
Confidentiality for Mobile Code:
The Case of a Simple Payment Protocol

Mads Dam Pablo Giambiagi
Dept. of Teleinformatics, KTH/IT

Electrum 204, S-164 40 Kista, Sweden;fmfd,pablog@sics.se

Abstract

We propose an approach to support confidentiality for
mobile implementations of security-sensitive protocols us-
ing Java/JVM. An applet which receives and passes on con-
fidential information onto a public network has a rich set of
direct and indirect channels available to it. The problem is
to constrain applet behaviour to prevent those leakages that
are unintended while preserving those that are specified in
the protocol. We use an approach based on the idea of cor-
relating changes in observable behaviour with changes in
input. In the special case where no changes in (low) be-
haviour are possible we retrieve a version of noninterfer-
ence. Mapping our approach to JVM a number of particular
concerns need to be addressed, including the use of object
libraries for IO, the use of labelling to track input/output of
secrets, and the choice of proof strategy. We use the bisimu-
lation proof technique. To provide user feedback we employ
a variant of proof-carrying code to instrument a security
assistant which will let users of an applet inquire about its
security properties such as the destination of data input into
different fields.

1. Introduction

In this paper we report on some recent experiments
to support confidentiality for mobile implementations of
security-sensitive protocols. The targeted applications are
simple Java applets expected to implement protocol agents
for e-commerce, information management, or, e.g., voting.
Working on the assumption that the protocol itself is cor-
rect, we ask under what conditions an implementation of
such a protocol can be relied upon to respect confidentiality
of some particular item of information, possibly acquired
through user input. General access control mechanisms
such as those found in current security architectures for Java
are inadequate to protect against the many types of covert
channel which a hostile applet possesses to communicate

confidential information to the outside world. So, some ex-
tra machinery is required to provide this protection.

One option is to submit the protocol implementation to a
complete verification, to ensure that exactly and only the
actions required by the protocol at any specific time are
possible. Enough information would then be transmitted at
run-time to allow receiving hosts to validate the verification,
for instance using proof-carrying code [13]. Even if such a
scheme could be implemented efficiently, which is unclear,
such an approach seems unduly rigid and heavyhanded. The
experiments we report on here aim to show that it is possi-
ble to strike a balance such that the critical confidentiality
properties are handled adequately (to plug, as comprehen-
sively as possible, covert channels) while leaving many im-
plementation aspects which are independent of those confi-
dentiality concerns to be decided upon by the implementor.

The basic idea is to accompany the applet with a spec-
ification which in formal and verifiable terms specifies the
confidentiality properties enjoyed by the applet. Once the
applet has been seen, by the receiving host, to satisfy the
confidentiality specification, the specification is used to in-
stantiate a security assistant which lets users inquire about
security properties such as the destination of data which is
input into the different fields.

Our intention with this paper is to show how such an ap-
proach can be realized for the case of a non-trivial but quite
simple applet which is supposed to implement an e-payment
protocol in the style of 1KP [2]. This requires attention to
a rather wide variety of issues, ranging from basic prin-
ciples (how is confidententiality specified, modelled, and
verified), implementation aspects (how are the basic prin-
ciples mapped to actual JVM bytecode, how are confiden-
tiality properties processed by the participating entities), to
usability aspects (how can the confidentiality properties be
presented to users to empower them to make informed de-
cisions). Evidently we are not able to cover all this ground
comprehensively in the context of a single paper. Rather,
our aim is to outline a promising new approach to confi-
dentiality for mobile code, and to show that the array of
problems lying between basic principles and realization us-

ing today’s technology may well have sound and practical
solutions.

The first stumbling block concerns the nature of confi-
dentiality itself. The primary means of realizing confiden-
tiality is encryption. But, in this context, encryption also
poses some fundamental problems. One difficulty is infor-
mation leakage in the sense that changes in plaintext cause
changes in ciphertext (cf. [19]). Since ciphertexts are vis-
ible to intruders as bit strings, this bit structure can easily
be exploited by a hostile applet to create a covert channel.
Moreover, this can often be done without trusted parties in
the exchange ever learning that a leak has taken place. Sim-
ilar channels can be established using timing leaks (cf. [8]).

However, encryption is not the only source of informa-
tion leakage. A security-sensitive protocol may explicitly
require that certain secret information be made public, en-
tirely or in part, by some of its agents. An example of this
is the 1-bit payment clearance notification channel from a
payment acquirer to a merchant, as described in Section 2
below. The value of the notification message depends on
several confidential parameters (account number, PIN code,
account balance, credit limit,. . .), so it represents an infor-
mation leak. However, this leak is intended, indeed it is
inherent in the application.

To address this issue we introduce a notion ofadmissible
information flowwhich is based on the idea, very roughly,
of correlating changes in system behaviour with changes
in input. For instance, we may correlate changes in some
secret parameter, say an account number, with correspond-
ing changes in the actions involved in inputting the account
number to an applet, and in forwarding encrypted informa-
tion containing that account number to a merchant. As an-
other example, in an MLS model, input stimuli may be in
the form of high or low level actions, and low-level actions
are required to be completely uncorrelated with high-level
ones. Cast in this way, the resulting notion of admissibil-
ity turns out to coincide with a variant of Goguen-Meseguer
noninterference [5] due to Focardi and Gorrieri [4].

Admissibility is cast, first, in terms of general labelled
transition systems. Mapping this to JVM amounts to an op-
erational semantics. While this subject is getting fairly well
understood in general terms (cf. [15, 3]) we face two par-
ticular complications:

1. The use of library method calls, to initialize and
use window objects such as textfields (from package
java.awt), to encrypt/decrypt (fromjavax.crypto), to
open and close streams (fromjava.io), and to write to
sockets (fromjava.net).

2. The need for some form of object annotation to iden-
tify the precise entry points of secrets, and to track their
passage through the heap as the applet computes.

We then turn to the proof strategy. Many simple applets in

Merchant

Place an order
Name:

Account no:

Submit form
Cancel

Purchasing applet

Purchase order

Applet xmit

Acquirer

Payment order

Invoice

Clearance notification
Payment:

User
(KeyStore)

Figure 1. A purchasing applet
the style of the purchasing applet can be assumed to satisfy
a data independence property, in the sense that there will be
no branching of control flow dependent on confidential in-
formation. In Section 6 we show how the bisimulation proof
technique [10] turns out to be convenient for exploiting this
property.

We also consider implementation and usability. Our ex-
periments rely on the use of proof-carrying code (PCC). The
idea in this context is to communicate, along with the confi-
dentiality specification, a machine checkable proof that the
bytecode adheres to this specification. This information can
be validated at applet load time relying only on local infor-
mation. We have built an experimental platform for PCC
based on Sun’s Java Plug-in, Netscape Navigator 4.5, and
the Isabelle theorem prover [14]. In Section 7 we report
very briefly on the status of these experiments and the role
of the security assistant.

Finally, in the conclusion, we discuss related work and
future directions. One problem with our approach as it ap-
plies to the case study is that timing leaks are not very ad-
equately addressed. In the conclusion we discuss, however,
how our modelling approach can be easily adapted to pre-
vent most of them.

2. Confidentiality for a purchasing applet

Our running example is a simple purchasing applet based
on the 1KP protocol [2], shown in Figure 1. An applet orig-
inating fromMerchantis executed byUserat her local site.
The applet requests several items of information fromUser,
including

1. the nameacqof a payment acquirer,

2. ordering informationorder (item, price agreed, deliv-
ery, date and time, etc.), and

3. accounting informationacc (account number, expiry
date, PIN code), intended forAcquirer.

The user, or rather, the user’s local system, possesses aKey-
Storeassociating public keys to their principals. The applet
requests from theKeyStorethe keyK corresponding toacq,
and can then produce a purchase order(acq; order; forder; accgK)
to pass toMerchant. The rest of the protocol is fairly
self-evident from the figure:Merchantusesacq to routeforder; accgK (the payment order) toAcquirer, Acquirer
returns a notification toMerchanttelling whether or not the
payment was cleared, and finallyMerchantpasses the goods
along with an invoice toUser.

Several items in this system may need protection:

(i) User’s private information as known to the local host

(ii) Account information provided byUser to the applet
upon form submission

(iii) Order information similar to (ii)

(iv) The mere fact thatUser is engaging in a transaction
with Merchant

(v) Secrets concerningUser’s account possessed byAc-
quirer such as account balance or credit limit

Item (i) concerns applets gaining access to files or mem-
ory locations by some illicit means, by exploiting some
shortcoming inUser’s local system. This type of prob-
lem is outside the scope of this paper. Item (iv) has a na-
ture which is somewhat different from the others. Simple
applets which communicate using encryption over public
channels in a straightforward fashion will in fact not meet
this property. Nonetheless the confidentiality concern ex-
pressed, quite roughly, by item (iv) is a legitimate one which
our techniques should at least be able to specify.

Our work here focuses on the confidentiality of item (ii),
User’s account input. Intuitively it is fairly clear how an ap-
plet should behave in order not to breach the confidentiality
of this information: It just has to follow the intentions of
the protocol. Any substantial deviation from this behaviour
can be exploited by a malicious applet to introduce covert
channels. For instance:

1. The applet should not be allowed to retransmit in a
manner which may depend on the value ofacc.

2. The values oforder andacqshould not be modified in
ways that may depend on the value ofacc.

3. Correlation should be enforced between the value ofK received fromUser and the value ofK used for
encryption.

4. The applet should not be permitted to e.g. encrypt in-
formation which depends on the value ofacc other
than as prescribed by the protocol.

Observe that constraints such as (2) and (3) are not re-
quired for integrity in this context. Integrity may be de-
sirable, for sure, but that is a different matter. Rather, they
are needed since a malicious applet could easily establish a
covert channel by violating one of these constraints. Con-
straints such as (4) are required to prevent timing leaks with
other active applets.

On the other hand, the appletcanbe allowed any other
behaviour (like: authenticatingK with Merchant, or down-
loading some fancy piece of graphics from somewhere) as
long as that behaviour does not depend on the value ofacc.

This type of confidentiality property is different and far
more intensional than the MLS properties traditionally con-
sidered in the information flow literature (cf. [9]). There
seems to be no useful way in which protocol entities or their
actions can be assigned security levels. Neither is there a
useful sense in which the role of the applet can be regarded
as an information downgrader, for instance in the sense of
intransitive information flow (cf. [17, 16]). Rather, the con-
fidentiality properties of the applet rely on very intensional
properties of applet behaviour which seem inherently to go
beyond the MLS model.

3. Admissible information flow

We have found a simple way of modelling confidential-
ity, in the sense of (ii)–(v), in terms of permitted and prohib-
ited dependencies. In this section we introduce and motivate
this notion, using models based on general state transition
systems.

A state transition system consists ofstates(processes),s,
of which some are initial,actions(events, transition labels)�; � 2 Act, and labelled state transitionss1 �! s2. The
setAct may be structured in various ways. In particular we
assume a “silent”, or unobservable, action", and actions
distinct from" are often assumed to have the shape eithera!v or a?v where, ina!v (resp. a?v), v is a value sent to
(resp. received by) the process nameda.

Example 1 (Encrypter) The following diagram corre-
sponds to a system that reads a value (of some 2-element
domain) from input channelin, and transmits it encrypted
with keyk along channelout:

s0(k) s(k)
out!{v}k

in?v s1(k)
in?w

out!{w}k

where the arrow indicates initial states (one for each value
of k).

The previous system leaks information about its input
only by encrypting it. Under the assumption of perfect cryp-
tography, an observer of channeloutcannot discover which
value was input, provided that it is not able to decryptfxgk.
The following two examples illustrate what a malicious im-
plementation of the encrypter can do to leak extra informa-
tion about the input.

Example 2 (Bad Encrypters)

Bad Encrypter #1:This system encrypts its input before
transmitting it, but an observer can still learn the input by
counting the number of output messages:

r(k)

r1(k)in?v

r2(k)

in?w

r3(k)
out!{v}k

r4(k)
out!{w}k

r5(k)
out!{v}k

Bad Encrypter #2:Another simple way of defeating con-
fidentiality would be to use a wrong encryption keyk0:

t1(k) t(k)
out!{v}k’

in?v t2(k)
in?w

out!{w}k’

In all three versions of theEncrypter, output values or
behaviours are affected by the values in the input. In Ex-
ample 1, the information flow betweenin andout is the in-
tended (admitted) one. Instead, in Example 2, we say that
the systems contain non-admissible information flows.

Our intention is to capture admissible information flow
by correlating changes in system behaviour with changes in
input. For instance, in the case of noninterference based in-
formation flow properties (cf. [5, 6]) we require that system
behaviour, as seen by a low-level observer, is unaffected
by changes in high-level input. On the other hand, for the
purchasing applet example, changes in the confidential pa-
rameter, sayacc, received as part of a message

applet?(acq; order; acc) (1)

should give rise to “proportional” changes in applet output
messages

merchant!(acq; order; forder; accgK); (2)

but affect applet behaviour in no other way. To make this
idea precise the following ingredients are needed:

1. a notion of behaviour equivalence, and

2. a mechanism to model changes in values and their ef-
fects, as changes in actions.

Several equivalences have been considered in the infor-
mation flow theory literature, including trace equivalence
[5, 6], failures equivalence [16], and bisimulation equiva-
lence [4]. The work reported here is to a large extent inde-
pendent of the specific choice of equivalence, so it suffices
for now to just assume the existence ofsomeequivalence re-
lation on states,�, reflecting the idea of behaviour identity,
or indistinguishability by an external observer.

To model action changes we use the notion of arela-
belling as a mappingf : Act ! Act. Relabellings are
used to enforce the correlation between received and trans-
mitted values required for confidentiality. A relabellingf
applied to a transition systemS determines a relabelled
transition systemS[f] with states of the (syntactical) shapes[f]. The transition relation is determined by the condition:s1[f] �0! s2[f] iff for some�, �0 = f(�), ands1 �! s2.
The intention is thatS[f] maintains all the computational
structure ofS except for relabelling the transitions.

As an example in the context of theEncryptersystems,
consider any relabellingf : Act! Actsatisfyingf(in?v) = in?wf(in?w) = in?vf(out!fvgk) = out!fwgk0f(out!fwgk) = out!fvgk0f(�) = �, for all other actions.

wherek andk0 are some fixed key values.
Notice howf permutes all inputs, but only the outputs

that any good implementation of anEncrypteris expected
to perform.

Example 3 (Relabelled systems)

Encrypter:If s(k0) is like in Example 1, we get the fol-
lowing transition system fors(k0)[f]

s0(k’)
[f]

s(k’)
[f]

out!{w}k

in?w
s1(k’)

[f]

in?v

out!{v}k

Bad Encrypter #1:By consideringr(k0) like in Exam-
ple 2, the relabelled transition systemr(k0)[f] is

r(k’)
[f]

r1(k’)
[f]in?w

r2(k’)
[f]

in?v

r3(k’)
[f]

out!{w}k

r4(k’)
[f]

out!{v}k

r5(k’)
[f]

out!{w}k

Bad Encrypter #2:Whent(k0) is like in Example 2, the
relabelled transition systemt(k0)[f] is

t1(k’)
[f]

t(k’)
[f]

out!{w}k

in?w
t2(k’)

[f]

in?v

out!{v}k

By applying a given notion of behaviour equivalence,
each Encrypter system can be compared against its rela-
belled version. We get the following results:

Encrypter: s(k0)[f] � s(k)
Bad Encrypter #1: r(k0)[f] 6� r(k)
Bad Encrypter #2: t(k0)[f] 6� t(k)

We can conclude that relabellingf , which intuitively
permutes all inputs and only admissible outputs, lets us de-
tect the presence of non-admissible information flows in
bothBad Encrypterexamples.

The proposal is therefore to cast confidentiality as invari-
ance, up to state equivalence, under a setF of relabellings.

Definition 4 (Admissibility) LetF be a set of relabellings.
The states is admissible forF if s[f] � s wheneverf 2 F .
The state transition systemS is admissible forF if all its
initial states are.

Choosing an appropriate setF is a matter of engineering,
which will depend upon the particular protocol and confi-
dentiality properties to be modelled. We consider the pur-
chasing applet example, confidentiality of user account in-
put (property (ii) of (i)–(v) in Section 2). The dependency
of applet behaviour upon changes in the confidential param-
eter (in this caseacc) is controlled by changing (relabelling)
the action in which the confidential parameter is allowed to
appear. So the input fetch event (1) may be relabelled to
applet?(acq; order; acc0) for some specific pair of account
number valuesaccandacc0. Correspondingly, the merchant
output event (2) must be relabelled by replacingaccby acc0,
and these will be the only action relabellings affecting the
value ofacc. With this choice of relabelling we are guaran-
teed some rather strong properties. For instance it is easy to
show, from definition 4, that the only valueaccwhich can
appear as part of a merchant output event as in (2) is the
corresponding value input as part of an applet input event
(1).

This is, however, not yet the full story. We also need to
correlate uses ofK andacqwith their points of definition,
as otherwise a malicious applet might be able to encrypt us-
ing a key outside the control of the user. There is, however, a

simple way of enforcing this correlation using relabellings,
simply by systematically changing occurrences of acquirer
namesacq and public keysK, at their corresponding in-
put actions, with other valuesacq0 andK 0. This identifies
explicitly the only admitted points of definition ofK and
acq. Since these values are not confidential, the relabellings
should apply the same changes to all actions. As a result it
will be possible for any well-behaved applet to e.g. authen-
ticateK with Merchant.

We illustrate these ideas in Figure 2: It depicts, very
schematically, part of the labelled transition system of some
arbitrary purchasing applet. Each wiggling arrow stands for
a sequence of transitions and is labelled by a single action
of interest in the sequence,f is some relabelling function inF , and the dotted lines correlateK andacqwith their points
of definition. Finally,leak!(acq;K) indicates the presence
of output actions depending on eitheracqorK.

For this particular confidentiality property we may thus
define the setF as the set of all relabellingsf~g : Act! Act
adhering to the scheme in Table 1 where~g = (g1; g2; g3)
is a vector of endofunctions on, respectively, account infor-
mation (the “account permuter”,g1), public keys (the “key
permuter”,g2), and acquirer names (the “payment acquirer
permuter”,g3). In the scheme,� matches all actions not
listed before, meaning that each relabellingf~g changes the
values ofK and acq everywhere. Finally, since it is re-
quired that each functiongi in ~g satisfiesgi = g�1i , every
relabelling inF is bijective and satisfiesf~g = f�1~g .

Notice that, for this definition ofF to make sense we are
really suppressing a lot of extra information to determine
exactly which valuesacc, acq, andK to substitute. As we
pass on to the JVM model in section 5, these annotations
are made explicit.

4. Admissibility as confidentiality

With F as in Table 1, admissibility provides very tight
control over the ways an applet is free to process the con-
fidential parameteracc. For instance in the case where�
is strong bisimulation equivalence (" is CCS� [10]) there
will, up to strong bisimulation equivalence, need to be a
one-to-one correspondence between the states of an applet
when receivingacc and when receivingacc0, for any pair(acc; acc0), when the appropriate relabelling function is ap-
plied. This leaves room for neither explicit, unauthorized
leaks, implicit, say bitwise, leaks, or indeed of timing chan-
nels, since the internal computation steps of both applet in-
stances need to be matched exactly. On the other hand, in
the case of equivalences which abstract from internal com-
putation ("-steps), absence of timing channels can no longer
be guaranteed.

A partial “purge” style characterization of admissibility
(like in [5]) is easily obtained.

merchant!(acq’,order,{order,acc’})

applet? (acq,order,acc)

applet? (acq’,order,acc’)

keystore!acq’

keystore!acq

f f

K

K’

leak!(acq,K)

leak!(acq’,K’)

applet?K

applet?K’

applet?K

applet?K’

f f f

merchant!(acq,order,{order,acc})

Figure 2. Schematic transition system for purchasing appletTable 1. Denition of set F for purchasing applet
applet?(acq; order; acc) $ applet?(g3(acq); order; g1(acc))
merchant!(acq; order; forder; accgK)$ merchant!(g3(acq); order; forder; g1(acc)gg2(K))
keystore!acq $ keystore!g3(acq)
applet?K $ applet?g2(K)� $ �[g2(K)=K; g3(acq)=acq]

Proposition 5 Suppose that� is finite trace equivalence
and suppose that all members ofF are bijections, and that
their inverses also belong toF . The states is admissible
for F iff for all f 2 F , if �1�2 � � ��n is a trace ofs then so
is f(�1)f(�2) � � � f(�n). 2

In other words, given an admissible process forF , per-
muting its inputs byf 2 F makes its outputs also be per-
muted byf .

A similar observation is valid when we consider com-
putations of applets in the context of arbitrary users and
observers. We might model this using a slight variant of
value-passing CCS, where we only need to recall the defi-
nitions of parallel composition and relabelling: The parallel
compositionP j Q behaves like the interleaved behaviors
of P andQ, allowing syncronization between dual actions,
say,a!v anda?v and producing an internal action� . The re-
labelled processP [f] represents a relabelled state transition
system exactly as defined in the previous section, with the
additional requirement thatf should map dual actions into
dual actions, and� into � .

Using this notation our system might be modelled as a
composite processP = User j Appletj Merchant:

The best we can hope for, in view of the observability of
encryption, seems to be that there is no observable differ-
ence betweenP and the version ofP we would obtain by
systematically relabelling the output ofUserandMerchant
before feeding it intoApplet, and then, subsequently, un-
doing this relabelling over all remaining communications,
including all outputs byApplet. That is, we would want the
following equation to hold:P � (User[f~g] j Appletj Merchant[f~g])[f~g] (3)

for any~g = (g1; g2; g3), where we have extended the def-
inition of f~g so that it maps dual actions into dual actions.
Notice that, sincef~g = f�1~g , applying a relabelling a sec-
ond time undoes the effects of the first one. We would then
have shown that the only possible waysAppletcan react to

changes in its confidential input are undone byf . Hence
Appletcan not possess any unintended information leak.

By distributing the outermost relabelling [10, p. 80], the
right hand side of equation (3) results structurally congru-
ent to(User[f~g][f~g] j Applet[f~g] j Merchant[f~g][f~g]). Sincef~g �f~g = id, this is in turn congruent to(User j Applet[f~g] j
Merchant) showing that equation (3) holds for arbitrary pro-
cessesUser and Merchant, and for an admissibleApplet
for all the three equivalences (traces, failures, bisimulation)
mentioned above.

Other confidentiality properties among (ii)–(v) can be
captured using admissibility as well. Property (iii), con-
fidentiality of order information, is a straightforward ana-
logue of (ii). Property (v) requires the notion of admissibil-
ity to be refined, to take into account both the existence of
static secrets, and the 1-bit payment clearance leak. We do
not consider this matter further in the present paper.

Property (iv), on the other hand, is interesting since it
provides a link to more traditional information flow mod-
els. In this case we may, for simplicity, consider all actions
of the protocol, Figure 1, as high, and we may assume that
the protocol entities may be able to engage in other low ac-
tions which are not further specified. So we assume that the
set of actionsAct is partitioned into two subsetsActH and
ActL of high-level and low-level actions respectively, and
property (iv) then concerns the existence, or otherwise, of
information flow from high to low in this model. We may,
intuitively, expect to be able to cater for this idea using ad-
missibility by requiring that no changes in behaviour at all
be permitted by changes in high input, or input and output,
depending on one’s point of view. That is, we may consider
admissibility for the set containing the single relabellingf = �� 2 ActH :" where the notion of equivalence is trace
equivalence restricted to low-level actions. It turns out that
this is just the notion ofstrong nondeterministic noninter-
ference, a generalization of Goguen and Meseguer’s notion
of noninterference [5, 6] to nondeterministic systems by
Gorrieri and Focardi [4] (similar generalizations have been
defined for the CSP process algebra).

5. Modelling the Java Virtual Machine

Mapping admissibility to JVM amounts to giving it an
operational semantics in terms of states and labelled state
transitions. There is space only for an informal presentation
here.

States are made up of the following three components:

1. A Classfile Areacontaining a definition for each class,
its constant pool, fields and method codes.

2. A Heapcontaining a representation for each object or
array.

3. A Frame stack for each running threadwhere each
frame identifies the current executing method, the class
it belongs to, the current value of the program counter,
the values of local variables, and the operand stack.

To illustrate how the transitions of this state transition
system are defined, consider a possible implementation of
the purchasing applet: Table 2 delineates the part responsi-
ble for the applet side of the protocol where, for the sake
of presentation, we have replaced the original JVM instruc-
tions by a less detailed and, hopefully, easier to read pseudo-
code. Each step involves a mix of primitive JVM instruc-
tions and library method calls. The library methods are
implemented, in turn, by other methods and instructions,
native or in bytecode form, belonging to JVM or the local
operating system. Since our task is to analyze the confi-
dentiality property of that part of the code which is mobile,
it is natural to draw the trust borderline at the level of li-
brary method calls. Thus each library method invocation
will, in the model, give rise to a “virtual instruction”, a la-
belled transition representing the effect of the correspond-
ing library method call. Two sorts of effects are involved.
The effect on the external world (socket creation, input and
output) is captured by transition labels (i.e., actions), and
the effect on applet execution is captured by replacing the li-
brary objects by object “stubs” which maintain the required
data structures. For example, ajava.net.Socket stub con-
tains a field of classjava.net.InetAddress to keep track of
the internet address the socket instance is connected to. Vir-
tual instructions which have no externally observable effect
are regarded as internal and labelled". Note though that
by abstracting the execution of library methods (such as en-
cryption), the model may not be able to detect some leaks
which exploit side-effects and timing behaviours of the par-
ticular method implementations. The same can be said of
leaks based on specific knowledge of the cryptographic al-
gorithms used (we return to this issue in the conclusion).
To avoid undeterminate states we assume that the applet
has passed the bytecode verifier and all library methods are
well-behaved, so that each instruction has a well defined
successor state.

For instance, step 2, Table 2, is the input eventapplet?(acq; order; acc) in the model of Section 3. An object of
classNamedTextField is used to identify the entry point of
each datum. ClassNamedTextField, defined as a subclass
of java.awt.TextField, associates a name to a textfield ob-
ject. As an example, the name of the textfield intended for
account number input may be, simply, “account number”.
Reading a string from aNamedTextField object is modelled
as a virtual instruction labelledGETTEXT textfield

string. This string is allocated in the heap and anno-
tated with the name of the textfield, i.e. “account number”.
The string will keep its annotation during computation in
the model, thus letting us identify where to apply the re-

Table 2. Partial pseudo-code for the purchasing applet
if (button ‘‘Submit form’’ was pressed) f (1)

get (acq, order, acc) from applet window; (2)

get K, the Acquirer’s public key from local keystore; (3)

enc = encrypt forder, accg with K; (4)

data = convert (acq, order, enc) to proper type for output; (5)

create Socket connection with Merchant; (6)

get OutputStream associated with Socket; (7)

write data to OutputStream; (8)

close Socket; (9)g
labelling (see end of Section 3), and calculate how value
changes affect the state when performing the proof of ad-
missibility (Section 6).

Similarly, in step 3, a keystore containing name-key pairs
is accessed using some local method. This is represented as
a virtual instruction labelledGETKEY principal key,
with key the principal’s key. This transition corresponds to
eventskeystore!acqandapplet?K in the model of Section 3.

Steps 4, 5 and 7 can be modelled as virtual instruc-
tions, but they do not involve any observable communica-
tion. Therefore, they are labelled with the silent action. On
the other hand, step 6, socket creation, and step 9, socket
closure, are clearly observable, so they are abstracted by
appropriately labelled virtual instructions:MAKESOCKET
ipaddr portno andCLOSE socket.

Step 8 is associated with virtual instructionWRITE
dest st, and corresponds to the purchase order event
merchant!(acq; order; forder; accgK) in the model of the
previous section. While the destination of the message
(dest) can directly be recovered from theOutputStream
object to which the method is applied, determining the value
of st is more involved. The reason is thatst should sup-
port a symbolic representation of data, sufficient to recover
the values ofacq, order, accandK, as well as the operations
performed on them to obtain the actual value which is trans-
mitted todest. This is done by annotating, in the model,
every byte array in the heap, and extending the transitions
that correspond to conversions from string, concatenation
(pairing) and encryption so that the annotation is updated
accordingly.

Table 3 contains a list of the virtual instructions used in
each step of the pseudo-code, together with a reference to
the corresponding event, if any, in the model of Section 3.

6. The proof technique

In order to apply admissibility to JVM applets, defini-
tion 4 has to be mapped to the semantics of the previous
section. For the purchasing applet, the set of relabellings

(Table 1) becomes the set of allf~g as defined in Table 4.
A slight complication is that JVM applets define methods
whose initial states might already contain secrets. This
means that an initial state ofS[f] should be bisimilar to
an initial state ofS where the secrets appear permuted in a
way that depends onf . In the following,s(x; y; z) indicates
stateswith x substituted, in the heap, for every string object
annotated “account number””, withy substituted for byte
arrays annotated “key”, and withz substituted for strings
annotated “payment acquirer”. Account numbers and ac-
quirer names inherit their annotations from their textfield
entry points. Keys, on the other hand, receive their anno-
tation as result of being returned by aGETKEY virtual in-
struction.

The proof task, now, is to exhibit a proof of the equiva-
lences0(acc;K; acq)[f~g] � s0(g1(acc); g2(K); g3(acq)) (4)

wheres0 is any initial state of any method in the purchasing
applet, and where~g is any secret permuter vector. We use
the bisimulation proof technique [10].

Definition 6 (Bisimulation Equivalence) The binary rela-
tion R on states is a bisimulation relation if whenevers1Rs2 then

1. if s1 �! s01 then for somes02, s2 �! s02 ands01Rs02, and

2. vice versa, ifs2 �! s02 then for somes01, s1 �! s01 ands01Rs02.

A direct proof of (4), using the definition ofs[f~g] for sim-
plification, will thus have two components:

1. A specification of a relationR~g 2 jvm state �jvm state for each~g.

2. A proof that, for any~g, R~g satisfies the following con-
ditions:

(a) For every initial states0 of every method in the
applet,

Table 3. Virtual instructions and corresponding events in the model of Section 3
Step Virtual instruction label Events in model

2 GETTEXT textfield string applet?(acq,order,acc)
3 GETKEY principal key keystore!acq, applet?K
4 " -
5 " -
6 MAKESOCKET ipaddr portno -
7 " -
8 WRITE dest st merchant!(acq; order; forder; accgK)
9 CLOSE socket -Table 4. Denition of f~g for a JVM purchasing applet

GETTEXT ‘account number’ acc $ GETTEXT ‘account number’ g1(acc)
GETTEXT ‘payment acquirer’ acq $ GETTEXT ‘payment acquirer’ g3(acq)
WRITE merchant.com:4567 $ WRITE merchant.com:4567(acq; order; forder; accgK) (g3(acq); order; forder; g1(acc)gg2(K))
GETKEY acq K $ GETKEY g3(acq) g2(K)� $ �[g2(K)=K; g3(acq)=acq]8acc;K; acq:s0(acc;K; acq) R~g s0(g1(acc); g2(K); g3(acq))

(b) 8r; t: r R~g t)(8r0; �: (r �! r0) 9t0: t f~g(�)����! t0^r0 R~g t0)^8t0; �: (t �! t0) 9r0; �: � = f~g(�)^r �! r0^r0 R~g t0))
There are several reasons why this is a convenient proof ap-
proach. First, bisimulation equivalence is finer than most
other process equivalences around including trace, failures,
and testing equivalence, so bisimulation equivalence is a
sufficient condition for each of those. Secondly, the bisimu-
lation technique requires reasoning only on the level of indi-
vidual states and transitions, and, unlike these other equiva-
lences, avoids quantification over entire computation histo-
ries, refusal sets, and so on. Thirdly, and most importantly,
the bisimulation proof technique is convenient to exploit an
important data independence property which we expect to
be satisfied by most “reasonable” implementations of the
purchasing applet. This property concerns the fact that,
by avoiding inlining of basic operations on numbers and
strings, the applet can be implemented without branching
of control flow dependent on the value of confidential infor-
mation. Under this condition a bisimulation relationR~g , if
it exists, for any fixed account-key-acquirer permuter triple~g will have the shapeR~g = f(s(acc;K; acq); s(g1(acc); g2(K); g3(acq))) js(acc;K; acq) 2 Ag
whereA is some suitable invariant. We obtain the following

result.

Proposition 7 Suppose the following conditions hold:

1. A is invariant:Whenevers 2 A ands �! s0 thens0 2 A.

2. A ensures data independence:For all account-key-ac-
quirer permuter triples~g, whenevers(acc;K; acq) 2A and s(acc;K; acq) �! s0(acc0;K 0; acq0)
then s(g1(acc); g2(K); g3(acq))f~g(�)����!s0(g1(acc0); g2(K 0); g3(acq0)):

3. A respects annotations:Whenevers(acc;K; acq) 2 A
and s(acc;K; acq) �! s0
for somes0, s0 can be written ass00(acc0;K 0; acq0) for
some acc0, K 0, and acq0.

4. A includes all initial states.

ThenR~g satisfies conditions 2.a and 2.b above. 2
Proposition 7 represents a considerable simplification over
the direct proof strategy. The specific definition and check
of a bisimulation relation is replaced by simple and local
conditions which ensures the bisimulation property of some

fixed relation. Moreover, the quantification over account-
key-acquirer permuter triples has been restricted to condi-
tion 7.2 which we are able, because of data independence,
to establish independently of the choice of~g.

7. Experiments and user interface design

We have implemented an experimental platform for
proof-carrying JVM applets based on Sun’s Java Plug-in
running inside Netscape Navigator 4.5. This platform per-
mits us to experiment with concrete applets, equipped with
proofs and specifications in the form of admissibility pred-
icates. Proofs and specifications are produced using the Is-
abelle theorem prover [14], based on earlier work by Pusch
[15]. The Isabelle formalization uses the ideas of Sections 5
and 6 rather directly. The formalization presents no essen-
tial problems. However, arriving at a good structure of the
JVM specification and the proof which permits the check-
ing speeds required for real applications is a matter of con-
tinued experimentation. For this reason we do not regard
it very meaningful to report on performance aspects at this
stage, but refer instead to the work of Necula and Lee (cf.
[13, 12]) which has gone some way to indicate the practical
realizability of the general PCC scheme.

A deeper problem, however, is how to present confiden-
tiality information to users in a meaningful way. The point
is that the nature of the confidentiality specifications con-
sidered here are quite different from the safety properties
considered by Necula and Lee. There it is tacitly assumed
that code producers and code consumers (here: users), have
established agreement on which security policies to enforce
in advance. This is inappropriate in cases such as this where
the way the code gets hold of a piece of confidential infor-
mation is not completely determined prior to loading time.
We stress this point: In the case of the purchasing applet ex-
ample, there is no apparent way to describe a security policy
related to the flow of the PIN number other than in terms of
how, where and when this piece of secret information enters
and leaves the applet. In particular, no information asserting
“this field is used for PIN number input” is to be trusted, un-
less this is adequately substantiated in terms of constraints
on the way that information is used.

So instead of using PCC information as a code fil-
ter, weeding out from execution those applets that fail
some statically determined property we use successful PCC
checks to support a security assistant which will let applet
users inquire about its security properties, such as the desti-
nation of data which is input into the different fields.

In order to realize this it is vital that the amount of spec-
ification information being communicated along with the
applet is reduced to the greatest extent possible, by assum-
ing prior agreement between code producers and code con-
sumers of e.g. the formalization of JVM, and other concepts

like bisimulation equivalence. In this way we can reduce
specifications to the equivalents of (4) accompanied with
Table 4 to define the relabelling set. Table 4 is used to ini-
tialize the security assistant.

If this table is simple enough, one could imagine an as-
sistant providing help in a meaningful way by relying on
some reasonable conventions as to the significance of the
different actions appearing in Table 4. For instance, the as-
sistant would know thatWRITE actions represent output,
thatGETTEXT actions represent input, and thatGETKEY is
the action which locally associates a public key to a prin-
cipal. Prompted by the user, for instance by pointing at a
textfield named “account number”, and maybe using some
reserved mouse click sequence, the security assistant could
then provide information of the following form:

Information entered in this field is annotated “ac-
count number”, and can only leave the system
encrypted with the public key of “payment ac-
quirer”,

and when querying a textfield named “payment acquirer”
the following response can be given:

Information entered in this field is annotated
“payment acquirer”.

Our early experiments have indicated that this form of user
support is both natural and helpful. However it does not
scale well to complex confidentiality specifications. In
those cases, one could consider an alternative assistant that
would rely on an external authority to certify a high-level,
human-readable description of the confidentiality property
accompanying the applet. This authority would not have to
certify the code itself, but just a description of the guaran-
tees implied by the admissibility property. More work is
needed, though, to determine what forms assistant output
should take once we begin to address more complex applets
and protocols.

8. Conclusion

We have introduced a new approach to confidentiality for
mobile code which is capable of handling the sorts of ex-
plicit information leaks which arise in practical applications
implementing protocol agents, for instance in e-commerce
or voting. We have shown, furthermore, how our approach
is mapped to real JVM code, and how an implementation
using proof-carrying code can make use of the confidential-
ity specifications to support a security assistant which can
help users determine, e.g., the destination of information
which is input to some given text field. We report on our
implementation work in a forthcoming paper.

The very intensional confidentiality properties that we
focus on here go beyond other work on information flow

security which we have been able to identify. Myers [11]
introduces a coarse-grained, but quite flexible approach to
information flow control based on object labelling. How-
ever, no comprehensive protection against covert channels
is provided. Abadi and Gordon [1] introduce a notion of
bisimulation equivalence specifically geared to encryption.
The approach, however, is very specific to the Spi calculus,
and it is not clear how to extend it to other types of infor-
mation leakage. Within the area of MLS security, the sub-
ject of intransitive noninterference, authorizing some distin-
guished downgrading process to leak information, has re-
ceived some attention [6, 17, 16]. In the context of applet
confidentiality, however, this approach seems to be of little
help.

Our basic idea, of characterizing admissible and inad-
missible flows by correlating changes in input to changes in
behaviour, has clear precursors in earlier work on informa-
tion flow security. The work of Abadi and Gordon clearly
has this character, and we have already addressed (Section
4) noninterference and the work of Focardi and Gorrieri.
For sequential languages, Sands and Sabelfeld [18] use par-
tial equivalence relations for MLS information flow proper-
ties. Also here, though, there are fundamental difficulties in
accomodating information leakages.

Avoiding the exploitation of timing channels is a diffi-
cult matter. An applet, for example, could use encryption
or any operation which takes different times to compute on
different inputs, and synchronization (e.g., with any other
applet running concurrently in the system) to establish a
covert timing channel. The approach presented here does
not prevent these channels even if the synchronization with
the concurrent applet is modelled. The reason is that most
of the “virtual instructions” that can be used in these at-
tacks are considered atomic and unobservable in the model.
There is, however, a simple way of extending the model to
plug most of these timing channels. It consists in making
observable (though still atomic) all critical virtual instruc-
tions, like encryption. Then, by modifying accordingly the
relabelling, an admissible applet will only be allowed to in-
voke those critical instructions with values which either do
not depend on the secrets, or do so only as specified by the
protocol. We believe this will provide a quite comprehen-
sive protection against covert timing channels, though to
quantify this will require a deeper analysis of the system
primitives and of the cryptographic protocols involved.

Several issues need to be addressed in future work:� Automation and semi-automation: In the paper we ar-
rive at a simple and sufficient set of criteria for ad-
missibility for data-independent applets. By exploit-
ing an automated verification condition generator in
the style of Necula and Lee [13] it is quite possible that
the proof machinery can be simplified further. More-
over, by the use of static analysis techniques (like those

in [20]), this machinery can possibly be eliminated al-
together.� Usability: The use of PCC information to provide in-
teractive help seems promising. More experiments
need to be done to evaluate what forms user feedback
should take. Another issue is to determine good ways
for programmers to define relabellings which reflect
some desired confidentiality property.

Acknowledgements John Mullins, now atÉcole Poly-
technique de Montréal, participated actively in the initial
development of this work. Stéphane Tao and Fabien Puig
helped develop part of the experimental platform. Thanks
are due to Jan Cederquist for useful comments and dis-
cussions, and also to Herbert Sander at Ericsson Utveck-
lings AB.

References

[1] M. Abadi and A. D. Gordon. A bisimulation method for
cryptographic protocols. Nordic Journal of Computing,
5(4):267–303, 1998.

[2] M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk,
M. Steiner, G. Tsudik, and M. Waidner. iKP – a family
of secure electronic payment protocols. InFirst USENIX
Workshop on Electronic Commerce, May 1995.

[3] E. Börger and W. Schulte. A modular design for the Java
Virtual Machine architecture. In E. Börger, editor,Architec-
ture Design and Validation Methods. Springer, Dec. 1998.

[4] R. Focardi and R. Gorrieri. A classification of security prop-
erties for process algebras.J. of Computer Security, 3(1):5–
33, 1995.

[5] J. Goguen and J. Meseguer. Security policies and security
models. InProceedings of the IEEE Symp. on Security and
Privacy, pages 11–20, Oakland, CA, 1982. IEEE Computer
Society.

[6] J. Goguen and J. Meseguer. Inference control and unwind-
ing. In Proceedings of the IEEE Symp. on Security and Pri-
vacy, pages 75–86, Oakland, CA, April 1984. IEEE Com-
puter Society.

[7] IEEE. Twelfth IEEE Computer Security Foundations Work-
shop, Mordano, Italy, June 1999.

[8] P. C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In N. Koblitz, edi-
tor, Advances in Cryptology – CRYPTO’96, volume 1109 of
LNCS, pages 104–113. Springer, 1996.

[9] J. McLean. The specification and modeling of computer se-
curity. Computer, 23(1):9–16, 1990.

[10] R. Milner. Communication and concurrency. Prentice-Hall,
1989.

[11] A. C. Myers. JFlow: Practical mostly-static information
flow control. InProceedings of POPL’99, pages 228–241.
ACM, Jan. 1999.

[12] G. C. Necula and P. Lee. Efficient representation and valida-
tion of proofs. InProceedings of LICS’98. IEEE, Computer
Society Press, June 1998.

[13] G. C. Necula and P. Lee. Safe, untrusted agents using Proof-
Carrying Code. In G. Vigna, editor,Mobile Agents and Se-
curity, volume 1419 ofLNCS, pages 61–91. Springer, 1998.

[14] L. C. Paulson. Introduction to Isabelle. Technical report,
Computer Laboratory, University of Cambridge, 1998.

[15] C. Pusch. Formalizing the Java Virtual Machine in Is-
abelle/HOL. Technical Report TUM-I9816, Institut für In-
formatik, Technische Universität München, 1998.

[16] A. W. Roscoe and M. H. Goldsmith. What is intransitive
noninterference? InProceedings of CSFW-12[7], pages
228–238.

[17] J. Rushby. Noninterference, transitivity, and channel-control
security policies. Technical Report CSL-92-2, Stanford Re-
search Institute, 1992.

[18] A. Sabelfeld and D. Sands. A PER model of secure infor-
mation flow in sequential programs. InProceedings of the
8th European Symposium on Programming, volume 1576 of
LNCS, pages 40–58, Amsterdam, Mar. 1999. Springer.

[19] D. Volpano, M. Abadi, R. Focardi, C. Meadows, and
J. Millen. Panel: Formalization and proof of secrecy prop-
erties. InProceedings of CSFW-12[7].

[20] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis.Journal of Computer Security,
4(3):167–187, 1996.

