
On the Decidability of Process Equivalences for the�-calculusMads Dam 1SICS, Box 1263, S-164 28 Kista, SwedenWe present general results for showing process equivalences applied tothe �nite control fragment of the �-calculus decidable. Firstly a FiniteReachability Theorem states that up to �nite name spaces and up toa static normalisation procedure, the set of reachable agent expressionsis �nite. Secondly a Boundedness Lemma shows that no potential com-putations are missed when name spaces are chosen large enough, but�nite. We show how these results lead to decidability for a number of�-calculus equivalences such as strong or weak, late or early bismulationequivalence. Furthermore, for strong late equivalence we show how ourtechniques can be used to adapt the well-known Paige-Tarjan algorithm.Strikingly this results in a single exponential running time not muchworse than the running time for the case of for instance CCS. Our re-sults considerably strengthens previous results on decidable equivalencesfor parameter-passing process calculi.
1 IntroductionThe problem of obtaining a uni�ed view of on the one hand sequential com-putation as embodied by the �-calculus, and reactive systems such as CCS orCSP on the other has recently had considerable attention. The �-calculus [8]was proposed as a calculus for mobile processes, i.e. processes whose intercon-nection topology may be dynamically changed. It extends CCS by featuresfor the transmission and generation of channel names. Considerable expres-sive power is gained by this. For instance, data types [6], lambda calculus [7],object-oriented programming languages [15], and higher-order processes [13]can all be captured, underlining the foundational importance of the calculus.Moreover the practical usefulness of the calculus have been demonstrated in1 Work partially supported by ESPRIT BRA project 8130 \LOMAPS", and theHuman Capital and Mobility Project EXPRESS.Preprint submitted to Elsevier Preprint 18 October 1996

application studies on mobile telecommunication networks and high speed net-works [11,10]. It is therefore important to investigate to what extent methodsand tools developed for, say, CCS lift to the more expressive setting of the�-calculus.One such set of tools of fundamental importance are process equivalence check-ing algorithms, as exempli�ed by the Paige-Tarjan algorithm [12,5]. Algo-rithms like these apply in general only to �nite-state processes, characterised,in the case of CCS, by disallowing occurrences of the parallel combinator aswell as unguarded occurrences of process identi�ers in recursive de�nitions.The corresponding fragment of the �-calculus is termed the �nite controlfragment. In this paper we show that for a range of equivalences the �nitecontrol conditions are in fact su�cient to lift algorithms to the �-calculus.This is far from a trivial result, since even very simple �-calculus agents ex-hibit in�nite-state behaviour while satisfying these conditions. One example,using a CCS-like notation, is the memory cellMem(x) = in(y):Mem(y) + outx:Mem(x)that can either input a channel name y along channel in and then proceed asMem(y) or else output x along out and then proceed as Mem(x). This is anexample of a data-independent agent such as those considered previously byJonsson and Parrow [4]. However, the �nite-control fragment goes beyond this,since it allows synchronisation, or testing, on channel names passed as param-eters. By adding a positive and negative conditional 2 if x = y then P else Qto the �-calculus, as we do, we can for instance encode the memory cellKillableMem(x) =in(y):(if y = KILL then NIL else Mem(y)) + outx:Mem(x)that is killed in case the channel KILL is passed to it. Other examples concernthe facility of the �-calculus to declare new private names and to pass themon to other parallel components. Consider for instance the agent(�x)(Gen(x)jListen(x))where Gen(x)= (�y)xy:Gen(y)Listen(x) = x(y):Listen(y)2 In the paper we actually use the notation [x = y]PQ instead of if x =y then P else Q for the conditional. 2

In this system Gen repeatedly declares a new channel name y, transmits y toListen along x and then proceeds as Gen(y). Since the y's are known to befresh and thus di�erent from any other name previously encountered during acomputation, the state space generated by (�x)(Gen(x)jListen(x)) is in�nite.In this paper we provide the basic tools to show decidability for the �nitecontrol fragment for a number of equivalences, including late or early, strong orweak bisimulation equivalence (c.f. [9]), and open (or uniform [1]) bisimulationequivalence [14] 3 . The tools consist of two key Lemmas, proofs of which aregiven in the paper:(i) A Finite Reachability Theorem showing that up to a �nite name spaceand up to a deterministic static normalisation procedure only a �nitenumber of distinct agents are reachable.(ii) A proof that the number of distinct free names needed at any point duringa computation can be bounded.Put together these results imply that a bound can be put on the size of thename space, and decidability for a given process equivalence � then consistsof showing for all agents A and B, that A � B i� A� �N B� where �Nrepresents equivalence with respect to a large enough but �nite name spaceN , and � is a map representing names as names in N . We establish this resultfor all the equivalences mentioned above with particular focus on strong latebisimulation equivalence [6]. For this equivalence we show how the partitionre�nement algorithm of Paige and Tarjan [12] can be applied resulting, as forthe case of e.g. CCS, in a single exponential worst case complexity.Our results considerably strengthens previous results in the area of value-passing process calculi. Besides the decidability result of Jonsson and Parrow[4] for data-independent programs, Hennessy and Lin [3] showed decidability ofbisimulation equivalence for a certain class of symbolic transition graphs. Boththese results are subsumed by the work presented here. The notion of openbisimulation equivalence was speci�cally formulated with an eye on e�ciencyconcerns. In the area of model checking a close relative to the present workis the decidability result with respect to an extended version of the modal�-calculus of [2].2 The Polyadic �-calculus, SyntaxWe use a slight extension of Milner's polyadic �-calculus, introduced in [2].Letters x; y; z; : : : range over names of which there is a countably in�nite3 For open bisimulation equivalence decidability is already known [14]3

supply, A;B range over agents, and D over agent identi�ers. Actions, �; �,are either names, co-names of the form x, or the distinguished constant � . If� is a name x then n(�) (the name of �) is x. and p(�) (the polarity of �) is�. Otherwise if � = x then n(�) = x and p(x) = +. The syntax of agents isthe following:A ::= 0 A+ A �:A A j A [x = y]AA(�x)A Ax (�x)A D �xD:A [x]AName binders are the operators � and �. We use the notation fn(A) for the setof names occurring freely in A and Afx=yg (AfA0=Dg) for substitution of x(A0) for y (D) inA. An agent is closed if it does not contain any free occurrencesof agent identi�ers. The intended meaning of connectives is familiar from CCSand the �-calculus. The present version is based on the polyadic �-calculus of[6]. There are three main di�erences:Recursion. We use recursive de�nitions rather than replication. Just as forCCS we require restriction to those expressions that are well-guarded (in thesense of, for an expression �xD:A, only allowing free occurrences of D in Awithin the scope of a pre�x operator), and for which uses of the parallel combi-nator j within recursive de�nitions are disallowed. We refer to this fragment asthe �nite control fragment. In addition we require for technical reasons thatrecursions �xD:A are fully parametrised in the sense that recursive agents�xD:A have no free occurrences of names. The expressive power of the lan-guage is una�ected by this latter restriction since all equivalences consideredhere will respect the identi�cation of (�xD:A)(x1; : : : ; xn) with(�xD:(�x1) � � � (�xn)AfDx1 � � �xn=Dg)x1 � � �xn:Conditionals. We admit the conditional [x = y]AB, identi�ed with A whenx = y, and B when x 6= y. The admission of negative as well as positivematching has been an issue of some controversy in the �-calculus (c.f. [14]).It is accomodated (though not required) in our framework by a relativisationof the operational semantics to complete descriptions of name identities andinequalities.Well-formedness. A well-formedness condition is imposed, reecting thestrati�ed syntax of [6]. Agents A that are to be considered well-formed areassigned an integer arity n, written A : n. Processes are agents of arity 0,abstractions are agents of negative arity, and concretions are agents of positive4

arity. Given an assignment D : n of arities to agent identi�ers, agent aritiesare computed as follows:0 : 0 A : 0 B : 0A+B : 0 A : n n � 0x:A : 0 A : n n � 0x:A : 0 A : 0�:A : 0A : 0 B : 0A j B : 0 A : n B : n[x = y]AB : n A : n n � 0(�x)A : n� 1 A : n� 1 n � 0Ax : nA : n(�x)A : n D : n A : n�xD:A : n A : n n � 0[x]A : n+ 1For the remainder of the paper we restrict attention to well-formed agents.3 Operational SemanticsIn [6] the semantics of the �-calculus is given in terms of a structural con-gruence relation together with a relation of commitment. Here we choose adi�erent, more operational approach, replacing the structural congruence re-lation with a normalisation procedure.Name partitionings. Since the decision procedure handles names in a sym-bolic fashion, normalisation needs to know what identities and inequalities areassumed of names. This information is supplied by partitionings " on the setof names. A partitioning " identi�es the names x and y (written " j= x = y)if and only if x and y are members of the same element of ". The operation(�x)" of name generation is de�ned by(�x)" = fS � fxg j S 2 "g [ffxgg:Normal forms and normalisation. Processes in normal form, ranged overby P , are generated by the grammarP ::= 0 P + P �:A P j P (�x)PAbstractions in normal form have the form (�x)A, and concretions in normalform have one of the forms [x]A or (�x)[x]A. The normalisation procedure is5

given by the pseudo-ML function nf:fun nf(0,") = 0 jnf(A +B,") = nf(A,") + nf(B,") jnf(�:A,") = �:A jnf(A j B,") = (nf(A,") j nf(B,")) jnf([x = y]AB,") = if " j= x = y then nf(A,") else nf(B,") jnf((�x)A,") = (�x)A jnf(Ax,") = (case nf(A,") of (�y)A1 => nf(A1fx=yg,")) jnf((�x)A,") =let A1 = nf(A,(�x)") inif x 2 fn(A1)then if A1 : 0 then (�x)A1 else(case A1 of(�y)A2 => if x = y then (�y)A2 else (�y)(�x)A2 j[y]A2 => if x = y then (�x)[y]A2 else [y](�x)A2 j(�y)[y]A2 => if x = y then (�y)[y]A2 else (�y)[y](�x)A2)else A1end jnf(�xD:A,") = nf(Af�xD:A=Dg,") jnf([x]A,") = [x]AProposition 1 Let A be a closed, well-formed agent, and " a name partition-ing. Then nf(A,") is a well-formed agent in normal form.PROOF. Structural induction. 2Restricting to well-formed agents in the conditional-free fragment it is pos-sible to compare the normalisation procedure with the structural congruencerelation � of [6]. Using the de�nitions of [6] it is quite easy to show that forall well-formed, conditional-free agents A, nf(A,") is independent of ", and forall ", A � nf(A,").Commitment. The de�nition of the commitment relation needs the ancil-lary operations k and � on normal forms:{ A k B = A j B when A : 0 and B : 0. If A : 0 and B : n 6= 0 thenA k [x]B0 = [x](A k B0), A k (�x)[x]B0 = (�y)[y](A k B0fy=xg), andA k (�x)B0 = (�y)(A k B0fy=xg), where in the two last cases it is assumedthat y 62 fn(A). The case for A : n 6= 0 and B : 0 is de�ned symmetrically.{ A �B is de�ned only when A : �n and B : n for some (positive or negative)n. For n = 0, A � B = A j B. If n > 0, (�x)A0 � [y]B0 = Afy=xg � B0 and6

(�x)A0 � (�y)[y]B0 = Afz=xg �B0fz=yg where z 62 (fn(A0)�fxg)[(fn(B0)�fyg). The case for n < 0 is de�ned symmetrically.As the normalisation procedure the commitment relation is relativised to namepartitions too. It is de�ned as follows:act: �:A �" �:A sum: A1 �" BA1 + A2 �" Bcomm: A1 �" x:B1 A2 �" y:B2 " j= x = yA1 j A2 �" �:(nf(B1,") � nf(B2,"))par: A1 �" �:BA1 j A2 �" �:(nf(B,") k A2)res-1: A �(�x)" �:B(�x)A �" �:(�x)Bres-2: A �(�x)" �:B(�x)A �" �:(�x)B (x 6= n(�))+ symmetrical versions of rules sum, comm and parRelating to [6] let the full name partitioning "f be the one containing only sin-gleton sets. The full partitioning identi�es names only if they are literally thesame. It can then be shown for the well-formed fragment without conditionalsthat A � B according to [6] if and only if for some B0, nf(A,"f) �"f B0, andnf(B,"f) = nf(B0,"f).De�nition 2 (Simulations, Bisimulations) A (strong, late) partition-relati-vised simulation (or pr-simulation) is an "-indexed family of binary relationsR" on well-formed agents satisfying the following conditions:(i) If AR"B then nf(A,")R"nf(B,").(ii) If AR"B and A : n then B : n.(iii) If [x]A0R"[y]B0 then A0R"B0 and " j= x = y.(iv) If (�x)[x]A0R"(�y)[y]B0 then A0fz=xgR(�z)"B0fz=yg for all z such thatz 62 (fn(A0)� fxg) [(fn(B0)� fyg).(v) If (�x)A0R"(�y)B0 then for all z, A0fz=xgR"B0fz=yg.(vi) If AR"B and A �" �:A0 then B �" �:B0 for some B0 such that " j= � = �and A0R"B0. 7

Then R is a partition-relativised bisimulation (pr-bisimulation) if for each "both R" and R�1" are pr-simulations; A and B are "-bisimilar (A �" B) ifthere is a pr-bisimulation R such that AR"B; and A and B are pr-bisimilar(A � B) if there is a pr-bisimulation R such that AR"B for all ".Serving as s justi�cation for Def. 2 to [6] it can be shown quite easily thatfor the fragment of well-formed, conditional-free agents, �"f is the (strong)bisimulation equivalence of [6], and � is strong congruence.4 A Finite Reachability TheoremThe main ingredient in the decidability proof is a �nite reachability Theo-rem, showing that for �nite control agents, if names are always chosen from a�xed �nite number of candidates then only a �nite number of distinct agentexpressions are reachable.Small enough names. Names are chosen at the following points:{ When computing A k B or A �B.{ When instantiating names bound by � or �.We restrict these choices by assuming an enumeration x0; x1; : : : of names andimposing a maximal index n0 such that whenever a name is to be chosen thenit is chosen small enough, i.e. with an index not exceeding n0. If no such nameexists (because otherwise confusion of names would ensue) then the result isleft unde�ned. We show later that by picking n0 large enough all choices canin fact be made.De�nition 3 (Reachability relation) Relative to a choice of n0 the reachabil-ity relation ; on well-formed agents is de�ned as follows:(i) For all ", A; nf(A,"),(ii) [x]A; A,(iii) (�x)[x]A; Afy=xg whenever y is small enough and y 62 fn(A)� fxg,(iv) (�x)A; Afy=xg whenever y is small enough,(v) If P is a process in normal form and for some ", P �" �:A while choosingonly names that are small enough, then P ; A.The Relation!. Our aim is to show that for all well-formed, �nite controlA and n0, fB j A;� Bg is �nite. To show this we de�ne a reduction relation8

! such that !� includes ;�, and such that we can prove fB j A !� Bg�nite. The relation ! is determined by the following closure properties:0. A! B whenever A and B are alpha-congruent, and B results from A byreplacing small enough bound names with small enough bound names(i) A+B ! A, A+B ! B(ii) �:A! A(iii) [x = y]AB ! A, [x = y]AB ! B(iv) (�x)A! Afy=xg whenever y is small enough(v) Ax! A(vi) �xD:A! Af�xD:A=Dg(vii) [x]A! A(viii) If A! B and x 2 fn(B) then (�x)A! (�x)B(ix) (�x)A! A(x) (�x)(�y)A! (�y)(�x)A(xi) If x 6= y then (�x)[y]A! [y](�x)A(xii) (�x)(�y)[y]A! (�y)[y](�x)A(xiii) If A! A0 then A j B ! A0 j B and B j A! B j A0(xiv) ((�x)A) j B ! (�x)(A j B), A j ((�x)B)! (�x)(A j B)(xv) ([x]A) j B ! [x](A j B), A j ([x]B)! [x](A j B)(xvi) ((�x)A) j B ! (�x)(A j B), A j ((�x)B)! (�x)(A j B)Proposition 4 ;��!�.PROOF (Proposition 4) We need to show(i) For all ",A!� nf(A,").(ii) [x]A!� A.(iii) (�x)[x]A!� Afy=xg whenever y is small enough and y 62 fn(A)� fxg.(iv) (�x)A!� Afy=xg whenever y is small enough.(v) P !� A whenever P is a process in normal form and for some " and �,P �" �:A.Of these (i) and (v) use structural induction, and (ii){(iv) follow directly fromthe conditions given. 2(Proposition 4)Let � be an in�nite derivation of the form� = A0 ! � � � ! An ! � � � (1)from A (i.e. A0 = A). Since ! is �nitely-branching, to show that fB j A!�Bg is �nite for all A, it su�ces to show that for all such derivations �, the set9

R(�) = fAi j i 2 !g is �nite. To prove this we analyse the structure of termsAi.Contexts. Let an m'ary context be a non-recursive term C with m occur-rences of the empty context [�], that is, a term generated by the abstractsyntaxC ::= [�] 0 C + C �:C C j C [x = y]CC (�x)C Cx (�x)C [x]CUsing the �nite control assumption, we can �nd an m such that each Ai canbe written in the form Ai = Ci(Bi;1; : : : ; Bi;m) (2)where Ci is an m'ary context, and where each Bi;j is a term that does notcontain occurrences of the parallel composition operator. By convention con-texts are �lled from left to right such that C(A01; : : : ; A0m) is C with the i'thleftmost occurrence of [�] substituted for A0i, etc. Contexts are equipped with atransition structure corresponding to the relation! on terms. The conditions(1){(16) above are readily applicable to contexts, except that the notion offree name'is not quite appropriate. Instead, say of a context C that x is visiblethrough C if either there is some occurrence of [�] in C not within the scope of abinding occurrence of x, or else x occurs unbound in C. Now we can de�ne therelation! on contexts by the conditions (1){(16) plus the following, where
ranges over operators among (�x), (�x), and [x] with x small enough:(I) [�]! (�x)[�], [�]! (�x)[�], and [�]! [x][�] where x is small enough.(II) if C1 ! C 01 and x is visible through C 01 then (�x)C1 ! (�x)C 01Proposition 5 Each Ai in (1) can be written in the form (2) such that, forall i 2 ! and j : 1 � j � m,(i) Bi;j does not contain occurrences of the parallel composition operator,(ii) C does not contain occurrences of the �xed point operator,(iii) either Bi;j = Bi+1;j or else Bi;j ! Bi+1;j, and(iv) either Ci = Ci+1 or else Ci !� Ci+1.PROOF. By induction on i and the structure of proof that Ai ! Ai+1.Observe that in fact, in (4), Ci !� Ci+1 in either 1 or 2 steps corresponding toapplications of one of the rules (14){(16). In the �rst step an operator (�x),(�x) or [x] is transferred from an Bi;j to the context using (I), and in secondstep the oiginal rule application ((14){(16)) is mimicked on contexts. 210

Note that the number of occurrences in Ci of operators among +, pre�xing,the conditional, or application will decrease with increasing i since the onlyreduction that can cause such occurrences to duplicate is axiom (6) whichdoes not apply. Moreover, for each occurrence of one of these operators, eitherit is never reduced, and then the subterm in question can be viewed as aconstant, or else the number of occurrences of that particular operator in theCi is reduced by 1. Thus there is no loss of generality in assuming that C0 isbuilt using only operators of the form [x], (�x), (�x), or j. Call such a contexta restricted context.We have thus reduced the problem of showing thatR(�) is �nite to the problemof showing(i) only a �nite number of distinct contexts Ci are reachable,(ii) any derivation � that does not involve parallel composition visits a �nitenumber of distinct agents only,under the assumption that C0 is a restricted context.Finite Reachability for Contexts. The property (i) is proved using thenotion of legitimate pre�x.De�nition 6 (Context pre�x, Legitimate pre�x)(i) A (context) pre�x is a string p =
1 � � �
n where each
i is either (�x),(�x), or [x], and where x is small enough. Write p :: C for the contextobtained by pre�xing C with p.(ii) A pre�x
1 � � �
n is legitimate if(a) at most one
i has the form either (�x) or [x], and(b) the total number of occurrences of operators of the form (�x) or (�x)for some small enough x is at most n0.Lemma 7 For all C, fC 0 j C !� C 0g is �nite.PROOF (Lemma 7) By induction in the structure of C:C = [�]: Any context reachable from [�] has the form p :: [�] where p is a pre�x.It su�ces to show that p is legitimate. To show this assume that p is legitimateand that p :: [�] ! C 0. Then C 0 has the form p0 :: [�]. Clearly condition (a)above is satis�ed. To see that also (b) is satis�ed suppose for a contradictionthat it is not, so that p0 has n0 + 1 occurrences of a binding operator. Thenp0 must have the form p1(�x)p2
p3 for some x where
 binds x. But this isimpossible since the justi�cation of p :: [�] ! p0 :: [�] must have appealed to11

(II) for justifying (�x)p00 :: [�] ! (�x)p2
p3 :: [�] for some p00. But x is notvisible through p2
p3|a contradiction.C = (�x)C 0: Using the inductive hypothesis it su�ces to show that any contextreachable from C (in 1 step or more) has the form p :: C1 where p is alegitimate pre�x and C1 is reachable from C 0 (in 1 step or more). So assumethat p :: C1 ! C2. The only case that needs considering is when p has theform p0(�x), C1 the form
C 01, and C2 the form p
(�x) :: C 01. We then needto show that p
(�x) is legitimate, but this follows exactly as in the previouscase.C = C1 j C2: We show that any context reachable from C (in 1 step or more)has the form p :: (C 01 j C 02) where p is legitimate, C 01 is reachable from C1, andC 02 reachable from C2. The only cases that need considering are applicationsof one of the rules (14){(16), but these follow as in the case for �.The remaining cases are quite straightforward. 2(Lemma 7)
Finite Reachability for j-Free Agents. We then proceed to show �nitereachability for the relation! on agents that do not contain occurrences of j.De�ne the size, jAj, of such an agent A in the following manner:j0j = jDj = 2jA+Bj = j[x = y]ABj = jAj+ jBj+ 1j�:Aj = j(�x)Aj = jAxj = j[x]Aj = j�xD:Aj = jAj+ 1j(�x)Aj = 2 � jAj+ 1Lemma 8 Axiom (0) does not increase size. All axioms among (1){(16) ex-cept (6) decrease size. Rules (8), (11), (13) preserve size decrease 2(Lemma8)Thus we can assume that the unfolding axiom (6) is used in�nitely often along�.Lemma 9 Suppose that A has no occurrences of j. For all derivations � =A0 ! � � � ! An ! � � � with A0 = A, R(�) is �nite.PROOF (Lemma 9) The proof proceeds by induction in the size of A. Mostcases (0, A + B, �:A , [x = y]AB, (�x)A, Ax, [x]A) are direct consequencesof the induction hypothesis. For (�x)A the proof follows the corresponding12

case in the preceding proof. So assume that A = �xD:A0. We show that anyagent reachable from A has the form p :: (A00fA=Dg) where p is a legitimatepre�x and A00 is reachable from A0. This completes the proof by the inductionhypothesis. To each transition Ai ! Ai+1 is associated a proof using therules (1){(16). Say that step i refers to A, if the justi�cation of the transitionAi ! Ai+1 involves an appeal to (6) with D instantiated to itself, and A toA0. Suppose that Ai has the form p :: (A00fA=Dg) where A00 is reachable fromA0. The situation where step i is an instance of one of the axioms (10){(12)can be handled as in the proof of Lemma 7. Thus we only need to considerthe case where step i refers to A. But then A00 must have the form p0 :: Dfor p0 a pre�x, and in this situation the pre�x pp0 must, as we have seen, belegitimate, and thus Ai+1 has been brought into the desired form. 2(Lemma9)We have thus established the following:Theorem 10 (Finite reachability) For all well-formed A and n0, fB j A;�Bg is �nite. 25 Choosing NamesThe problem with Theorem 10 is that potential derivations might be lostbecause at some point it becomes impossible to choose a small enough name. Inthis section we show that we can avoid this problem by choosing n0 su�cientlylarge. Let jAj1 be the maximal number of free names in any subterm of A,and jAj2 be the number of occurrences of the parallel combinator j in A.Lemma 11 For all An, if A0 !� An then jfn(An)j � jA0j1 � (jA0j2 + 1)PROOF. Let � be an in�nite derivation � = A0 ! � � � ! An ! � � �. Weproceed by induction in the structure of A0.A0 = (�x)A00. If n > 0 it must be the case that (forgeting about a possibleinitial sequence of alpha-conversions) A1 = A00fy=xg where y is small enough,such that A00 !� An. By the induction hypothesis, jfn(An)j � jA00j1 �(jA00j2+1)which in turn is equal to jA0j1 � (jA0j2 + 1).A0 = A0;1 j A0;2. An must have the form p :: (An;1 j An;2) where p is alegitimate pre�x. For each i 2 f1; 2g we �nd legitimate pre�xes pi such thatA0;i !� pi :: An;i, and p is the merge of p1 and p2 in a manner such that if13

[x] occurs in p with x in a bound position then so it does in whichever pi thatcontains [x]. By the induction hypothesis, jfn(pi :: An;i)j � jA0;ij1 � (jA0;ij2+1)for i = 1 and i = 2. Now jfn(An)j � jfn(p1 :: An;1)j + jfn(p2 :: An;2)j, Letnow B be whichever of A0;1=A0;2 such that jBj1 is maximal. Then jfn(An)j �jBj1 � (jA0;1j2 + jA0;2j2 +2), and then, since jA0;1j2 + jA0;2j2 = jA0j2, we obtainjfn(An)j � jA0j1 � (jA0j2 + 1) as required.A0 = �xD:A00. By the assumption of �nite control jA0j2 = 0. Thus is su�cesto show jfn(An)j � jA0j1. We can assume that there are legitimate pre�xesp and p0 such that �xD:A00 !� p :: �xD:A !� An, where An has the formp0 :: A0nf�xD:A=Dg, and A00 !� A0n. Without loss of generality we can assumethat p has no free occurrences of names, since any free occurrences of a namein p would be eliminated before a subsequent unfolding of �xD:A00. We knowthat jfn(A0n)j � jA00j1 = jA0j1 by the induction hypothesis. The only case inwhich jfn(An)j could be greater than jfn(A0n)j is when p0 contains an occurrenceof an output pre�x [y] such that that particular occurrence of y is free in p0.This, however, can only happen if the derivation p :: �xD:A00 !� An canbe factorised in the manner p :: �xD:A00 !� p00 :: A00nf�xD:A00=Dg !� Ansuch that p00 has no free occurrence of y, and such that A00 !� A00n. Moreoverfn(A00n) = fn(A0n) [fyg. But, by the induction hypothesis, jfn(A00n)j � jA0j1,which is what we need to show.The remaining cases follow directly by the induction hypothesis. 2
6 DecidabilityConsider now a version of pr-bisimulation of De�nition 2 modi�ed such that zin 2.2 and 2.3 is required to be small enough, and such that commitment in 2.4is conditional on only small enough names being chosen. Call the ensuing vari-ant of pr-bisimulation for name-bounded pr-bisimulation, or nbpr-bisimulation,for short. By K�onig's Lemma, since the number of transitions that use onlysmall enough names and that emanate from a given agent is �nite, and byLemma 11 any in�nite path must visit the same agent expression in�nitelyoften, the following decidability result obtains:Theorem 12 Name-bounded pr-bisimulation equivalence is decidable. 2Using this result we can then easily establish our �rst main Theorem:Theorem 13 Strong late bisimulation equivalence is decidable.14

PROOF (Theorem 13) Both decidability results follow from decidabilityof "-pr-bisimulation which we go on to demonstrate. Assume �rst if R" andR�1" are both pr-simulations. Then they are also nbpr-simulations for any n0.Suppose on the other hand that R" and R�1" are both nbpr-bisimulations forsome n0 greater than jAj1 � (jAj2 + 1) + jBj1 � (jBj2 + 1):Let a name representation be any pair of maps (ffree; fbound) such that ffreeis an injection, and for each binding occurrence of a name in A or B fboundmaps that name into a small enough name, such that(i) if x and y are distinct, both occurs freely in some subterm of A or B, andboth are occurrences of bound names, then fbound(x) 6= fbound(y), and(ii) if x and y are distinct, both occurs in a subterm of A or B and, say, x isan occurrence of a bound name and y an occurrence of a free name, thenfbound(x) 6= ffree(y).For a name partition " let ffree(") = fff(x) j x 2 Ug j U 2 "g. Becauseof the choice of n0, a name representation exists. Let then AS"B if andonly if there is a name representation (ffree; fbound) such that if A0 and B0are the agents resulting from renaming free and bound names according to(ffree; fbound), then A0 and B0 are ffree(")-nbpr-bisimulations. It is then easyto verify that, due to the choice of n0, S" is an "-pr-bisimulation. This com-pletes the proof. 2(Theorem 13)Other equivalences. In a similar manner we can prove decidability forother versions of bisimulation equivalence, notably early strong bisimulationequivalence, late and early weak bisimulation equivalence. Decidability of openbisimulation equivalence can also be shown in this manner. However, openbisimulation equivalence is already known to be decidable (indeed it was for-mulated with this as a central concern).Early equivalence is characterised by permuting the quanti�cations over tran-sitions and inputs which is implicit in clauses (3) and (4) of Def. 2 (c.f. [9]for a de�nition of early equivalence). The proofs of Theorems 12 and 13 areonly minimally a�ected by this modi�cation. For the weak late and earlyequivalences again only small modi�cations are needed (though alternativecharacterisations of these equivalences are likely to be mandatory for reasonsof e�ciency). We thus obtain:Theorem 14 (i) Strong early bisimulation equivalence is decidable.(ii) Weak late and early bisimulation equivalence are decidable. 215

7 Complexity and DiscussionThe obvious backtracking-based algorithm for deciding name-bounded bisim-ulation equivalence is quite ine�cient. As for standard bisimulation equiv-alence a better solution is obtained using the Paige-Tarjan algorithm [12,5]with a worst-case running time of O(nt logns + ns) where nt is the num-ber of transitions and ns the number of states. With minor modi�cationsto cater for bound output this algorithm is applicable once the full statespaces have been constructed, as pairs (A; "). If the total number of reach-able agents A is m and the sum of the length of the input agents is nthen, since in the worst case n0 is quadratic in n, ns is O(m2n2) and nt isO(m2n22n2). Thus the running time of the Paige-Tarjan algorithm is boundedby O(n42n2m2 logm). To estimate m note �rst that up to the choice of namesthe number of agents reachable from one parallel component is O(n). Sinceeach name can be instantiated in n0 di�erent ways the entire number of agentsreachable from one parallel component isO(n2n2 log(n2)). Thusm is bounded byO((n2n2 log(n2))n) = O(2n3 log(n2)+n log n), which is 2O(n3 log(n2)). This is strikinglyclose to the similarly approximated upper bound for CCS of 2O(n log n)). Boththe parallel combinator already present in CCS and the �-calculus features ofname generation and passing causes an exponential blow-up in the size of thestate space. One might fear that these two causes of state space blow-up couldinterfere in a serious manner, resulting in double exponential running timesor worse. However, even though some interference does take place because ofscope extrusion, our results show that this fear is unfounded.Lower bounds. Concerning lower bounds Jonsson and Parrow [4] showsthat the bisimulation problem for data-independent programs (not includingthe parallel combinator j) is NP-hard. Since data-independent programs aresubsumed by those considered here that lower bound applies here as well.E�ciency. As for e�ciency, based on the asymptotically quite similar worst-case bounds for CCS and for the �-calculus, since the Paige-Tarjan algorithmhas been applied to quite realistically sized examples in CCS one might hopethat this applies here too. Whether this in fact turns out to be the case remainsto be seen. It may well be that alternative characterisations of the equivalencescan be exploited to improve the e�ciency of our algorithms, along the lines offor instance the e�cient characterisation of strong open bisimulation equiv-alence [14], or the symbolic bisimulations of Hennessy and Lin [3]. For theweak equivalences in particular we expect such e�cient characterisations tobe indisposable. 16

References[1] R. Amadio, A uniform presentation of CHOCS and �-calculus, Rapport deRecherche 1726, INRIA-Lorraine, Nancy, 1992.[2] M. Dam, Model checking mobile processes, Information and Computation 129(1996) 35{51.[3] M. Hennessy and H. Lin, Symbolic bisimulations, Dept. of Computer Science,University of Sussex, Report 1/92, 1992.[4] B. Jonsson and J. Parrow, Deciding bisimulation equivalences for a class ofnon-�nite-state programs, Information and Computation 107 (1993) 272{302.[5] P. C. Kannellakis and S. A. Smolka, CCS expressions, �nite state processes, andthree problems of equivalence, Information and Computation 86 (1990) 43{68.[6] R. Milner, The polyadic �-calculus: A tutorial, Technical Report ECS-LFCS-91-180, Laboratory for the Foundations of Computer Science, Department ofComputer Science, University of Edinburgh, 1991.[7] R. Milner, Functions as processes, Mathematical Structures in ComputerScience 2 (1992) 119{141.[8] R. Milner, J. Parrow, and D. Walker, A calculus of mobile processes, I and II,Information and Computation 100 (1992) 1{40 and 41{77.[9] R. Milner, J. Parrow, and D. Walker, Modal logics for mobile processes,Theoretical Computer Science 114 (1993) 149{171.[10] F. Orava, On the Formal Analysis of Telecommunication Protocols, PhD thesis,Dept. of Computer Systems, Uppsala University and Swedish Institute ofComputer Science, 1994.[11] F. Orava and J. Parrow, An algebraic veri�cation of a mobile network, FormalAspects of Computing 4 (1992) 497{543.[12] R. Paige and R. E. Tarjan, Three partition re�nement algorithms, SIAMJournal of Computing 16 (1987) 973{989.[13] D. Sangiorgi, From �-calculus to higher-order �-calculus|and back, Proc.TAPSOFT'93, Lecture Notes in Computer Science, 668 (1993).[14] D. Sangiorgi, A theory of bisimulation for the �-calculus, Proc. CONCUR'93,Lecture Notes in Computer Science, 715 (1993) 127{142.[15] D. Walker, Objects in the �-calculus, Information and Computation 116 (1995)253{271.
17

