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t. We des
ribe a 
ase-study in whi
h formal methods were usedto verify an important responsiveness property of a distributed databasesystem whi
h is used heavily at Eri
sson in a number of re
ent produ
ts.One of the aims of the proje
t was to verify the a
tual running 
ode whi
his written in the distributed fun
tional language Erlang. In a joint proje
tbetween SICS and Eri
sson we have over the past few years been devel-oping a tableau-based veri�
ation tool for Erlang of 
onsiderable s
ope.In parti
ular, we are 
apable of addressing | on the level of runningprogram 
ode | systems with unbounded behaviour along the many di-mensions in whi
h this happens in \real" programs, involving datatypes,re
ursive 
ontrol stru
tures, error handling and re
overy, initialisation,and dynami
 pro
ess 
reation. The database lookup manager 
onsid-ered here 
ontains most of these features, giving rise to in�nite statebehaviour whi
h is not very adequately handled using model 
he
king orother approa
hes based purely on state spa
e traversal. In the paper weintrodu
e the 
ase study, our approa
h to formalisation and veri�
ation,and dis
uss our experien
es using the Erlang veri�
ation tool.1 Introdu
tionErlang [AVWW96,OSE98℄ is a fun
tional programming language developed byEri
sson, whi
h is used extensively for writing robust distributed tele
ommuni
a-tion appli
ations. Central in many of these appli
ations is a distributed database,Mnesia [Mnesia℄, also written in Erlang. The Mnesia system is 
ru
ial to the ro-bustness of almost all Erlang based produ
t developed at Eri
sson. It is, forinstan
e, responsible for error re
overy, the prompt and safe handling of whi
his essential in tele
ommuni
ation appli
ations. These features make the Mnesiasystem a rewarding obje
t of study when trying out new veri�
ation te
hniques.The 
ase study at hand 
on
erns only a small part of the Mnesia system,a proto
ol for the evaluation of a query whi
h is distributed over several 
om-puters in a network. The starting point for this 
ase study was the Erlang 
ode



implementing the distributed database. The author of this 
ode knew that thequery lookup proto
ol was implemented in a tri
ky way and got interested insupporting his implementation with a 
lear and veri�ed des
ription.We extra
ted, from the real implementation, the 
ode for the distributedquery evaluation proto
ol and added some 
ode to provide a very simple sim-ulated interfa
e to parts of the system that were irrelevant for the problem athand. The result was an Erlang program that 
ould be seen as a very pre
ise,and in some sense formal, des
ription of the underlying algorithm. Isolation ofthe 
ode responsible for the lookup me
hanism and analysing the intended be-haviour of the 
ode resulted, as a side e�e
t, in a 
lear and patentable pi
tureof the underlying proto
ol [Nil99℄.In Se
t. 2 we present the distributed query evaluation in more detail. Asinput the proto
ol re
eives a database query divided into subqueries. Thesesubqueries are distributed over the network in the form of pro
esses on those
omputers where the spe
i�
 data for a subquery is stored. By sending messagesto the subquery pro
esses, data is extra
ted from the database tables and sentalong the network. One pro
ess is responsible for initialising the lookup pro
essring, and for 
olle
ting the resulting data. To avoid ex
essive delays and storage
onsumption, query answers are 
olle
ted in segments, managed by the lookupmanager. The task we set ourselves was to prove that the implementation pro-vided a responsiveness property: that input queries are eventually being repliedto. The query lookup manager implements initialisation and query lookup phasesin manners whi
h are tightly interwoven. Both these phases are important for
orre
t behaviour. Moreover, the 
ode is evidently designed to 
ater for tablesof arbitrary numbers and sizes, and for queries of arbitrary natures. Re
e
tingthis, our aim was to prove 
orre
tness uniformly in these parameters, i.e. without�xing numbers and sizes of tables and queries in advan
e. This sort of problem isoutside the s
ope of model 
he
kers, symboli
 or otherwise, or other te
hniquesbased purely on global state spa
e traversal.There are several reasons why we �nd this sort of veri�
ation exer
ise usefuland interesting.{ First of all it is 
learly relevant to verify the a
tual 
ode rather than someabstra
tion of it, as this gives us more a

urate and reliable informationabout the way the system is going to behave when it is eventually exe
uted1.{ Se
ondly, by analysing the 
ode, and in parti
ular, by doing so in a 
ompo-sitional manner, we produ
e veri
ation information whi
h is reusable as thesystem grows. By 
ontrast, most approximate analyses, su
h as ones basedon abstra
t interpretation (
.f. [Cri95℄), tend to be global ones, not readilyreusable.{ Thirdly, and most signi�
antly, the Erlang 
ode itself is in fa
t already quiteabstra
t, in the sense of providing designers and implementors with a 
on
iseset of primitives and language 
onstru
ts whi
h are eÆ
iently implementableyet not at all far from a pro
ess 
al
ulus-like level of abstra
tion.1 Absolute a

ura
y, of 
ourse, is unattainable2



{ Fourthly we have the potential to maintain strong links between running andveri�ed 
ode. For instan
e, it will very often be possible to update proofs in afully automati
 way after minor 
ode revisions, by reapplying proof ta
ti
s.{ As a longer term perspe
tive, we are interested in developing obje
t and
omponent en
apsulation te
hniques for whi
h a 
ode veri�
ation 
apabilityis essential.To realize the veri�
ation we used a tool [ADFG98℄, based on an approa
h to
ompositional veri�
ation whi
h we have developed in some re
ent papers (
.f.[Dam98,DFG98℄). The approa
h uses a tightly integrated mix of state-spa
eexploration and proof-editing te
hniques. System properties and spe
i�
ationsare given in a �rst-order temporal logi
, a variant of Park's �-
al
ulus [Par76℄tailored, in this 
ase, spe
i�
ally to Erlang. Proof goals are stated as generalGentzen-type sequents, proved in a goal-driven fashion by re�nement and loopdete
tion. The result is a very powerful proof system whi
h supports model
he
king, 
ompositional reasoning, and general 
oindu
tive or indu
tive reason-ing, for instan
e about datatypes, in a uniform framework.In Se
t. 3 we brie
y des
ribe our approa
h to spe
i�
ation. In Se
t. 4 thea
tual veri�
ation is des
ribed and an outline of the informal proof is presented.Then, in Se
t. 5, we des
ribe in more detail our approa
h to formalisation ofthe proof, and its realisation in the veri�
ation tool. Large parts of the proof areeasily automatable by ta
ti
s that perform model-
he
king like state exploration,or prove type adheren
e or termination of sequential fun
tions. Sin
e these ta
ti
sare often used within intera
tively developed proofs, our veri�
ation approa
hgives rise to proofs that easily be
ome large enough (several thousand nodes) fortool support to be essential. We 
on
lude, in Se
t. 6, with some �nal remarks,re
e
ting on the approa
h followed and lessons learned from performing this 
asestudy.2 A Pro
ess Veri�
ation ProblemIn this se
tion we explain the me
hanism for query lookup and the property wehave proved.The database tables in whi
h the requested information is stored are dis-tributed over several 
omputers. Whenever a query is formulated for the databasethe Erlang fun
tion query setup is 
alled to analyse the query and divide it intosubqueries ea
h addressing only one table. The subqueries are distributed overa network (by the Erlang funtion mk ring) as pro
esses lo
ated at the 
omputerwhere the information is available. A request is sent to the �rst of the spawnedpro
esses, whi
h reads data from a table. This results in several partially in-stantiated queries, whi
h are sent to the next pro
ess. For every su
h partlyinstantiated query, the next pro
ess reads additional data from a table, result-ing in further instantiations. The last pro
ess gathers all data and sends it to therequesting pro
ess. To avoid unne
essary delays in transmission, pro
essing, anddatabase lookup, and to avoid ex
essive storage 
onsumption, query pro
essingis split into segments. 3
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esses atta
hed to tables, with P1 the initial pro
essWe identify an initial pro
ess taking 
are of a query by partioning it intosubqueries, represented by Erlang fun
tions, whereafter for every su
h subquerya pro
ess is 
reated on a 
omputer where the subquery 
an �nd its information.All spawned pro
esses exe
ute the same fun
tion (viz. pro
ess in ring), whi
hhave one of the Erlang fun
tions that represents the subquery as an argument.The pro
esses are spawned in a ring 
on�guration (by mk ring) and the initialpro
ess may be seen as a distinguished member of this ring.query setup(Query,DBStru
ture) ->SubQueries = split handle(Query,DBStru
ture),mk ring(self(),SubQueries).mk ring(NextPid,SubQueries) ->
ase SubQueries of[℄->wait for request(NextPid);[Q|Qs℄ ->mk ring(spawn(pro
ess in ring,[NextPid,Q,[℄℄),Qs)end.In our approa
h we abstra
t from the a
tual 
omputation of the subqueriesand assume that this 
omputation results in a list of fun
tions (represented bySubQueries) with at least one element. For every su
h fun
tion a pro
ess is 
re-ated on the appropriate ma
hine (by spawn(pro
ess in ring,[NextPid,Q,[℄℄)where Q represents the subquery and is one of the three arguments of the spawnedfun
tion pro
ess in ring), where the name of the ma
hine is 
omputed togetherwith the subquery itself. For readability, we have 
hosen not to present the ma-
hine name and perform the spawning on only one ma
hine. Spawning on severalma
hines is done similarly, where the Erlang spawn primitive needs the ma
hinename as an additional argument.The fun
tion pro
ess in ring is spawned with three arguments, the pro
essidenti�er (pid) of the next pro
ess in the ring, the fun
tion representing thesubquery, and the empty list representing a lo
al store for the pro
ess (see belowfor more details on this store). 4



After spawning the ring (Fig. 1), the initial pro
ess (P1) exe
utes the fun
-tion2wait for request(NextPid) ->re
eivefuser request,UserPid,NrSolutionsg ->Pa
ketSize = some value smaller(NrSolutions),NextPid!f[[℄℄,Pa
ketSizeg,
ounting(NextPid,UserPid,NrSolutions,[℄)end.with as argument the next pro
ess in the ring (Pn). Now P1 is ready to re
eive amessage of the form fuser request, UserPid, NrSolutionsgwhere the triplerepresents an atom user request to identify the message type, the pid of therequesting pro
ess and the maximum number of solutions that the latter pro
esswants to re
eive. Observe that, be
ause of the asyn
hronous 
ommuni
ationdis
ipline of Erlang, a user request may arrive at the mailbox of the initialpro
ess long before it is a
tually pro
essed.Whenever this message arrives, a message is sent to the 
onse
utive pro
ess inthe ring (Pn), whi
h is the �rst pro
ess able to perform a subquery lookup. Thepro
ess P1 subsequently 
alls the fun
tion 
ounting, whi
h 
olle
ts all answersthat the subqueries of the ring produ
e. The idea is that for all solutions thata pro
ess in the ring re
eives, it 
omputes all new solutions using its subquerylookup fun
tion. This might result in an in
rease or de
rease of the number ofsolutions. These new solutions are passed to the next pro
ess and so on, untilP1 re
eives the answers and 
an present them to the user.However, in order not to overload the network, the pro
esses in the ringare not sending all the answers they �nd, but just a �xed number given byPa
ketSize, whi
h is dynami
ally determined by P1 (via the dummy fun
tionsome value smaller, where we abstra
t from the real 
omputation) and de-pends on the number of requested solutions and the network load. Thus, thenumber Pa
ketSize is sent along in the message from P1 to the next pro
ess Pnin the ring. The latter pro
ess 
omputes all answers it 
an �nd a

ording toits subquery and sends at most Pa
ketSize of these answers to the next pro
ess,whereas the remaining answers are kept in the store. All 
onse
utive pro
esses inthe ring perform the same a
tions and eventually P1 re
eives at most Pa
ketSizeanswers. The pro
ess P1 may now add these answers to its store and as long asthe store is less than the demanded number of answers (NrSolutions) a messagewill be sent to the pro
ess Pn requesting to produ
e new answers.
ounting(NextPid,UserPid,NrSolutions,Store) ->re
eivefSolutions,Pa
ketSizeg ->NewStore = Solutions ++ Store,2 In the real 
ode this re
eive statement is in
orporated in the fun
tion mk ring, thishas been modi�ed for 
larity of presentation.5



SolutionsToGet = NrSolutions - length(NewStore),
ase fSolutions,SolutionsToGet =< 0g off ,trueg -> % enough solutions foundUserPid!fuser response,NewStoregf[℄, g -> % no more solutions in DBUserPid!fuser response,NewStoregOtherwise ->NextPid!f[℄,Pa
ketSizeg,
ounting(NextPid,UserPid,NrSolutions,NewStore)endend.Ex
ept for the initial pro
esses, all other pro
esses in the ring, i.e. P2; : : : ; Pn,are evaluating the fun
tion pro
ess in ring.pro
ess in ring(NextPid,Filter,Store) ->re
eivefSolutions,Pa
ketSizeg ->
ase Pa
ketSize =< length(Store) oftrue ->fToSend,ToStoreg = split(Pa
ketSize,Store),NextPid!fToSend,Pa
ketSizeg,NewStore = ToStore ++ flatmap(Filter,Solutions),pro
ess in ring(NextPid,Filter,NewStore);false ->NewStore = Store ++ flatmap(Filter,Solutions),fToSend,ToStoreg = split(Pa
ketSize,NewStore),NextPid!fToSend,Pa
ketSizeg,pro
ess in ring(NextPid,Filter,ToStore)endend.These pro
esses wait for a message 
ontaining at most Pa
ketSize answersof the previous pro
ess and the value Pa
ketSize itself. The number of storedanswers is 
ompared to the number Pa
ketSize of demanded answers and ifenough answers are already in the store, these are sent along to the next pro
essand new answers are 
omputed. In 
ase not enough answers are stored, �rst allnew answers are 
omputed, whereafter at most Pa
ketSize answers are sent tothe next pro
ess and all other answers are stored for the next round. Answersare 
omputed using the fun
tion flatmap whi
h applies the fun
tion Filterto any partially instantiated query in the list Solutions. The fun
tion Filterhas been generated from the original query and the database and was given asan argument of the spawned fun
tion. We abstra
t from this fun
tion and onlyassume that Filter is a terminating fun
tion that results in a (probably empty)list of arguments. The fun
tion flatmap results in the 
on
atenation of all liststhat result from applying Filter to all arguments of Solutions, whi
h might6



either be a longer or a shorter list than the Solutions itself. In this way, thestore of the pro
ess may in
rease and de
rease dynami
ally.The fun
tion split divides a list in two sublists of whi
h the length of the �rstlist 
ontains the �rst Pa
ketSize elements of the list, provided that Pa
ketSizeis given as an argument to the fun
tion. Fun
tions like =< and ++ have theirusual meaning. In the veri�
ation pro
ess these fun
tions are not 
onsidered asbuild-in fun
tions, like they are in Erlang, but are spe
i�ed separately.The property that we want to verify is informally des
ribed as `Is the retrievalof the information terminating?' In other words, given an arbitrary query andan arbitrary positive integer, whenever we build a ring 
orresponding to thisquery and send a message of the form fuser request,MyPid,Numberg to the�rst pro
ess in the spawned ring, do we always eventually re
eive a messageba
k with at most this Number of solutions in it?3 The Spe
i�
ation Logi
 and its Proof SystemIt is not 
ompletely trivial to 
ome up with a 
orre
t formal rendition of theproperty outlined at the end of Se
t. 2. A �rst step is to understand 
orre
tlythe abstra
t exe
ution me
hanism of Erlang. We gave a 
ore fragment of Er-lang, involving, roughly, the features used in the present example, an SOS-styleoperational semanti
s. Among the more tri
ky features to model adequately is
ommuni
ation. In Erlang interpro
ess 
ommuni
ation is asyn
hronous. Ea
hpro
ess is equipped with one mailbox. Sending is non-blo
king: The transmittedmessage is pla
ed at the end of the mailbox belonging to the re
eiving pro
ess.Messages are subsequently read by retrieving the �rst message in the mailboxmat
hing a given pattern. Sin
e we need to analyse behaviour both at the levelof pro
esses and pro
ess 
ommuni
ation and at the level of sequential fun
tionelaboration we are for
ing a separation between the time at whi
h a messagepa
ket 
rosses a pro
ess boundary (or: enters the s
hedulers domain, i.e. thepro
ess mailbox), and the time at whi
h the pa
ket is read from the mailbox bythe re
eiving pro
ess.A se
ond step is to adequately a

ount for the exe
ution behaviour of pro-
esses in a formal property spe
i�
ation language. Our work has been based ona �rst-order �xed point 
al
ulus inspired by Park's �-
al
ulus [Par76,Koz83℄,extended with Erlang-spe
i�
 features. In summary this logi
 is based on the�rst-order language of equality, extended with modalities re
e
ting state tran-sition 
apabilities, least and greatest �xed points, along with a few additionalprimitives. Using �-
al
ulus 
orre
tly is by itself well known to be tri
ky. Onthe other hand we have found the �-
al
ulus re
ursive style of spe
i�
ation ex-tremely natural and useful. We have used an equational style of spe
i�
ation,using the notation prop(args)) bodyfor greatest �xed points (the body 
an be inferred from the head), andprop(args)( body7



for least �xed points (the head must be inferred from the body). Whereas thisnotation is fraught with danger (how are dependen
ies resolved?) a 
lear bene�tof su
h a notation is that it en
ourages a programming language style of spe
-i�
ation de�ning \larger", more 
ompli
ated properties in terms of \smaller"ones.The bene�ts of the equational style of spe
i�
ation be
omes apparent, inparti
ular, on
e properties are de
omposed. To do this one typi
ally needs toexpress state, liveness, or safety properties embedded inside another invariantwhi
h needs to adequately 
apture all possible ways in whi
h the pro
esses 
anintera
t, and the 
onsequen
es of these intera
tions. An example of the shape ofa property one obtains is (1) below.A 
ompli
ation whi
h is more semanti
al than due to the re
ursive style ofspe
i�
ation is Erlang's asyn
hronous 
ommuni
ation. Sin
e re
eivers are pow-erless to in
uen
e the delivery of pa
kets into re
eivers mailbox, for the purposeof pa
ket delivery events, and in the absen
e of a suitable fairness assumption(whi
h we have not so far implemented), it is possible for pa
ket delivery to 
on-tinuously preempt progress by the lo
al pro
ess. In this example we have beenable to bypass this problem, as the ring stru
ture enfor
es a syn
hrony propertythat ensures to a suÆ
ient extent that mailboxes do not grow in unboundedmanners.3.1 The logi
Typi
al Erlang-related primitives are the term = e to pi
k up the Erlang ex-pression asso
iated with the pro
ess under evaluation and 
ompare this with theterm e; unevaluated whi
h is true if the Erlang expression under evaluation isnot yet in normal form; and similar primitives for queues and pro
ess identi�erswith are lo
al or foreign to the system under 
onsideration.The modal operators <�> and [�℄ (not to be 
onfused with the Erlang list
onstru
tors [℄ (the nil list) and [hdjtl℄) are used to express transition 
apabilities.The formula <>� holds if an internal transistion is enabled to a state satisfying�. Similarly, we have a diamond operator for the non-internal transitions forsending and re
eiving, viz. <P !V >� and <P ?V >�. Observe that the re
eivemodality is \appending to re
ipients mailbox". The box operator is the dualof the diamond operator, expressing that a formula should hold in all statesrea
hable in one transition from the 
urrent state.Using least and greatest �xed point temporal properties, like liveness andsafety, 
an easily be expressed. Furthermore simple data types, like lists andnatural numbers, 
an be expressed using least �xed points:list(L)( (L = [℄) _ 9H:9T:(list(T ) ^ (L = [H jT ℄))Combinations of both greatest and least �xed points are used to express the
ompli
ated eventuality properties we deal with in this 
ase-study. A represen-tative example of the latter is the formula that expresses that the propertywait for input holds for an arbitrary number of internal 
omputation steps, un-til a 
ertain shape of message is re
eived and the property 
ontinue holds. The8



properties wait for input and 
ontinue will typi
ally be mutually re
ursive, solet us assume that wait for input is de�ned in the 
ontext of a de�nition
ontinue ) � � �wait for input(: : :) � � � :Now wait for input is de�ned in the following way:wait for input(RightForm)) wait for input' (RightForm) (1)wait for input' (RightForm)( [℄wait for input' (RightForm) ^8P:8V:([P !V ℄false) ^8P:8V:([P ?V ℄(RightForm(P; V ) ^
ontinue))The least �xed point ensures that the predi
ated pro
ess does not diverge (i.e.performs an in�nite sequen
e of internal 
omputation steps without ever writ-ing an in
oming message to its mailbox. The greatest �xed point on the otherhand permits states satisfying wait for input in�nitely often, as long as they arein�nitely often separated by 
ontinue states.4 Outline of the ProofA

ording to the informal property as stated in Se
t. 2, we are dealing with twoa
tions initiating the query lookup: �rst the ring is built and thereafter a requestmessage is sent to the �rst pro
ess in this ring. For veri�
ation we are fo
usingon the out
ome of the valuation of the Erlang expression:Ring = spawn(query setup,[Query,DBStru
ture℄),Ring!fuser request,self(),NrSolutionsg,re
eivefuser response,Solutionsgend.where we quantify over all possible values of Query,DBStru
ture, NrSolutionsand Solutions. We abstra
t from the �rst two variables by assuming the fun
tionsplit handle to result in a list of fun
tions, where the real interesting issue isthe length of this list, whi
h 
an be any positive integer determining the numberof pro
esses in the ring. The property we address in this paper is that evaluationof this Erlang expression is terminating. Similar properties of interest are:{ The number of re
eived answers is equal to the number of demanded answersif that many answers exist in the database.{ The set of obtained answers is independent of the pa
ket size, provided thelatter is a positive number.Given the experien
e of, e.g., the wait for input formula (1) formulating the re-sponsiveness property is not too diÆ
ult. The spe
i�
ation will have the following9



shape: spe
) spe
'spe
' ( 2spe
' ^ 8P:8V:[P !V ℄false ^8P:8V:[P ?V ℄((P = userpid) ^9From:9N:(V = fuser request;From; Ng) ^ �)where � expresses responsiveness in a similar style, that eventually a user re-sponse is sent to the pid From, before returning to a state satisfying spe
. Severaldetails are omitted in this des
ription: Information about pro
ess identi�ers andthe store have to be 
arried over to the property �, and assumptions 
on
erningthe return address From, and the types of other arguments have to be made.The basi
 style of spe
i�
ation is one of distinguishing abstra
t states inwhi
h (aggregate sets of) pro
esses may �nd themselves. The abstra
t stateswill often 
orrespond to in�nitely many a
tual states of the pro
ess. For everypro
ess we de�ne a few abstra
t states and formulate whi
h properties shouldhold in these states and how one property depends on the other. The pro
esseswe 
onsider are the initial pro
ess evaluating the given Erlang expression, a ringpro
ess (whi
h is not the initial one), and, as part of an indu
tive argument, aring segment whi
h in
ludes the initial pro
ess.4.1 The ring invariantThe basi
 diÆ
ulties in proving the spe
i�
ation to hold are the unboundednumber of ring pro
esses whi
h 
an be 
reated, and the unbounded number ofquery replies whi
h 
an be requested. To address these diÆ
ulties we resort toindu
tion. We identify two invariants:1. An invariant to hold of ea
h of the ring pro
esses P2; : : : ; Pn (
.f. Fig. 2).2. A sort of stru
tural and temporal invariant for a ring segment of the shapeP1; Pn; : : : ; Pi with 2 � i � n. Æ
��P1���= Æ
��P2ZZZ}Æ
��PnÆ
��Pn-1BBBBN ���-






QQQQQFig. 2. Indu
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Let us 
all the �rst invariant pro
 wait for input and the se
ond invariant forrootspe
. We �rst need to show that rootspe
 is strong enough to derive the endspe
i�
ation we wish to establish, i.e. a sequent of the shapex : rootspe
(� � �) ` x : spe
(� � �): (2)The task is thus to prove that rootspe
 holds of the pro
ess initially evaluatingquery setup:some assumptions ` pro
(query setup(� � �); � � �) : rootspe
(� � �) (3)Here pro
 denotes the Erlang pro
ess for whi
h rootspe
 has to be proved. Su
ha pro
ess 
onsists of the Erlang term to be evaluated, the pro
ess-identi�er andthe message queue asso
iated with the pro
ess. Using straightforward, and fullyautomatable, state exploration te
hniques whi
h we return to in the followingse
tion we 
an redu
e (3) �rst to a subgoal of the shapesome assumptions ` pro
(mk ring(� � �); � � �) : rootspe
(� � �) (4)and then, by 
ontinuing state exploration, to a subgoal of the shapesome assumptions ` pro
(mk ring(� � �); � � �) k (5)pro
(pro
ess in ring(� � �); � � �) : rootspe
(� � �)The idea is to prove two lemmas, one stating the 
orre
tness of pro
ess in ring,some assumptions ` pro
(pro
ess in ring(� � �)) : pro
 wait for input(� � �) (6)and one 
on
erning the 
omposability of rootspe
 with pro
 wait for input ,C1 : rootspe
(� � �); C2 : pro
 wait for input(� � �) ` C1 k C2 : rootspe
(� � �) (7)Subgoal (7) states a 
ompositional property of root and ring pro
esses: puttingtogether a (possibly aggregate) pro
ess (P1) a
ting as a root with a (possiblyaggregate) pro
ess a
ting as a ring element results in an aggregate pro
ess whi
hagain a
ts as a root. Obviously the 
orre
tness of this statement is 
ru
iallydependent on input and outputs being properly 
onne
ted, whi
h are matterswe will not be 
on
erned with here.By themselves, (6) and (7) are not suÆ
ient to 
on
lude (5). However, using(6) and (7) it is possible to redu
e to a goal whi
h is a
tually an instan
e of thegoal (4), and the remarkable fa
t is that, in prin
iple, an indu
tive argument
an be set up su
h that at this point the proof 
an be 
ompleted (
.f. [DFG98℄).In realizing this proof, however, a number of 
ompli
ations must be attended towhi
h we return to in Se
t. 5.4.2 Properties of the separate pro
essesWe are thus left with two main subgoals, one of the shape (6), and one of theshape (7). We do not 
omment further on (7) other than observe that the ring11



pro
ess property pro
 wait for input we are looking for must be strong enoughto permit (7) to be proved. Instead we turn to pro
 wait for input .We start by observing the role of a spe
ial token that is initially sent by the�rst pro
ess (P1) in the ring and implies termination as soon as it is also re-
eived by this pro
ess, i.e. when the token has gone through the entire ring. Thisspe
ial token (f[℄,Pa
ketSizeg), whi
h we 
all the end token for 
onvenien
e,is repeatedly send by P1 to Pn after initially sending f[[℄℄,Pa
ketSizeg on
e.In 
ase the number of demanded solutions is larger than the number of solutionspresent in the database, the pro
ess P1 
an only respond to the user when thisend token is re
eived from the pro
ess P2.The �rst pro
ess in the ring P1 plays a spe
ial role and the abstra
t stateswe distinguish for this pro
ess are1. the pro
ess is waiting for a user request,2. a non-end token is sent to the next pro
ess (Pn) and the pro
ess is waitingfor a message,3. an end token is sent to the next pro
ess and the pro
ess is waiting for amessage,4. a non-end token is re
eived and not enough answers are 
olle
ted,5. the end token is re
eived or another token is re
eived and enough answersare 
olle
ted.Our 
hoi
e to follow the real 
ode and not to abstra
t from the a
tual 
ount-ing of the number of answers, 
auses the state spa
e of this �rst pro
ess in thering to be unbounded. For this reason, model
he
king is infeasible for this partof the proof as well, but with our veri�
ation tool su
h a proof 
an be handled.States that we distinguish for the pro
esses in the ring are 
hara
terizedby whether or not they re
eive an end token and whether or not they send anend token. Cru
ial is the observation that after re
eiving an end token on
e,only end tokens 
an be re
eived su

essively. The latter is a property of thering and not of the pro
ess itself, but when proved for the ring, we use it inour formalization to disallow the state transition from re
eiving an end token tore
eiving a non-end token.For a pro
ess in the ring (P2; : : : ; Pn) we de�ne four abstra
t states, depend-ing again on the end token:1. the pro
ess awaits the re
eption of an arbitrary message,2. the pro
ess re
eives an end-message and sends a message to the next pro
ess,3. the pro
ess re
eives a non-end-message and sends a message to the nextpro
ess,4. the pro
ess waits for re
eiving a su

essive end-message.Every state is 
aptured in a property, but also the relation to the other ab-stra
t states is re
e
ted in this same property using the �xed point operators.The proof boils down to the observation that if the end token is repeatedly re-
eived the pro
ess is for
ed to pass on at least one element of its store. Thusthe store be
omes smaller and smaller and when empty, the pro
ess sends the12



end token as well. Note again that a property outside the view of the pro
essin the ring should ensure that after re
eiving an end token we 
annot re
eivea non-end token anymore. This property is hidden in the relation between theproperties of 
onse
utive states, but is proved in the more general setting.5 Proof Sear
h and AutomationThe su

ess of our intera
tive theorem-proving based approa
h in large-s
aleappli
ations is heavily dependent on three fa
tors:1. Robust ta
ti
s that help solve and redu
e subproblems of 
learly identi�ablenatures.2. Use of su
h ta
ti
s to the maximal extent possible, to eliminate user inter-vention whenever possible.3. A user interfa
e that helps users navigate and assist the theorem provingpro
ess in a meaningful way, when su
h assistan
e is really required.To minimize user intervention we adopt as lazy an approa
h to proof sear
has we have found possible, using existential variables to delay 
ommitmentsto existential witnesses, proof goals stated as general Gentzen-type sequents todelay 
ommitments to disjun
tive 
hoi
es, and a lazy approa
h to indu
tion usingloop dete
tion whi
h we have introdu
ed in some re
ent papers (
.f. [DFG98℄).5.1 Indu
tion and Dis
hargeAs we outlined in the previous se
tion we use a very tightly integrated mix ofstate-spa
e exploration and proof-editing te
hniques. As in most proof editorsthe proof 
onstru
tion pro
ess is a goal-driven one: Proof goals in the form ofGentzen-type sequents are re�ned in steps by the appli
ation of one of a numberof primitive proof rules.Most proof goals 
all for indu
tion (or 
oindu
tion) for their proofs. Manytypes of indu
tion are involved in an example su
h as the one we 
onsider here:{ Indu
tion on number of evaluation steps.{ Indu
tion on size of data values, su
h as numbers or lengths of lists.{ Indu
tion on the stru
ture of fun
tion expressions.Indu
tion on the number of exe
ution steps from some initial 
on�guration istypi
ally used if we prove that 
omputing the length of a list results in a naturalnumber, or that 
omparing two numbers results in a boolean. Coindu
tion isused, typi
ally, for invariants, by showing that the invariant remains unbrokenafter any number of 
omputation steps. General programs involve data type oper-ations, 
ommuni
ation, and, maybe, dynami
 
reation of new pro
esses, in man-ners whi
h are interwoven to 
onsiderable extents, as happens in our databaselookup manager. To handle these 
ompli
ations, most parts of the proof willinvolve indu
tion and 
oindu
tion at many levels simultaneously, in manners13



whi
h, when properly formalized, may be ex
eedingly 
ompli
ated. Our prooftheoreti
 approa
h, using loop dete
tion, or dis
harge, allows very substantialparts of this formalisation to be almost 
ompletely hidden from the user. Thedis
harge me
hanism implemented in the tool follows the prin
iples laid out in[DFG98℄. In e�e
t the dis
harge me
hanism attempts to 
ast the proof as so far
onstru
ted as a proof by simultaneous indu
tion, by seeking an ordering thatmakes the dependen
y relation between indu
tion and 
oindu
tion variables awell-founded one. Maintaining the 
onstraints on this dependen
y ordering isdone by the proof editor. Thus there is no need for users to spe
ify the sequen
e,nesting, or mutual dependen
ies of simultaneous indu
tive arguments, or even tostate that indu
tion is being used. All this is managed by the tool. However, theuser will need to have a basi
 understanding of the general prin
iples of simul-taneous indu
tion for the operation of the dis
harge rule to be understandable.And, most importantly, the tool has no built-in support for �nding indu
tiveassertions. Su
h support 
an be programmed (as ta
ti
s), or must alternatively| as in our 
ase | be provided expli
itly.5.2 Proof Constru
tionOur proof approa
h, and the size of problems whi
h we address, gives rise to
ompli
ations 
on
erning proof sharing and proof 
onstru
tion whi
h we havehad to address.A naive implementation of a proof editor for Erlang qui
kly runs out ofspa
e, be
ause of the large number of independent transitions. Observe thatindependen
e is a feature not only in-between pro
esses, but also within a sin-gle pro
ess independent 
hoi
es 
an be viewed as arising between writing anin
oming message to the lo
al mailbox, or letting lo
al 
omputation progress.As a 
onsequen
e, state spa
es for even small, single pro
esses grow very sig-ni�
antly. To handle this we implemented an inferen
e rule, 
opy dis
harge forsubproof sharing to 
lose proof bran
hes in 
ase they are seen to have alreadybeen dealt with elsewhere.Example 1. The Erlang semanti
s is su
h that one 
an always re
eive a mes-sage in the mailbox. Thus, in many properties we state that either an internala
tion is possible, or the pro
ess may re
eive something in the mailbox. Herethe proofnode has two bran
hes, performing the a
tion or re
eiving the message.After performing the a
tion, one normally should be able to re
eive the messageanyway and after re
eiving the message, one 
an still perform the a
tion. Insteadof sear
hing for, and 
onstru
ting, the proof twi
e, we use 
opy dis
harge to jointhe nodes. Sin
e this is done re
ursively, one easily sees that the prooftree wouldgrow exponentialy when we la
k this 
opy dis
harge.Observe that a 
orre
t implementation of the 
opy dis
harge feature is 
ompu-tationally quite expensive: to 
he
k for 
ir
ularity, to support \undo", and tointera
t 
orre
tly with existential variables.To support dis
harge and, in parti
ular, subproof sharing it seems essentialto maintain a \
urrent" proof tree, and to have rules of proof elaborate this proof14



tree through side e�e
ts. Observe that this makes the proof 
onstru
tion pro
essvery di�erent from that of other proof editing tools (su
h as PVS [ROS92,Sha96℄,Coq [DFH+℄, Lego [Lego℄, Isabelle [Pau94℄,...) whi
h maintain only the leaves,but not the internal stru
ture of proof trees. Thus, in these tools one sharessubproofs by having the user formulate lemma's whi
h are used for several leaves.We over
ome this user intervention and in 
ase a subproof need not be performed,this is dete
ted automati
ally.5.3 Ta
ti
sThe 
onstru
tion of proof trees by side e�e
ts has drasti
 impa
t on the pro-gramming of ta
ti
s, for instan
e. The bene�t, besides the support of dis
hargeand (in parti
ular) 
opy-dis
harge, is that the entire proof tree be
omes availablefor inspe
tion and navigation. In fa
t, to help keep the information manageablewe implemented a fa
ility for suppressing the 
reation on new nodes. The 
ostof maintaining the 
omplete proof tree, on the other hand, is that ta
ti
s pro-gramming be
omes mu
h more diÆ
ult, and that the attra
tive, and very tight,
onne
tions between term and proof stru
ture evident from e.g. type theory, getlost. So far we have implemented a rather \dirty" solution, giving users a

ess tothe basi
 proof rules themselves, to a set of basi
 rules for a

essing and travers-ing proof trees, to a small set of ta
ti
 
onstru
tors, like sequential 
omposition,
onditional, et
, and to a higher-order ta
ti
 de�nition fa
ility./* resolvable: Proof bran
h 
an be 
losed */rule resolvable =eq r() /* Node is provable equality */orelse id() /* Node is instan
e of id rule */orelse ...orelse 
opy dis
harge() ;/* rightexpandable: Goal 
an be redu
ed but not 
losed */rule rightexpandable =or r() orelse and r() orelse ... orelse all rorelse box sem() ; /* Chase transition */rule rightredu
e =blo
kif isleaf() /* Node is not yet redu
ed */then if resolvable ()then skipelse if rightexpandable()then blo
k next above() ; rightredu
e endelse fail("rightredu
e")else fail("rightredu
e")end ; Fig. 3. Ta
ti
 for simple \model 
he
king"15



Another example is outlined on Fig. 3 whi
h is shown less for its details thanto give a general impression of the shape of ta
ti
s we used for the example. Inour 
ase study ta
ti
s were indispensable. They permitted us to produ
e verylarge parts of the proofs entirely automati
ally. We implemented ta
ti
s for awide range of purposes, and of very di�erent generality. For instan
e it is quiteeasy to implement simple proof strategies for boolean formulas as ta
ti
s.Example 2. A 
oarse approximation of the Erlang fun
tion pro
ess in ring aspresented in Se
t. 2, just re
eiving an integer, in
rementing it by one and passingit on:pro
ess in ring(NextPro
ess) ->re
eiveN -> NextPro
ess!(N+1),pro
ess in ring(NextPro
ess)end.The following \wait for input" property expresses the behaviour of su
h ringpro
esses in state transition terms:wait for input(pid1; pid2)) wait for input' (pid1; pid2)wait for input' (pid1; pid2)( [℄wait for input' (pid1; pid2)^ 8P:8V:[P !V ℄false^ 8P:8N:[P ?N ℄((P = pid1) ^nat(N)! respond(pid1; pid2))respond(pid1; pid2)) respond'(pid1; pid2)respond'(pid1; pid2)( [℄respond'(pid1; pid2)^ 8P:8V:[P !V ℄((P = pid2) ^nat(V ) ^ wait for input(pid1; pid2))Using a ta
ti
 based on right redu
e above the proof goal (6) was provedautomati
ally, with subproof sharing, using 212 nodes, 1 appli
ation of dis
harge,and 7 appli
ations of 
opy-dis
harge. Turning subproof sharing o� the sameta
ti
 required 530 nodes and 12 appli
ations of dis
harge. The size in
rease isdue to one subproof being dupli
ated thri
e.For larger sequential fun
tions than the one 
onsidered in Ex. 2 the issueof subproof sharing be
omes very urgent, and it is not hard to realize that anexponential growth in proof size will be the rule rather than the ex
eption.Also for sequential fun
tion evaluation we found ta
ti
s very helpful. The
ounting fun
tion, for instan
e, appeals to a number of small auxillary fun
-tions like length, split, flatmap, or 
omparison operators like � whi
h areimplemented as fun
tions as well. Frequently small lemmas are needed to showtermination, or to show type preservation properties whi
h are not guaranteedin general, as Erlang is an untyped language.16



Ta
ti
s in a style similar to that of Fig. 3 were developed to prove type ad-heren
e of Erlang expressions. With these ta
ti
s we 
ould automati
ally prove,for instan
e, that{ if Store represents a list, then length(Store) results in a number,{ if Store represents a list and Pa
ketSize a number, then Pa
ketSize =<length(Store) results in a boolean, and{ appending two lists results in a list.These sorts of ta
ti
s were used to bring down the 
omplexity of the proof byredu
ing large proof goals to smaller ones whi
h 
ould eventually be 
ompletedusing one of these ta
ti
s. Re
ent experiments within the framework of termrewriting systems indi
ate that even larger parts of the proof for the propertyof the separate pro
esses are subje
t to automation [AG99℄.5.4 Using the Tool in Pra
ti
eMixing automated and intera
tive veri�
ation in the manner we propose putsvery 
onsiderable demands on the user interfa
e, to aid users 
ontrol of possiblyvery large proofs. The ta
ti
 programming language gives a lot of help, providingfa
ilities for naming and retrieving nodes, and for de�ning sear
h and navigationpro
edures. The simple ta
ti
s we developed for \model 
he
king", type 
he
k,and termination, turned out to be surprisingly robust, requiring little adaptationeven for quite substantial modi�
ations to the fun
tions and properties being
he
ked. In our 
ase study so far we have proved a number of properties forthe ring pro
ess, and for various approximations of it in the style of Ex. 2. Themost sophisti
ated of those proofs 
ontains about 2000 proof nodes, of whi
htwo thirds have been generated automati
ally. We also proved a version of the
omposition property as stated in (7). This proof uses in the order of 700 nodes,and so far we have not me
hanized this. It is representable of a kind of proofwhi
h we expe
t to be able to me
hanize almost 
ompletely in the future. Tohelp visualisation we interfa
ed our tool to the daVin
i graph display fa
ility[FW94℄. Small graphs, less than 1000 nodes, are easily displayed by daVin
i,and it provides good help, for instan
e in debugging proof ta
ti
s. For largerproofs graphs really need to be displayed in
rementally (not very well supported
urrently) or in segments, to avoid ex
essive delays.6 Con
lusionsOur report is a tentative one, reporting more on qualitative than quantitativeexperien
es with the use of a novel approa
h to 
ode veri�
ation for distributedsystems. The report must be a tentative one, sin
e there really are not many toolsor proof approa
hes around with a similar s
ope of addressing dynami
 pro
essnetworks on the level of a
tual running 
ode without resorting to approximatete
hniques. The database lookup manager whi
h we addressed was about 20017



lines of 
ode and explored most \
ore" features of the Erlang language in
lud-ing list and number pro
essing, 
ommuni
ation, and dynami
 pro
ess 
reation.Experien
e with Erlang at Eri
sson has indi
ated that | as a rule of thumb |one line of Erlang 
ode 
orresponds to six lines of C.A 
entral issue on whi
h we have as yet little to say is s
alability. Sin
eour proof system is highly 
ompositional it is a
tually realisti
 to hope to reuseproofs together with their asso
iated 
ode modules. As yet, however, we havelittle pra
ti
al experien
e with this.The proof approa
h whi
h we follow requires user intervention. We havedeveloped ta
ti
s whi
h are quite robust and manage to produ
e large partsof proofs without any user intervention at all. Moreover it is quite realisti
 inmany 
ases to hope to automate almost the entire proof sear
h pro
ess, evenin 
ases when model 
he
king-like te
hniques fail. The 
riti
al point at whi
huser intervention is really essential is, of 
ourse, in the identi�
ation of indu
tiveassertions. In the example studied here this was not at all easy. A parti
ularsour
e of heada
he was the handling of pro
ess identi�ers whi
h in Erlang playa role not unlike names in the �-
al
ulus. Even though our handling of pro
essidenti�ers (pids) and pid 
reation in Erlang is as yet imperfe
t, the tool wasable to assist the identi�
ation of indu
tive assertions quite substantially, byhaving ta
ti
s whi
h were suÆ
iently robust to often a

omodate smaller formulamodi�
ations 
ompletely automati
ally.A
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