions E,if I' - F : ¢
is V-true then sois I' F {[E/z].

4. The sequent I', X = ¢ &t is V-true if and only if I' F ¢ is V[.X — [|¢[|V]-true.

If the sequent s is well-formed then the V-truthhood of s is well-defined and independent
of V. Notice that the quantification over agent expressions in def. 4.2.3 could equivalently
be replaced by a quantification over agents.

5 Local Rules

We are now in a position to present the proof system. It consists of two subsystems, a local
and a global one. We first introduce the local subsystem. The local subsystem, shown on
fig. 1, is subdivided into three groups: Structural rules governing the use of declarations,
logical rules responsible for the left and right introduction of logical operators, and finally
dynamical rules for the modal operators which depend on process structure. The first two
sets of rules require little comment, coming, as they do, straight from proof theory. Only
noteworthy points are the use of variables to name fixed point formulas, and that symmetric
versions of the A-LEFT and V-RIGHT rules have been omitted. Similarly, symmetric versions
of the +-<, |-, and rules derived from +-0 and the rules for parallel composition, obtained
by systematically exchanging the declarations for # and for y, have been omitted.

The rationale behind the dynamical rules is best explained through a little example.
Suppose we wish to prove - P | @ : (a)¢, because we suspect that (1) P = P’ and (2)
E P |Q:¢. Our task is to

1. guess a property ¢, of P’ and a property ¢ of @,

CuT Fl,le—E:qb F1,$Z¢),F2|_FZ’L/)

DECLARATION EYRAVISE [, ToF F[E/x]: 4

Logical rules:
rEE:¢ B Iy,x:6,IsFE 9
TR T e T T e L B g
=-Ricur I'FE:a=a =-LerT Fyye:a=0T:FE ¢ (@ #5)
#-RIGHT Fr-FE:a#4 (o #5) #-LEFT M,z:a#aloFE: ¢
I'FE:¢ TEHE:Y Fy,z:¢, 2 E:xy
A-RiGHT TFE 60 NIRRT e A T F By
'FE: ¢ Fy,z:¢, o E:y T,y T2k E: iy
V-RIGHT T E vy v-LEFT Ty 2 6V Tok Eivy
I'Y=0cX¢FFE:Y I, Y=0X¢,2 .Y IoFE ¢
o-RIGHT TFE oX.d o-LEFT T,z 0X 6 ToFE: 0
THY =0X.¢ TFE:$[Y/X]
Y-RIGHT TFE vV
Y =0X¢ Ti,2:¢[Y/X],Tak E: ¢
Y-Lerr Tz V.ToF E 0
Dynamical rules:
Iy,x:6,TsFx: %
o - _
0 ['+0:[a]¢ o= T,2:9,Ta bk ax: {a)y
L,z Tok a9 .
_O- _O-
a.-0-1 [,2:6,Tab aa: o]y a.-0-2 I'ta.F:[f¢ (a#)
Lo lyoz:gIhba:vy 4O Pyz:¢g, o, Isb e Iy Doy Isby o
T,z {a)g, Tok o+ F:{a)y [y, a: [a)¢r,Ta,y: [a]de, Tt a+y: [a]y
|—<OZ> F1,$:¢,F2,y:1/),r3l_l‘|y:'}/ |—<T> F1’$:¢’F2’y:_¢’r3'_x|y:7
Ty, : (), Ty, Tab x|y {a)y Ty,2: (0@, Ta,y: (D, Taba|y:{r)y
I-[a] Li,2:01,0ay ¢, sk a]yiy Tioide, Doy, sk afy:y (0 4 7)
L,z 91 Aa]gs, Do,y i Alaldps, Tz b x|y i [ay
L2 ¢a(r), Doy i, sk x|y iy
Pizign, Tayiha(r), stz lyy
Ui,z ¢a(lo), T2,y ¥a(lo), Tsb 2y 1y
0] Uiz ¢o(lm), Loy a(lm) sk x|y y
[y, 2 g1 AVa[a]ga(a), Ta,y 0 s AVBBIY2(B), Is b x|y [r]y
. . Ty,o:0,ToFa\K ¢
_O- (_O-
\-B-1 't E\K: [« (o € K) \-B-2 [y, a:[a]¢,Tat a2\ K : o]y
\-0 Iy,o:6,ToFa\K: ¢ (0 ¢ K) Frx 't Plfixe.F/z]: ¢

Iy, z:{a)p, TaFa\ K :{a)y 't fixe. F: ¢

Figure 1: Local proof rules

2. prove F P:{a)¢r and F Q : ¢g,
3. prove @y : ¢1, 29 P2 b xy | 231 b, and finally,
4. put (2) and (3) together using two cuts and |-(a) to conclude - P | @ : (a)¢.

Comparing with local model checking systems such as Stirling and Walker’s [22] this account
has sacrificed a subformula property (F P | Q) : (a)¢ is proved in terms of processes having
the property ¢) in favour of a subprocess property (- P | @ : (a)¢ is proved in terms of
properties holding of the processes P and (). We regard this as quite natural and reflecting
closely the compositional nature of the proof system. We do not expect that any of the
tasks (1)—(3) can be automated, although this is possible in special cases, in particular for
the case of finite state processes considered later.

Note that some slight modifications of the proof system are possible. For instance can a
rule like a.-& be formulated as a nullary rule:

I',z: 9,y Fax: (a)p

The specific formulation chosen here is chosen to avoid side-conditions which would otherwise
be required when we come to consider loop detection. Note also that Fix is just a mild
generalisation of two rules, one dealing with (o) and the other with [a], that adhere more
closely to the format of the other dynamical rules.

6 An Example Proof

In this section we give an example proof to (1) show the local rules at work, and to (2) serve
as a setting for discussing termination conditions. The example proves that the infinite state
process Counter = fixz.up.(x | down.0) satisfies the property ¢ = v X.(uY.[down]Y)A[up] X,
i.e. after any finite consecutive sequence of up’s only a finite number of consecutive down’s
is possible. We use a goal-directed approach. Thus the initial goal is = Counter : ¢. We
first name ¢, obtaining the sequent

U=¢ t Counter : U. (5)
We then unfold C'ounter and U, apply CuT and A-RIGHT, and arrive at the two subgoals

U=¢ F up.(Counter | down.0) : (pY.[down]Y) (6)
U=¢ F up.(Counter | down.0) : [up|U. (7)

Subgoal (6) is easily handled by naming the u-formula, unfolding, and then applying a.-0-2,
so we proceed refining subgoal (7). First using a.-0O-1 we obtain

U=¢ + Counter | down.0 : U
Now let ¢ = [down][down]ff A [up]ff, and by two applications of CUT refine to the subgoals

U=¢ F Counter : U
U=¢ F down.0 : ¢
U=¢,z:Uyy:pta|y:U. (

=~~~
o O
~— e

Of these, (9) is eliminated by A-RIGHT, a.-O-1 and «.-0-2. For (8) our intention is to
terminate because (8) has previously been expanded as (5), and U is a v-variable so termi-
nation is safe. This indeed is a rough but basically sound interpretation of the termination
conditions, and proof development at the goal (8) can in fact be terminated. Thus, (10) is
all that remains. Now, by unfolding and A-RIGHT we obtain the subgoals

U=¢,z:Uyy: ok a|y:pY.[down]Y (11)
U=¢,z:Uy:ota|y:lup]U. (12)

We delay consideration of (11) and concentrate on (12). First unfold the left hand occurrence
of U to obtain
U=¢,z : pY.[down]Y Afup|U,y: ¢t x| y:[up]U. (13)

Now the rule |-[«] applies to reduce to the four subgoals

U=¢,z : pY.[down]Y Afup|U,y: ot a:[up|lU

U=¢,z : pY.[downlY Alup|U,y: & y: [uplff

U=¢,z:Uyy:oba|y:U (16)
U=¢,z : pY.[down]Y Afup|lU,y: ffra|y: U
(17)

Of these, (14) and (15) are easily proved using A-L and some simple boolean reasoning. (17)
is proved using #-LEFT. Finally, (16) is discharged using (10) since U is a v-variable (!). We
then need to consider (11). We first name the right hand p-formula, letting v = pY.[down]Y:

U=¢,z:Uy:p,V=yFal|y:V.
We next unfold the left hand occurrence of U, and after an application of A-LEFT we obtain
U=¢,x:y,y:p,V=yFaly:V.
Now the left hand p-formula is named too:
U=p, W=y, :W,y:p,V=akFa|y:V (18)
and V is unfolded:
U=¢,W=vy,x:W,y:p,V=yF a|y:|[down]V. (19)
Unfolding W to the left gives
U=¢,W=~,x:[down]W,y:,V=yF x|y : [down]V. (20)
which reduces through CuT, |-[a], and some logical reasoning to the two subgoals

U=¢p, W=~y :W,y:p,V=yFa|y:V (21)
U=¢,W=~,x: [down]W,y: [down|ff,V=yFa|y: V. (22)

We now arrive at a key point in the proof where we wish to discharge (21) with reference to
subgoal (18), because even though the p-variable V' to the right of the turnstyle has been

unfolded from (18) to (21) so has another p-variable, W, to the left of the turnstyle. Thus,
intuitively, if we assume the left hand side to be true this will ensure that in fact W, and
hence V', will only be unfolded a finite number of times, and hence termination at the point
(21) is safe. As above, this is a rough but basically sound interpretation of the termination
conditions which we go on to explain in the next section. Finally the proof is completed,
refining (22) by first unfolding V' and then using |-[a] in a very similar way to the way (19)
was dealt with. This is left as an exercise for the reader.

7 Side-conditions and Global Rules

We proceed to explain the global rules justifying the discharge of hypotheses at steps (8),
(16), and (21) in the previous section.

A basic proof structure (b.p.s.) B is a proof tree constructed according to the local proof
rules. Basic proof structures may contain occurrence of hypotheses. The global subsystem
consists of a single rule of discharge that determines which occurrences of hypotheses can be
discharged, along the lines suggested in section 6. A proof, then, is a basic proof structure
for which all occurrences of hypotheses have been discharged.

To arrive at a sound rule of discharge it is necessary to

1. consider the ways formulas are “regenerated” along paths through a basic proof struc-
ture, and

2. count the number of unfoldings of v-variables.

The first problem is familiar from most accounts of local fixed point unfolding in the modal
p-calculus such as Strett and Emerson [23], or Cleaveland [7], where it is handled using a
subformula condition, and Stirling and Walker [22] where it is handled using propositional
constants. Here the problem is more delicate, due, principally, to the CuT rule which admits
a branching of the regeneration relation which is not otherwise possible. The second problem
is due to the fact that we are working with left- and right-handed sequents. Let us anticipate
the soundness proof a little. We prove soundness by assuming a proof to be given and a
sequent in the proof to be false. Let the sequent concerned by of the form I' F £ : X,
X a v-variable. We can then find a substitution o validating I' and making o(X) false
when X is annotated by some suitable ordinal. By applications of CUT this annotation may
cause occurrences of X to the left of the turnstyle in some “later” sequent I - E’ : ¢’ to
be annotated too. Unfolding specific occurrences of X may cause the annotation of that
occurrence to be decreased. We need to arrive at a contradiction even when IV F E’: ¢ is
the conclusion of a nullary rule, say DECLARATION. But if the annotation of a X to the left
is less than the annotation of X to the right then there is no guarantee of a contradiction,
and soundness may fail.

7.1 Colouring, Generation, Activity

The basic device we use for handling regeneration is the concept of colouring.

Definition 7.1 (Colouring) A colouring of a sequent I' I ¢ is an assignment of distinct
colours to formula occurrences either as % in a declaration z : % or as ¢ when ¢ has the form

E .

Given a colouring of the conclusion of a local proof rule colourings for the antecedents
are derived. A few examples suffice to illustrate the general pattern. Consider e.g. the

rule A-RIGHT as stated above, and assume a colouring of I' H F : ¢ A ©». The antecedent
I'F F : ¢ is coloured by keeping the colouring of I' unchanged and colouring ¢ as ¢ A1. The
other antecedent I' = F : ¢ is coloured similarly. All other rules except the rule CuT are
coloured in a similar fashion. For CuT let a colouring of the conclusion I'y,I'y F F[E /z] : ¢
be given. The antecedent I'y,I'; = F : ¢ is coloured by keeping the colouring of I'y and I'y
unchanged and colouring ¢ as 1. The antecedent I'y, 2 : ¢, 'y F F 1 ¢, finally, is coloured by
keeping the colourings of I'y, I's, and % unchanged and choosing a new colour for ¢. Now,
a coloured basic proof structure is a b.p.s. B which is coloured according to the above rules.

Definition 7.2 (Generation) Let a coloured basic proof structure B and a sequent s; in B
be given. Let II = s1,...,s; be a path downwards from s; to some other sequent s in B.
Whenever formula occurrences ¢4 in s; and ¢y in s exists that are coloured with the same
colour then ¢ is said to generate ¢y along Il.

The term “generates” is chosen since we envisage proofs to be constructed in a bottom
up fashion from goal to subgoals. Note that the generation relation is independent of choice
of colouring. The notion of generation is important since it respects activity of variables in
a sense which we go on to explain.

Definition 7.3 (Activity) Let s = I' - ¢ be a well-formed sequent and let ¢ be any formula.
Then a variable X is said to be active in ¢ (with respect to s) if either X is free in ¢ or else
some Y is free in ¢, Y names some % in s, and X is active in .

Note that well-formedness ensures that the “active-in” relation on variables is a preorder.
We impose the following side condition on CUT:

Proviso 7.4 Applications of CUT are subject to the condition: For any v-variable X, if X
is active in ¢ then X is also active in .

We can now show the following crucial property concerning “preservation of activity”:

Proposition 7.5 In a b.p.s. B let a path downwards from s to s’ be given. Let ¢ (¢') be
an occurrence of a formula in s (s'). If ¢' generates ¢, X is declared in §', and X is active
in ¢ then X is active in ¢'. O

7.2 Indexing

We now turn to the counting of unfoldings. An indexing is a partial assignment of indices
n € w to occurrences of names such that for any sequent I' - ¢, if two occurrences of X in
the same formula in I' or ¢ is given then one is indexed n iff the other one is. Only the rules
o-LEFT, 0-RIGHT, Y-RIGHT, Y-LEFT, DECLARATION, and CUT are affected by indexing.
The modifications needed are the following;:

1. o-LEFT and o-RIGHT: Y is indexed by 0 in both rules.

2. Y-RiGHT and Y-LEFT: The occurrence of Y in the conclusion is indexed by n and
occurrences of Y in the antecedent by n + 1.

3. DEcLARATION: If ¢ has the form X = ¢ then there is no change. If ¢ has the form
x : ¢ then if X is an n-indexed v-variable in ¢ to the right of the turnstyle then the
corresponding occurrence of X in ¢ to the left of the turnstyle is indexed by some
n' < n.

4. Cut: For any v-variable X, if X is active in ¢ then all occurrences of X in ¢ or ¢ are
indexed by the same index.

7.3 Regeneration and the Rule of Discharge

We can now state the property of regeneration and the rule of discharge.

Definition 7.6 (Regeneration) In a b.p.s. B let a path II downwards from s to s’ be given.
Suppose that (1) ¢’ generates ¢ along II, that (2) ¢ and ¢ are identical up to indexing of
variables, that (3) a variable Y is active in ¢, that (4) Y names the fixed point formula
oX.p at §', and that (5) ¢’ generates Y along some strict suffix of Il such that Y results
from the application of one of the rules Y-RIGHT or Y-LEFT. Then ¢ is o-regenerated along
IT (through Y).

Definition 7.7 (Rule of Discharge) Let FV(£) = {21,..., 25} and let

s=T(x1: 01, ., 0p)F E ¢

be an occurrence of a hypothesis in a given basic proof structure B. Then s can be discharged
provided there below s is, up to indexing, an occurrence of a sequent

sS=T(z1:¢1,...,ap :) E: ¢
such that condition (1) below holds along with one of conditions (2) or (3):

1. For all v-variables X with respect to s, if X is active in ¢ with index n and if X is
active in ¢;, 1 < ¢ < k, with index n’ then n’ < n.

2. ¢ is v-regenerated along the path from s’ to s through some X, say. Then it has to
be the case that for all i :1 < i < k, if ¢; is v-regenerated along the path from s’ to s
through some Y which is active in X then Y = X, and if n (n') is the index of X in
¢ in s (s') and if m (m’) is the index of ¥ in ¢; in s (&') then m —m' < n —n'.

3. ¢ is p-regenerated along the path from s’ to s. Then it has to be the case for some
i:1 <1<k, that ¢; is u-regenerated along the path from s’ to s too. Moreover, for
all i : 1 < i <k, if ¢; is v-regenerated along the path from s’ to s through some YV
then Y is not active in ¢.

8 Soundness

We prove that if I' = F : ¢ is provable then it is true. The proof uses approximation ordinals.
A partial o-approximation ¢ of a sequent s = I' - P : ¢ is a partial annotation of ordinals
to free occurrences of variables X in s such that if X occurs in ¢ then X is a v-variable.
It is important to keep apart approximation ordinals and indexing. The latter is a pure
book-keeping device designed to keep track of the number of times v-variables are unfolded
as one passes upwards in a proof structure. The semantics of formulas is extended slightly
to take variable declarations and approximations into account by the clause

IX|TV = [|o")Y.g||TV (23)
when I' contains the declaration X = oY.¢ and X is annotated by x.

Definition 8.1 (Truth for substitution and partial approximation) The sequent I' - P : ¢
is true for a substitution o of agent variables to agents, and a partial approzimation ¢ if
Po € ||¢||I' provided for all which are free in P, if z : ¢, is the declaration of # in I' then

o(z) € ||¢z||T

10

We now embark on the soundness proof proper. Assume that the sequent so = I'g - Fy :
¢g is false for a substitution oy and partial approximation ¢g. For simplicity we assume that
¢o has no free occurrences of variables. Assume also we have given a proof of I'g F Fy : ¢g.
We trace an infinite sequence of the form Il = (sg,00,t0),(s1,01,¢1), ... such that for all 7,
s; is false for o; and ¢;, and s; is the conclusion of a proof rule instance for which s;41 is
an antecedent. By use of approximation ordinals, and using the fact that infinitely many
points along II must correspond to hypotheses that have been discharged we can then arrive
at a contradiction.

Suppose the construction has arrived at the sequent s; = I'; - F; : ¢;. The following
properties are maintained invariant:

Property 8.2 1. Let any two occurrences of a free variable X in ¢; be given. If one
occurrence is annotated by v; they both are, and then the annotations are identical.
The same holds for any b occurring as part of a declaration x : 1 in I';.

2. We assume for all v-variables X that if X is active in both ¢; and I'; such that X is
active in a declaration in I'; of a variable which is free in F;, the active occurrence of
X in ¢; is indexed by n and approximated by k, and the active occurrence of X in I';
is indexed by n' and approximated by k', then k' +n' > k + n.

To motivate the condition 8.2.2 note that n — n’ counts how many more times X to
the right of the turnstyle has been unfolded than the corresponding occurrence to the left.
In some cases, however, unfolding to the left may temporarily outpace unfoldings to the
right, violating the invariant temporarily. We postpone discussion of this case until we see
it arising.

We show how we can identify (s;41,041,¢41) such that s;4q is false for 0,41 and ¢;41
by considering each potential rule in turn.

Structural rules. The only circumstance in which DECLARATION could apply is where
some v-variable occurrence to the left of the turnstyle is annotated by a smaller approxima-
tion ordinal than its corresponding occurrence to the right. However, the invariant condition
gives k' + n' > K4+ n and n’ < n (where k, k', n and n’ are determined as in 8.2.2), hence
k' > k. Suppose then that s; results from an application of the rule CuT. Consider the
instance

T E ¢ 1,2 ¢/, T F oy

Ty F P

so that s; = I'|, ', F F'[E’/2'] - /. Assume that

Cutr

(i) I, IS = B ¢/ is true for o; and ¢, where ¢} annotates variables in I} or I} as ¢;, and
variables in ¢’ as the corresponding variables in ¢ in s;.

(ii) I, 2" : ¢/, IL B F' - 4’ is true for the substitution ¢! and ¢} where

— o/ is the substitution for which o!(y) = o;(y) whenever y # 2’ and for which
1O
oi(z") = Fo;.

— ¢} annotates variable occurrences in T'j, T), and ¢’ as the corresponding occur-

rences in s;, it annotates no occurrences of p-variables in ¢, and it annotates

v-variables in ¢’ as they are annotated in v by ;.

From (i) and (ii) it follows that s; must be true for o; and ¢;, hence one of them must fail,
and we pick as (8,41, 041, ti41) whichever combination that does fail. Note that, due to the

11

side-condition concerning activity for CuT, we ensure that if all v-variables are annotated
in ¢’ then the same is true for ¢’. Note also that the invariants are maintained true by this
construction. Note thirdly that it is this step in the construction that requires r-variables
to be approximated (hence also indexed) both to the right and to the left of the turnstyle.
This situation does not arise for p-variables.

Logical rules. The delicate case concerns the rule Y-LEFT, for Y a v-variable. Let &’ be the
annotation of Y. If ' is a successor ordinal s’ can decremented by 1 without affecting the
invariant. However, if «’ is a limit ordinal the invariant may have to be broken. This is the
situation, in particular, when n’ > n — i.e. when the left hand side, due to the application of
Y-LEFT is (temporarily) overtaking the right hand side when counting numbers of unfoldings
of Y. In this situation we need in obtaining ;411 to replace £’ by some " < k. Any such
choice of " is in principle possible. Choose some such " at random, and we argue that
by using a little backtracking we can eventually reinstate the invariant. The strategy is the
following: In the context of any subsequent choice of s; with j > 7 + 1 let n refer to the
index of Y to the right of the turnstyle, and n’ refer to the index of Y in that particular
declaration which is generated by the occurrence of Y which is currently being unfolded.
Whenever n > n’/ then we can inspect the invariant to see if it is still broken, and if it is then
we can backtrack and increment our choice of k" to reinstate the invariant at that particular
point. We cannot reach a leaf which is not a discharged occurrence of a hypothesis without
this situation having arisen. For the same reason neither can we reach a loop sequent —
i.e. a sequent which serves as justification for the discharge of a hypothesis. If we reach a
discharged occurrence of a hypothesis then, because of conditions 7.7.1-3, we would know
that n > n’ so the invariant will have been reinstated. But then the backtracking argument
is completed since we can bound how far into the future we will have to go before we can
guarantee that the invariant will have been reinstated. This argument is what motivates
condition 7.7.1.

Dynamical rules. These cause no real complications and are left to the reader.

Global rules. Finally we need to consider the case where s; is a discharged occurrence
of a hypothesis. We then find a sequent s;, 7 <4, which is the loop sequent justifying the
discharge of s;. s; will have the form s; = I'j(21 : ¢i1,..., 28 ¢ ¢ip) b B 0 ¢ and s; will
have the form s; = I';(21 @ ¢iq,. .. 25 di) B E; 0 ¢ where FV(E) = {zqy,...,21}. We
know that the invariant holds for s; (and that no subsequent backtracking will modify the
annotations of s;). In identifying (s;11, 041, ti41) we wish to replace s; by s; keeping o; and
t; unchanged. We need to check that the invariant is maintained. Let X be any v-variable
which is active in ¢;, indexed n; in s;, n; in s;, and annotated by, say, x in s;. Further, let X
also be active in one of the ¢; ;, indexed n; in s;, n! in s;, and annotated by " in s;. Since
the invariant holds for s; we know that ' + n! > k + n;. There are two cases: Either X is
the v-variable through which ¢; is regenerated, and then &’ + n; >k 4nl—ni+n; > k40,
as desired. Otherwise ¢; is regenerated through some other v- or p-variable. In this case
we know that, since X is active in ¢; that n; = n;. Moreover by conditions 7.7.2 and 3 we
know that, since X is also active in ¢; ;, that n{ = n’; too. Hence also here '+ n, > k +n;
and we have shown the invariant to be maintained. Now (s;41,0:41,¢.41) can be derived
since one of the local rules apply.

Completing the proof. Having built the infinite sequence Il we find a o-variable X which
is infinitely often regenerated to the right of the turnstyle along II. If ¢ = v a contradiction
is obtained since the initial annotation of X is infinitely often decreased along 1. If ¢ = p
we find a p-variable which is infinitely often unfolded to the left of the turnstyle along II
and a similar argument applies, completing the soundness proof.

12

9 Completeness for Finite-state Processes

While we view soundness for general processes as the main contribution of the paper, com-
pleteness for finite-state processes is important as a check that no proof power has acciden-
tally been sacrificed.

Theorem 9.1 If P is a finite-state process and |= P : ¢ then &= P : ¢ is provable.

ProoOF: Theorem 9.1 can be proved by embedding the tableau based model checker of
Stirling and Walker [22] into the present setting. Consider the proof system obtained by
restricting attention to sequents I' = P : ¢ where only namings are allowed in I', and where
the dynamical rules are replaced by the following two global rules:

'EPr:¢

I'FP:{a)¢ (P=P)

(a)-RIGHT

(THP:¢|P2P)

[a]-RIGHT T P la]o

The rule of discharge is modified by allowing a sequent s = I' = P : X to be discharged
whenever X is a v-variable and there strictly below s is another sequent of the form I'
P : X. Call the proof system ensuing from these changes the Stirling- Walker system, and
write I' kg, P : ¢ for provability in this system. By soundness and completeness [22] we
know that = P : ¢ iff by, P : ¢. So assume that P is finite-state and that a proof 7 of
Fsw P : ¢ is given. Assume for simplicity that P = Py | P,. We derive by induction in the
size of © formulas ¢; and ¢y such that kg, P : ¢1 and kg, P> : ¢2 by proofs of size not
greater than the size of m, and a1 : ¢, 29 : ¢2 F 21 | 22 : ¢ is provable in the compositional
system. Once a similar result has been proved for restriction (which is quite simple), it is
an easy induction in the size of proof of kg, P : ¢ to show that then F P : ¢ is provable in
the compositional proof system too, establishing the result.

As we traverse m from the root upwards we generate pieces of ¢ and ¢, in a manner
which respects the structure of 7. The greatest difficulty is to deal with names. Assume
that the rule Y-RicHT is applied in 7 to a sequent, say, I' by, P{ | P : X, and that
I' Fow X = vYp, so that the resulting antecedent is I' by, P{ | Pj @ [X/Y]. Pick two
fresh variables X7 and X5. X; will be used in ¢; and X5 in ¢. These variables are
generated whenever we strictly above the sequent occurrence I' = P/ | P} : X reach a
sequent occurrence of the form IV + P| | P} : X. Let ¢}, ¢, be the formulas generated
by the sequent occurrence I' b P{ | P} : ¢[X/Y]. Let then ¢, = vX;.¢}, i € {1,2}. By
one part of the induction hypothesis, g, P/ : ¢} can be established from the assumption

F P/ : X;. Thus kg, P! : ¢;. From the second part of the induction hypothesis we have a
proof in the compositional system of @1 : ¢}, 22 : ¢ F 21 | 22 : [X/Y] from the assumption
1 @ Xq,29 ¢ Xo F 2y | 23 : X, thus obtaining a proof in the compositional system of
Ty 1,29 P b ay | 2 vYa) from no assumptions.

This deals with the global part of the construction. For the local part we consider the
case where I' kg, P; | Py : {(a)¢. Suppose, e.g., that Py = P{ and I' F,,, P | P> : ¢. By
induction we find ¢ and ¢q such that by P ¢y, 0 € {1,2}, Fsy Pyt 2, and @1 @ ¢y, 29 :

¢2 b a1 | @2 0 . But then by Pt (a)¢y, @ € {1,2}, and @1 : {(a)d1,22 : ¢2 F ()¢ as

required. a

Notice that — since model checking in the Stirling-Walker system is decidable for finite-
state processes — the proof of Theorem 9.1 gives an efficient strategy for building proofs.

13

Other strategies can be devised, based on e.g. characteristic formulas. Notice also that the
proof makes only limited use of the global rules. Termination is needed for greatest fixed
points only, and the side-conditions concerning activity and indexing can be eliminated
altogether in favour of the much simpler side-condition for CuT that ¢ is a closed formula.

10 Conclusion

A precursor of the present work is [1] where a proof system for a process passing calculus is
presented, though recursive specifications are not addressed.

The main issues left for future work are analyses of the proof power of the general
proof system, and of its practical usefulness. The former is likely to be a difficult problem.
Usefulness is best determined through experimentation. Constructed, as they are, in a
systematic way, the local rules may turn out to be quite natural once practice is built up.
Moreover, being compositional the proof system is well suited to support macros and derived
rules. The quite complicated side-conditions, on the other hand, may seem disconcerting.
The hope is that most of the technicalities concerning indexing and activity can be hidden
from the user, in a vein similar to the handling of e.g. ML type inference, or universes in
extended versions of the Calculus of Constructions (c.f. [13].

The only completeness criterion we have considered here is weak completeness for finite-
state processes. In practice this is too weak, and there are useful rules which we are unable
to derive. Examples are A-V distribution (z : A (¥ Vy) F 2 1 (¢ AY)V (P A7)) and
monotonicity under the modal operators (e.g. = : ¢ F @ : ¢ implies z : (a)p F z : (a)y).
Maybe the approach using so-called well-described formulas explored in [1] can be used to
obtain stronger completeness results.

An interesting issue is to compare with the proof system of Hungar [14] who succeeds
in dealing with non-trivial statically parallel compositions of context-free processes using a
global approach. It is quite easy based on the present ideas to develop a sound proof system
for context-free processes. Is this proof system completel’ Another issue is to investigate
exactly how general our approach is, for instance by investigating arbitrary process calculi
specified in one of the various formats for structured operational semantics (c.f. [5, 12]).
Related work in this direction was recently reported by Simpson [21] for the case of Hennessy-
Milner logic.

Acknowledgements. Thanks are due to Roberto Amadio for numerous discussions on
related topics.

References

[1] R. Amadio and M. Dam. Reasoning about higher-order processes. SICS Research
report RR:94-18, 1994. To appear in Proc. CAAP’95.

[2] H. Andersen, C. Stirling, and G. Winskel. A compositional proof system for the modal
p-calculus. In Proc. LICS’94, 1994.

[3] H. Andersen and G. Winskel. Compositional checking of satisfaction. Formal methods
in System Design, 1(4), 1992.

[4] J. Armstrong, R. Virding, and M. Williams. Concurrent Programming in FErlang.
Prentice-Hall International (UK) Ltd., 1993.

14

[5] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced: Preliminary report.
In Proc. 15th POPL, pages 229-239, 1988.

[6] J. Bradfield and C. Stirling. Local model checking for infinite state spaces. Theoretical
Computer Science, 96:157-174, 1992.

[7] R. Cleaveland. Tableau-based model checking in the propositional mu-calculus. Acta
Informatica, 27:725-747, 1990.

[8] R. Cleaveland, M. Dreimiiller, and B. Steffen. Faster model checking for the modal
mu-calculus. In Proc. CAV’92, Lecture Notes in Computer Science, 663:383-394, 1992.

[9] M. Dam. Model checking mobile processes (full version). SICS report RR 94:1, 1994.
Prel. version appeared in Proc. Concur’93, LNCS 715, pp. 22-36.

[10] E. A. Emerson and C. Lei. Efficient model checking in fragments of the propositional
mu-calculus. In Proc. LICS’86, pages 267278, 1986.

[11] J. Esparza. Decidability of model checking for infinite-state concurrent systems.
Manuscript, 1995.

[12] J. F. Groote and F. W. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Information and Computation, 100:202-260, 1992.

[13] R. Harper and R. Pollack. Type checking with universes. Theoretical Computer Science,
89:107-136, 1991.

[14] H. Hungar. Local model checking for parallel compositions of context-free processes.
In Proc. CONCUR’94, Lecture Notes in Computer Science, 836:114-128, 1994.

[15] K. G. Larsen. Efficient local correctness checking. In Proc. CAV’92, Lecture Notes in
Computer Science, 663, 1992.

[16] K. G. Larsen and L. Xinxin. Compositionality through an operational semantics of
contexts. Journal of Logic and Computation, 1:761-795, 1991.

[17] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.

[18] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Infor-
mation and Computation, 100(1):1-40 and 41-77, 1992.

[19] B. C. Pierce, D. Remy, and D. N. Turner. Pict: An experiment in concurrent language
design. Manuscript, available from ftp.des.ed.ac.uk/pub/bep/pict.tar.Z, 1994.

[20] J. H. Reppy. CML: A higher-order concurrent language. In Proc. ACM SIGPLAN91,
1991.

[21] A. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for an arbi-
trary GSOS. Manuscript. To appear in Proc. LICS’95, 1995.

[22] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. Theoretical
Computer Science, 89:161-177, 1991.

[23] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for the
propositional mu-calculus. Information and Computation, 81:249-264, 1989.

[24] B. Thomsen, L. Leth, S. Prasad, T.-M. Kuo, A. Kramer, F. Knabe, and A. Giacalone.
Facile antigua release programming guide. Tech. rep. ECRC-93-20, 1993.

15

