
Fixed points of B�uhi automataMads Dam?Department of Computer Siene, University of Edinburgh, U.K.Abstrat. We give a new and diret proof of the equivalene betweenthe linear time �-alulus �TL and B�uhi automata. Construtions onautomata are given whih ompute their least and greatest �xed points.Together with other well-known onstrutions orresponding to the re-maining �TL onnetives the result is a representation of �TL as B�uhiautomata whih in ontrast to previously known onstrutions is both el-ementary and ompositional. Appliations to the problem of ompletelyaxiomatising �TL are disussed.1 IntrodutionThe relation between automata as devies for reognising behaviours, and �xedpoints, or equations, as means of haraterising them is an important reurringtheme in the theory of omputation. The !-regular languages provides an exam-ple of partiular interest in onurreny theory. They are haraterised on theone hand by formulas in the linear time �-alulus. This logi, known as �TL,augments linear time logi by least and greatest �xed points of formally mono-tone ontexts. The !-regular languages are also exatly the languages reognisedby B�uhi automata, �nite automata applied to words of in�nite length. Both �TLand B�uhi automata have had onsiderable attention as formalisms for speifyingand verifying onurrent programs (.f. [?, ?, ?, ?, ?, ?℄).We suggest examining the onnetion between �TL and B�uhi automatafurther. B�uhi automata at present laks a strutural theory whih is usable inpratie, for instane for mahine implementation or to support equational rea-soning. The equivalene with S1S, the monadi seond-order theory of suessor,is nonelementary [?℄ and thus o�ers little onrete assistane. The linear time�-alulus is potentially muh more valuable for this purpose. Fixed points, onthe other hand, an be very troublesome in pratial use. Already at the seondlevel of alternation formulas an beome highly unintelligible. Automata anprove useful aids for visualising �xed point properties.The value of a ompositional, or syntax-direted approah in suh an en-terprise is well doumented. Indeed B�uhi's original work on the deidabilityof S1S, the monadi seond-order theory of one suessor [?℄, gave a ompo-sitional representation of S1S formulas as automata, representing seond-orderquanti�ation, in partiular, by projetion. The present paper an be viewed? Researh supported by SERC grant GR/F 32219. Current address: Swedish Instituteof Computer Siene, Box 1263, S-164 28 Kista, Sweden. E-mail: mfd�se.sis.



as an adaptation of B�uhi's work to �TL, by providing representations for the�xed point quanti�ers. That is, given an automaton reognising the languageexpressed by the �TL-formula � where � is formally monotone in the variableX , we produe automata reognising the least and greatest �xed points, �X:�and �X:� respetively, of the operator �X:�. Of ourse only one �xed point on-strution, for instane for greatest �xed points, is needed due to the equivalene�X:� � :�X::�[:X=X ℄. However, the onstrution for least �xed points gene-ralises the onstrution for greatest �xed points in a natural way, and by usingit the need for expliit omplementation of B�uhi automata an be dispensedwith.Existing proofs that formulas in �TL de�ne !-regular languages give on-strutions of B�uhi automata that are either nonelementary beause S1S is usedas an intermediate step, or nonompositional. The latter is the ase, in partiu-lar, for the automata-theoreti tehniques of e.g. [?, ?℄. Their approah is globalrather than ompositional: The automaton for a formula � is built as the inter-setion of an automaton that heks loal model onditions with the omplementof an automaton that heks for non-well-foundedness of a ertain regenerationrelation.The paper is organised as follows: In setion 2 we introdue �TL, and insetion 3 we introdue B�uhi automata and show how they an be representedin �TL. This representation is instrutive in showing results that do not appearto be widely known, suh as the ollapse of the �xed point alternation hierarhy(on level ��), and the expressive equivalene of the aonjuntive fragment of�TL with the full language (see [?℄ for a de�nition of aonjuntivity). The �xedpoint onstrutions �rst builds an intermediate automaton with nonstandardaeptane onditions. This onstrution is desribed in setion 4, and then insetions 5 and 6 the onstrutions for greatest and least �xed points are given.Finally, in setion 7, we disuss the appliation of our onstrution to the problemof ompletely axiomatising �TL. This is of partiular interest sine automata-based tehniques, despite their suess in temporal logi in general, have not sofar proved very useful where axiomatisations are onerned. The axiomatisationwe have in mind is based on Kozen's axiomatisation of the modal �-alulus[?℄. Using our onstrution B�uhi automata an be viewed as normal forms for�TL, suggesting a strategy for proving ompleteness whereby eah formula isproved equivalent to its normal form using only the axioms and rules of infereneprovided. We have so far used this strategy suessfully to prove ompletenessfor the aonjuntive fragment. Our approah is related to Siefke's ompletenessresult for S1S [?℄ and to Kozen's reent ompleteness result for the algebra ofregular events [?℄.2 The Linear Time �-alulusFormulas �,  ,  of the linear-time �-alulus �TL are built from propositionalvariables X , Y , Z, boolean onnetives : and ^, the nexttime operator O, andthe least �xed point operator �X:�, subjet to the formal monotoniity ondition



that all free ourrenes of X lie in the sope of an even number of negations.Other onnetives are derived in the usual way, and in partiular greatest �xedpoints are derived by �X:� �= :�X::�[:X=X ℄. Intuitively, least �xed points areused for eventuality properties, and greatest �xed points for invariants.Fix a �nite set � of propositional variables. A model M assigns to eahvariable X 2 � a subsetM(X) � !. Models are extended to arbitrary formulaswith free variables in � in the following way:M(:�) =M(�)M(� ^  ) =M(�) \M( )M(O�) = fi j i+ 1 2M(�)gM(�X:�) = \fA � ! j M[X 7! A℄(�) � AgHereM[X 7! A℄ is the obvious update ofM. There is a bijetive orrespondenebetween models and !-words � over the alphabet 2�. The modelM determinesthe !-word �M : i 7! fX j i 2M(X)g, and the language de�ned by � isL(�) = f�M j 0 2M(�)g: (1)Operations on !-words � inlude the n'th suÆx, �n, and, where n � m, then;m-segment, �(n;m) = �(n) � � ��(m).3 B�uhi AutomataAutomata provide an alternative way of de�ning !-languages. We use a slightlymodi�ed aount of B�uhi automata, losely related to Alpern and Shneider'suse of transition prediates [?℄. Fix a �nite set � of propositional variables.An atom over � is a pair a = (a+; a�) where a+ and a� are subsets of �.Intuitively, a transition labelled a is enabled when all members of a+ are trueand all members of a� false. The set of all atoms over � is denoted by At(�).A B�uhi-automaton (over �) is an NFA A = (Q; q0; f a!ga2At(�); F ) where Qis the �nite set of states, q0 2 Q is the initial state, a!� Q�Q is the transitionrelation for eah a 2 At(�), and F � Q is the set of aepting states. Wesometimes write A(q0) instead of just A to emphasize the initial state. Let an!-word � over alphabet 2� be given. An (in�nite) run of A on � is an !-word� over Q s.t. �(0) = q0 and for all i � 0 there is an atom a 2 At(�) s.t.�(i) a! �(i+1), a+ � �(i) and a�\�(i) = ;. Finite runs are de�ned similarly.An in�nite run is suessful if some aepting state in F ours in�nitely often init, and A aepts � if a suessful run of A on � exists. The language reognisedby A is L(A) = f� j A aepts �g.Example 1. In all examples here and below formulas are positive in their freepropositional variables. The negative omponent of atoms an onsequently beomitted.



911ptq0 911ptq1911ptq2911pt;911ptfXg 911pt;911ptfZg 911ptq3911ptfY gFig. 1. B�uhi automaton A1 for Z _ (Y ^OX)1. The automaton A1 of �g. 1 reognises the language de�ned by the �TLformula Z _ (Y ^OX).2. The automaton A2 of �g. 2 reognises O((O(�Y:X _OY )) ^ Z), equivalentto the PTL formula O((OFX) ^ Z).911ptq0 911ptq1 911ptq2 911ptq3911pt; 911ptfZg911pt; 911ptfXg911pt;Fig. 2. B�uhi automaton A2 for O((O(�Y:X _OY )) ^ Z)The B�uhi automaton A an be represented as a �TL formula fm(A) in thefollowing way: Let FA = fq1; : : : ; qng and for eah 1 � i � n, let Ai be A with Freplaed by the singleton fqig. Then L(A) = Sn1�i L(Ai) so we an let fm(A) �=Wn1�i fm(Ai). To represent the Ai, states are represented as �xed point formulas,the unique aepting state as a �-formula and all other states as �-formulas.Thus the representation, fm�(q), of q is really relative to an environment � � Qkeeping trak of earlier enountered states, and then fm(A) = fm;(q0). For eahstate q let Xq be a distinguished propositional variable. Atoms are dealt withby de�ning a:� �= O� ^^ a+ ^^f:X j X 2 a�g (2)The representation is now de�ned as follows:fm�(q) =8<:Xq if q 2 ��Xq:Wfa:fm�[fqg(q0) j q a! q0g if q 62 � and q 6= qi�Xq:Wfa:fmfqg(q0) j q a! q0g otherwise (3)We an assume that every state q has a suessor, i.e. that there are a andq0 suh that q a! q0 so that only nonempty disjuntions in (3) are needed.This assumption applies throughout the rest of the paper. The representation islosely related to the translation of ECTL� into the modal �-alulus of Dam[?℄ and an be proved orret in the same way.Theorem1. For eah B�uhi automaton A, L(A) = L(fm(A)). 2



4 Intermediate AutomataTo derive equivalent B�uhi automata from �TL-formulas we give for eah on-netive of �TL a orresponding onstrution on automata. Eah formula an beput in positive form, generated by� ::= X j :X j �1 _ �2 j �1 ^ �2 j O� j �X:� j �X:�so we only need onsider negation applied to propositional variables. It is easyto produe automata aut(X) and aut(:X) respetively reognising L(X) andL(:X), and to produe an automaton OA reognising L(O�) when A reognisesL(�). Corresponding to the _ is the sum operation A1+A2 whih adjoins a newinitial state to the disjoint sum of the statesets of A1 and A2. Corresponding tothe ^ is a produt automaton A1 � A2 whih aepts when �rst an aeptingstate of A1 and then of A2 is enountered (.f. [?℄).Completing this proedure it thus remains to produe automata �X:A and�X:A for �X:� and �X:� respetively when A = (Q; q0; f a!ga2At(�); F ) reog-nises L(�). We assume the following two properties of A:1. Whenever q a! q0 then X 62 a�.2. Whenever q0 a! q then X 62 a+.The �rst property reets the formal monotoniity requirement of X in � andis validated by the indutive onstrution of A from �. The seond propertyensures that ourrenes of X in fm(A) are guarded, i.e. ours only within thesope of the nexttime operator O. It is a straightforward matter to modify anautomaton A suh that property 2 is satis�ed without a�eting the languagesreognised by the �xed point automata (.f. [?℄).The key problem in deriving the �xed point automata is to handle transitionsq a! q0 ofA that involve referene to the reursion variable, i.e. suh thatX 2 a+.In this situation, as part of a �xed point automaton, q gives rise not only toq0, but also to a state q00 for whih q0 a0! q00 for some appropriate a0. We usea subset onstrution to handle this onjuntive branhing of the transitionrelation. Given A the proedure detailed below gives an automaton A0, alledan intermediate automaton. The states ofA0 are subsets ofQ, and the initial stateis the singleton fq0g. For the transition relation there are two ases aordingto whether a referene to the reursion variable is needed or not:1. (X not referened). Let a+ = a+1 [� � �[a+m, a� = a�1 [� � �[a�m, and X 62 a+.If q1 a1! q01; : : : ; qm am! q0m then fq1; : : : ; qmg (a+;a�)���! fq01; : : : ; q0mg.2. (X referened). Let a+ = a+1 [ � � �[a+m+n+1, a� = a�1 [ � � �[a�m+n+1, n � 1,and X 62 a+. Suppose(a) q1 a1! q01; : : : ; qm am! q0m,(b) qm+1 (a+m+1[fXg;a�m+1)�����! q0m+1; : : : ; qm+n (a+m+n[fXg;a�m+n)�����! q0m+n, and() q0 am+n+1���! q0m+n+1.



Then fq1; : : : ; qm+ng (a+;a�)���! fq01; : : : ; q0m+n+1g.Note that! is used for the transition relation in both A and A0. Ambiguitiesaused by this are resolved by ontext.It remains to equip A0 with appropriate aeptane onditions. For this pur-pose an analysis of the way individual states in A are generated along runs ofA0 is required. Let S range over subsets of Q and assume that S a! S0. Thesuessor relation �� � S � S0 is determined in the following way: In ase 1 welet qi��q0j only if i = j, and q0j is then the diret suessor of qi. In ase 2 welet qi��q0j only if either i = j in whih ase q0j is the diret suessor of qi, orm < i � m+ n and j = m+ n+ 1, in whih ase q0j is the indiret suessor ofqi. Consider a run � through A0 and any word � over states of A with the prop-erty that �(i) is de�ned and a member of �(i) whenever the latter is de�ned,and whenever �(i+ 1) is de�ned then �(i)���(i + 1) relative to the transition�(i) a! �(i + 1). We all � a trail through � , written as � 2 � . If �(i + 1)is the diret suessor of �(i) for all i for whih �(i + 1) is de�ned then � is adiret trail. Note that eah run � and q 2 �(0) determines a unique diret trail� 2 � , the diret trail from q, for whih �(0) = q.We an now de�ne the aeptane onditions: A trail � is suessful if �i isa diret trail for some i and �(j) 2 F for in�nitely many j. An in�nite run �through A0 is �-suessful if all � 2 � are suessful, and it is �-suessful if all� 2 � for whih �i is a diret trail for some i are suessful.Theorem2. The following statements are equivalent:1. 0 2 M(�X:fm(A)).2. There is a �-suessful run � through A0 on �M. 2Theorem3. The following statements are equivalent:1. 0 2 M(�X:fm(A)).2. There is a �-suesful run � through A0 on �M. 2Theorems 2 and 3 are easily proved using e.g. the model haraterisations of[?℄ or [?℄.Example 2. 1. The automaton A01 of �g. 3 is the intermediate automaton ob-tained from A1 of �g. 1 with respet to the reursion variable X . Statesthat are not aessible from the initial state have for larity been removed.All in�nite runs through A01 are �-suessful, and only runs that eventuallyvisits the state fq1; q3g are �-suessful.2. Similarly A02 of �g 4 is the intermediate automaton obtained from A2 of �g.2 with reursion variable Z. Again inaessible states have been removed.Runs are �-suessful if the transition fq1; q2; q3g fXg! fq1; q2; q3g is takenin�nitely often. There are no �-suessful runs.



911ptfq0g 911ptfq1g911ptfq2g911ptfZg 911pt;911ptfY g 911ptfZg911ptfY g 911ptfZg911pt;911ptfY g911ptfq1; q3g911ptfq2; q3gFig. 3. Intermediate automaton A01911ptfq0g 911ptfq1g 911ptfq1; q2g911pt; 911pt;911pt; 911ptfXg911pt;911ptfXg911ptfq1; q2; q3gFig. 4. Intermediate automaton A025 Greatest Fixed PointsFor greatest �xed points Theorem 2 gives rise to a natural idea of resolution ofeventualities. Consider a �nite run � from S1 to S2 in A0, let q 2 S1 and � 2 �be the diret trail from q. We an view q as resolved at S2 if �(j) is an aeptingstate for some j. Let then pending(�) be the subset of S1 of states that are notresolved at S2. The idea of the rewriting proedure is embodied by the followingeasy Lemma:Lemma4. An in�nite run � through A0 is �-suessful i� there is a node Sand an in�nite, stritly inreasing sequene j0; j1; : : : suh that for all k 2 !,1. �(jk) = S, and2. pending(�(jk; jk+1)) = ;. 2For eah node S the automaton A�S handles the situation where S is visitedin�nitely often by an in�nite run through A0. The desired automaton, �X:A, isthen built as the sum of the A�S . The states of eah A�S are pairs (T; T 0) whereT is a node, and T 0 � T . The intention is that T 0 is the set of members of Turrently pending. The initial state of A�S is the pair (fq0g; fq0g), and the singleaepting state is the state (S; ;). The transition relation removes pending statesas they are resolved, so that there will be a run (of length greater than 1) from(S; ;) to (S; ;) in A�S just in ase there is a orresponding run � from S to S inA0 for whih pending(�) = ;. Formally we let (T1; T 01) a! (T2; T 02) i� T1 a! T2 inA0, and either1. T 01 is nonempty, and T 02 is the set of all q2 2 T2�F suh that q2 is the diretsuessor of some q1 2 T 01, or2. T 01 is empty, and then T 02 is the set of all q2 2 T2 � F suh that q2 is thediret suessor of some q1 2 T1.The orretness of this aount is a diret onsequene of Lemma 4:



Theorem5. L(�X:A) = L(�X:fm(A)). 2A pragmatially useful optimisation is that states that are inaessible fromthe initial state, or for whih an aepting state is inaessible, an be removed.This modi�ation applies in the examples to follow.Example 3. The intermediate automaton A02 of �g. 4 gives the greatest �xedpoint automaton �Z:A2 of �g. 5. In �TL the language reognised by �Z:A2 is�Z:O((O(�Y:X_OY ))^Z) equivalent to the PTL formula GOOFX (and indeedGFX), expressing the fairness related property that X holds in�nitely often.911ptp0 911ptp1 911ptp2 911ptp4911ptp3911pt; 911pt; 911pt;911ptfXg 911pt;911ptfXg911ptfXg 911pt;Fig. 5. B�uhi automaton �Z:A26 Least Fixed PointsFor least �xed points we have additionally to take aount of trails that do noteventually oinide with a diret trail and are onsequently unsuessful. Let Sbe any node ourring in�nitely often along some in�nite run � through A0.The ruial observation is that it must be possible to order S in a way whihprevents trails that are not eventually diret.Lemma6. An in�nite run � through A0 is �-suessful i� there is a node S, alinear order < on S, and an in�nite, stritly inreasing sequene j0; j1; : : : suhthat for all k 2 !,1. �(jk) = S,2. pending(�(jk ; jk+1)) = ;, and3. whenever � 2 � and �(jk ; jk+1) is not a diret trail then �(jk+1) < �(jk).Proof. The if diretion is easily heked. For the only-if diretion assume that �is �-suessful. Let S be any node visited in�nitely often by � , and let j0; j1; : : :be any in�nite, stritly inreasing sequene of jk suh that �(jk) = S. For anyq 2 S and k 2 ! there is some k0 suh that q 62 pending(�(jk ; jk0)), so as S is�nite we an assume both (1) and (2) to be satis�ed.We derive a subsequene and a linear ordering< suh that also (3) is satis�ed.The ordering < is obtained by de�ning indutively a numeration p0; : : : ; pm ofS. For the base ase note that there must be some p0 2 S with the propertythat for in�nitely many k,if � 2 � and �(jk) = p0 then �jk is a diret trail. (4)



For assume this fails to hold. For eah q 2 S there is some kq with the propertythat whenever k � kq then there is a � 2 � and k0 > k suh that �(jk) = qand �(jk ; jk0) is not a diret trail. Let k0 be largest among fkq j q 2 Sg. Pikany p00 2 S. Then we �nd a k1 > k0 suh that there is a trail �0 2 � where�0(jk0 ; jk1) is not diret, and �0(jk0) = p00. And we �nd a k2 > k1 suh thatthere is a trail �1 2 � where �1(jk1 ; jk2) is not diret, and �1(jk1 ) = �0(jk1).Continuing ad in�nitum an unsuessful trail through � is then pieed together.This ompletes the base ase. Note that at the end of the base ase we an assumewithout loss of generality that (4) holds for all k 2 !.Suppose then we have obtained p0; : : : ; pi, and let Ti = fp0; : : : ; pig. If S = Tiwe are done. Otherwise there must be some pi+1 2 S�Ti suh that for in�nitelymany k,if � 2 �; �(jk) = pi+1; k0 > k and �(jk; jk0 ) is not diret then �(jk0 ) 2 Ti: (5)For if this fails a ontradition is obtained as in the base ase. Similarly we anassume here that (5) holds for all k 2 !.We then de�ne < in the obvious way, by letting pi < pj i� i < j. It followsthat (3) above is satis�ed, and the proof is omplete. utReeting Lemma 6 the automata A�S are built as the sum of automataA�(S;<) where < is a linear ordering of S. In order to hek that < is not violatedeah automaton A�(S;<) must take into aount the states that are aessibleboth diretly and indiretly. For this purpose we de�ne the sets dir(T1) � S2and ind(T1) � S2 when T1 � S1 and S1 a! S2 in A0:dir(T1) = fp2 2 S2 j 9p1 2 T1:p2 is the diret suessor of p1gind(T1) = fp2 2 S2 j 9p1 2 T1:p2 is the indiret suessor of p1gThe states of A�S are augmented by mappings f whih given any member q ofS produes a pair (T; T 0) suh that T is the subset of the urrent node whihis diretly aessible from the last visit to q in S, and T 0 the subset whihis indiretly aessible. The initial state of A�(S;<) is the state (S; S; f) wheref maps eah q 2 S into the pair (fqg; ;). For the transition relation we let(S1; S01; f1) a! (S2; S02; f2) i�1. (S1; S01) a! (S2; S02) in A�S , and2. for all q 2 S, if f1(q) = (T1; T 01) then f2(q) = (dir(T1); dir(T 01) [ ind(T1) [ind(T 01)).To produe A�(S;<) it remains to �x the aepting state. For this purpose saythat a node (S; S0; f) is onsistent with < if whenever q 2 S, f(q) = (T; T 0) andq0 2 T 0 then q0 < q. The aepting states of A�(S;<) are all states of the form(S; ;; f) that are onsistent with <. The automaton �X:A is then obtained fromA0 by replaing eah node S of A0 with the sum of A�S and A0(S), A0 with initialstate S in plae of fq0g. Thus runs are allowed to violate the ordering for anarbitrarily long initial segment. We obtain:



Theorem7. L(�X:A) = L(�X:fm(A)). 2Example 4. Fig. 6 shows the least �xed point automaton �X:A1 resulting fromthe intermediate automaton A01 of �g. 3. The language reognised by �X:A1is �X:Z _ (Y ^ OX) in �TL or Y UZ in PTL where U is the strong until-operator that requires Z eventually to hold. The greatest �xed point automaton�X:A1 is obtained by letting in addition the state p4 of �g 6 be aepting. Theorresponding property in PTL is Y U 0Z where U 0 is the weak until-operatorthat allows Z never to hold.
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911ptfZg 911pt;911ptfY g 911ptfZg 911pt;911ptfY g 911ptfZg911ptfY gFig. 6. B�uhi automaton �X:A1A potentially useful optimisation of the least �xed point onstrution is tointrodue a (possibly partial) ranking of members of S suh that only orderings<need be onsidered whih have the property that if q1; q2 2 S are both ranked,and q1 is of stritly smaller rank than q2 then q1 < q2. The ranking an beomputed in the following way:1. If q 2 S has the property that no q0 is aessible from q suh that q0 has anindiret suessor then q has rank 0.2. If q (a+1 [fXg;a�1 )�����! q0, q0 has rank n, and m is maximal suh that wheneverq0 a2! q00, a+1 \ a�2 = ; and a�1 \ a+2 = ; then q00 has rank m, then q has rankmax(n;m) + 1.7 AppliationsOur approah suggests a strategy for obtaining ompleteness results for �TL. Agood andidate for a sound and omplete axiomatisation (.f. [?℄) adds to somesuitable standard axiomatisation of boolean logi and the nexttime operator theaxiom �[�X:�=X ℄! �X:� and the rule of �xed point indution:From �[ =X ℄!  infer �X:�!  .We write ` � if � is provable in an axiomatisation along these lines. Sine �and fm(aut(�)) are semantially equivalent, formulas of the form fm(A) an beviewed as normal forms for �TL. Completeness then amounts to showing



1. ` �! fm(aut(�)), and2. if fm(A) is onsistent (i.e. 6` :fm(A)) then L(A) 6= ;.Of these, 2 is not hard to establish. The proof uses an important Lemma dueto Kozen [?℄ whih is a proof-theoreti orrelate of Winskel's use of relativised�xed points [?℄.Lemma8. If X is not free in � and � ^ �X: is onsistent then so is � ^ [X=�X:( ^ :�)℄. utUsing Lemma 8, 2 an be proved by showing that if fm(A) is onsistent thenthere must be an aepting state in A whih is visited in�nitely often along somerun. But then it follows that L(A) 6= ;.Using strutural indution 1 an be redued to showing(a) ` (:)X ! fm(aut((:)X)),(b) ` Ofm(A)! fm(OA),() ` fm(A1) _ fm(A2)! fm(A1 +A2),(d) ` fm(A1) ^ fm(A2)! fm(A1 �A2),(e) ` �X:fm(A)! fm(�X:A), and(f) ` �X:fm(A)! fm(�X:A).Of these we have so far only been able to establish (a){(e). For the aonjun-tive fragment, however, our strategy has been more suessful. Aonjuntivity isa tehnial ondition due to Kozen [?℄ whih, intuitively, disallows onjuntivebranhing of the regeneration relation for least �xed point formulas. Sine for-mulas in normal form are aonjuntive, it follows that for �TL the aonjuntivefragment is as expressive as the full language. Completeness for the aonjuntivefragment follows by showing(i) If �X:� is aonjuntive then so is �X:fm(aut(�)).(ii) If �X:fm(A) is aonjuntive then ` �X:fm(A)! fm(�X:A).Proofs of (i) and (ii) as well as other laims made in this setion will be givenin the full version of the paper.8 Conluding RemarksWe have desribed a syntax-direted proedure for deriving from eah �TL for-mula � an equivalent B�uhi automaton aut(�). The onstrution for greatest�xed points is 2O(n) and for least �xed points 2O(n2) in the size of A. The over-all worst-ase omplexity of the proedure is thus 2O(n2). This leaves a smallgap to the lower bound whih is 2O(n�logn) [?℄. Both Safra [?℄ and Klarlund[?℄ have obtained essentially optimal proedures for omplementing B�uhi au-tomata, and it would be of interest to see if our proedure an be optimised toahieve a 2O(n�logn) running time. The tehnial similarities between our workand Klarlunds suggest that this ould well be possible. Certainly this runningtime an be ahieved if the onstrution is modi�ed to use greatest �xed pointtogether with omplementation instead of both greatest and least �xed points.


