From Higher-Order w-Calculus to w-Calculus in
the Presence of Static Operators

José-Luis Vivas'* and Mads Dam?**

! Dept. of Teleinformatics, Royal Institute of Technology, Stockholm
2 SICS, Swedish Institute of Computer Science, Stockholm

Abstract. Some applications of higher-order processes require better
control of communication capabilities than what is provided by the -
calculus primitives. In particular we have found the dynamic restric-
tion operator of CHOCS, here called blocking, useful. We investigate the
consequences of adding static operators such as blocking to the first-
and higher-order m-calculus. In the presence of the blocking operator
(and static operators in general) the higher-order reduction of Sangiorgi,
used to demonstrate the reducibility of higher-order communication fea-
tures to first-order ones, breaks down. We show, as our main result, that
the higher-order reduction can be regained, using an approach by which
higher-order communications are replaced, roughly, by the transmission
and dynamic interpretation of syntax trees. However, the reduction is
very indirect, and not usable in practice. This throws new light on the
position that higher-order features in the m-calculus are superfluous and
not needed in practice.

1 Introduction

One of the most significant contributions of the m-calculus has been the demon-
stration that higher-order features in concurrency can be eliminated in favour
of first-order ones by means of channel name generation and communication.
This issue has been extensively studied in the context of lambda-calculus under
various evaluation regimes (cf. [3]), and in his thesis [8] Sangiorgi explored in
depth the reduction of higher-order processes to first-order ones. Instead of com-
municating a higher-order object, a local copy is created, protected by a trigger
in the shape of a newly generated channel name. This trigger can then be com-
municated in place of the higher-order object itself. On the basis of this sort
of reduction it has been argued (cf. [8]) that, in the context of the m-calculus,
higher-order features are matters of convenience only: No essential descriptive
or analytical power is added by the higher-order features.

In this paper we reexamine this position, and find it borne out in principle,
but not in practice. We argue the following points:

* Supported by the Swedish National Board for Technical and Industrial Development
(NUTEK) under grant no. 94-06164. Email: josev@it.kth.se
** Supported by a Swedish Foundation for Strategic Research Junior Individual Grant.
Email: mfd@sics.se

1. Practical applications call for process combinators other than those provided
by the basic m-calculus. Specifically we consider the dynamic restriction, or
blocking! operator of Thomsen’s CHOCS [9].

2. Adding blocking to the higher-order m-calculus causes Sangiorgi’s reduction
to break down.

3. In the presence of blocking it remains possible to reduce the higher-order
calculus to the first-order one, even in a compositional manner.

4. The reduction, however, is complicated, and amounts in effect to the com-
munication and interpretation of parse trees. In contrast to Sangiorgi’s re-
duction which is conceptually quite simple this reduction can not be used in
practice to reduce non-trivial arguments concerning higher-order processes
to arguments concerning first-order ones.

Our reduction is very general and can be applied to a wide range of static
process combinators. Our specific interest in the blocking operator stems from
some difficulties connected with the representation of cryptographic protocols in
the higher-order 7-calculus [2].

Application: Cryptographic Protocols Consider a higher-order process of the
shape A = am.A. The process A is an object which repeatedly outputs m along
a to whomever possesses knowledge of a and is willing to listen. In principle m
can be any sort of higher-order object, but here it suffices to think of m as a
message carried by a. A cryptographic analogy of A is thus the object {m},, m
encrypted by the (shared) encryption key a. We might very well want to com-
municate A as a higher-order object over some other, possibly insecure, channel
xfer. The sender would simply pass A along xfer, and the receiver would first
receive some process object X, then immediately activate X while in parallel
trying to extract the message m through a. That is, the receiver would have
the shape xfer(X).(X | a(y).B(y)) where B(y) is the continuation processing
the extracted y in some suitable way. Observe that we can assume receivers and
senders to execute in an environment containing other receivers and senders,
along with unknown and possibly hostile intruders.

Here we encounter a first difficulty: We have provided no guarantee that it
is really X and B(y) which communicate along a and not some other process
which is trying to decrypt using a by accident or because of some protocol flaw.
That is, decryption is insecure, contradicting commonly held assumptions in the
analysis of key management protocols. When encryption is nested, however, the
problem is aggravated. A higher-order representation of {{m}.}, is the object
A" =bA.A'. Extraction of m from A’ would follow the pattern

xter(X).(X | b(Y).(Y | a(2).B(2))).

! Since it is not completely clear in which senses the restriction operators are really
static or dynamic we prefer a more neutral terminology and use “restriction” for the
m-calculus restriction operator and “blocking” for the CHOCS dynamic restriction
operator.

Now, after extraction of A along b the ensuing process configuration A’ | A |
a(z).B(z) has made it possible for an intruder to “snatch” m from A on the
basis of knowing a, without necessarily knowing b beforehand. This is clearly
unreasonable.

Observe that the m-calculus restriction does not provide an obvious remedy.
If we were to replace a receiver of the shape xfer(X).(X | a(y).B(y)) by one of
the shape xfer(X).va.(X | a(y).B(y)) to protect decryption, alpha-conversion
would apply to prevent a’s in X and a’s guarding B(y) from being identified.

Another possible alternative is to replace the encrypted message A = am.A
by the abstraction (Aa)A, in order to allow the parameter a to be supplied
locally. This, however, does not work, as a hostile receiver can then decrypt this
message at will by appropriately instantiating a.

Blocking What is called for is the blocking operator P\a which blocks a without
binding it. This provides a kind of firewall preventing communication along the
channel a between P and its environment, akin to the CCS restriction operator.
It allows P\a — P'\a only if P %+ P’ and a is not the channel on which
synchronization of the action «a takes place. Thus we can account for reception
using a process of the shape xfer(X).((X | a(y).B(y))\a).

We believe quite strongly that the issue of “localized control” which we raise is
far from an artificial one. Quite on the contrary, as code transmission capabilities
move from the realm of operating systems to become important programming
paradigms, issues pertaining to dynamic resource protection and control are
getting ever more important.

Higher-Order Reduction In this paper we investigate the consequences of adding
the blocking operator to the w-calculus and its higher-order variant. This is less
trivial than a first glance might suggest. Consider the higher-order process

P = (xferA.B) | xfer(X).(X | C)\a.

A compositional (ie. non-global) reduction to first-order will reduce the sender
and the receiver separately. Using the approach of [8] we would replace P by a
process of the shape

vb.(xferb.B | b(c).A) | xfer(d).(d.0 | C)\a.

But now A and C are prevented by the blocking operator from communicating
along a which is clearly not acceptable.

The solution we suggest is very general and powerful: We replace A by a
m-calculus representation of its parse tree. Parse tree information is passed lazily
from sender to receiver in terms of first-order information only. The receiver
uses this syntax information to emulate the behaviour of the remote agent in
the local context. The main part of the paper is devoted to fleshing out this idea
and establishing its correctness.

This method works well with static operators, but awkwardly for dynamic
ones except prefixing. The reason is that static operators are easily mimicked by

the receiver, which simply applies these operators to itself, whereas dynamic ones
cannot always be treated in the same way because actions related to communica-
tion between sender and receiver might affect the operator (e.g. the pre-emptive
power of internal action in the context of the choice operator). Therefore our
method cannot be generalized to involve all kinds of e.g. GSOS-operators.

The organization of this paper is as follows. In section 2 we give the main
definitions and present some results on the first-order calculus. We show that
some algebraic properties and many laws concerning the restriction operator in
CCS, in a slightly modified form, continue to be valid for the blocking operator.
We obtain soundness and completeness results similar to the results in [4]. In
Section 3 we show, as the first main result, that the blocking operator and
mismatching can be expressed in terms of each other. We proceed then to the
higher-order calculus, and discuss in section 4 an encoding of the reduced version
of the higher-order m-calculus defined in [8] extended with blocking. This calculus
is monadic, and only finite sums are considered. We show that in the presence
of blocking the higher-order paradigm might not be reducible to first-order in
the same straightforward manner as for standard w-calculus, for reasons similar
to the case for static scoping, e.g. CHOCS. We show then that by sending an
encoding of the process, instead of the process itself, reducibility is still possible
for at least a reduced version of the calculus, though without full-abstraction.
We finally define this reduction and give a sketch of the proof. In section 5 we
present some definitions concerning barbed bisimulation that are necessary to
establish the main result of the paper, which is the subject of section 6. Finally,
some conclusions are presented in section 7.

A version with more proof details and a full definition of the reduction is
available electronically at ftp://ftp.sics.se/pub/fdt/mfd/fhoptp.ps.Z.

2 Higher-Order w-Calculus with Blocking

Our work is based on the higher-order m-calculus as introduced by Sangiorgi
[8], extended with blocking and mismatching. In this section we introduce the
syntax and operational semantics of this calculus.

2.1 Syntactical Matters

Agents are generated according to the following abstract syntax:

P:=0 | iai-Pi
i=1

P\z| X(F)| X ()
a :=T(F) ‘fy | z(X) ‘ z(y)
F = (AX)P| ()P | X

Py | Py |z =ylP|[z £yIP | (2)P|1P]

Here z, y and z are channel names, and X is an agent variable. We will also use
Z(y) to mean (y)Ty.

Most operators (summation, parallel, nil, matching) are familiar from CCS
and the m-calculus. !P (the “bang”) represents the parallel product of an un-
bounded number of copies of P, [z = y]P is matching, enabling P only when
xz =y, and [z # y|P is mismatching, enabling P only when x and y are distinct.
For blocking we use the CCS restriction operator notation: P\z blocks com-
munication between P and its environment along the channel x while allowing
communication along other channels to mention z.

The higher-order nature of the calculus is brought out by the actions a.
Sending actions (of the shape Z(F) or Zy) can pass names as well as general
agent abstractions F.

w-calculus restrictions (z)P, and input action prefixes of the shape x(X) or
z(y) are binding, of z, X, and y, respectively. There are no other operators with
binding power. Terms are identified up to alpha-conversion. s(«) is the singleton
set containing the subject of an action of one the actions a above. n(P) (n(«)
is the set of names occurring in the agent P (the action «), and fn(P) (fn())
is the set of free names in P («). Similarly dn(P) (bn(a)) is the set of bound
names.

We identify a number of sublanguages:

— II is the sublanguage not containing mismatching or blocking.

— = is the sublanguage of IT not containing higher-order parameters (and hence
agent variables).

— For any of the languages L, LB is the language obtained by adding blocking,
and LM is the language obtained by adding mismatching. A first-order agent
is an agent in tBM.

2.2 Operational Semantics

Transitions have the general shape P —= (@, where « is a first-order input or
output, or the silent action. The operational semantics is given in the appendix.
Here it suffices to present the semantical rules governing the operators with
which familiarity can not be assumed:

P2 p
BLOCK:——— "~ N{z,z} =
P\z — P'\z sl@)nizz} =0
PP
MISMATCH : _
wAgp S 7Y

2.3 Equivalences

Appropriate behavioral equivalences depend on the nature of the calculus being
investigated. For the first-order calculi one important notion of equivalence is
bisimulation.

Definition 1 (Strong Bisimulation). A binary relation S on first-order agents
is a (strong) simulation if PSQ implies:

1. If P = P’ and a is a free action, then for some Q’, Q — Q' and P'SQ’".

2. If P M P" and y & n(P,Q), then for some @', Q M Q' and for all w,
P{w/y}SQ'{w/y}.
3.1t P2 P and y ¢ n(P,Q), then for some Q', Q 2 Q' and P'SQ.

A binary relation S is a (strong) bisimulation if both S and its inverse are
simulations. Two agents P and @, are strongly equivalent, P ~ @, if there is
some strong bisimulation S such that PSQ.

For higher-order agents a more convenient approach is that of barbed equiv-
alence [5], as this permits us to direct primary attention at the channels along
which communication takes place, rather than the parameters.

So, let P |, hold just in case P - @ for some) and « such that s(a) = {a}.
Let also — =—3, let = be the reflexive and transitive closure of —s, and let
P}, mean that P = P’|, for some P’.

We further need the notion of static contexts. A static context is a term C[]
with a “hole” [-] in it, as generated by the following grammar:

¢ == P[] clicn | @otl | 1en | er-.

Here P ranges over the agent language under consideration. We write C[P] for
C[-] with P substituted for every occurrence of [-].

Definition 2 (Barbed Bisimulation). A binary relation R on processes is a
strong (weak) barbed simulation if PR implies:

1. Whenever P — P’ then @ — Q' (Q = Q') for some @)’ such that P'"RQ’".
2. For each a, if P, then Ql, (QV,)-

A relation R is a barbed bisimulation if R and R~! are barbed simulations. The
agents P and @ are strong (weak) barbed-bisimilar, written P ~ @ (P £ Q),
if PSQ for some strong (weak) barbed bisimulation S. If the agents P and
@ belong to the same language, then they are strong (weak) barbed equivalent,
written P ~ Q (P = @), if for each static context C[] in the language it holds
that C[P] < C[Q] (C[P] % C[Q)).

3 Blocking and Mismatching in the First-Order Case

We first direct attention to the first-order calculus, considering the equational
properties of blocking, and the relative expressiveness of blocking and mismatch-
ing.

3.1 Algebraic Properties

Most properties of bisimulation for m-calculus carry over to 7B with minimal
changes. In particular one easily shows that blocking preserves strong bisimula-
tion equivalence, and thus ~~ is a congruence over all operators with the exception
of input prefix. The following laws govern the blocking operator:

HO 0\z~0

H1 P\z\y ~ P\y\z

H2 (P+Q)\z~P\z+Q\z

H3 (a.P)\z ~ a.(P\z), ifz¢ s(a)Ubn(a)
H4 (.P)\z ~0, ifze s(a)

HR ((y)P)\2~ (5)(P\2), ify#>

HM (lz = y]P)\z = [r = y](P\2)

By adding laws HO to H4, HR and HM to the other algebraic laws in [8], with
= substituted for ~, we get:

Theorem 1 (Soundness). If - P = (@ then P ~ Q. O
Using the same techniques as [4] we obtain:
Lemma 1. For any P, there is a head normal form H such that+- P =H. O

Theorem 2 (Completeness for finite agents). For all finite first-order agents
P and Q, if P~ Q then - P = Q is provable. O

3.2 Expressiveness of the blocking operator

We now proceed to show that, in the case of first-order agents, blocking has the
same expressive power as matching and mismatching.

Mismatching may be expressed up to weak ground equivalence using blocking
in the following way. Consider the agent [z # y]P. This agent is equivalent to
P if ¢ # y, and otherwise it is equivalent to 0. We let the agent P be guarded
by a restricted channel w, w.P, and be executed only if z # y by letting the
channel 7.0 under blocking by y synchronize with z.w.0 . This synchronization
takes place only if z # y. To avoid additional communication capabilities, we
block x too. Thus we obtain

Proposition 1. [z # y]P = (w)((Z.0\y ‘ z.a0.0)\z ‘ w.P) o
Matching may be expressed similarly:
Proposition 2. [z = y]P = (w)((Z.0 | y.w.0)\z\y ‘ w.P) o

By application of a simple transformation 7, defined below, on agents, any
agent, containing occurrences of the blocking operator may be expressed up to
strong equivalence by an agent with no occurrences of blocking. The basic idea is
to eliminate occurrences of a blocked channel by replacing it by a fresh channel

under the restriction operator. Since channels may be bound by an input prefix,
we have to test them for equality with the blocked channel.

In this way, the transformation 7 is a homomorphism for all operators but
blocking. For blocking it is defined in terms of an ancillary transformation 7,

thus:
T(P\2) = (w)Tw:(P), w & n(P\z).

Intuitively 7,,.(P) performs the task of testing the subject of an action prefix
for equality with z and in this case replace it by w. Consequently 7,. is a
homomorphism for the operators |, +, !, matching, mismatching and silent prefix.
For the other operators it is defined thus:

Tw:(2y.-P) = [z = zJwy.Tw:.(P) + [z # 2]2y.Tw.(P))
Tuw:(2(y).-P) = [z = 2Jw(y). Tw:(P{y'/y}) + [z # 2]z(y').Tw:(P{y'/y})
(

y' & fn((y)P) U{w, 2}
Tw:((2)P) = (2')Tw-(P{a'/z}), 2" & fn((x)P) U{w,z}
Tw:(P\2") = Tuw: (T (P\2'))

Theorem 3 (Correctness of 7). P ~ T(P) for any agent P.

Proof. Tt may be shown that S = {(P, T'(P)) | P agent} is a strong bisimulation
(up-to strong equivalence). O

4 The Higher-Order Case

Having shown that blocking can be eliminated in favour of mismatching in the
case of the first-order calculus we now ask if this continues to hold when higher-
order communication is added, i.e. we want to know whether IT B is representable
within 7B. As we have explained, this problem is much harder than for IT
(without blocking), because blockings give rise to dynamically changing “run-
time” process environments of a nature drastically different from those of the
pure calculus.

4.1 The Reduction

In order to represent II B in w B, we apply a transformation H, which is a function
from IT B to 7 B. We will show that P and H(P) are weakly equivalent in a sense
that has yet to be defined, if P is closed and well-sorted.

We assume that for each name z in II B there corresponds a unique name
z in wB, and also that for each process variable Y in ITB there corresponds a
unique channel y in the target calculus 7 B.

The basic idea is that pointers to abstractions, instead of abstractions them-
selves, are objects of communication. To each abstraction (AX)P that is the
object of a communication there corresponds a spawning process spawn,,(F).
This process can continuously receive pointers y to abstractions instantiating X,

upon which it will launch a process of type send,(P{Y/X}), whose task is the
transmission of an encoding of P{Y/X}. Concurrently, a process of type rec(v),
which we call receiver processes, receives the encoding of a process P{Y/X} and
dynamically emulates it. Receiver processes arise in connection with applications
of type Y (F'), where Y is not instantiated directly by an abstraction, but by a
pointer to an abstraction, and must emulate the behavior of Y (F).

The three agents spawn,, (F'), send,(P) and rec(v) form the the core of the
transformation #, and are explained in detail below.

Higher-Order Qutput In the central case of higher-order output we get:
H(@(F).P) = 7(w).(H(P)|spawn,, (F))

provided F is not a process variable. Here, instead of communicating the ab-
straction F', a “pointer” w to F', or rather to a process responsible for spawning
encodings of F, spawn,, (F), is sent instead. If the abstraction F' is a process
variable Y, what is communicated is its corresponding pointer y:

HE(Y).P) = Ty. H(P).

For closed processes, this situation can arise only after the input of the pointer
of some process which instantiates Y, for example in a(Y).Z(Y).P. In this case
the spawning process for the agent F' associated with y, spawny(F), must have
been declared elsewhere.

Application Since we are dealing only with closed processes, an application Y (F')
may be invoked only after instantiation of Y with some abstraction G' through
a previous input. The execution of H(Y (F)) runs in parallel with the spawning
process for G, spawn, (G), which must have been defined elsewhere:

HY(F)) = y(u).a(v).w(w).(rec(v)| spawn,,(F)).

The application of the process G to its argument F', here represented by a pointer
w, is executed by the “receiver” process rec(v), an agent whose function is to
enact a copy of G(F) in the environment where it occurs (possibly within the
scope of some blocking operators) by means of the reception and execution of
an encoding of G(F') through v, a fresh channel sent by the spawning process
spawn, (G) through channel u for the this purpose. The task of sending an en-
coding of a process is performed by a sender process which needs to know the
pointer to the agent being applied, in this case w. For this purpose the pointer
w is also communicated to spawn, (G).

If the argument of Y is a name z, then it is communicated to the spawning
process spawn, (G):

H(Y(z)) =7y(u).u(w).uz.rec(w).

If the argument is a process variable X a similar construction is used.

Ezample 1. The higher-order process
#F{(AX)P).Q|z(Y).Y(G)

is represented as the first-order process

T(w).(H(Q)|'w(w).u(v).u(z).send, (P))|z(y).F(u) @(v).@(w").(rec(v)| spawn,, (G)

where spawn, send, and rec are defined below.

4.2 Senders

The task of the process spawn,,(F'), assuming F' = (AX)P or (Az)P, is to spawn,
for any v, “sender” processes send,(P), whose task is the transmission through
v of encodings of P with X or z instantiated to a pointer to the process instan-
tiating X resp a channel instantiating x:

(v).u(x).send, (P))
(v).u(y).send, (P))

spawn,, ((Az)P) = lw(u)
spawn,,(AY)P) = lw(u)

g

g

In order to perform its task, the sender process send,(P) must make use of
special channels indicating the nature of P’s head operator, and which should
not be used for other purposes. These are: z, ¢, s, m, n, r, b and i. They represent
the process 0 (z), composition (¢), sum (s), matching (m), restriction (n), bang
(r), blocking (b), input (i) and output (0). We give just a few examples to explain
this.

Parallel Composition For instance, if P = P;|P,, then ¢, representing com-
position, is communicated through v, followed by the exchange of a couple of
fresh pointers to both components of P, P, and P», upon which two new sender
processes are created for providing an encoding of P; resp. P»:

send, (Py ‘ Py) = ve.v(v1).0(ve).(send,, (Py) ‘ send,, (Py)).

Input Communicating an input is slightly more complicated. In this case, the
channel through which the input occurs is communicated to the receiver, which
is supposed to dynamically enact such input synchronization before sending back
to the sender the actual parameter, which is the name exchanged in the commu-
nication. The sender will thus wait for the communication of this channel which
instantiates y, whereupon it goes on sending an encoding the continuation of the
prefixed agent:

send,(z(y).P) = vi.vz.v(y).send, (P)

No distinction is made for higher-order inputs, since in this case what is com-
municated by the sender is a “pointer” to a process.

Summation The definition of send, (Y, P;), n > 1, includes the exchange of
a couple of fresh “pointers”, one, vy, for Py, and the second, vs, for 2?22 P;,
which in case n = 2 must be a prefixed agent. This scheme works because only
well-guarded agents are allowed in summations.

4.3 Receivers

The task of the “receiver” process rec(v) is to receive from a sender send,(P),
through the channel v the encoding of a process P, and at the same time to
interpret this encoding.

Parallel Composition For process composition P = Py|P», the receiver requires
a pair of fresh pointers to each of these processes, whereupon it gives rise to
a composition of two new receiver processes, rec(vy)|rec(vs), whose task is to
receive an encoding of P, resp P> and execute them.

Summation The most difficult part of the receiver, and illustrating the difficulties
in extending generality beyond static operators, is the encoding of summation.
We use a protocol similar to that of Pierce and Nestmann in [6]. The details are
left out of this version of the paper.

Input For input the task of the receiver is to emulate any of these actions by
dynamically offering the subject of the action for communication. In case of name
or process inputs the the situation is only slightly more complicated. In this case,
the receiver offers a synchronization through the same channel z, whereupon it
communicates to the sender the channel exchanged in the synchronization.

5 Barbed Bisimulation

For correctness we use the notion of barbed bisimulation [5]. Full abstraction,
that is, the requirement that two terms in ITB be equivalent if and only if their
translations in 7B are equivalent, is not fulfilled by the translation #. Sending a
process P is like sending object code, protected in a way such that it can only be
executed, but not modified. Sending an encoding of P, on the other hand, is like
sending the source code: the receiver may change the code at will and also its
own behaviour in accordance with the nature of any of the components of P. As
an example, for any process P € II B, a((Az)P).0 and a((Az)P|0).0 are certainly
equivalent. Nevertheless, their translations are quite distinct. In the former case
an agent send,,(P) will eventually be activated, whereas in the latter case the
agent activated will be send,, (P|0). The latter provides an encoding of P|0, not
P, and it does so by first sending an indication that the main operator is the
composition operator, we. Any process in 7B synchronizing with send,, (P|0)
may choose to act according to the nature of this synchronization, for example
w(x).([z = c]0+[z = i]Q). Thus, the translations of a{(Az)P).0 and @((Az)P|0).0
cannot possibly be equivalent in any sensible sense. Nevertheless, a restricted

form of completeness is achieved by the translation A if we limit testing on
terms in 7B to encodings of source terms. In this restricted form the translation
proposed here is both sound and complete.

We then set out the basic definitions to flesh out this idea. First, let H be
the translation described above for processes in II B, extended with the rule
H[-] = [-] for contexts.

Definition 3 (Reduced Composition, Reduced Context).

1. A reduced composition || is a composition in B of agents of type spawn,,(F),
sendy (P), rec{v), H(P), or any of the derivatives of such agents, for any
agents F' and P € IIB, and such that (i) if spawn,(F) and spawn,, (G)
occur in [[, and w = w’, then F = G; (ii) if send,(P) and send,(Q) occur
in [, and v =o', then P = Q.

2. A context C[-] € nB is called a reduced context if C[-] = (¥)(I]|[-]) for some
channel vector § and some reduced composition [[with no occurrence of the
restriction operator.

Definition 4 (Reduced Equivalence). Two processes P and Q € 7B are
strong (weak) reduced equivalent, written P ~,. Q (P =, @), if for each reduced
context C[-] € 7B, it holds that C[P] ~ C[Q] (C[P] = C[Q)).

Reduced equivalence is an equivalence relation. Moreover, from the definition
we get immediately that for any processes P and @@ in 7B, P ~,p (@ implies
P ~, @,and P ~ @ implies P ~,). Also we obtain the following congruence
properties:

Proposition 3. Strong and weak reduced equivalence are congruences under
output prefiz, bang (!), restriction, and blocking. O

6 The Correctness Proof

The next definitions follow closely [7]. We use P -~ P’ to mean P —» P’ or
P = P', and =7 to mean the transitive closure of —s.

Definition 5 (Expansion). £ is an ezpansion if PEQ implies:

1. Whenever P — P’ then Q' exists s.t. Q =71 Q' and P'£Q’, and for each
a, if P' | a then Q' |} a;

2. Whenever Q — @', then P’ exists s.t. P 25 P and P'EQ', and for each
a,if Q" | a then P' | a;
We say that @) expands P, written P < @, if PEQ, for some expansion £.

Definition 6 (Weak Barbed Bisimulation up-to =<). S is a weak barbed
bisimulation up-to < if:

1. Whenever P — P’ then Q' exists s.t. Q = Q' and P = S = Q.

2. Whenever) — @', then P’ exists s.t. P=—= P' and P & § < Q'.
Lemma 2. If S is a weak barbed bisimulation up-to <, then S C = .

Proof. By diagram chasing. O
The main result by which we prove correctness is the following:

Theorem 4. S = {(P,H(P)) : P € IIB} is a weak barbed bisimulation up-to
<.

An outline proof of this theorem is included in the electronic version of this
paper. The details are quite complex, though the approach in most cases is non-
controversial. One difficulty, however, deserves highlighting. The key difference
between a higher-order parameter, AX.P and its representation in the first-order
calculus is that in the higher-order case the parameter X is available as a first-
class entity and can, for instance, freely be copied into different contexts. For
the representation, on the other hand, information regarding the parameter X
resides elsewhere, in one (replicatable) copy which needs to service all possi-
ble receivers, in all possible contexts. To adequately handle this, the proof of
Theorem 4, calls upon the following lemma:

Lemma 3. Let P, Q € wB be transformations of agents in II B or any deriva-
tives of such agents, and such that spawn,(G) does not occur in either P or Q
for any agent G € IIB. Then

1. (w)(spawn,,(F)|P)|spawn,,(F) ~, P|spawn,, (F) .

2. (w)(spawn,, (F)|P|Q) ~, (w)(spawn,, (F)|P)|(w)(spawn,, (F)|Q).

3. (w)(spawn,,(F)|'P) ~, (w)(spawn,,(F)|P).

4- (w)(P[spawn,, (F)) + (w)(Q|spawn,,(F)) ~r (w)((P + Q)|spawn,, (F)). O

Now, to prove correctness using Theorem 4 the following lemma is proved in a
straightforward manner by induction in C’s formation.

Lemma 4. For any process P € IIB and any static context [],
H(CIP]) = H(C)[H(P)].
Now we obtain:

Corollary 1. H restricted to static contexts in ©B that are encodings of static
contexts in II B is sound and complete.

Proof. Soundness: Assume H(C)[H(P)] & H(C)[H(Q)] for every static context
C[-] € I B. By Lemma 4, this implies that H(C[P]) & H(C[Q]). Then by The-
orem 4 and transitivity of weak equivalence C[P] & C[Q)]. Since this is true for
every static context C' € II B, then P =, Q.

Completeness: If P ~ () then C[P] & C[Q)] for all static contexts C' € ITB. Then
by the theorem and transitivity of weak equivalence, H(C[P]) =~ H(C[Q]). By
Lemma 4 we get H(C)[H(P)] = H(C)[H(Q)], and thus the transformation is
complete with regard to those agents and contexts in 7B that are transforma-
tions of agents and contexts in IIB. O

7 Conclusion

We have investigated the consequences of adding dynamic restriction in the style
of CHOCS [9] to the higher-order m-calculus. On grounds of practical modelling
power we believe very strongly that this is a reasonable thing to do. Higher-order
features are useful as programming and modelling abstractions. This applies in
the context of the m-calculus too (cf. [2]). But higher-order features entail the
need of mechanisms to provide local control of communication, analogous to
firewalling, as we have shown. CHOCS dynamic restriction, or, as we call it,
blocking, appears to do the job well. Whether, at the end of the day, other
operators are more appropriate, remains to be seen.

The upshot, however, is that any operator that provides local control of com-
munication in a higher-order setting is likely, as the blocking operator, to interact
badly with Sangiorgi’s basic result [8] showing that higher-order features in the
m-calculus are reducible to first-order ones. We have resolved this by providing
a very general and powerful higher-order reduction, based on the idea of com-
municating and dynamically interpreting parse trees in place of the processes
themselves. We conjecture that any “reasonable” static operator can be handled
in this way. It would be interesting to prove such a statement in terms of an
extension of one of the well-known formats for operational semantics such as
GSOS [1], adapted to the w-calculus.

While our results in principle substantiate the claim that, for the m-calculus,
higher-order features are matters of convenience only, in practice this does not
at all appear to be the case. This issue, or rather the more general issue of what
the role of higher-order features in calculi for concurrent and distributed systems
should be, needs to be investigated much more deeply in the future.

Acknowledgement

We thank Lars-Ake Fredlund for comments and suggestions.

References

1. Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced.
Journal of the ACM, 42(1):232-268, January 1995.

2. M. Dam. Proving trust in systems of second-order processes. In Proc.
HICSS’31 IEEE Comp. Soc., VII:255-264, 1998. Available electronically at
ftp://ftp.sics.se/pub/fdt/mfd/ptssop.ps.Z.

3. Robin Milner. Functions as processes. Journal of Mathematical Structures in Com-
puter Science, 2(2):119-141, 1992.

4. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
Parts I and II. Journal of Information and Computation, 100:1-77, September 1992.

5. Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Proc. of 19th International Colloquium on Automata, Languages and Programming
(ICALP ’92), volume 623 of Incs, pages 685-695. sv, 1992.

. Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. pages 179-194.
Revised full version as report ERCIM-10/97-R051, European Research Consortium
for Informatics and Mathematics, 1997.

. D. Sangiorgi and R. Milner. The problem of “weak bisimulation up to”. Lecture
Notes in Computer Science, 630:32—-77, 1992.

. Davide Sangiorgi. Ezpressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, LFCS, University of Edinburgh, 1993.

. Bent Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis,
Imperial College, University of London, September 1990.

Appendix: Operational Semantics of ITB

In the operational semantics we assume agents are well-sorted according to the
definition in [8]. That two names z and y resp. two agents variables X and Y,
are of the same sort is denoted by x : y resp X : Y.

The operational semantics below uses an early instantiation scheme. There,
K stands for an abstraction or a name, and U for a variable or a name. Also, y
stands ambiguously for a name vector or the set containing exactly the names
in the vector, and if ¥ = (y1, .., yn), then (%) stands for (y1)...(yn).

Rules of Action

P' 25 Q, P and P’ are a—convertible

ALP: n
P—qQ

OUT: #(K).P " P INP: 2(U).P "% P{K/U},if K : U

I ’ [/
suM: =2 2Py PAR: LT A (@) =0
Zi:l PP P|Q — P'|Q
(V)T(K) o(K)
com: £_— P Q- Q gnfn(Q) =0
P|Q — (y)(P'1Q")
1z / | H /
MATCH: % EP: M%P
[z =z]P — P P — P
B WK o,
RES: — 2 2P o gnp opEn: L P v 72

(x)P - (z)P"’ ()P (@Y=(K) o, T € f(K) —y

Pt p
BLOCK: ——— 2,%
P\ P () € {2,%z}

Obs: Symmetric forms for operators + and — have been omitted

