
Verifying a Distributed Database LookupManager Written in ErlangThomas Arts1 and Mads Dam21 Computer Siene Laboratory, Erisson Utveklings AB, 125 25 Stokholm,Sweden, thomas�slab.erisson.se, http://www.erisson.se/slab/~thomas/2 Swedish Institute of Computer Siene, Box 1263, S-164 28 Kista, Sweden,mfd�sis.se, http://www.sis.se/~mfd/home.htmlIndustrial Appliations, experiene reportKeywords: Teleommuniation; Proof Cheker; Distributed Algorithms; Dis-tributed Databases; Formal Veri�ationAbstrat. We desribe a ase-study in whih formal methods were usedto verify an important responsiveness property of a distributed databasesystem whih is used heavily at Erisson in a number of reent produts.One of the aims of the projet was to verify the atual running ode whihis written in the distributed funtional language Erlang. In a joint projetbetween SICS and Erisson we have over the past few years been devel-oping a tableau-based veri�ation tool for Erlang of onsiderable sope.In partiular, we are apable of addressing | on the level of runningprogram ode | systems with unbounded behaviour along the many di-mensions in whih this happens in \real" programs, involving datatypes,reursive ontrol strutures, error handling and reovery, initialisation,and dynami proess reation. The database lookup manager onsid-ered here ontains most of these features, giving rise to in�nite statebehaviour whih is not very adequately handled using model heking orother approahes based purely on state spae traversal. In the paper weintrodue the ase study, our approah to formalisation and veri�ation,and disuss our experienes using the Erlang veri�ation tool.1 IntrodutionErlang [AVWW96,OSE98℄ is a funtional programming language developed byErisson, whih is used extensively for writing robust distributed teleommunia-tion appliations. Central in many of these appliations is a distributed database,Mnesia [Mnesia℄, also written in Erlang. The Mnesia system is ruial to the ro-bustness of almost all Erlang based produt developed at Erisson. It is, forinstane, responsible for error reovery, the prompt and safe handling of whihis essential in teleommuniation appliations. These features make the Mnesiasystem a rewarding objet of study when trying out new veri�ation tehniques.The ase study at hand onerns only a small part of the Mnesia system,a protool for the evaluation of a query whih is distributed over several om-puters in a network. The starting point for this ase study was the Erlang ode

implementing the distributed database. The author of this ode knew that thequery lookup protool was implemented in a triky way and got interested insupporting his implementation with a lear and veri�ed desription.We extrated, from the real implementation, the ode for the distributedquery evaluation protool and added some ode to provide a very simple sim-ulated interfae to parts of the system that were irrelevant for the problem athand. The result was an Erlang program that ould be seen as a very preise,and in some sense formal, desription of the underlying algorithm. Isolation ofthe ode responsible for the lookup mehanism and analysing the intended be-haviour of the ode resulted, as a side e�et, in a lear and patentable pitureof the underlying protool [Nil99℄.In Set. 2 we present the distributed query evaluation in more detail. Asinput the protool reeives a database query divided into subqueries. Thesesubqueries are distributed over the network in the form of proesses on thoseomputers where the spei� data for a subquery is stored. By sending messagesto the subquery proesses, data is extrated from the database tables and sentalong the network. One proess is responsible for initialising the lookup proessring, and for olleting the resulting data. To avoid exessive delays and storageonsumption, query answers are olleted in segments, managed by the lookupmanager. The task we set ourselves was to prove that the implementation pro-vided a responsiveness property: that input queries are eventually being repliedto. The query lookup manager implements initialisation and query lookup phasesin manners whih are tightly interwoven. Both these phases are important fororret behaviour. Moreover, the ode is evidently designed to ater for tablesof arbitrary numbers and sizes, and for queries of arbitrary natures. Reetingthis, our aim was to prove orretness uniformly in these parameters, i.e. without�xing numbers and sizes of tables and queries in advane. This sort of problem isoutside the sope of model hekers, symboli or otherwise, or other tehniquesbased purely on global state spae traversal.There are several reasons why we �nd this sort of veri�ation exerise usefuland interesting.{ First of all it is learly relevant to verify the atual ode rather than someabstration of it, as this gives us more aurate and reliable informationabout the way the system is going to behave when it is eventually exeuted1.{ Seondly, by analysing the ode, and in partiular, by doing so in a ompo-sitional manner, we produe veriation information whih is reusable as thesystem grows. By ontrast, most approximate analyses, suh as ones basedon abstrat interpretation (.f. [Cri95℄), tend to be global ones, not readilyreusable.{ Thirdly, and most signi�antly, the Erlang ode itself is in fat already quiteabstrat, in the sense of providing designers and implementors with a oniseset of primitives and language onstruts whih are eÆiently implementableyet not at all far from a proess alulus-like level of abstration.1 Absolute auray, of ourse, is unattainable2

{ Fourthly we have the potential to maintain strong links between running andveri�ed ode. For instane, it will very often be possible to update proofs in afully automati way after minor ode revisions, by reapplying proof tatis.{ As a longer term perspetive, we are interested in developing objet andomponent enapsulation tehniques for whih a ode veri�ation apabilityis essential.To realize the veri�ation we used a tool [ADFG98℄, based on an approah toompositional veri�ation whih we have developed in some reent papers (.f.[Dam98,DFG98℄). The approah uses a tightly integrated mix of state-spaeexploration and proof-editing tehniques. System properties and spei�ationsare given in a �rst-order temporal logi, a variant of Park's �-alulus [Par76℄tailored, in this ase, spei�ally to Erlang. Proof goals are stated as generalGentzen-type sequents, proved in a goal-driven fashion by re�nement and loopdetetion. The result is a very powerful proof system whih supports modelheking, ompositional reasoning, and general oindutive or indutive reason-ing, for instane about datatypes, in a uniform framework.In Set. 3 we briey desribe our approah to spei�ation. In Set. 4 theatual veri�ation is desribed and an outline of the informal proof is presented.Then, in Set. 5, we desribe in more detail our approah to formalisation ofthe proof, and its realisation in the veri�ation tool. Large parts of the proof areeasily automatable by tatis that perform model-heking like state exploration,or prove type adherene or termination of sequential funtions. Sine these tatisare often used within interatively developed proofs, our veri�ation approahgives rise to proofs that easily beome large enough (several thousand nodes) fortool support to be essential. We onlude, in Set. 6, with some �nal remarks,reeting on the approah followed and lessons learned from performing this asestudy.2 A Proess Veri�ation ProblemIn this setion we explain the mehanism for query lookup and the property wehave proved.The database tables in whih the requested information is stored are dis-tributed over several omputers. Whenever a query is formulated for the databasethe Erlang funtion query setup is alled to analyse the query and divide it intosubqueries eah addressing only one table. The subqueries are distributed overa network (by the Erlang funtion mk ring) as proesses loated at the omputerwhere the information is available. A request is sent to the �rst of the spawnedproesses, whih reads data from a table. This results in several partially in-stantiated queries, whih are sent to the next proess. For every suh partlyinstantiated query, the next proess reads additional data from a table, result-ing in further instantiations. The last proess gathers all data and sends it to therequesting proess. To avoid unneessary delays in transmission, proessing, anddatabase lookup, and to avoid exessive storage onsumption, query proessingis split into segments. 3

6?Æ��P1���= Æ��P2ZZZ}Æ��PnÆ��Pn-1BBBBN ���-
�� ��� �� �� ��� ��� �� �� ��� ��� �� �� �Fig. 1. Ring of proesses attahed to tables, with P1 the initial proessWe identify an initial proess taking are of a query by partioning it intosubqueries, represented by Erlang funtions, whereafter for every suh subquerya proess is reated on a omputer where the subquery an �nd its information.All spawned proesses exeute the same funtion (viz. proess in ring), whihhave one of the Erlang funtions that represents the subquery as an argument.The proesses are spawned in a ring on�guration (by mk ring) and the initialproess may be seen as a distinguished member of this ring.query setup(Query,DBStruture) ->SubQueries = split handle(Query,DBStruture),mk ring(self(),SubQueries).mk ring(NextPid,SubQueries) ->ase SubQueries of[℄->wait for request(NextPid);[Q|Qs℄ ->mk ring(spawn(proess in ring,[NextPid,Q,[℄℄),Qs)end.In our approah we abstrat from the atual omputation of the subqueriesand assume that this omputation results in a list of funtions (represented bySubQueries) with at least one element. For every suh funtion a proess is re-ated on the appropriate mahine (by spawn(proess in ring,[NextPid,Q,[℄℄)where Q represents the subquery and is one of the three arguments of the spawnedfuntion proess in ring), where the name of the mahine is omputed togetherwith the subquery itself. For readability, we have hosen not to present the ma-hine name and perform the spawning on only one mahine. Spawning on severalmahines is done similarly, where the Erlang spawn primitive needs the mahinename as an additional argument.The funtion proess in ring is spawned with three arguments, the proessidenti�er (pid) of the next proess in the ring, the funtion representing thesubquery, and the empty list representing a loal store for the proess (see belowfor more details on this store). 4

After spawning the ring (Fig. 1), the initial proess (P1) exeutes the fun-tion2wait for request(NextPid) ->reeivefuser request,UserPid,NrSolutionsg ->PaketSize = some value smaller(NrSolutions),NextPid!f[[℄℄,PaketSizeg,ounting(NextPid,UserPid,NrSolutions,[℄)end.with as argument the next proess in the ring (Pn). Now P1 is ready to reeive amessage of the form fuser request, UserPid, NrSolutionsgwhere the triplerepresents an atom user request to identify the message type, the pid of therequesting proess and the maximum number of solutions that the latter proesswants to reeive. Observe that, beause of the asynhronous ommuniationdisipline of Erlang, a user request may arrive at the mailbox of the initialproess long before it is atually proessed.Whenever this message arrives, a message is sent to the onseutive proess inthe ring (Pn), whih is the �rst proess able to perform a subquery lookup. Theproess P1 subsequently alls the funtion ounting, whih ollets all answersthat the subqueries of the ring produe. The idea is that for all solutions thata proess in the ring reeives, it omputes all new solutions using its subquerylookup funtion. This might result in an inrease or derease of the number ofsolutions. These new solutions are passed to the next proess and so on, untilP1 reeives the answers and an present them to the user.However, in order not to overload the network, the proesses in the ringare not sending all the answers they �nd, but just a �xed number given byPaketSize, whih is dynamially determined by P1 (via the dummy funtionsome value smaller, where we abstrat from the real omputation) and de-pends on the number of requested solutions and the network load. Thus, thenumber PaketSize is sent along in the message from P1 to the next proess Pnin the ring. The latter proess omputes all answers it an �nd aording toits subquery and sends at most PaketSize of these answers to the next proess,whereas the remaining answers are kept in the store. All onseutive proesses inthe ring perform the same ations and eventually P1 reeives at most PaketSizeanswers. The proess P1 may now add these answers to its store and as long asthe store is less than the demanded number of answers (NrSolutions) a messagewill be sent to the proess Pn requesting to produe new answers.ounting(NextPid,UserPid,NrSolutions,Store) ->reeivefSolutions,PaketSizeg ->NewStore = Solutions ++ Store,2 In the real ode this reeive statement is inorporated in the funtion mk ring, thishas been modi�ed for larity of presentation.5

SolutionsToGet = NrSolutions - length(NewStore),ase fSolutions,SolutionsToGet =< 0g off ,trueg -> % enough solutions foundUserPid!fuser response,NewStoregf[℄, g -> % no more solutions in DBUserPid!fuser response,NewStoregOtherwise ->NextPid!f[℄,PaketSizeg,ounting(NextPid,UserPid,NrSolutions,NewStore)endend.Exept for the initial proesses, all other proesses in the ring, i.e. P2; : : : ; Pn,are evaluating the funtion proess in ring.proess in ring(NextPid,Filter,Store) ->reeivefSolutions,PaketSizeg ->ase PaketSize =< length(Store) oftrue ->fToSend,ToStoreg = split(PaketSize,Store),NextPid!fToSend,PaketSizeg,NewStore = ToStore ++ flatmap(Filter,Solutions),proess in ring(NextPid,Filter,NewStore);false ->NewStore = Store ++ flatmap(Filter,Solutions),fToSend,ToStoreg = split(PaketSize,NewStore),NextPid!fToSend,PaketSizeg,proess in ring(NextPid,Filter,ToStore)endend.These proesses wait for a message ontaining at most PaketSize answersof the previous proess and the value PaketSize itself. The number of storedanswers is ompared to the number PaketSize of demanded answers and ifenough answers are already in the store, these are sent along to the next proessand new answers are omputed. In ase not enough answers are stored, �rst allnew answers are omputed, whereafter at most PaketSize answers are sent tothe next proess and all other answers are stored for the next round. Answersare omputed using the funtion flatmap whih applies the funtion Filterto any partially instantiated query in the list Solutions. The funtion Filterhas been generated from the original query and the database and was given asan argument of the spawned funtion. We abstrat from this funtion and onlyassume that Filter is a terminating funtion that results in a (probably empty)list of arguments. The funtion flatmap results in the onatenation of all liststhat result from applying Filter to all arguments of Solutions, whih might6

either be a longer or a shorter list than the Solutions itself. In this way, thestore of the proess may inrease and derease dynamially.The funtion split divides a list in two sublists of whih the length of the �rstlist ontains the �rst PaketSize elements of the list, provided that PaketSizeis given as an argument to the funtion. Funtions like =< and ++ have theirusual meaning. In the veri�ation proess these funtions are not onsidered asbuild-in funtions, like they are in Erlang, but are spei�ed separately.The property that we want to verify is informally desribed as `Is the retrievalof the information terminating?' In other words, given an arbitrary query andan arbitrary positive integer, whenever we build a ring orresponding to thisquery and send a message of the form fuser request,MyPid,Numberg to the�rst proess in the spawned ring, do we always eventually reeive a messagebak with at most this Number of solutions in it?3 The Spei�ation Logi and its Proof SystemIt is not ompletely trivial to ome up with a orret formal rendition of theproperty outlined at the end of Set. 2. A �rst step is to understand orretlythe abstrat exeution mehanism of Erlang. We gave a ore fragment of Er-lang, involving, roughly, the features used in the present example, an SOS-styleoperational semantis. Among the more triky features to model adequately isommuniation. In Erlang interproess ommuniation is asynhronous. Eahproess is equipped with one mailbox. Sending is non-bloking: The transmittedmessage is plaed at the end of the mailbox belonging to the reeiving proess.Messages are subsequently read by retrieving the �rst message in the mailboxmathing a given pattern. Sine we need to analyse behaviour both at the levelof proesses and proess ommuniation and at the level of sequential funtionelaboration we are foring a separation between the time at whih a messagepaket rosses a proess boundary (or: enters the shedulers domain, i.e. theproess mailbox), and the time at whih the paket is read from the mailbox bythe reeiving proess.A seond step is to adequately aount for the exeution behaviour of pro-esses in a formal property spei�ation language. Our work has been based ona �rst-order �xed point alulus inspired by Park's �-alulus [Par76,Koz83℄,extended with Erlang-spei� features. In summary this logi is based on the�rst-order language of equality, extended with modalities reeting state tran-sition apabilities, least and greatest �xed points, along with a few additionalprimitives. Using �-alulus orretly is by itself well known to be triky. Onthe other hand we have found the �-alulus reursive style of spei�ation ex-tremely natural and useful. We have used an equational style of spei�ation,using the notation prop(args)) bodyfor greatest �xed points (the body an be inferred from the head), andprop(args)(body7

for least �xed points (the head must be inferred from the body). Whereas thisnotation is fraught with danger (how are dependenies resolved?) a lear bene�tof suh a notation is that it enourages a programming language style of spe-i�ation de�ning \larger", more ompliated properties in terms of \smaller"ones.The bene�ts of the equational style of spei�ation beomes apparent, inpartiular, one properties are deomposed. To do this one typially needs toexpress state, liveness, or safety properties embedded inside another invariantwhih needs to adequately apture all possible ways in whih the proesses aninterat, and the onsequenes of these interations. An example of the shape ofa property one obtains is (1) below.A ompliation whih is more semantial than due to the reursive style ofspei�ation is Erlang's asynhronous ommuniation. Sine reeivers are pow-erless to inuene the delivery of pakets into reeivers mailbox, for the purposeof paket delivery events, and in the absene of a suitable fairness assumption(whih we have not so far implemented), it is possible for paket delivery to on-tinuously preempt progress by the loal proess. In this example we have beenable to bypass this problem, as the ring struture enfores a synhrony propertythat ensures to a suÆient extent that mailboxes do not grow in unboundedmanners.3.1 The logiTypial Erlang-related primitives are the term = e to pik up the Erlang ex-pression assoiated with the proess under evaluation and ompare this with theterm e; unevaluated whih is true if the Erlang expression under evaluation isnot yet in normal form; and similar primitives for queues and proess identi�erswith are loal or foreign to the system under onsideration.The modal operators <�> and [�℄ (not to be onfused with the Erlang listonstrutors [℄ (the nil list) and [hdjtl℄) are used to express transition apabilities.The formula <>� holds if an internal transistion is enabled to a state satisfying�. Similarly, we have a diamond operator for the non-internal transitions forsending and reeiving, viz. <P !V >� and <P ?V >�. Observe that the reeivemodality is \appending to reipients mailbox". The box operator is the dualof the diamond operator, expressing that a formula should hold in all statesreahable in one transition from the urrent state.Using least and greatest �xed point temporal properties, like liveness andsafety, an easily be expressed. Furthermore simple data types, like lists andnatural numbers, an be expressed using least �xed points:list(L)((L = [℄) _ 9H:9T:(list(T) ^ (L = [H jT ℄))Combinations of both greatest and least �xed points are used to express theompliated eventuality properties we deal with in this ase-study. A represen-tative example of the latter is the formula that expresses that the propertywait for input holds for an arbitrary number of internal omputation steps, un-til a ertain shape of message is reeived and the property ontinue holds. The8

properties wait for input and ontinue will typially be mutually reursive, solet us assume that wait for input is de�ned in the ontext of a de�nitionontinue) � � �wait for input(: : :) � � � :Now wait for input is de�ned in the following way:wait for input(RightForm)) wait for input' (RightForm) (1)wait for input' (RightForm)([℄wait for input' (RightForm) ^8P:8V:([P !V ℄false) ^8P:8V:([P ?V ℄(RightForm(P; V) ^ontinue))The least �xed point ensures that the prediated proess does not diverge (i.e.performs an in�nite sequene of internal omputation steps without ever writ-ing an inoming message to its mailbox. The greatest �xed point on the otherhand permits states satisfying wait for input in�nitely often, as long as they arein�nitely often separated by ontinue states.4 Outline of the ProofAording to the informal property as stated in Set. 2, we are dealing with twoations initiating the query lookup: �rst the ring is built and thereafter a requestmessage is sent to the �rst proess in this ring. For veri�ation we are fousingon the outome of the valuation of the Erlang expression:Ring = spawn(query setup,[Query,DBStruture℄),Ring!fuser request,self(),NrSolutionsg,reeivefuser response,Solutionsgend.where we quantify over all possible values of Query,DBStruture, NrSolutionsand Solutions. We abstrat from the �rst two variables by assuming the funtionsplit handle to result in a list of funtions, where the real interesting issue isthe length of this list, whih an be any positive integer determining the numberof proesses in the ring. The property we address in this paper is that evaluationof this Erlang expression is terminating. Similar properties of interest are:{ The number of reeived answers is equal to the number of demanded answersif that many answers exist in the database.{ The set of obtained answers is independent of the paket size, provided thelatter is a positive number.Given the experiene of, e.g., the wait for input formula (1) formulating the re-sponsiveness property is not too diÆult. The spei�ation will have the following9

shape: spe) spe'spe' (2spe' ^ 8P:8V:[P !V ℄false ^8P:8V:[P ?V ℄((P = userpid) ^9From:9N:(V = fuser request;From; Ng) ^ �)where � expresses responsiveness in a similar style, that eventually a user re-sponse is sent to the pid From, before returning to a state satisfying spe. Severaldetails are omitted in this desription: Information about proess identi�ers andthe store have to be arried over to the property �, and assumptions onerningthe return address From, and the types of other arguments have to be made.The basi style of spei�ation is one of distinguishing abstrat states inwhih (aggregate sets of) proesses may �nd themselves. The abstrat stateswill often orrespond to in�nitely many atual states of the proess. For everyproess we de�ne a few abstrat states and formulate whih properties shouldhold in these states and how one property depends on the other. The proesseswe onsider are the initial proess evaluating the given Erlang expression, a ringproess (whih is not the initial one), and, as part of an indutive argument, aring segment whih inludes the initial proess.4.1 The ring invariantThe basi diÆulties in proving the spei�ation to hold are the unboundednumber of ring proesses whih an be reated, and the unbounded number ofquery replies whih an be requested. To address these diÆulties we resort toindution. We identify two invariants:1. An invariant to hold of eah of the ring proesses P2; : : : ; Pn (.f. Fig. 2).2. A sort of strutural and temporal invariant for a ring segment of the shapeP1; Pn; : : : ; Pi with 2 � i � n. Æ��P1���= Æ��P2ZZZ}Æ��PnÆ��Pn-1BBBBN ���-

QQQQQFig. 2. Indution on number of proesses in ring10

Let us all the �rst invariant pro wait for input and the seond invariant forrootspe. We �rst need to show that rootspe is strong enough to derive the endspei�ation we wish to establish, i.e. a sequent of the shapex : rootspe(� � �) ` x : spe(� � �): (2)The task is thus to prove that rootspe holds of the proess initially evaluatingquery setup:some assumptions ` pro(query setup(� � �); � � �) : rootspe(� � �) (3)Here pro denotes the Erlang proess for whih rootspe has to be proved. Suha proess onsists of the Erlang term to be evaluated, the proess-identi�er andthe message queue assoiated with the proess. Using straightforward, and fullyautomatable, state exploration tehniques whih we return to in the followingsetion we an redue (3) �rst to a subgoal of the shapesome assumptions ` pro(mk ring(� � �); � � �) : rootspe(� � �) (4)and then, by ontinuing state exploration, to a subgoal of the shapesome assumptions ` pro(mk ring(� � �); � � �) k (5)pro(proess in ring(� � �); � � �) : rootspe(� � �)The idea is to prove two lemmas, one stating the orretness of proess in ring,some assumptions ` pro(proess in ring(� � �)) : pro wait for input(� � �) (6)and one onerning the omposability of rootspe with pro wait for input ,C1 : rootspe(� � �); C2 : pro wait for input(� � �) ` C1 k C2 : rootspe(� � �) (7)Subgoal (7) states a ompositional property of root and ring proesses: puttingtogether a (possibly aggregate) proess (P1) ating as a root with a (possiblyaggregate) proess ating as a ring element results in an aggregate proess whihagain ats as a root. Obviously the orretness of this statement is ruiallydependent on input and outputs being properly onneted, whih are matterswe will not be onerned with here.By themselves, (6) and (7) are not suÆient to onlude (5). However, using(6) and (7) it is possible to redue to a goal whih is atually an instane of thegoal (4), and the remarkable fat is that, in priniple, an indutive argumentan be set up suh that at this point the proof an be ompleted (.f. [DFG98℄).In realizing this proof, however, a number of ompliations must be attended towhih we return to in Set. 5.4.2 Properties of the separate proessesWe are thus left with two main subgoals, one of the shape (6), and one of theshape (7). We do not omment further on (7) other than observe that the ring11

proess property pro wait for input we are looking for must be strong enoughto permit (7) to be proved. Instead we turn to pro wait for input .We start by observing the role of a speial token that is initially sent by the�rst proess (P1) in the ring and implies termination as soon as it is also re-eived by this proess, i.e. when the token has gone through the entire ring. Thisspeial token (f[℄,PaketSizeg), whih we all the end token for onveniene,is repeatedly send by P1 to Pn after initially sending f[[℄℄,PaketSizeg one.In ase the number of demanded solutions is larger than the number of solutionspresent in the database, the proess P1 an only respond to the user when thisend token is reeived from the proess P2.The �rst proess in the ring P1 plays a speial role and the abstrat stateswe distinguish for this proess are1. the proess is waiting for a user request,2. a non-end token is sent to the next proess (Pn) and the proess is waitingfor a message,3. an end token is sent to the next proess and the proess is waiting for amessage,4. a non-end token is reeived and not enough answers are olleted,5. the end token is reeived or another token is reeived and enough answersare olleted.Our hoie to follow the real ode and not to abstrat from the atual ount-ing of the number of answers, auses the state spae of this �rst proess in thering to be unbounded. For this reason, modelheking is infeasible for this partof the proof as well, but with our veri�ation tool suh a proof an be handled.States that we distinguish for the proesses in the ring are haraterizedby whether or not they reeive an end token and whether or not they send anend token. Cruial is the observation that after reeiving an end token one,only end tokens an be reeived suessively. The latter is a property of thering and not of the proess itself, but when proved for the ring, we use it inour formalization to disallow the state transition from reeiving an end token toreeiving a non-end token.For a proess in the ring (P2; : : : ; Pn) we de�ne four abstrat states, depend-ing again on the end token:1. the proess awaits the reeption of an arbitrary message,2. the proess reeives an end-message and sends a message to the next proess,3. the proess reeives a non-end-message and sends a message to the nextproess,4. the proess waits for reeiving a suessive end-message.Every state is aptured in a property, but also the relation to the other ab-strat states is reeted in this same property using the �xed point operators.The proof boils down to the observation that if the end token is repeatedly re-eived the proess is fored to pass on at least one element of its store. Thusthe store beomes smaller and smaller and when empty, the proess sends the12

end token as well. Note again that a property outside the view of the proessin the ring should ensure that after reeiving an end token we annot reeivea non-end token anymore. This property is hidden in the relation between theproperties of onseutive states, but is proved in the more general setting.5 Proof Searh and AutomationThe suess of our interative theorem-proving based approah in large-saleappliations is heavily dependent on three fators:1. Robust tatis that help solve and redue subproblems of learly identi�ablenatures.2. Use of suh tatis to the maximal extent possible, to eliminate user inter-vention whenever possible.3. A user interfae that helps users navigate and assist the theorem provingproess in a meaningful way, when suh assistane is really required.To minimize user intervention we adopt as lazy an approah to proof searhas we have found possible, using existential variables to delay ommitmentsto existential witnesses, proof goals stated as general Gentzen-type sequents todelay ommitments to disjuntive hoies, and a lazy approah to indution usingloop detetion whih we have introdued in some reent papers (.f. [DFG98℄).5.1 Indution and DishargeAs we outlined in the previous setion we use a very tightly integrated mix ofstate-spae exploration and proof-editing tehniques. As in most proof editorsthe proof onstrution proess is a goal-driven one: Proof goals in the form ofGentzen-type sequents are re�ned in steps by the appliation of one of a numberof primitive proof rules.Most proof goals all for indution (or oindution) for their proofs. Manytypes of indution are involved in an example suh as the one we onsider here:{ Indution on number of evaluation steps.{ Indution on size of data values, suh as numbers or lengths of lists.{ Indution on the struture of funtion expressions.Indution on the number of exeution steps from some initial on�guration istypially used if we prove that omputing the length of a list results in a naturalnumber, or that omparing two numbers results in a boolean. Coindution isused, typially, for invariants, by showing that the invariant remains unbrokenafter any number of omputation steps. General programs involve data type oper-ations, ommuniation, and, maybe, dynami reation of new proesses, in man-ners whih are interwoven to onsiderable extents, as happens in our databaselookup manager. To handle these ompliations, most parts of the proof willinvolve indution and oindution at many levels simultaneously, in manners13

whih, when properly formalized, may be exeedingly ompliated. Our prooftheoreti approah, using loop detetion, or disharge, allows very substantialparts of this formalisation to be almost ompletely hidden from the user. Thedisharge mehanism implemented in the tool follows the priniples laid out in[DFG98℄. In e�et the disharge mehanism attempts to ast the proof as so faronstruted as a proof by simultaneous indution, by seeking an ordering thatmakes the dependeny relation between indution and oindution variables awell-founded one. Maintaining the onstraints on this dependeny ordering isdone by the proof editor. Thus there is no need for users to speify the sequene,nesting, or mutual dependenies of simultaneous indutive arguments, or even tostate that indution is being used. All this is managed by the tool. However, theuser will need to have a basi understanding of the general priniples of simul-taneous indution for the operation of the disharge rule to be understandable.And, most importantly, the tool has no built-in support for �nding indutiveassertions. Suh support an be programmed (as tatis), or must alternatively| as in our ase | be provided expliitly.5.2 Proof ConstrutionOur proof approah, and the size of problems whih we address, gives rise toompliations onerning proof sharing and proof onstrution whih we havehad to address.A naive implementation of a proof editor for Erlang quikly runs out ofspae, beause of the large number of independent transitions. Observe thatindependene is a feature not only in-between proesses, but also within a sin-gle proess independent hoies an be viewed as arising between writing aninoming message to the loal mailbox, or letting loal omputation progress.As a onsequene, state spaes for even small, single proesses grow very sig-ni�antly. To handle this we implemented an inferene rule, opy disharge forsubproof sharing to lose proof branhes in ase they are seen to have alreadybeen dealt with elsewhere.Example 1. The Erlang semantis is suh that one an always reeive a mes-sage in the mailbox. Thus, in many properties we state that either an internalation is possible, or the proess may reeive something in the mailbox. Herethe proofnode has two branhes, performing the ation or reeiving the message.After performing the ation, one normally should be able to reeive the messageanyway and after reeiving the message, one an still perform the ation. Insteadof searhing for, and onstruting, the proof twie, we use opy disharge to jointhe nodes. Sine this is done reursively, one easily sees that the prooftree wouldgrow exponentialy when we lak this opy disharge.Observe that a orret implementation of the opy disharge feature is ompu-tationally quite expensive: to hek for irularity, to support \undo", and tointerat orretly with existential variables.To support disharge and, in partiular, subproof sharing it seems essentialto maintain a \urrent" proof tree, and to have rules of proof elaborate this proof14

tree through side e�ets. Observe that this makes the proof onstrution proessvery di�erent from that of other proof editing tools (suh as PVS [ROS92,Sha96℄,Coq [DFH+℄, Lego [Lego℄, Isabelle [Pau94℄,...) whih maintain only the leaves,but not the internal struture of proof trees. Thus, in these tools one sharessubproofs by having the user formulate lemma's whih are used for several leaves.We overome this user intervention and in ase a subproof need not be performed,this is deteted automatially.5.3 TatisThe onstrution of proof trees by side e�ets has drasti impat on the pro-gramming of tatis, for instane. The bene�t, besides the support of dishargeand (in partiular) opy-disharge, is that the entire proof tree beomes availablefor inspetion and navigation. In fat, to help keep the information manageablewe implemented a faility for suppressing the reation on new nodes. The ostof maintaining the omplete proof tree, on the other hand, is that tatis pro-gramming beomes muh more diÆult, and that the attrative, and very tight,onnetions between term and proof struture evident from e.g. type theory, getlost. So far we have implemented a rather \dirty" solution, giving users aess tothe basi proof rules themselves, to a set of basi rules for aessing and travers-ing proof trees, to a small set of tati onstrutors, like sequential omposition,onditional, et, and to a higher-order tati de�nition faility./* resolvable: Proof branh an be losed */rule resolvable =eq r() /* Node is provable equality */orelse id() /* Node is instane of id rule */orelse ...orelse opy disharge() ;/* rightexpandable: Goal an be redued but not losed */rule rightexpandable =or r() orelse and r() orelse ... orelse all rorelse box sem() ; /* Chase transition */rule rightredue =blokif isleaf() /* Node is not yet redued */then if resolvable ()then skipelse if rightexpandable()then blok next above() ; rightredue endelse fail("rightredue")else fail("rightredue")end ; Fig. 3. Tati for simple \model heking"15

Another example is outlined on Fig. 3 whih is shown less for its details thanto give a general impression of the shape of tatis we used for the example. Inour ase study tatis were indispensable. They permitted us to produe verylarge parts of the proofs entirely automatially. We implemented tatis for awide range of purposes, and of very di�erent generality. For instane it is quiteeasy to implement simple proof strategies for boolean formulas as tatis.Example 2. A oarse approximation of the Erlang funtion proess in ring aspresented in Set. 2, just reeiving an integer, inrementing it by one and passingit on:proess in ring(NextProess) ->reeiveN -> NextProess!(N+1),proess in ring(NextProess)end.The following \wait for input" property expresses the behaviour of suh ringproesses in state transition terms:wait for input(pid1; pid2)) wait for input' (pid1; pid2)wait for input' (pid1; pid2)([℄wait for input' (pid1; pid2)^ 8P:8V:[P !V ℄false^ 8P:8N:[P ?N ℄((P = pid1) ^nat(N)! respond(pid1; pid2))respond(pid1; pid2)) respond'(pid1; pid2)respond'(pid1; pid2)([℄respond'(pid1; pid2)^ 8P:8V:[P !V ℄((P = pid2) ^nat(V) ^ wait for input(pid1; pid2))Using a tati based on right redue above the proof goal (6) was provedautomatially, with subproof sharing, using 212 nodes, 1 appliation of disharge,and 7 appliations of opy-disharge. Turning subproof sharing o� the sametati required 530 nodes and 12 appliations of disharge. The size inrease isdue to one subproof being dupliated thrie.For larger sequential funtions than the one onsidered in Ex. 2 the issueof subproof sharing beomes very urgent, and it is not hard to realize that anexponential growth in proof size will be the rule rather than the exeption.Also for sequential funtion evaluation we found tatis very helpful. Theounting funtion, for instane, appeals to a number of small auxillary fun-tions like length, split, flatmap, or omparison operators like � whih areimplemented as funtions as well. Frequently small lemmas are needed to showtermination, or to show type preservation properties whih are not guaranteedin general, as Erlang is an untyped language.16

Tatis in a style similar to that of Fig. 3 were developed to prove type ad-herene of Erlang expressions. With these tatis we ould automatially prove,for instane, that{ if Store represents a list, then length(Store) results in a number,{ if Store represents a list and PaketSize a number, then PaketSize =<length(Store) results in a boolean, and{ appending two lists results in a list.These sorts of tatis were used to bring down the omplexity of the proof byreduing large proof goals to smaller ones whih ould eventually be ompletedusing one of these tatis. Reent experiments within the framework of termrewriting systems indiate that even larger parts of the proof for the propertyof the separate proesses are subjet to automation [AG99℄.5.4 Using the Tool in PratieMixing automated and interative veri�ation in the manner we propose putsvery onsiderable demands on the user interfae, to aid users ontrol of possiblyvery large proofs. The tati programming language gives a lot of help, providingfailities for naming and retrieving nodes, and for de�ning searh and navigationproedures. The simple tatis we developed for \model heking", type hek,and termination, turned out to be surprisingly robust, requiring little adaptationeven for quite substantial modi�ations to the funtions and properties beingheked. In our ase study so far we have proved a number of properties forthe ring proess, and for various approximations of it in the style of Ex. 2. Themost sophistiated of those proofs ontains about 2000 proof nodes, of whihtwo thirds have been generated automatially. We also proved a version of theomposition property as stated in (7). This proof uses in the order of 700 nodes,and so far we have not mehanized this. It is representable of a kind of proofwhih we expet to be able to mehanize almost ompletely in the future. Tohelp visualisation we interfaed our tool to the daVini graph display faility[FW94℄. Small graphs, less than 1000 nodes, are easily displayed by daVini,and it provides good help, for instane in debugging proof tatis. For largerproofs graphs really need to be displayed inrementally (not very well supportedurrently) or in segments, to avoid exessive delays.6 ConlusionsOur report is a tentative one, reporting more on qualitative than quantitativeexperienes with the use of a novel approah to ode veri�ation for distributedsystems. The report must be a tentative one, sine there really are not many toolsor proof approahes around with a similar sope of addressing dynami proessnetworks on the level of atual running ode without resorting to approximatetehniques. The database lookup manager whih we addressed was about 20017

lines of ode and explored most \ore" features of the Erlang language inlud-ing list and number proessing, ommuniation, and dynami proess reation.Experiene with Erlang at Erisson has indiated that | as a rule of thumb |one line of Erlang ode orresponds to six lines of C.A entral issue on whih we have as yet little to say is salability. Sineour proof system is highly ompositional it is atually realisti to hope to reuseproofs together with their assoiated ode modules. As yet, however, we havelittle pratial experiene with this.The proof approah whih we follow requires user intervention. We havedeveloped tatis whih are quite robust and manage to produe large partsof proofs without any user intervention at all. Moreover it is quite realisti inmany ases to hope to automate almost the entire proof searh proess, evenin ases when model heking-like tehniques fail. The ritial point at whihuser intervention is really essential is, of ourse, in the identi�ation of indutiveassertions. In the example studied here this was not at all easy. A partiularsoure of headahe was the handling of proess identi�ers whih in Erlang playa role not unlike names in the �-alulus. Even though our handling of proessidenti�ers (pids) and pid reation in Erlang is as yet imperfet, the tool wasable to assist the identi�ation of indutive assertions quite substantially, byhaving tatis whih were suÆiently robust to often aomodate smaller formulamodi�ations ompletely automatially.AknowledgementsHans Nilsson deserves our speial thanks for bringing forward the veri�ationproblem we onsidered in this paper and for the time he spent in explaining us thedetails. We like to thank Lars-�Ake Fredlund for his helpful hints and his onstantsupport for the proof system and Gena Chugunov for digging into some nastydetails of the proof. The seond author was supported by the Swedish NationalBoard for Tehnial and Industrial Development (NUTEK) through the ASTECompetene entre.Referenes[AVWW96℄ J. Armstrong, R. Verding, C. Wikstr�om and M. Wiliams, Conurrent Pro-gramming in Erlang. 2:nd edition, Prentie-Hall, 1996.[ADFG98℄ T. Arts, M. Dam, L-�A. Fredlund, and D. Gurov, System Desription: Ver-i�ation of Distributed Erlang Programs. In Proeedings 15th Confereneon Automated Dedution, LNAI 1421, p. 38{42, July 1998.[AG99℄ T. Arts and J. Giesl, Applying Rewriting Tehniques to the Veri�ation ofErlang Proesses. In Proeedings of the annual onferene of the EuropeanAssoiation of Computer Siene Logi, September 20-25, 1999. To appearin LNCS.[Cri95℄ R. Cridlig, Semanti Analysis of Shared-Memory Conurrent LanguagesUsing Abstrat Model Cheking. In Pro. PEPM'95.18

[Dam98℄ M. Dam, Proving Properties of Dynami Proess Networks. Informationand Computation, 140, p. 95{114, 1998.[DFG98℄ M. Dam, L.-�A. Fredlund and D. Gurov, Toward Parametri Veri�ationof Open Distributed Systems. H. Langmaak, A. Pnueli, W.-P. De Roever(eds.), Compositionality: The Signi�ant Di�erene, Springer Verlag, 1998.[DFH+℄ G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and B. Werner. The Coq proof assistant user guide, Tehnialreport, INRIA-Roquenourt, May 1993.[FW94℄ M. Fr�ohlih and M. Werner. The graph visualization system daVini {a user interfae for appliations. Tehnial Report 5/94, Department ofComputer Siene, Bremen University, 1994.[Koz83℄ D. Kozen, Results on the propositional �-alulus. Theoretial ComputerSiene, 27:333{354, 1983.[Lego℄ The Lego Proof Assistant, http://www.ds.ed.a.uk/home/lego/.[Mnesia℄ C. Wikstr�om, Hans Nilsson and H�akan Mattson, Mnesia Database Man-agement System, In Open Teleom Platform users manual, Open Systems,Erisson Utveklings AB, Stokholm, Sweden, 1997.[Nil99℄ H. Nilsson, Patent appliation, 1999.[OSE98℄ Open Soure Erlang, http://www.erlang.org, 1999.[Par76℄ D. Park, Finiteness is mu-ine�able. Theoretial Computer Siene, 3:173{181, 1976.[Pau94℄ L. C. Paulson. Isabelle: A Generi Theorem Prover, LNCS 828, 1994[ROS92℄ J. Rushby, S. Owre and N. Shankar. PVS: A prototype veri�ation system.In Proeedings 11th Conferene on Automated Dedution, LNAI 607, pp.748{752, 1992.[Sha96℄ N. Shankar. PVS: Combining spei�ation, proof heking, and modelheking. In Proeedings of Formal Methods in Computer-Aided Design,LNCS 1166, pp. 257{264, November 1996.

19

