
Provably Correct Runtime Monitoring 1

Irem Aktug a Mads Dam b Dilian Gurov a

aSchool of Computer Science and Communication, KTH, Sweden
bACCESS Linnaeus Center, School of Computer Science and Communication,

KTH, Sweden

Abstract

Runtime monitoring is an established technique to enforce a wide range of program
safety and security properties. We present a formalization of monitoring and monitor
inlining, for the Java Virtual Machine. Monitors are security automata given in a
special-purpose monitor specification language, ConSpec. The automata operate
on finite or infinite strings of calls to a fixed API, allowing local dependencies on
parameter values and heap content. We use a two-level class file annotation scheme
to characterize two key properties: (i) that the program is correct with respect to
the monitor as a constraint on allowed program behavior, and (ii) that the program
has a copy of the given monitor embedded into it. As the main application of
these results we sketch a simple inlining algorithm and show how the two-level
annotations can be completed to produce a fully annotated program which is valid
in the standard sense of Floyd/Hoare logic. This establishes the mediation property
that inlined programs are guaranteed to adhere to the intended policy. Furthermore,
validity can be checked efficiently using a weakest precondition based annotation
checker, thus preparing the ground for on-device checking of policy adherence in a
proof-carrying code setting.

Email addresses: irem@csc.kth.se (Irem Aktug), mfd@kth.se (Mads Dam),
dilian@csc.kth.se (Dilian Gurov).
1 The work was supported by the EU FP6 IST-STREP-27004 project S3MS, Secu-
rity of Software and Services for Mobile Systems. Additionally, the second author
was partially supported by the ACCESS Linnaeus Center at KTH, the Royal Insti-
tute of Technology, and by the Swedish Research Council, projects 2003-6108 and
2007-6436.

Preprint submitted to Elsevier Science 2 January 2009



1 Introduction

Program monitoring is a firmly established and efficient approach to enforce a
wide range of program security and safety properties [27,18,14,16,24,26,30,29,23].
Several approaches to program monitoring have been proposed in the litera-
ture. In “explicit” monitoring, target program actions are intercepted and
tested by some external monitoring agent [27,24,26]. A variant, examined by
Schneider and Erlingsson [17], is monitor inlining, where target programs are
rewritten to include the desired monitor functionality, thus making programs
essentially self-monitoring [18,17,16,9]. This eliminates the need for a run-
time enforcement infrastructure which may be costly on small devices. Also,
it opens the possibility for third party developers to use inlining as a way of
providing runtime guarantees to device users or their proxies. This, however,
requires that users are able to trust that inlining has been performed correctly.

In this work, we prepare the ground for the certification of correctly inlined
programs in a proof-carrying code framework. To this end, we develop a suit-
able notion of proof to facilitate automatic proof generation and efficient proof
checking. By correctness, we mean here the mediation property, namely that
inlined programs are guaranteed to adhere to the intended policy.

We propose a formalization of monitoring and monitor inlining where mon-
itors are security automata that operate on calls to some fixed API from a
target program given as an abstract Java Virtual Machine (JVM) class file.
Automaton transitions are allowed to depend locally on argument values, heap
at time of call and (normal or exceptional) return, and return value. In order
to handle a large class of inlined programs, we do not fix the inlining proce-
dure. Instead, we use annotations to characterize self-monitoring programs,
which would include any correctly inlined program.

Our main contributions are characterizations, in terms of JVM class files an-
notated by formulae in a suitable Floyd-like program logic, of the following
two conditions on a program relative to a given policy:

(1) that the program is policy-adherent; and the stronger condition
(2) that the program contains a method-local monitor for the policy.

By method-local we mean that the updates to the monitor state do not cross
the boundaries of the caller method.

We achieve this using a two-level annotation scheme. In level I annotations,
illustrated in figure 1, we specify a correct monitor for the given policy in
the program by means of “ghost” variables. The monitor state represented by
these variables, which we call the ghost state (−→gs), is updated before or after
security relevant actions according to the transition function δ of the security

2



L0 . . .
...

...⎧⎪⎨
⎪⎩
−→gs := δ(−→gs, ac.m) ·
Defined(−→gs)

⎫⎪⎬
⎪⎭

Li invokevirtual c.m
...

...

Ln return

Fig. 1. Level I Annotated Method

{−→gs = −→ms}
L0 . . .
...

...⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−→gs := δ(−→gs, ac.m) ·
Defined(−→gs) ·
−→gs = −→ms

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Li invokevirtual c.m
...

...

{−→gs = −→ms}
Ln return

Fig. 2. Level II Annotated Method

automaton. In the example program, such an update is shown for the action
ac.m, which is the call to method c.m. Transitions that violate the policy result
in the ghost state becoming “undefined”, indicating an illegal monitor state.
Level I annonations assert the ghost state to be a legal monitor state whenever
a security relevant action is to be executed and are therefore validated only
by policy adherent programs, thus establishing the first condition above. In
level II, we extend level I annotations to state at all method boundaries that
the inlined monitor (represented by global program variables) is “in sync” with
the specified monitor (represented by the ghost variables). We show these
extended annotations in figure 2, where −→ms is used for the vector of global
variables that represent the inlined monitor state.

The method-local nature of the embedded monitor enables compositional anal-
ysis: validity can be checked per method. Being method-local is not an overly
restrictive condition on embedded monitors and is satisfied by all general pur-
pose inliners we know of.

The annotations serve as an important intermediate step towards a decidable
annotation validity problem, once the inliner is suitably instantiated. By the
above characterizations, the problem of showing correct monitor inlining re-
duces to proving the validity of the corresponding annotations. For practical
monitors, this is not a difficult task. We illustrate this by describing a monitor
inlining scheme for which we prove the mediation property. We establish this
by describing, for programs inlined by the scheme, how the annotations can
be completed to produce a fully annotated program. The resulting verification
conditions are valid, thus showing that the inlined programs contain a correct
method-local monitor for the intended policy and henceforth policy-adherent.
Furthermore, validity can be efficiently decided for these annotations using a

3



bytecode weakest precondition checker thus making them suitable to be used
in a proof-carrying code setting to certify monitor compliance to a third party
such as a mobile device.

Our results can be seen as providing theoretical underpinnings for the earlier
work by Schneider and Erlingsson [16]. The PoET/PSLang framework devel-
oped by Erlingsson represents monitors as Java snippets connected by an au-
tomaton superstructure. The code snippets are inserted into target programs
at suitable points to implement the inlined monitor functionality. This ap-
proach, however, makes many monitor-related problems such as policy match-
ing and adherence undecidable. To overcome this, we base our results on a
restricted monitor specification language, ConSpec [2].

Organization The document is structured as follows. Section 2 presents the
JVM model used in this paper. Sections 3 and 4 introduce the automaton
model in concrete and symbolic forms, the ConSpec language, and relations
between the three. Section 5 gives an account of monitoring by interleaved
(co-) execution of a target program with a monitor, and establishes the equiv-
alence of policy adherence and co-execution. In Section 6, the two annotation
levels are presented, and the main characterization theorems are proved. In
Section 7 the inliner is described and its correctness characterized. We also
sketch how to produce, for this inliner, fully annotated programs with a de-
cidable validity problem. Section 8 summarizes related work, discussing other
monitor inliners, methods for specifying policy adherence and several security
frameworks based on proof-carrying code. Finally, in Section 9 we conclude
and discuss future work.

2 Program Model

We assume the reader to be familiar with Java bytecode syntax, the Java
Virtual Machine (JVM), and formalizations of the JVM such as [20]). Here
we only present components of the JVM that are essential for the definitions
in the rest of the text.

2.1 Types and Values

We denote bytecode programs with T. We fix a set of class names c ∈ C, a
set of method names m ∈ M, and a set of field names f ∈ F. Primitive type
set PrimType consist of the types int and string. The type Void is used for
methods that do not return a value. A type τ ∈ Type is either a primitive
type, a class c, the type Void or the type Null. We let γ ∈ (Type)∗ range over

4



tuples of types.

Each type τ ∈ Type determines a set ‖τ‖ of values. Val denotes the set of all
values. Values of types int and string are integers and strings, respectively,
and make up the values of type PrimType, which are called the primitive values
PrimVal . The sets determined by the types Void and Null are singletons
consisting of the values void and null, respectively.

Values of object type are (typed) locations � ∈ Loc, mapped to objects by a
heap h ∈ H = Loc ⇀ O. The partial function type : (�, h) �→ C returns the
type of location � in heap h, if � ∈ Dom(h), and is otherwise undefined (i.e.
⊥). The structure of objects in O is not further specified here. It suffices to
assume that if h : � �→ o ∈ O then h(�) determines a field h(�).f whenever the
class which this object is a member of, declares f .

We also introduce a static heap sh : c × f ⇀ Val that stores the values

of the static variables of a class. We assume shT
0 to be the initial mapping

which maps each static variable of a class reachable through the program
T to its initial value as given by its class definition. In this sense, we make
two assumptions: the static variables of all reachable classes are assumed to
be initialized to constant values (i.e. we disregard static initializers) and the
initialization is assumed to have been done before the program starts executing.
The first assumption can be dropped by extending our approach to handle
static initializers, which is straightforward to perform.

Each class determines a set of fields and methods defined for that type through
its declaration. The class declarations induce a hierarchy given by the sub-
classing partial preorder <: on the set {Null} ∪ C. We write c1 <: c2 if c1 is
a subclass of (extends) c2. Null is the bottom element with respect to this
ordering: ∀τ ∈ {Null} ∪ C. Null <: τ . If c defines m (declares f) explicitly,
then c defines (declares) c.m (c.f). We say that c defines c′.m (declares c′.f) if
c is the smallest superclass of c′ that contains an explicit definition (declara-
tion) of c.m (c.f). Single inheritance ensures that definitions/declarations are
unique, if they exist.

2.2 Methods

Method definitions are modeled through an environment Γ taking method
references to their definitions. The environment Γ is elided where possible. We
assume furthermore a partitioning on the set of methods which divides the
set into API methods and application methods. To simplify notation, method
overloading is not considered, so a method is uniquely identified by a method
reference of the form M = (c,m). For a method (c.m), (c.m) : γ → τ when γ

5



is the list of argument types and τ is the return type of the method. A method
definition is a pair (P,H) consisting of a method body P and an exception
handler array H . The method body (the exception handler array) of M is
denoted PM (HM) when the environment Γ is clear from the context. For each
program, we assume that there exists a main method which does not have a
class defining it. We identify this method with the special reference 〈main〉.

A method body P is a partial function from ω to the set of instructions such
that ADDRP = Dom(P ) has the form {1, . . . , n} for some n ∈ ω. We use the
notation M [L] = I to indicate that Γ(M) = (P,H) and P (L) is defined and
equal to the instruction I. The exception handler arrayH is a partial map from
integer indices to exception handlers. An exception handler (b, e, t, c) catches
exceptions of type c and its subtypes raised by instructions in the range [b, e)
and transfers control to address t, if it is the topmost handler that covers the
instruction for this exception type.

Machine Configurations A configuration of the JVM is a pair C = (R, h)
of a stack R of activation records and a heap h. For normal execution, the
activation record at the top of the execution stack has the shape (M, pc, s, f),
where

• M is the currently executing method.
• The program counter pc is an index into the currently executing instruction

array, i.e. it is a member of Dom(P ) where P is the body of M . The con-
figuration C is calling, if P (pc) is an invoke instruction, and it is returning
normally, if P (pc) is a return instruction.

• The operand stack s is the stack of values (i.e. primitive values or locations)
currently being operated on.

• The local variables lv is a mapping of variables to values, preserving types.

For exceptional configurations C the top frame has the form (b)e where b
is the location of an exceptional object. For exceptional configurations, the
current program counter and executing method is given by the frame below
the exceptional frame. Then, C is returning exceptionally if there is no handler
for this exception and the current instruction label in the currently executing
method. Configuration C is returning if C is either returning normally or
exceptionally. Finally, if C is exceptional and there is a single frame in the
activation record, then the program is exiting exceptionally.

Machine Transitions We assume a transition relation −→JVM on JVM
configurations. Such an operational semantics can be found for instance in [20].
An execution E of a program (class file) P is then a (possibly infinite) se-
quence of JVM configurations C1C2C3 . . . where C1 is an initial configuration

6



consisting of a single, normal activation record with an empty stack, no local
variables, M as a reference to the main method of P , pc = 1, Γ set up ac-
cording to P , and for each i ≥ 1, Ci −→JVM Ci+1. We restrict attention to
configurations that are type safe, in the sense that heap contents match the
types of corresponding locations, and that arguments and return/exceptional
values for primitive operations as well as method invocations match their pre-
scribed types. The Java bytecode verifier serves, among other things, to ensure
that type safety is preserved under machine transitions (cf. [28]).

API Method Calls The only non-standard aspect of −→JVM is the treat-
ment of API methods. We assume a fixed API for which we have access only
to the signature, but not the implementation, of its methods. We therefore
treat API method calls as atomic instructions with a non-deterministic se-
mantics. This is similar to the approach taken, e.g., in [33]. In this sense, we
do not practice complete mediation [34]. When an API method is called either
the pc is incremented and arguments popped from the operation stack and
replaced by an arbitrary return value of appropriate type, or else an arbitrary
exceptional activation record is returned. Similarly, the return configurations
for API method invocations contain an arbitrary heap, since we do not know
how API method bodies change heap contents.

Our approach hinges on our ability to recognize such method calls. This prop-
erty is destroyed by the reflect API, which is left out of consideration. Among
the method invocation instructions, we discuss here only invokevirtual; the
remaining invoke instructions are treated similarly.

3 Security Policies and Automata

Let T be a program for which we identify a set of security relevant actions A.
Each execution of T determines a corresponding set Π(T) ⊆ A∗ ∪Aω of finite
or infinite traces of actions in A. A security policy is a predicate on such traces,
and T satisfies a policy P if P(Π(T)).

The notion of security automata was introduced by Schneider [35]. Here, we
view a security automaton over alphabet A as a deterministic automaton A =
(Q, δ, q0) where Q is a countable set of states, q0 ∈ Q is the initial state, and
δ : Q × A ⇀ Q is a (partial) transition function. All q ∈ Q are viewed as
accepting. A security automaton A induces a security policy PA ⊆ 2A∗∪Aω

through its language LA by PA(X) ⇔ X ⊆ LA.

In this study, we focus on security automata which are induced by policies
in the ConSpec language (see Section 4) and therefore are named ConSpec

7



automata. The security relevant actions are method calls, represented by the
class name and the method name of the method, along with a sequence of
values that represent the actual arguments. We partition the set of security
relevant actions into pre-actions A� ⊆ C × M × Val∗ × H and post-actions
A� ⊆ RVal × C × M × Val∗ × H × H, corresponding to method invocations
and returns. Both types of actions may refer to the heap prior to method
invocation, while the latter may also refer to the heap upon termination and to
a return value from RVal = V al∪{exc} where exc is used to mark exceptional
return from a method call 2 . The partitioning on security relevant actions
induces a corresponding partitioning on the transition function δ of ConSpec
automata.

4 ConSpec: A Contract Specification Language

In this section, we introduce the policy specification language ConSpec [2].
ConSpec is strongly inspired by PSLang, which was developed by Erlings-
son and Schneider [15] for runtime monitoring. However, ConSpec is more
restricted: a guarded-command language is used for the updates where the
guards are side-effect free and commands do not contain loops. This was a
design choice taken to allow formal treatment of monitoring. In particular,
the update function induced by the guarded-commands should be effectively
recreated by a weakest precondition propagation on inlined code compiled
from these commands. For reasons that will become clear later in the text,
this property leads to a decidable problem of correct inlining.

As an extension to PSLang, ConSpec supports expressing security require-
ments on different levels, like multiple executions of the same application, and
on the executions of all applications of a system, besides requirements on all
objects of a particular class and on single executions of an application, which
can be expressed by PSLang. In this work, we focus on policies on a single
execution of an application, however.

ConSpec Policy Example Assume method Open of class File is used for cre-
ating files (when argument mode has value “CreateNew”) or for opening files
(mode is “Open”), either for reading (argument access is “OpenRead”) or for
writing 3 . Assume further that method Open of class Connection is used for
opening connections, that method AskConnect is used for asking the user for
permission to open a connection and that this latter method returns true in

2 We disregard the exceptional value since we do not, as yet, put constraints on
these in ConSpec policies.
3 The methods used in the policy are not part of any standard Java API but have
been chosen for the sake of the example.

8



1 SCOPE Session

2 SECURITY STATE

3 bool accessed = false;

4 bool permission = false;

5

6 BEFORE File.Open(string path, string mode, string access)

7 PERFORM

8 mode.equals("CreateNew") -> { skip; }

9 mode.equals("Open") && access.equals("OpenRead") -> { accessed = true; }

10

11 EXCEPTIONAL File.Open(string path, string mode, string access)

12 PERFORM

13 FALSE -> { skip; }

14

15 AFTER bool answer = GUI.AskConnect()

16 PERFORM

17 answer -> { permission = true; }

18 !answer -> { permission = false; }

19

20 BEFORE Connection.Open(string type, string address)

21 PERFORM

22 !accessed || permission -> { permission = false; }

Fig. 3. Example Policy in ConSpec

case of approval. Now, consider the security policy, which allows applications
to access existing files for reading only, and requires, once such a file has been
accessed, applications to obtain approval from the user each time a connec-
tion is to be opened. The policy also does not allow the application to execute
further if a file opening operation raises an exception. This policy is specified
in ConSpec as shown in figure 3.

We first specify that the policy applies to each single execution of an ap-
plication (line 1). The security state is represented by the boolean variables
accessed and permission, which are intended to record whether an existing
file has been accessed and whether there is an obtained permission (lines 2-4).
The example policy contains three event clauses that state the conditions for
and effect of the security relevant actions: call to the method File.Open (lines
6-9), exceptional return from the method File.Open (lines 11-13), call to the
method Connection.Open (lines 15-18) and normal return from the method
GUI.AskConnect (lines 20-22). The event of an event clause is identified by
the signature of the method mentioned in the clause. The types of the method
arguments are specified along with representative names, which have the event
clause as their scope. The modifiers BEFORE and AFTER mark whether the call
of or the normal return from the method specified in the event clause is secu-
rity relevant. If the exceptional return from a method is considered security
relevant, then this is specified by the modifier EXCEPTIONAL. For each event,
there can exist at most one event clause per modifier in the policy. In order to
determine if the policy allows an event, the guards of the corresponding event
clause are evaluated top to bottom using the current value of the security state
variables and the values of the relevant program variables. If none of the con-
ditions hold for the current event, it is a violating event and no more security
relevant events are allowed by the policy.

9



ConSpec Expressions The security state variables of ConSpec are re-
stricted to strings, integers and booleans. Expressions can access object fields
and use standard arithmetic and boolean expressions. Strings can be com-
pared for equality or prefix. The sets of expressions and boolean expressions
of ConSpec are Exp and BoolExp, respectively.

The formal semantics of ConSpec policies is defined in terms of symbolic se-
curity automata, which in turn induce ConSpec automata. Fix a set Svar of
security state variables and a set Var of program variables.

Definition 4.1 (Symbolic Security Automaton) A symbolic security au-
tomaton is a tuple As = (qs, As, δs, Inits), where:

(i) qs = Svar is the initial and only state;
(ii) Inits : qs → Val is an initialization function;
(iii) As = A�

s ∪A�
s is a countable set of symbolic actions, where:

A�
s ⊆ C × M × (Type × V ar)∗ are symbolic pre-actions, and

A�
s ⊆ {({PrimType∪C}×V ar)∪Void∪{exc}} × C ×M×(Type×V ar)∗

are symbolic post-actions;
(iv) δs = δ�

s ∪ δ�
s is a symbolic transition relation, where:

δ�
s ⊆ A�

s × BoolExp × (qs → Exp) and
δ�
s ⊆ A�

s × BoolExp × (qs → Exp)
are the symbolic pre- and post-transitions, respectively.

ConSpec policies and symbolic automata are two very similar representations.
The set of security state variables of a ConSpec policy is the state of the sym-
bolic automaton. Each event clause gives rise to one symbolic action, and each
guarded command of the clause gives rise to a symbolic transition consisting
of the security relevant action itself, the guard of the guarded command in
conjunction with negations of the guards that lie above it in the clause, and
the effect of the guarded command. The updates to security state variables,
which are presented as a sequence of assignments in ConSpec, are captured in
the automaton as functions that return one ConSpec expression per symbolic
state variable, determining the value of that variable after the update.

In figure 4 we illustrate the construction on the earlier example, using ”a” for
accessed and ”p” for permission. For instance, the first event clause of the
policy gives rise to the action file open and the automaton has two transitions
for this action, one per guard. The transition on the top center of the figure is
for the first guard and does not perform any updates on the current security
state. The transition for the second guard (on the right of the figure) sets
accessed to true, on the other hand, and applies only if the first guard does
not hold.

Symbolic automata determine ConSpec automata in the following way: Let
As = (qs, As, δs, Inits) be a symbolic automaton. The ConSpec automaton

10



ask_user:

file_open_exc:

file_open:

file_open:

conn_open:

conn_open:

{ a,p }

mode.equals("CreateNew") ? [p �→ p, a �→ a]

!mode.equals("CreateNew")

&& mode.equals("Open")

&& access.equals("OpenRead") ?

answer.equals("Yes") ?

!answer.equals("Yes") ?

!a || p ?

FALSE ?

[p �→ p, a �→ true]

[p �→ true, a �→ a]

[p �→ false, a �→ a]

A�
s={file open, conn open}

[p �→ false, a �→ a] [p �→ p, a �→ a]

A�
s={ask user, file open exc}

file open=(File,Open,(string path, string mode, string access))

ask user=(string answer, GUI,AskConnect,())

conn open=(Connection,Open,(string type, string address))

file open exc=(exc,File,Open,(string path, string mode, string access))

Inits =[p �→ false, a �→ false]

Fig. 4. Symbolic Automaton for the Example Policy

induced by A is the automaton A = ((qs → Val)⊥, δ, Inits) over alphabet A,
determined as follows:

• The post-actions of A are all tuples (v, c,m, v1 · · · vn, h
�, h�) such that there

is a symbolic post-action a�
s = (r, c,m, ((τ1 x1), . . . , (τn xn))) with vi : τi for

all i : 1 ≤ i ≤ n, and either r = τx and v : τ or else x = r ∈ {void , exc}.
The pre-actions are defined similarly.

• The post-transition function δ� is defined indirectly, by referring to the stan-
dard denotational semantic functions for expressions e ∈ Exp and boolean
expressions b ∈ BoolExp such that �e� : (SVar → Val) → (Var → Val) →
H → H → Val and �b� : (SVar → Val) → (Var → Val) → H → H → Val ,
defined as expected. Then, if δ�

s(a
�
s, b, E) in As, we define δ�(q, a�) = q′ in A

if and only if there exists an interpretation I and heaps h� and h� such that
�a�

s�Ih
�h� = a�, �b�qIh�h� = true , and �E(v)�qIh�h� = q′(v) for all v ∈ SVar .

The pre-transition function δ� is defined similarly. In addition, given post-
action a�

s, let B be the set of boolean expressions b such that δ�
s(a

�
s, b, E) for

some E. Then, for every state q ∈ Q, interpretation I, and heaps h� and h�,
we define δ�(q, a�) = ⊥ if �a�

s� I h
� h� = a� and �b� q I h� h� = false for all

b ∈ B.

It is not difficult to characterize the language of a ConSpec automaton ob-
tained from a symbolic ConSpec automaton As directly in terms of As itself.

11



act�
P (C) Condition

(c, m, s, hb)

C = ((M, pc, s · [d] · s′, lv) · R, h�)

M [pc] = invokevirtual c′.m, c defines type(d, h�).m, type(h�, d) <: c′

(c, m, s, h�) ∈ A�

act�
P (C1, C2) Condition

(void , c, m, s, h�, ha)

C1 = ((M, pc, s · d · s′, lv) · R, h�), C2 = ((M, pc + 1, s′, lv) · R, h�),

M [pc] = invokevirtual c′.m, c defines type(h�, d).m, type(h�, d) <: c′,

(void , c, m, s, h�, h�) ∈ A�

(v, c, m, s, h�, h�)

C1 = ((M, pc, s · d · s′, lv) · R, h�), C2 = ((M, pc + 1, v · s′, lv) · R, h�),

M [pc] = invokevirtual c′.m, c defines type(h�, d).m, type(h�, d) <: c′,

(v, c, m, s, h�, h�) ∈ A�

(exc, c,m, s, h�, h�)

C1 = ((M, pc, s · d · s′, lv) · R, h�), C2 = ((b)e · (M, pc, s · d · s′, lv) · R, h�),

M [pc] = invokevirtual c′.m, c defines type(h�, d).m, type(h�, d) <: c′,

(exc, c, m, s, h�, h�) ∈ A�

Table 1
Security relevant actions induced by configurations

5 Monitoring with ConSpec Automata

In this section, we first formalize the infinite or finite sequence of security
relevant actions induced by a target program execution. Each target transition
can give rise to zero, one, or two security relevant actions, namely, in the latter
case, a preaction followed by a postaction. Given the action set A, and the
configurations C1 and C2, we define the security relevant preaction, act �

A(C1),
of the configuration C1, and the corresponding postaction act �

A(C1, C2), as in
table 1. If none of the conditions of the table hold, the corresponding action
is ε.

We obtain the security relevant trace, srtA(w), of an execution w by lifting the
operations act �

A and act �
A co-inductively to executions in the following way:

srtA(ε) = ε srtA(C) = act �
A(C)

srtA(C1C2 · w) = act �
A(C1) · act �

A(C1, C2) · srtA(C2 · w)

Then a target program T adheres to a policy P, if the security trace of each
execution of T is in the language of the corresponding automaton AP , i.e.

∀E ∈ Π(T). srtA(E) ∈ LAP

Monitor co-execution A basic application of a ConSpec automaton is to
execute it alongside a target program to monitor for policy compliance. We
can view such an execution as an interleaving w = (C0, q0)(C1, q1) · · · such

12



that C0 and q0 is the initial configuration and state of T and A, respectively,
and such that for each consecutive pair (Ci, qi)(Ci+1, qi+1), either the target
(only) progresses:

Ci −→JVM Ci+1 and qi+1 = qi

or the automata (only) progresses:

Ci+1 = Ci and ∃a ∈ A. δ(qi, a) = qi+1.

In the former case we write (Ci, qi) −→JVM (Ci+1, qi+1), and in the latter case
we write (Ci, qi) −→AUT (Ci+1, qi+1). We can assume without loss of generality
that at most one of these cases apply, for instance by tagging each interleaving
step.

The first projection function w ↓ 1 on interleavings w = (C1, q1)(C2, q2) · · ·
extracts the underlying execution as follows:

((C1, q1)(C2, q2) · w′) ↓ 1 =

⎧⎪⎨
⎪⎩
C1 · (((C2, q2) · w′) ↓ 1) C1 −→JVM C2

((C2, q2) · w′) ↓ 1) otherwise

(C, q) ↓ 1 = C

To similarly extract automata derivations we use the (co-inductive) function
extract such that

extract((C1, q1)(C2, q2)w) = q1q2extract((C2, q2)w)

if (C1, q1) −→AUT (C2, q2),

extract((C1, q1)(C2, q2)w) = act �
A(C1)act

�
A(C1, C2)extract((C2, q2)w),

if (C1, q1) −→JVM (C2, q2), extract(C, q) = act �
A(C), and extract(ε) = ε. We

call such an extracted sequence of automaton states and security relevant
action a potential derivation. Note that extract(w) may well be finite even if
w is infinite.

Definition 5.1 (Co-Execution) Let E� = {qq′a� | q, q′ ∈ Q, a� ∈ A�, δ�(q, a�) =
q′}, E� = {a�qq′ | q, q′ ∈ Q, a� ∈ A�, δ�(q, a�) = q′}. An interleaving w is a
co-execution if

extract(w) ∈ (E� ∪E�)∗ ∪ (E� ∪E�)ω

In other words, an interleaving is a co-execution, if the potential derivation it
extracts corresponds to a real derivation.

A monitor is conservative if all monitored executions are also executions of the
original program, i.e. if the monitor does not introduce new behavior. When

13



monitoring is done by ConSpec automata in the sense captured by the notion
of co-execution, the monitor is correct and conservative.

Theorem 5.2 (Correctness of Monitoring by Co-execution) Let T be a pro-
gram, and P a policy. The following holds, where A is the action set of AP :

{w ↓ 1 | w is a co-execution of T and AP} = {E ∈ Π(T) | srtA(E) ∈ LAP}

We present the proofs to the results of the paper in Appendix B.

A corollary of this result is that the set of executions of a program that obeys
the policy are identical to the set of executions of the program monitored for
the policy.

Corollary 5.3 Program T adheres to policy P if, and only if, for each ex-
ecution E of T there is a co-execution w for the automaton AP such that
w ↓ 1 = E.

6 Specification of Monitoring

We specify monitor inlining correctness using annotations in a Floyd-style
logic for bytecode. The idea behind our annotation scheme is the following.
In a first annotation, referred to as policy annotation (or level I), we define
a monitor for the given policy by means of “ghost” variables, updated before
or after every security relevant action according to the symbolic automaton
induced by the given security policy. In a second annotation, referred to as
synchronisation annotation (or level II), we add assertions that check at all
relevant program points that the actual inlined monitor (represented by global
program variables) agrees with the specified one (represented by ghost vari-
ables).

6.1 Annotation Language

We specify self-monitoring using annotations in a Floyd-style logic for byte-
code, which is a specialization of the program logic of Bannwart and Müller [8].
As an extension to their logic, our annotation language makes use of “ghost”
variables. These are essentially specification variables that can be assigned
values by a multi-assignment statement.

Methods are equipped with annotations consisting of assertions on the ex-
tended state (current configuration and current ghost variable environment),

14



and ghost variable assignments. We first introduce the syntax of this annota-
tion language.

Assertions Let g range over ghost variables, i over natural numbers, and let
Op range over a standard, not further specified, collection of unary and binary
operations on strings and integers, while Bop range over boolean operations.
Expressions e and assertions a have the following shape:

e ::= ⊥ | v | g | e.f | s[i] | ri | Op e | e Op e

a ::= e Bop e | e : c | e <: c | ¬a | a ∧ a | a ∨ a

Here, s[i] is the value at the ith position of the current operation stack, if
defined, and ⊥ otherwise, e : c is a class membership test and e <: c is
a subclass membership test. The notation ri denotes the ith local variable.
The assertions are evaluated with respect to extended states. Extended states
consist of a program configuration C and a ghost environment σ that maps
ghost variables to integer values, addresses or the value ⊥, which captures
that the variable is undefined. Referring to standard denotational semantics,
we assume a semantic function ‖a‖(C, σ) that returns, for assertion a and
extended state (C, σ), a truth value.

Annotation Example The following example assertion states that if the address
at the top of the stack points to an object of type GUI in the heap, then the
ghost variables ga and gp are both defined.

s[0] : GUI ⇒ (ga, gp) �= (⊥,⊥)

Ghost Variable Instructions Ghost variables are assigned using a single,
guarded multi-assignment of the form

−→gs := a1 → −→e1 | · · · | am → −→em (1)

where −→gs is a vector of ghost variables and −→ei (1 ≤ i ≤ m) are vectors of
expressions, such that the arities (and types) of −→gs and the −→ei match. The
multi-assignment is performed with vector −→ei if guard ai is the first guard
(from left) that holds in the current extended state. If no guard is true, the
ghost state is assigned the constant vector with all elements ⊥ and the arity
matching to that of −→gs. This is the case, in particular, whenm = 0 in (1) above.
This case is written as follows: −→gs := (). The right hand side of conditional
assignments are referred to as conditional expressions and are denoted by ce .

15



Method Annotations A target program is annotated by an extended en-
vironment Γ∗, which maps method references M to tuples (P,H,A, Requires,
Ensures) such that A is an assignment to each program point n ∈ Dom(P )
of a sequence, ψ, of atomic annotations, i.e. assertions and ghost variable as-
signments. Requires also consists of a sequence of atomic annotations, while
Ensures is a single assertion. These two clauses do not mention method ar-
guments or return values. The precondition Requires is allowed to contain
ghost assignments, since we occasionally use these clauses to initialize ghost
variables.

Annotation Semantics In the absence of ghost variable assignments the
notion of annotation validity is the expected one, i.e. the assertions annotating
a given program point (or the point of exceptional return) hold whenever
control is at that program point. To extend this account to ghost variables, the
ghost variable assignments should be given a suitable semantics. We present
such a semantics in this section, which essentially treats ghost variables as
program variables. For this purpose, the program state is extended by a store
for ghost variables which is altered only by ghost variable assignments, method
calls and returns.

The rewrite semantics we use for annotated programs is built on top of the
transition relation −→JVM of section 2 and is shown on table 2. The semantics
uses extended configurations that are quintuples of the form (ψ,C, σ,Σ) such
that ψ is the sequence of annotations remaining to be evaluated for the current
program point of C, and σ is the ghost environment introduced above, map-
ping ghost variables to values. Each ghost environment σ can be partitioned
to the global and local ghost environments σl and σg where the domain of σg

is the variables of the ghost state, which are declared and initialized in the
beginning of 〈main〉 and the domain of σl is all other ghost variables that have
been set values in the current method. Finally Σ is a sequence of local ghost
(variable) environments. The top element of Σ is the local ghost environment
that belongs to the caller of the current method. Each method call causes a
new local ghost environment σ0

l to be created, which is defined as [gpc �→ 0].
Note that local ghost variables are not allowed to occur in Requires or Ensures
clauses, like it is the case for local program variables.

We overload M , pc, A, Requires, Ensures , to refer to the first, second, third,
fourth, and fifth projections on configurations, respectively. MethodRet holds
of a configuration if the program counter of the top frame points to a return
instruction. MethodCall holds of a configuration if the program counter of
the top frame points to a method invocation instruction, which resolves to
an application method call. Notice that these predicates can not be satisfied
simultaneously. The predicate Unhandled holds of a configuration if it has an
exceptional frame on top of the frame stack, and Γ∗ does not contain a handler

16



(1)
Assert(a,C, σ)

Γ∗ � (aψ,C, σ,Σ) → (ψ,C, σ,Σ)

(2)

‖a1‖(C, σ) = true, m > 0

Γ∗ � ((−→gs := a1 → −→e1 | · · · |am → −→em)ψ,C, σ,Σ) →
(ψ,C, σ[−→gs �→‖ −→e1 ‖ (C, σ)],Σ)

(3)

‖a1‖(C, σ) �= true, m > 0

Γ∗ � ((−→gs := a1 → −→e1 | · · · |am → −→em)ψ,C, σ,Σ) →
((−→gs := a2 → −→e2 | · · · |am → −→em)ψ,C, σ,Σ)

(4)
·

Γ∗ � ((−→gs := ())ψ,C, σ,Σ) → (ψ,C, σ[−→gs �→ −→⊥ ],Σ)

(5)
C −→JVM C ′ ¬(MethodCall (C) ∨MethodRet (C)) ∧ ¬Exc(C ′))

Γ∗ � (ε, C, σ,Σ) → (A(Γ∗(M(C ′)))(pc(C ′)), C ′, σ,Σ)

(6)
C −→JVM C ′, MethodRet(C) ∨Unhandled(C)

Γ∗ � (ε, C, σg � σl, σ
′
l · Σ) → (Ensures(Γ∗(M(C))), C ′, σg � σ′l,Σ)

(7)

C −→JVM C ′, MethodCall (C) ∧ ¬Exc(C ′)

Γ∗ � (ε, C, σg � σl,Σ) →
(Requires(Γ∗(M(C ′))) ·AM(C′)[1], C ′, σg � σ0

l , σl · Σ)

(8)
C −→JVM C ′ ¬Exc(C) ∧ Exc(C ′)

Γ∗ � (ε, C, σ,Σ) → (ε, C ′, σ,Σ)

Table 2
Operational Semantics of Annotated Programs

for that exception in the current method. Finally, Exc holds of a configuration
that has an exceptional frame on the top of the stack.

The condition Assert(a, C, σ) in Rule (1) always returns true, and does not
effect the execution. But as a side-effect causes the predicate argument a to be
“asserted”, e.g. to appear on some output channel. The asserted predicate is
valid if ‖a ‖ (C, σ)‖ returns true . Rules (2), (3) and (4) capture the ghost vari-
able assignment semantics as described above. Rule (5) is for intra-procedural
execution, and applies to exception handling steps, but not to exception rais-
ing steps, which are handled by rule (8). Rule (6) causes any assertions in
Ensures to be asserted at times of method exit, which are method returns and
exceptional exits. Note also that the values assigned to the local ghost vari-

17



ables σl by the current method are discarded as the method terminates, and
instead the environment is updated to use the assignments σ′

l of the calling
method. Similarly, if the current instruction is a method call to an application
method and executes without raising exceptions, rule (7) causes all assertions
in the Requires clause of the called method to be asserted. When a new method
starts executing, the local ghost environment of the caller method are pushed
to the stack and the ghost environment uses the environment σ0

l . Finally, when
the execution of an instruction raises an exception, no predicates are asserted,
as captured by rule (8).

The initial extended configuration (ψ0, C0, σ0,Σ0) of program T is as follows:
ψ0 is Requires(Γ∗(〈main〉)) · A〈main〉[1], C0 is the initial configuration of T,
σ0 = σ0

l = [gpc �→ 0], Σ0 = ε.

Definition 6.1 (Validity of an Annotated Program) A program anno-
tated according to the rules set up above is valid for the extended environment
Γ∗, if all predicates asserted as a result of a Γ∗-derivation (ψ0, C0, σ0,Σ0) →
· · · → (ψn, Cn, σn,Σn) → · · · are valid, where (ψ0, C0, σ0,Σ0) is the initial
extended configuration of the program.

6.2 Policy Annotations (Level I)

The policy annotations define a monitor for the given policy by means of
ghost variables. The ghost variables, which constitute the specified security
state, are initialized in the precondition of the 〈main〉 method and updated
at relevant points by annotating all the methods defined by the classes of
the target program. We call each such method a target method. When adding
the level I annotations, we assume that 〈main〉 is not called by any target
method (including itself) and that all exceptions that may be raised by a
security relevant instruction (i.e. an instruction that may lead to a security
relevant action) are covered by an exception handler. We also assume that the
exception handling is structured such that unexceptional execution can not
”fall through” to an exception handler, i.e. the only way an instruction in an
exception handler gets executed is if an exception has been raised previously
in the execution and caught by the handler that the instruction belongs to.
Finally, we assume without loss of generality that there are no jumps to in-
structions below method invocations, since such jumps can be eliminated by
inserting a no-effect instruction (such as nop) after the invocation instruction
and redirecting the jump to the instruction after.

Updating the Specified Security State The updates to the specified se-
curity state are done according to the transitions of the symbolic automaton.

18



If the automaton does not have a transition for a security relevant method
call, the call is violating and the corresponding annotation sets the value of
the specified state to undefined. Such a program should terminate without ex-
ecuting the next security relevant action in order to adhere to the policy. This
is specified by asserting, as a precondition to each security relevant method
invocation and before each update to the specified state, that the specified
state is not undefined.

If the execution of a method invocation instruction of a target method may
lead to a preaction of the automaton, then an annotation is inserted as a
precondition to this instruction, which updates the specified security state. If
a method invocation instruction may lead to a postaction, we record the object
the method is called on, values of the method arguments (and possibly a part
of the heap) by assigning them to ghost variables as the precondition to the
instruction. The updates to the specified state are done in the postcondition of
the instruction, if the method invocation can lead to a normal (unexceptional)
postaction. If the instruction can cause an exceptional postaction, however, the
update to the specified security state is inserted as a precondition to the first
instruction of each exception handler that cover the instruction. The recorded
label is used then at the handler to resolve which instruction has caused the
exception, so that the correct update (or no update if the exception was raised
by an irrelevant instruction) is performed.

Preliminary Definitions In the definitions below, assume given a pro-
gram T and a policy P. Let As = (qs, As, δs, Inits) be the symbolic automaton
induced by P, and let qs = {s1, . . . , sn}. We define the set Ae

s ⊆ A�
s of ex-

ceptional symbolic post-actions as those post-actions which have the value
exc as their first component. Given a symbolic action set A′

s, the function
RS((c,m), A′

s) returns those subclasses c′ of c for which the method (c′, m) is
defined by a class c′′ such that A′

s has an action with the reference (c′′, m).
In the annotations, the ghost variables that represent the security state are
named identically with the security state variables of the automaton, and we
use the tuple −→gs = (s1, . . . , sn) in guarded multi-assignments. We use the ghost
variable gpc to record labels of security relevant instructions. Ghost variables g
also used for recording stack values. For an expression mapping E : qs → Exp,
let −→eE denote the corresponding expression tuple and for a boolean ConSpec
expression b ∈ BoolExp, let ab denote the corresponding assertion.

Level I Annotations Further below, we define for every method M , three
arrays of annotations: a pre-annotation array A�

M [i], a post-annotation ar-
ray A�

M [i][j], and an exceptional annotation array Ae
M [i][k], where i ranges

over the instructions of method M . The second index j ∈ {0, 1}, k ∈ {0, 1, 2}

19



indicates whether the annotation will be placed as a precondition of the in-
struction (j, k = 0), as a precondition to the next instruction (j, k = 1), or as
a precondition to all the exception handlers of the instruction (k = 2). The
predicate Handler holds for a label L and a method M if L is a destination
of some exception handler, i.e. (L1, L2, L, c) ∈ HM for some labels L1, L2, and
class name c. In addition, we define Exc(L,M) as the sequence of all anno-
tations Ae

M [L′][2] where L′ is a security relevant instruction and there exists
an exception handler (L1, L2, L, c) ∈ HM such that L1 ≤ L′ < L2, and as ε if
such an L′ does not exist.

Given these annotations, the level I annotation of program T is given for
each application method M as a precondition Requires I

M and an array AI
M of

annotation sequences defined as follows (where L > 0):

Requires I
M =

⎧⎪⎨
⎪⎩

(−→gs := −−→eInits) if M = 〈main〉
ε otherwise.

AI
M [1] =A�

M [1] · A�
M [1][0] · Ae

M [1][0]

AI
M [L] =

⎧⎪⎨
⎪⎩

Exc(L,M) · A�
M [L] ·A�

M [L][0] · Ae
M [L][0] if Handler(L,M)

Ae
M [L− 1][1] · A�

M [L− 1][1] · A�
M [L] ·A�

M [L][0] · Ae
M [L][0] otherwise

The annotation Requires〈main〉 initializes the ghost state using function Inits

of the automaton. In the following we define the annotation arrays mentioned
in the above definition.

After Annotations For every methodM , the elements of the post-annotation
array A�

M [i][j] are defined for each label L as follows:

(i) If the instruction is not an invokevirtual instruction or is of the form
M [L] = invokevirtual (c.m) where RS((c,m), A�

s \ Ae
s) = ∅, we define

the pre- and postconditions to be empty:

A�
M [L][0] = A�

M [L][1] = ε

(ii) Otherwise, if the instruction is of the form M [L] = invokevirtual (c.m)
with (c.m) : (γ → τ) and |γ| = n and RS((c,m), A�

s \ Ae
s) = {c′1, . . . , c′p},

then the precondition of the instruction saves the arguments and the object
in ghost variables:

A�
M [L][0] = ((g0, . . . , gn−1, gthis) := (s[0], . . . , s[n])) · Defined �

20



AI [L] L M [L]

L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1{
gthis := s[0] ·
gthis : GUI ⇒ (ga, gp) �= (⊥,⊥)

}
L5 invokevirtual GUI/AskConnect()Z⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(ga, gp) :=

((ga, gp) �= (⊥,⊥) ∧ gthis : GUI ∧ s[0]) → (ga, true) |
((ga, gp) �= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]) → (ga, false) |
(¬(gthis : GUI)) → (ga, gp)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

L13 ireturn

Fig. 5. An application method with level I annotations for the example policy

The assertion Defined � checks if the ghost variables are defined:

Defined � = (gthis : c′1 ∨ . . . ∨ gthis : c′p) ⇒ (−→gs �= −→⊥ )

while the postcondition of the instruction uses these saved values to compute
the new security state:

A�
M [L][1] = (−→gs := α1 | · · · | αm | α)

where the αk are the guarded expressions

(−→gs �= −→⊥) ∧ gthis : c′i ∧ abρi → −→eEρi

where class c′′ defines (c′i, m) and there exists a�
s = (r, c′′, m, (τ0x0, . . . τn−1

xn−1)) ∈ A�
s \ Ae

s such that (a�
s, b, E) ∈ δ�

s. The substitution ρi is defined
as [s[0]/x, g0/x0, . . . gn−1/xn−1, gthis/this] if r = (τ x) and as [g0/x0, . . .
gn−1/xn−1, gthis/this] if r = void . Finally, α = ¬(gthis : c′1 ∨ . . . ∨ gthis :
c′p) → −→gs.

Level I Annotation Example A level I annotated application method for the ex-
ample policy 3 is shown in figure 5. The ghost state is represented by the ghost
variables ga and gp, i.e. −→gs = (ga, gp). (The setting of the ghost variable gpc is
ignored since the policy does not include an exceptional clause.) The annota-
tions are valid if the class GUI does not have any subclasses. The annotations
are identical as long as all subclasses of this class overrides AskConnect.

21



The annotation array A�
M is defined similar to A�

M except that the transitions
of the automaton on pre-actions are considered. The values of the arguments
of the security relevant instruction can be obtained by accessing the stack
directly, so the argument names in the guards and update expressions of the
symbolic automaton should be substituted with corresponding stack positions
in this case.

The exceptional annotation array Ae
M [i][k] is defined considering transitions

of the automaton on exceptional post-actions (the set Ae). The precondition
Ae

M [L][0] of an instruction M [L] that may cause an exceptional post-action
saves its label L in the ghost variable gpc, in addition to recording the object
and arguments to the method. The conditions of the ghost variable update
placed in the precondition to the corresponding handler Ae

M [L][2], then include
the conjunct gpc = L to check that the exception was indeed raised by this
instruction. The ghost variable gpc is set back to 0 after the update in the
annotation (i.e. in Ae

M [L][2]) or if the method never raises an exception (i.e.
in Ae

M [L][1]).

The formalizations are presented here for completeness.

Before Annotations For every methodM , the elements of the pre-annotation
array A�

M [i] are defined for each label L as follows:

(i) If the instruction is not an invokevirtual instruction or is of the form
M [L] = invokevirtual (c.m) where RS((c,m), A�

s) = ∅, we define the
precondition to be empty: A�

M [L] = ε.
(ii) Otherwise, if the instruction is of the form M [L] = invokevirtual (c.m)

with (c.m) : (γ → τ) and |γ| = n and RS((c,m), A�
s) = {c′1, . . . , c′p}, then

the precondition of the instruction computes the new security state using
the arguments and the object of the called method and updates the ghost
variables:

A�
M [L] = (−→gs := α1 | · · · | αm | α) · Defined �

The assertion Defined � checks if the ghost variables are defined:

Defined � = (s[n] : c′1 ∨ . . . ∨ s[n] : c′p) ⇒ (−→gs �= −→⊥ )

The αk are the guarded expressions

(−→gs �= −→⊥) ∧ s[n] : c′i ∧ abρi → −→eEρi

where class c′′ defines (c′i, m) and there exists a�
s = (c′′, m, (τ0x0, . . . τn−1xn−1))

∈ A�
s such that (a�

s, b, E) ∈ δ�
s. The substitution ρi is defined as [s[0]/x0, . . . ,

s[n− 1]/xn−1, s[n]/this]. Finally, α = ¬(s[n] : c′1 ∨ . . . ∨ s[n] : c′p) → −→gs.

22



Exceptional Annotations For every method M , the elements of the ex-
ceptional annotation array Ae

M [L] are defined for each label L as follows:

(i) If the instruction is not an invokevirtual instruction or is of the form
M [L] = invokevirtual (c.m) where RS((c,m), Ae

s) = ∅, we define the pre-
and post-conditions to be empty: Ae

M [L][0] = Ae
M [L][1] = Ae

M [L][1] = ε.
(ii) Otherwise, if the instruction is of the form M [L] = invokevirtual (c.m)

with (c.m) : (γ → τ) and |γ| = n and RS((c,m), Ae
s) = {c′1, . . . , c′p}, then

the precondition of the instruction saves the arguments, the object and the
label of the instruction in ghost variables:

Ae
M [L][0] = ((g0, . . . , gn−1, gthis, gpc) := (s[0], . . . , s[n]), L) · Definede

The assertion Definede checks if the ghost variables are defined:

Definede = ((gthis : c′1 ∨ . . . ∨ gthis : c′p) ⇒ (−→gs �= −→⊥))

The postcondition of the instruction resets the value of gpc to 0. Notice
that this annotation gets executed only if the method invocation did not
return with an exception.

Ae
M [L][1] = gpc := 0

The precondition of each handler that covers this instruction uses gpc

to check whether the caught exception was thrown by a security relevant
instruction. If the exception was raised by a method called by the instruction
with the relevant label, the annotation uses the saved values to compute the
new security state:

Ae
M [L][2] = (−→gs := α1 | · · · | αm | α) · (gpc := 0)

where the αk are the guarded expressions

(gpc = L) ∧ (−→gs �= −→⊥ ) ∧ gthis : c′i ∧ abρi → −→eEρi

and where class c′′ defines (c′i, m) and there exists ae
s = (exc, c′′, m, (τ0x0, . . . ,

τn−1xn−1)), a
e
s ∈ Ae

s such that (ae
s, b, E) ∈ δe

s . The substitution ρi is defined
as [g0/x0, . . . gn−1/xn−1, gthis/this]. Finally, α = ¬(gthis : c′1 ∨ . . . ∨ gthis :
c′p) → −→gs.

Each execution of a program that is valid with respect to level I annotations
for policy P corresponds to a co-execution of the program and the automaton
for P where the automaton states coincide with the specified security state,
hence the program adheres to P.

Theorem 6.2 (Level I Characterization) The level I annotation of program
T for policy P is valid if, and only if, T adheres to P.

23



6.3 Synchronisation Annotations (Level II)

An inlined program can be expected to contain an explicit representation of
the security state, an embedded state, which is updated in synchrony with the
execution of security relevant actions. The level II annotations aim to capture
this idea in a generic enough form that it is independent of many design choices
a specific inliner may make. In particular, it seems natural to require of an
inlined monitor that it maintains agreement between the ghost state and the
embedded state immediately prior to execution of a security relevant action.
That is, program and monitor state are both tested and, where necessary,
updated whenever a security relevant action is about to be performed. This is
by no means a necessary condition: For instance, a monitor implementation
may in advance determine that some fixed sequence of security relevant actions
is permissible without necessarily reflecting this through an explicit sequence
of updates to the embedded state. Thus, in the middle of such a sequence, the
embedded state and the ghost state may disagree. In this paper, however, we
assume that this type of optimized inlining is not performed.

The second assumption we make in this section is that updates to the em-
bedded state are made locally, that is by the same method that executes the
security relevant method call. This allows correctness to be expressed by as-
serting equality of the ghost state and the embedded state for every method
at point of entry, at normal and exceptional exit, and at each method invoca-
tion. This compositionality property has the important advantage that level
II annotations can uniformly treat all methods that can be called, as a result
of virtual method resolution, by the same instruction: The specified and the
embedded states are synchronized at all call points, not just at the points of
security relevant method call.

For simplicity we assume that the embedded state is determined as a fixed vec-
tor −→ms of global static variables of the target program, of types corresponding
pointwise to the type of ghost state vector −→gs. The synchronisation assertion
is the equality −→gs = −→ms, and the level II annotations are formed by appending
the synchronization assertion to the level I annotations of each method M of
the target program at the following points:

(1) Each annotation A(Γ∗(M))(i) such that P (Γ∗(M))(i) is an invoke or a
return instruction.

(2) The annotation Ensures(Γ∗(M)).

Level II Annotation Example A level II annotated application method for the
example policy of section 4 is shown in figure 6. This is an augmented version
of figure 5, where the embedded state consists of the static fields accessed and
permission of the SecState class. The Ensures clause is the synchronization

24



AII [L] L M [L]

L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1⎧⎪⎨
⎪⎩

gthis := s[0] ·
gthis : GUI ⇒ (ga, gp) �= (⊥,⊥) ·
(ga, gp) = (SecState.accessed , SecState.permission)

⎫⎪⎬
⎪⎭ L5 invokevirtual GUI/AskConnect()Z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ga, gp) :=

((ga, gp) �= (⊥,⊥) ∧ gthis : GUI ∧ s[0]) → (ga, true) |
((ga, gp) �= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]) → (ga, false) |
(¬(gthis : GUI)) → (ga, gp)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2{
(ga, gp) = (SecState.accessed, SecState.permission)

}
L13 ireturn

Fig. 6. An application method with level II annotations for the example policy

assertion

(ga, gp) = (SecState.accessed, SecState.permission)

and Requires = ε. The annotated method is valid since the embedded state is
updated as is described by the policy, after a call to the method GUI.AskConnect.

Level II Characterization We now explain in what sense the level II an-
notations characterize the two conditions assumed in this section (the syn-
chronous update assumption, and the method-local update assumption).

Consider a program T with a level II annotated environment Γ∗. Consider an
execution E = C0C1 · · · from an initial configuration C0 of T. We sample the
embedded state −→ms at all configurations that are either invoke instructions,
return instructions, the first instruction of a method, or an unhandled excep-
tion. More precisely, the index i is a sampling point if one of the following
three conditions holds:

(1) The top frame of Ci has the shape (M, pc, s, lv), and M [pc] is either an
invokevirtual instruction, or a return instruction.

(2) The configuration Ci−1 has the shape (M, pc, s, lv) : R; h where M [pc] is
an invokevirtual instruction, and Ci has the shape (N, 1, ε, lv ′) (M, pc, s,
lv) : R; h.

25



(3) Alternatively, Ci is of the shape (b)e(M, pc, s, lv) : R; h where there is no
handler that covers label pc for b in M .

We can then construct a sequence w(E,−→ms) = (C0, q0)(C1, q1) · · · such that:

• q0 is the initial automaton state,
• for all sampling points i > 0, qi = Ci(

−→ms), where Ci(
−→ms) denotes the value

of −→ms in configuration Ci, and
• for any two consecutive sampling points i and i′, for all j : i ≤ j < i′,
qj = qi.

In other words, the embedded state is sampled at the sampling points and
maintained constant in between.

The role of the sequence w(E,−→ms) is roughly similar to the role of interleavings
in section 5. However, a slightly different treatment is needed here since the
sequence q0q1 · · · may not necessarily correspond to an automaton run. This is
so for the case of a postaction followed by a preaction. Then the intermediate
automaton state is not sampled, as there is no well-defined point where this
might be done. Also, the construction needs to account for the method-local
nature of embedded state updates.

For this reason, we define the operation extract II, taking sequences w to strings
over the alphabet Q∪A∪ {brk} where brk is a distinguished symbol, by the
following conditions:

• extract II((C1, q1)(C2, q2)w) = q1 act �(C1) act �(C1, C2) q2 extract II((C2, q2)w),
if C1 is an API method call.

• extract II((C1, q1)(C2, q2)w) = q1brkq2 extract II((C2, q2)w), if C1 is an appli-
cation method call and C2 is not exceptional, i.e. C2 is an entry point to
the method.

• extract II((C, q)w) = qbrkq extract II(w), if C is a return point from an ap-
plication method, either normal or exceptional.

• extract II((C1, q1)(C2, q2)w) = extract II((C2, q2)w), if none of the above con-
ditions hold.

• extract II((C, q)) = q act �(C) if C is a method call.
• extract II(ε) = ε

Definition 6.3 (Method-local Co-execution) Let

Σ0 = {brk, q, a�, a� | q ∈ Q, a� ∈ A�, a� ∈ A�},
Σ1 = {brk} ∪Q ∪E� ∪ E� ∪ {a�qq′a� | ∃q′′.δ�(q, a�) = q′′, δ�(q′′, a�) = q′},
Σ2 = {qq′q′′, qq′q, brkqq′a�, brkqq′brk, brkqq′q′, qa�q′,

qa�a�q′, a�qq′q′, a�qq′brk, a�qq′a�, qbrkq′, qa�q′ | q �= q′ �= q′′}

26



A sequence w is a method-local co-execution, if

extract II(w) ∈ (Σ∗
1 ∪ Σω

1 ) \ (Σ∗
0 · Σ2 · (Σ∗

0 ∪ Σω
0 ))

We can then extend theorem 6.2 to the situation where a target program T
has a monitor for the given policy inlined into it.

Theorem 6.4 (Level II Characterization) The level II annotation of T with
embedded state −→ms is valid if, and only if, for each execution E of T, the
sequence w(E,−→ms) is a method-local co-execution.

In the next section, we describe and prove correct a scheme of inlining, which
satisfies both the assumptions of synchronous and method-local update. The
execution of a program that is proven to be inlined correctly in this manner
then always yields method-local co-executions.

7 Correctness of Inlining

We use the annotation scheme described in the previous section to show that
programs inlined by a class of inliners in the flavor of PoET/PSLang [16,15] are
self-monitoring. The proof assumes that inlined blocks satisfy a certain prop-
erty, which we pin down. As an example we first describe a simple, method-
local monitor inlining scheme. Then we show for these inlined programs how
level II annotations can be efficiently completed to produce fully annotated
code, thus reducing the policy adherence problem to checking the validity of
the full annotations.

7.1 A Simple Inlining Scheme

The inlining scheme inputs a ConSpec policy and a program, and inserts code
for (i) storing the security state and (ii) for updating it according to the policy
clauses at calls to security relevant methods.

Storing the Security State The inliner adds a single class definition to
the program. The class stores the embedded state in its static fields. Since
this new class is not in the previous name space, the embedded state is safe
from interference by the target program. Here, we assume that SecState is a
fresh name for the target program, and use this name for referring to the class
storing the embedded state.

27



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L+1:

L:

and jump to

Evaluate Guard2

If false, jump to G3

Update for Guard2

Else quit program

G1:

Exception Table

(L,L+1,H,java.lang.Throwable)

If method is (       ,m)

BEFORE        .m 

If method is (        ,m)

BEFORE         .m 

H:

Save return value

Load return value

 invokevirtual c.m

Resolve method
to be called

Update for the clause

Update for the clause

Else continue

G2:

and jump to

Evaluate Guard1

If false, jump to G2

Update for Guard1 

Save arguments

Updates for

the relevant

BEFORE clause

Load arguments

the relevant

Updates for

the relevant

clauseAFTER

clauseEXCEPTIONAL

Rethrow exception

Updates for

Lload
Lload

Lload

c1

c1

c2

c2

Fig. 7. Inlining of an Instruction

Compiling Policy Body to Bytecode The first part of the transforma-
tion compiles the policy to bytecode, and is independent of the method(s)
for which inlining is to be performed. For each clause in the policy, a code
fragment is produced. These fragments are inlined in application methods in
the rewriting stage.

Each clause of a policy consists of an event modifier, an event specification and
a list of guarded commands. The created code evaluates, in turn, the guards
and either updates the security state according to the update block associated
with the first condition that holds or quits the program if none of them hold 4 .

The variables that occur in an event clause are of three kinds: security state
variables, method arguments and fields of method arguments. Security state
variables are stored in the SecState class. Since the fields storing the embed-
ded state are static, they are created and initialized as soon as the class is
loaded to the JVM. Actual arguments of a method (including the reference
to the object it operates on) reside on top of the stack immediately before
the method invocation. In order to use argument values while computing the
new values of the security state variables, the arguments are copied from the
stack to local variables that are not used by the original program. Since local
variables of the calling method are not affected by the execution of the callee,
argument values stored in this manner can be accessed even after the control
returns to the calling method. Finally, fields of arguments are accessed using
the arguments and the heap. Notice that ConSpec policies specify only up-
dates to security state variables. The compiled code uses fresh variables for
both the security state and storing arguments. Therefore inlining does not
modify the original program behavior beyond forcing its exit upon violation.

4 In order to abort the program, the method System.exit() can be used in stan-
dard API’s, so that a security violation is distinguished from a normal return.

28



Rewriting Methods According to Policy The rewriting process consists
of identifying method invocation instructions that lead to security relevant ac-
tions (security relevant instructions), and for each such instruction, inserting
code produced by policy compilation in an appropriate manner. The inlined
code is depicted for a single instruction in figure 7. The inliner inserts, imme-
diately before the security relevant instruction, code that records the object
the method is called for, and the arguments (and possibly parts of the heap)
in local variables. Then, code for the relevant BEFORE clauses of the policy
(if any) is inserted. Next, the object and the method arguments are restored
on the stack. If there are AFTER clauses in the policy for the instruction,
first the return value (if there is any) is recorded in a local variable, the code
compiled from the AFTER clauses is inlined, followed by code to restore the
return value on the stack. Finally, if there are EXCEPTIONAL clauses for
the instruction, an exception handler is created that covers only the method
invocation instruction and catches all types of exceptions. It is placed high-
est amongst the handlers for this label in the handler list, so that whenever
the instruction throws an exception, this handler will be executed. The code
of this exception handler consists of code created for the related EXCEP-
TIONAL clauses and ends by rethrowing the caught exception. All (original)
exception handlers of the program that cover the security relevant instruction
are redirected to cover this last throw instruction instead.

Method Resolution Due to virtual method call resolution, execution of
an invocation instruction can give rise to different security relevant actions.
The inliner inserts code to resolve, at runtime, the signature of the method
that is called, using the type of the object that the method is invoked on,
and information on which methods have been overridden. A check to compare
this signature against the signature of the event mentioned in the clause is
prepended to code compiled for the clause 5 .

It is straightforward to implement this scheme as Java bytecode includes in-
structions or API methods that map to the basic arithmetic and string oper-
ations included in the expression language of ConSpec. We have implemented
such an inliner, which is available at [1].

7.2 Correctness of Inlining

We first describe how level II annotations for programs inlined with an in-
liner following the scheme described above can be efficiently completed to an

5 This can be accomplished using the instanceof instruction or using the Reflect
API.

29



M [L] wp(M [L])

dup unshift((head(AM [L+ 1]))[s[1]/s[0]])

iload r / aload r unshift((head(AM [L+ 1]))[r/s[0]])

istore r / astore r (shift(head(AM [L+ 1])))[s[0]/r]

putstatic m (shift(head(AM [L+ 1])))[s[0]/m]

goto L′ head(AM [L′])

ifeq L′ (s[0] = 0 ⇒ shift(head(AM [L′])))∧
(¬(s[0] = 0) ⇒ shift(head (AM [L+ 1])))

instanceof c s[0] <: c⇒ (head(AM [L+ 1]))[1/s[0]]∧
¬(s[0] <: c) ⇒ (head(AM [L+ 1]))[0/s[0]]

invokevirtual c.m (shiftn(head(AM [L+ 1])))[fc.m(s[0], . . . , s[n])/s[n]]

invokestatic c.m (shiftn−1(head (AM [L+ 1])))[fc.m(s[0], . . . , s[n − 1])/s[n − 1]]
Table 3
Weakest precondition function wp(M [L])

(equivalent) full annotation. We then show that validity of the full annota-
tion – and thus policy adherence – holds for such programs and is efficiently
checkable.

Annotation completion is facilitated by the weakest precondition function
wp(M [L]), adapted for JVM instructions from the weakest precondition func-
tion of Bannwart and Müller [8]. Table 3 contains the definition of the function
for the instructions occurring in the examples. The function shift(A) denotes
the substitution, for all i, of s[i] by s[i + 1] in assertion A, while function
unshift(A) denotes the inverse function. The last two rows of the table refer
only to calls to API methods used by the inliner - these are side-effect free
and therefore treated as atomic operations. In both rows, n denotes the arity
of method c.m, and fc.m denotes the operation implemented by method c.m
(which is of arity n + 1 in the case of invokevirtual, with the reference to
the object as an implicit argument).

The full annotation uses a normalizing function norm on annotations, with the
combined effect of conjuncting consecutive logical assertions and propagating
weakest preconditions backward:

norm(α) = α

norm(γ · α0 · α1) = norm(γ · (α0 ∧ α1))

norm(γ · (−→g := ce) · α) = norm(γ · α[ce/−→g ]) · (−→g := ce) · α

where γ is an annotation sequence, and α[ce/−→g ] is substitution in α of each

30



ghost variable gi ∈ −→g by the conditional expression cei, obtained from ce by
replacing each expression vector −→eE occurring in ce with its i-th component.
The function head returns the first element of an annotation sequence.

Full Annotation A full annotation is obtained from level II annotation as
follows.

(1) Requires(Γ∗(M)) and Ensures(Γ∗(M)) are the synchronisation assertion,−→gs = −→ms.
(2) For all non-inlined instructions M [L], not (level II) annotated with the

synchronisation assertion,

AIII
M [L] = norm(AII

M [L] · (−→gs = −→ms))

(3) For all (non-inlined) potentially post-security relevant instructions M [L],

AIII
M [L] = norm(AII

M [L] · (g0 = r0) · . . . · (gn−1 = rn−1) · (gthis = rthis))

where r0, . . . , rn−1, rthis are the local variables used by the inliner to store
the values of the parameters and the reference to the object with which
the method is invoked.

(4) For all remaining non-inlined instructions M [L],

AIII
M [L] = norm(AII

M [L])

(5) For all blocks of inlined code, we apply the weakest precondition function
wp(M [L]) defined in Table 3 to propagate backwards the head assertion
of the first instruction following the block (which is the synchronisation
assertion −→gs = −→ms). This in effect computes the weakest precondition of
the whole block w.r.t. the synchronisation assertion).

Thus, if M [L] is an inlined instruction immediately following a po-
tential (nonexceptional) post-security relevant instruction or the first in-
struction of a handler for a potential (exceptional) post-security relevant
instruction,

AIII
M [L] = norm((g0 = r0) · . . . · (gn−1 = rn−1) · (gthis = rthis) ·

AII
M [L] · wp(M [L]))

and otherwise,
AIII

M [L] = wp(M [L])

The fully annotated example program can be found in appendix A.

Notice that inlined code blocks are cycle-free and do not contain jumps to any
instruction outside of the block (other than the one immediately following

31



it), thus the backward wp-propagation in rule (5) above is well-defined. This
is thanks to the design of the ConSpec language. Extending the language to
allow for (arbitrary) loops in update blocks, for instance, would render this
single-pass propagation insufficient for obtaining weakest preconditions of the
inlined blocks.

The correctness proof below relies on the following property of inlined code:

Property 7.1 Given a policy P, and a program T, let T ′ be the program
inlined for the policy by an inliner as described above. Then the following
holds for each post-security relevant instruction M [L] of T ′: Let M [L] =
invokevirtual (c.m) for some c and m, α1, . . . , αm be the guarded expres-
sions gthis : c′i∧ abρi → −→eEρi, 1 ≤ i ≤ m, and α be ¬(gthis : c′1∨. . .∨gthis : c′p) →−→gs, induced by the policy for M [L] as described in section 6.2. Furthermore,
let rthis be the local variable used by the inliner to record the reference of the
object M [L] operates on. Then the weakest pre-condition of the block of code
inlined immediately after the instruction M [L] in T ′ w.r.t. the synchronisation
assertion −→gs = −→ms is the logical assertion

∧
1≤i≤m rthis : c′i ∧ abρ

′
i → −→gs = −→eEρ

′
i

∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) → −→gs = −→ms

The blocks inlined above and at the exception handlers of security relevant
instructions are specified similarly.

The property essentially expresses that the final postcondition of the inlined
blocks can be pushed backwards to produce preconditions that are discharged
by the level II annotations. Note that this is the only point for which the full
annotation correctness proof relies on the actual code produced by the inliner.
We refrain from giving a fully formalized proof that the property actually
holds for the inliner sketched above. The details, however, are not difficult,
and in appendix A we give an example in sufficient detail that the reader
should be able to convince herself that an inliner can be easily devised for
which the property holds. The critical point is that the update expressions
contained in the weakest precondition of an inlined block are required by the
property to correspond to the update expressions of the corresponding event
clause of the policy, up to renaming. An inliner can achieve this by compiling
ConSpec expressions using, for each arithmetic (resp. string) operation, the
corresponding instruction (resp. API method) of Java bytecode.

In the following result we use local validity to refer to logical validity of the veri-
fication conditions resulting from a fully annotated program (see appendix B.4
and [8] for details).

32



Theorem 7.2 Suppose that I is an inliner satisfying property 7.1. Let T be a
program, and P a ConSpec policy. The fully annotated inlined program I(T,P)
is locally valid.

If the full annotation of I(T,P) is locally valid, then it is also valid in terms
of definition 6.1. Hence, by the above result, the inlined program I(T,P) is
also valid with respect to the level I annotation for policy P, and therefore,
by theorem 6.2, adheres to the policy.

Corollary 7.3 (Correctness of Inlining) Let P be a ConSpec policy and P be
a program. The inlined program I(T,P) adheres to the policy.

As the example in appendix A indicates it is not hard to complete level II
annotations to a full annotation that is efficiently checkable. This makes full
annotations suitable for use as proofs for on-device checking of inlining cor-
rectness in a proof-carrying code setting. The verification conditions that arise
when checking the local validity of these annotations are trivial for the unin-
lined parts of the code as the synchronisation annotation is the invariant in this
case and annotations inside inlined blocks can be discharged with syntactic
manipulations and basic reasoning about the class hierarchy. The fully an-
notated program of appendix A illustrates this point. A proof-carrying code
framework based on the results of this paper that employs our inliner has
been developed. Details on the framework, including information on a byte-
code precondition checker implementation to be used in this context, can be
found in [12].

Another corollary of theorem 7.2 is that for any program T and policy P
the inlined program I(T,P) yields only method-local co-executions. This is so
since programs that validate full annotations validate also level II annotations
and thus theorem 6.4 applies to inlined programs.

In contrast to the rest of the paper, the results that we have presented in this
section apply to a particular inlining scheme. Similar results can be obtained
for other inlining schemes as long as the annotation completion can be adapted
so that the resulting full annotations capture the updates to the embedded
monitor state and the resulting validity problem is decidable. In this way,
different inliners can be employed in a proof-carrying code setting.

8 Related Work

In this section, we discuss different types of inlining and whether these can be
handled by our annotation scheme. We relate our approach to other works that
propose methods to specify policy adherence and to other security frameworks

33



inspired by proof-carrying code.

Monitor Inliners Monitor inlining has been employed as a security en-
forcement mechanism in a number of application areas. We account here the
basic types of monitor inlining implementations (in terms of where the code is
inlined) offered in the context of language-based security. We focus on method
calls as security relevant actions, although it is possible to monitor many other
events with existing tools such as PoET [16].

The inliners that input policies in the form of security automata can be cate-
gorized according to where they insert code to perform the inquiry of whether
the security relevant action is safe to perform in the current state and the
update on the security state. The inlining style of PoET and our tool creates
code where security checks and updates are scattered in the program: the code
is inserted around the security relevant method call at the caller side. An al-
ternative is to inline the program by altering the methods of the untrusted
program only through replacing potentially security relevant method invoca-
tion instructions with calls to new methods added in the inlining process. Each
such new method is dedicated to a particular security relevant method and
consists of code that performs the necessary security checks, the call to the
method and the corresponding update to the security state. Such a wrapping
approach is taken in Naccio, one of the first tools for monitor inlining [18].
A rather clean way of implementing monitoring is through centralizing, i.e.
using a single dedicated component that “implements” the whole policy. The
interface of the component includes an evaluator method that takes informa-
tion about the security relevant method call (e.g. the name of the method
and argument values) as argument, performs the necessary operations. The
original program code is then only altered by the insertion of calls to this
method before (or after) each security relevant method invocation. The in-
liner of Vanoverberghe and Piessens is an example of centralizing inliners [37].
The Polymer system also practices centralized inlining where a policy is spec-
ified as a Java class but API method bodies are altered in the course of the
inlining [9].

We can handle all these different types of implementations, with the exception
of those that rewrite the body of security relevant methods. It is important to
note however that in some cases the procedure described in section 7 for anno-
tation completion needs to be adapted. For instance, the evaluator method of
the dedicated policy component in centralized inliners is not annotated with
the synchronisation assertion. Instead, it should be equipped with annotations
that specify that the checks and updates are performed according to the policy
and the security relevant action indicated by the arguments, which consist of
the security relevant method name and the values of its arguments. As men-
tioned in section 6.3, those inliners that perform optimizations on inlined code

34



based on a sequence of security relevant actions are not supported with our
scheme, since these destroy the “per-action update” principle. An example is
the inliner of Martin et al. [31].

Monitor inlining can also be implemented through aspect-oriented program-
ming (AOP) [25,19]. In such an approach, the security policy is programmed
as an aspect, which gets inserted into the program at the compilation stage
(aspect weaving) resulting in scattered or wrapped code. In [13], an example
can be found for policy enforcement on a Java application where the policy is
programmed as an aspect in AspectJ [6], an AOP environment. In this manner
the two concerns, development and contract declaration, are elegantly sepa-
rated. The Monitoring-Oriented Programming (MOP) framework of Chen and
Roşu [11], the Tracematches tool of Allan et al. [4] and the monitor inliner
of Hamlen and Jones [21] employ AOP. We have not carried out this study
in the context of aspect-orientation as this makes compositional reasoning on
the level of program methods more difficult.

There exist monitor inliners in literature which use other policy specification
languages such as temporal logics (e.g. [14,10]), but we do not discuss these
further here.

Specifying Policy Adherence In [5], Alpern and Schneider propose a
method for showing that a program satisfies a temporal property by produc-
ing proof obligations on the global state space of the program, presented as a
transition system. The problem we address here can be seen as its restriction
to safety properties. Coming up with proof obligations using their method
becomes trivial in this case and amounts to asserting that the automaton for
the property is in an accepting state throughout the execution of the program.
The state space of bytecode programs are prohibitively large, however, thus
making the method impractical in this setting. Another result closely related
to ours is the recent work on type-based monitor certification by Hamlen et
al. [22]. Their policies are attached to security relevant classes and restrict
the sequences of methods called on instances of these classes. Thus the fo-
cus is on “per-object” monitoring, as compared to the “per-session” model
we consider in our annotation scheme. Their programs are bytecode programs
with typing annotations and type correctly with respect to a security policy
if they adhere to the policy. Thus, the authors reduce the problem of correct
inlining to that of type-checking, which is an efficient, well-studied procedure.
However, their results are restricted to one particular inliner, whereas we give
a characterization of a whole class of compositional inliners.

Model Based Certification Many techniques inspired by the PCC ap-
proach have been developed for the certification of safe mobile code. In model-

35



carrying code (MCC), introduced by Sekar et al. [36], the program is shipped
together with a model of its security relevant behavior instead of a proof of
policy adherence. Policy adherence checking on the consumer side can be based
on this model and used to certify the program for any policy that the pro-
gram adheres to, provided the model is precise enough. In this respect, their
approach is more general than ours. However, an additional check is needed
on the consumer side to make sure that the model is faithful to the program.
Since this may be a costly task due to the size of the model, Sekar et al.
employs an under-approximation of the program behavior as the model and
suggests the policy captured by this model to be enforced on the program
at runtime by monitoring. Therefore, a trusted monitoring component on the
consumer side is needed in MCC. If the model is precise and therefore has
a small number of spurious misbehaviors, the runtime aborts due to this en-
forcement are expected to occur infrequently. The main difficulty in applying
MCC in practice is to develop a suitable model extraction scheme, which is not
a trivial problem. In [36], the authors suggest a method for learning ConSpec
automata-like models through executing the program on test cases. Albert et
al. follow a similar approach but use abstract interpretation to compute the
models [3]. This computation involves repeated iterations of the same proce-
dure to reach a fixpoint. A single execution of the procedure on the model
is then enough to check on the consumer side that the model is a faithful
abstraction of the program. However, the class of policies handled by the ap-
proach are restricted to the class of stateless ConSpec policies, hence it is not
possible to use the approach for policies restricting the order of the security
relevant actions.

9 Conclusion

This paper presents a specification language for security policies in terms of
security automata, and a two-level class file annotation scheme in a Floyd-style
program logic for Java bytecode, characterizing two key properties: (i) that
the program adheres to a given policy, and (ii) that the program has an em-
bedded method-compositional monitor for this policy. The annotation scheme
thus characterizes a whole class of correctly inlined programs. As the main
application of these results we sketch a simple inlining algorithm and show
how the two-level annotations can be completed to produce a fully annotated
program which is valid. This establishes the mediation property for inlined
programs. Furthermore, validity can be checked efficiently using a weakest pre-
condition based annotation checker, thus preparing the ground for on-device
checking of policy adherence in a proof-carrying code setting. This idea has
been developed within the European S3MS project.

The results of the paper are used to show mediation, namely that inlined mon-

36



itors guarantee the properties they are meant to enforce. Another desirable
result, which we leave to future work, is to state the complementary ”conser-
vativity” property: that the behavior of an inlined program is identical to the
behavior of the original program, up until points of policy violation in which
case the inlined program terminates. Future effort will focus on generalizing
the level II annotations by formulating suitable state abstraction functions to
extend the present approach to programs that are not inlined but still self-
monitoring. Another interesting challenge is to extend the annotation scheme
of section 6 to programs with multi-threading to develop a more comprehen-
sive proof-carrying code setting. Current efforts focus on solving this problem.

References

[1] I. Aktug and J. Linde. An inliner tool for mobile platforms. Available at
http://www.csc.kth.se/~irem/S3MS/Inliner/

[2] I. Aktug and K. Naliuka. ConSpec – a formal language for policy specification.
In F. Piessens and F. Massacci, editors, Proc. of The First Int. Workshop on
Run Time Enforcement for Mobile and Distributed Systems (REM’07), volume
197-1 of Electronic Notes in Theoretical Computer Science, pages 45–58, 2007.

[3] E. Albert, G. Puebla, and M.V. Hermenegildo. Abstraction-carrying code.
In Proc. 11th Int. Conf. on Logic for Programming Artificial Intelligence and
Reasoning (LPAR’04), volume 3452 of Lecture Notes in Artificial Intelligence,
pages 380–397. Springer Verlag, 2004.

[4] C. Allan, P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam and J. Tibble. Adding trace matching
with free variables to AspectJ. SIGPLAN Notices, 40(10):345–364, ACM, 2005.

[5] B. Alpern and F. B. Schneider. Verifying temporal properties without temporal
logic. ACM Transactions on Programming Languages and Systems, 11(1):147–
167, 1989.

[6] AspectJ Project Home Page. http://eclipse.org/aspectj.

[7] F. Y. Bannwart and P. Müller. A logic for bytecode. Technical Report 469,
ETH Zurich, 2004. Available at
http://www.sct.inf.ethz.ch/publications/

[8] F. Y. Bannwart and P. Müller. A logic for bytecode. In Proc. of Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE’05),
volume 141-1 of ENTCS, pages 255–273, 2005.

[9] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with Polymer.
In Proc. of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 305–314, 2005.

37



[10] E. Bodden. J-LO, a tool for runtime-checking temporal assertions. PhD thesis,
RWTH Aachen University, 2005.

[11] F. Chen and G. Roşu. Java-MOP: A Monitoring Oriented Programming
Environment for Java. In Proc. of the Eleventh International Conference on
Tools and Algorithms for the construction and analysis of systems (TACAS’05),
volume 3440 of Lecture Notes in Computer Science, pages 546–550, 2005.

[12] M. Dam and A. Lundblad. A Proof Carrying Code Framework for Inlined
Reference Monitors in Java Bytecode. In Public Deliverable D4.2, S3MS, April,
2008. Available at
http://www.csc.kth.se/~mfd/Papers/s3ms_pcc_final.pdf

[13] F. Diotalevi. Contract enforcement with AOP. Available at
http://www-128.ibm.com/developerworks/library/j-ceaop/

[14] D. Drusinsky. The temporal rover and the ATG rover. In Proc. of the
7th International SPIN Workshop on SPIN Model Checking and Software
Verification, pages 323–330, Springer-Verlag, London, UK, 2000.

[15] Ú. Erlingsson. The inlined reference monitor approach to security policy
enforcement. PhD thesis, Dep. of Computer Science, Cornell University, 2004.

[16] Ú. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection.
In Proc. of the IEEE Symposium on Security and Privacy, page 246. IEEE
Computer Society, 2000.

[17] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a
retrospective. In Proc. of the Workshop on New Security Paradigms (NSPW
’99), pages 87–95, New York, NY, USA, 2000. ACM Press.

[18] D. Evans and A. Twyman. Flexible policy-directed code safety. In Proc. of the
IEEE Symposium on Security and Privacy, pages 32–45, 1999.

[19] R. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software
Development. Addison-Wesley, 2004.

[20] S. N. Freund and J. C. Mitchell. A type system for object initialization in the
Java bytecode language. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(6):1196–1250, 1999.

[21] K.W. Hamlen and M. Jones. Aspect-oriented in-lined reference monitors In
Proc. of the third ACM SIGPLAN workshop on Programming languages and
analysis for security, pages 11–20. ACM, 2008.

[22] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined
reference monitoring on .NET. In Proc. of the ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security (PLAS’06), pages 7–16,
June 2006.

[23] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for
enforcement mechanisms. ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(1):175–205, 2006.

38



[24] K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In
Proc. of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’02), pages 342–356, London,
UK, 2002. Springer Verlag-Verlag.

[25] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka,
editors, Proc. of the European Conference on Object-Oriented Programming,
volume 1241, pages 220–242. Springer Verlag-Verlag, Berlin, Heidelberg, and
New York, 1997.

[26] M. Kim, M. Viswanathan, S. Kannan, I. Lee and O. Sokolsky. Java-MaC: A
Run-Time Assurance Approach for Java Programs. Formal Methods System
Design, 24:129–155,2004. Kluwer Academic Publishers.

[27] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A lightweight architecture
for program execution monitoring. In Proc. of the ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE
’98), pages 67–74, New York, NY, USA, 1998. ACM Press.

[28] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of
Automated Reasoning, 30(3–4):235–269, 2003.

[29] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security, 4
(1–2):2–16, February 2005.

[30] J. Ligatti, L. Bauer, and D. Walker. Enforcing non-safety security policies with
program monitors. In Proc. of the 10th European Symposium on Research in
Computer Security (ESORICS’05), pages 355–373, Sep 2005.

[31] M. Martin, B. Livshits and M.S. Lam. Finding application errors and security
flaws using PQL: a program query language. SIGPLAN Notices, 40(10):365–
383, ACM, 2005.

[32] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential java. In
S. D. Swierstra, editor, Proc. of the 8th European Symposium on Programming
(ESOP’99), volume 1576 of Lecture Notes in Computer Science, pages 162–176.
Springer, March 1999.

[33] T. Rezk. Verification of Confidentiality Policies for Mobile Code. PhD thesis,
INRIA Sophia Antipolis and University of Nice Sophia Antipolis, November
2006.

[34] J.H. Saltzer. Protection and the control of information sharing in multics.
Communications of the ACM, 17(7):388–402, 1974.

[35] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security, 3(1):30–50, 2000.

[36] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney.
Model-carrying code: a practical approach for safe execution of untrusted

39



applications. In Proc. of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), pages 15–28, New York, NY, USA, 2003. ACM.

[37] D. Vanoverberghe and F. Piessens. A caller-side inline reference monitor for an
object-oriented intermediate language. In Proc. of the 10th IFIP International
Conference on Formal Methods for Open Object-based Distributed Systems
(FMOODS’08), Lecture Notes in Computer Science. Springer Verlag, 2008. to
appear.

40



AIII[L] L M [L]{
INV

}
L1 aload r0{

INV

}
L2 getfield gui{

(s[0] : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (s[0] = s[0])

}
L3 dup{

((s[1] : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (s[1] = s[0]))

}
L4 astore r1⎧⎪⎨

⎪⎩
((s[0] : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (s[0] = r1)) ·
(gthis := s[0]) ·
((gthis : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (gthis = r1))

⎫⎪⎬
⎪⎭ L5 invokevirtual GUI/AskConnect()Z

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(gthis = r1) ∧ (r1 <: GUI ⇒ (Φ = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI) ⇒ (Φ = (SecState.accessed , SecState.permission))) ·
((ga, gp) := Φ ·
((r1 <: GUI ⇒ ((ga, gp) = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI) ⇒ INV )))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

L6 istore r2

{
¬(r1 <: GUI) ⇒ INV ∧
(r1 <: GUI) ⇒ (ga, gp) = (SecState.accessed, r2)

}
L7 aload r1{

¬(s[0] <: GUI) ⇒ INV ∧
(s[0] <: GUI) ⇒ (ga, gp) = (SecState.accessed, r2)

}
L8 instanceof GUI{

(s[0] = 0) ⇒ INV ∧
¬(s[0] = 0) ⇒ (ga, gp) = (SecState.accessed, r2)

}
L9 ifeq L12{

(ga, gp) = (SecState.accessed, r2)

}
L10 iload r2{

(ga, gp) = (SecState.accessed, s[0])

}
L11 putstatic SecState/permission{

INV

}
L12 iload r2{

INV

}
L13 ireturn

Fig. A.1. A fully annotated application method for the example policy

A Full Annotation Example

The full annotations for the level II annotated method of figure 6 is shown
in figure A.1. The synchronization assertion, denoted by INV , is (ga, gp) =
(SecState.accessed, SecState.permission). The pre- and post-conditions
of the method are the synchronization assertion:

Requires = Ensures = INV

The symbol Φ denotes the following multi-assignment expression:

((ga, gp) �= (⊥,⊥) ∧ gthis : GUI ∧ s[0]) → (ga, true) |
((ga, gp) �= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]) → (ga, false) |
(¬(gthis : GUI)) → (ga, gp)

41



The reader may get detailed information about verification conditions in the
definition of local validity (def. B.7). In this example, the inlined block in which
we propagate the synchronisation annotation is L6−L12. The most involved
verification condition arises from the condition EnsuresM ⇒ head(AIII[L6]):

INV ⇒ (gthis = r1) ∧ (r1 <: GUI ⇒ (Φ = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI) ⇒ (Φ = (SecState.accessed, SecState.permission)))

Using the first conjunct of head(AIII[L6]), we can replace gthis by r1 in Φ. Notice
that GUI does not have any subclasses in this example, so r1 <: GUI ⇔ r1 : GUI.
Φ updates permission to the value of s[0] if gthis is of type GUI and does not
change it otherwise.

Notice that what we do here is in some sense to unify Φ (the updates com-
ing from the ghost annotations) to head(AIII[L6]) (the effectual update of
the inlined block), as we had also noted in section 7. In any target program,
EnsuresM is the synchronisation annotation and Φ and the head of the weak-
est precondition of the inlined block looks similar. What is left to the theorem
prover is simply to match expressions in the annotations to those in the weak-
est precondition.

Below are the details of the annotation completion.

Requires and Ensures are determined by rule 1

Requires = Ensures = INV

Annotations of L1 − L2 are computed using rule 2.

AIII[L1] = norm(INV ) = INV

AIII[L2] = norm(INV ) = INV

Annotation of L5 (used for computing the annotations L3 − L4) is computed using rule 3.

AIII[L5] = norm((gthis := s[0]) ·
(gthis : GUI ⇒ (ga, gp) �= (⊥,⊥)) ·
((ga, gp) = (SecState.accessed, SecState.permission)) ·
(gthis = r1))

= ((s[0] : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (s[0] = r1)) ·
(gthis := s[0]) ·
((gthis : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (gthis = r1))

Annotations of L3 − L4 are computed using rule 5 using wp computation.

AIII[L4] = wp(M [L4])

= (shift(head (AIII
M [L5])))[s[0]/r1]

= ((s[1] : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (s[1] = r1))[s[0]/r1]

= ((s[1] : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (s[1] = s[0]))

42



AIII[L3] = wp(M [L3]

= unshift((head (AIII
M [L + 1]))[s[1]/s[0]])

= unshift((s[1] : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (s[1] = s[1]))

= (s[0] : GUI ⇒ (ga, gp) �= (⊥,⊥)) ∧ INV ∧ (s[0] = s[0])

Annotation of L13 (used for computing the annotations of L6 − L12) is computed using rule 4.

AIII[L13] = norm(INV ) = INV

Annotations of L6 − L12 are computed using rule 5 using wp computation.

AIII[L12] = wp(M [12])

= unshift(head (AIII
M [L13])[s[0]/r2])

= unshift(INV )

= INV

AIII[L11] = wp(M [11])

= (shift(head(AIII
M [L12])))[s[0]/SecState.permission ]

= INV [s[0]/SecState.permission]

= (ga, gp) = (SecState.accessed, s[0])

AIII[L10] = wp(M [10])

= unshift(head (AIII
M [L13])[r2/s[0]])

= unshift((ga, gp) = (SecState.accessed, r2))

= (ga, gp) = (SecState.accessed, r2)

AIII[L9] = wp(M [9])

= (s[0] = 0 ⇒ shift(head(AIII
M [L12]))) ∧ (¬(s[0]) = 0 ⇒ shift(head (AIII

M [L10])))

= (s[0] = 0 ⇒ INV ) ∧ (¬(s[0]) = 0 ⇒ (ga, gp) = (SecState.accessed , r2))

AIII[L8] = wp(M [8])

= (s[0] <: GUI ⇒ (head(AIII
M [9]))[1/s[0]]) ∧

(¬(s[0] <: GUI) ⇒ (head(AIII
M [9]))[0/s[0]])

= (s[0] <: GUI ⇒ ((ga, gp) = (SecState.accessed, r2))) ∧
(¬(s[0] <: GUI) ⇒ (INV ))

AIII[L7] = wp(M [L7])

= unshift((head (AIII
M [L8]))[r1/s[0]])

= unshift((r1 <: GUI ⇒ ((ga, gp) = (SecState.accessed, r2))) ∧
(¬(r1 <: GUI) ⇒ (INV )))

= (r1 <: GUI ⇒ ((ga, gp) = (SecState.accessed, r2))) ∧
(¬(r1 <: GUI) ⇒ INV )

We denote with Φ below the right hand side of the ghost assignment of AII
M [L6].

AIII[L6] = norm(gthis = r1 · AII
M [L6] · wp(M [L6]))

= norm(gthis = r1 · AII
M [L6] ·

(shift(head (r1 <: GUI ⇒ ((ga, gp) = (SecState.accessed, r2))) ∧
(¬(r1 <: GUI) ⇒ INV )))[s[0]/r2])

= norm(gthis = r1 · (ga, gp) := Φ ·
(r1 <: GUI ⇒ ((ga, gp) = (SecState.accessed, s[0])) ∧
(¬(r1 <: GUI) ⇒ INV ))

= (gthis = r1) ∧ (r1 <: GUI ⇒ (Φ = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI) ⇒ (Φ = (SecState.accessed, SecState.permission))) ·
((ga, gp) := Φ ·
((r1 <: GUI ⇒ ((ga, gp) = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI) ⇒ INV )))

43



B Proofs

B.1 Proof of Theorem 5.3

Theorem 5.2 (Correctness of Monitoring by Co-execution) Let T be a pro-
gram, and P a policy. The following holds, where A is the action set of AP :

{w ↓ 1 | w is a co-execution of T and AP} = {E ∈ Π(T) | srtA(E) ∈ LAP}

Proof.

(⊇) We prove that for all executions E of the program such that the security
relevant trace of E is in the language of the policy automaton, there is an
execution w of the program and the policy automaton, where w ↓ 1 = E.

Let q0q1 . . . be the run of the automaton for srtA(E). We (1) construct a
configuration-automaton state pair sequence w for E, using the automaton
run and (2) prove that w is a co-execution with w ↓ 1 = E.

(1) Intuitively, we begin the construction with the initial configuration C0 of
E and the initial state q0. We add the following configurations, paired with
this state until a security relevant action (s.r.a.) is produced. Whenever an
s.r.a. is produced, the state component of the added pair is changed with
the next automaton state in the run. This process is repeated until both
the end of the execution and of the automaton run is reached, for infinite
executions the process is repeated infinitely many times. Security relevant
actions are detected by using the actA functions on consecutive configurations
of the execution.

Formally, let wn denote the sequence constructed for the (finite) prefix C0 . . .
Cn−1Cn of E. The sequence w0 is defined as (C0, q0) if act �(C0) = ε and
(C0, q0)(C0, q1) if act �(Cn) ∈ A�. When constructing the sequence wn for longer
executions, we use the current state as the state component of the last pair of
wn−1, denoted below by qk. The sequence wn for n > 0 is defined as follows:

wn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn−1 · (Cn, qk) if act �(Cn−1, Cn)act
�(Cn) = ε

wn−1 · (Cn, qk) · (Cn, qk+1) if act �(Cn−1, Cn)act
�(Cn) ∈ A�

wn−1 · (Cn, qk) · (Cn, qk+1) if act �(Cn−1, Cn)act
�(Cn) ∈ A�

wn−1 · (Cn, qk) · (Cn, qk+1) · (Cn, qk+2) if act �(Cn−1, Cn) ∈ A�,

act �(Cn) ∈ A�

44



(2) We prove that wi is a co-execution and wi ↓ 1 = C0 . . . Ci for all finite pre-
fixes C0 . . . Ci of E. The result then follows since this is a continuous predicate
on configuration sequences with respect to the immediate prefix ordering and
Π(T) is prefix-closed.

In the proof, we use the fact that ConSpec automata are deterministic (by
definition) and their language is prefix-closed (since each ConSpec automaton
is a security automaton as defined by Schneider [35]). We can then conclude
for each prefix E ′ of E that E ′ is in the language of the automaton and the
run of the automaton which accepts E ′ is a prefix of the run accepting E.

(Base Case) Consider the execution consisting of the initial configuration C0.
If act �(C0) ∈ A�, then the security relevant trace of C0 is act �(C0). Then
w0 = (C0, q0)(C0, q1) by construction. This sequence is an interleaving since :
(C0, q0) −→AUT (C0, q1). By definition then, w0 ↓ 1 = C0 and extract(w0) =
q0q1 act �(C0). Clearly extract(w0) ∈ E�. On the other hand, if act �(C0) = ε,
the security relevant trace is empty. The accepting run then consists of q0 and
the constructed sequence w0 of (C0, q0). Again by definition, w0 ↓ 1 = C0, and
extract(w0) = ε.

(Induction Hypothesis) Assume that wi is a co-execution and wi ↓ 1 = C0 . . . Ci

for all i < n.

(Inductive Step) Consider the sequence wn constructed for the prefix C0 . . .
Cn−1Cn using the automaton run q0 . . . qm where m is the number of security
relevant actions of C0 . . . Cn−1Cn. By definition, the following holds:

srtA(C0 . . . Cn−1Cn) = srtA(C0 . . . Cn−1) act �(Cn−1, Cn) act �(Cn)

We consider the most difficult case where act �(Cn−1, Cn) ∈ A�, act �(Cn) ∈
A�. (The other cases are similar) Since q0 . . . qm is an accepting run for this
execution:

δ(qm−2, act
�(Cn−1, Cn)) = qm−1 (i)

δ(qm−1, act
�(Cn)) = qm (ii)

Then the sequence wn−1, constructed (as described above) for En−1 using the
run q0 . . . qm−2, is a co-execution by the induction hypothesis. Note that the
last component of this co-execution is Cn−1, qm−2 by the construction. Again
by construction, the sequence wn is an extension of wn−1 (last case):

wn = wn−1(Cn, qm−2)(Cn, qm−1)(Cn, qm)

We prove that:

45



• wn is an interleaving: The sequence wn−1 is an interleaving by the induction
hypothesis. Since En is an execution, there is a machine transition from Cn−1

to Cn. There are transitions between the consecutive states qm−2qm−1qm of
the automaton run. Thus the extension to wn−1 consists of one machine
transition followed by the automaton transitions:

(Cn−1, qm−2) −→JVM (Cn, qm−2) −→AUT (Cn, qm−1) −→AUT (Cn, qm)(∗)

• w is a co-execution: By assumption wn−1 is a co-execution. Then extract(wn−1)
∈ (E� ∪ E�)m−2 since there are m − 2 s.r.a’s in En−1. By definition of the
extract function and using (*):

extract(wn) = extract(wn−1)act
�
A(Cn−1, Cn) · qm−2qm−1qm−1qm · act �

A(Cn)

By (i), act �
A(Cn−1, Cn)qm−2qm−1 ∈ E� and by (ii), qm−1qmact �

A(Cn) ∈ E�.
Hence extract(wn) ∈ (E� ∪ E�)m.

• w ↓ 1 = En: This simply follows from the induction hypothesis and applying
the first projection function to wn.

(⊆) We prove that for all co-executions w of the program and the policy
automaton, the projection to the first component is (i) an execution of the
program and that (ii) its security relevant trace is in the language of the policy
automaton.

(i) We prove this by induction on the length of w.

(Base Case) If w = (C, q), since w is an interleaving, C = C0 and q = q0.
Then, w ↓ 1 = C0, which is an execution.

(Induction Hypothesis) We assume the statement for wn of length n.

(Inductive Case) We prove the statement for wn+1, where wn+1 = wn •
[(Cn+1, qn+1)] for some qn+1. Let the last element of wn be (Cn, qn) and wn ↓
1 = En. By the definition of ↓ 1 (page 5), En = E ′ • [Cn] for some sequence of
configurations E ′. Again by the definition of ↓ 1, wn+1 ↓ 1 = E ′Cn • [Cn+1] if
Cn −→JVM Cn+1 and wn+1 ↓ 1 = E ′ • [Cn+1] otherwise.

(1) If the first case applies, wn+1 ↓ 1 = (wn ↓ 1) • [Cn+1] and everything but
the last element is an execution by the induction hypothesis and the last
two configurations are related with the JVM transition relation. Hence
this is an execution of T. We also note the observation here that Π(T)
is closed under the transitive closure of the suffix relation built using the
JVM transition relation.

(2) If the second case applies, by the definition of interleaving, Cn+1 = Cn

and therefore wn+1 ↓ 1 = wn ↓ 1. The result follows from the inductive
hypothesis.

46



(ii) We prove this also by induction on the length of w.

(Base Case) If w = (C, q), since w is an interleaving, C = C0 and q = q0.
Then, w ↓ 1 = C0. According to the table of page 5, srtA(C0) = a� ∈ A�

for some pre-action a�, or srtA(C0) = ε. The statement trivially holds in the
latter case, as ε is in the language of all security automata with at least one
state. Let us assume the first case. We will prove that such a co-execution
does not exist, thus reaching a contradiction and hence the statement will
hold vacuously for the first case. By the definition of extract , extractw = a� if
the first case applies. But by the definition of being a co-execution a� should
be in the set (E� ∪E�)∗ ∪ (E� ∪E�)ω. This is not possible as there is no string
of length 1 in this set. Hence we reach a contradiction.

(Induction Hypothesis) We assume the statement for all wi of length i, where
i < n+ 1.

(Inductive Case) We prove the statement for wn+1. We have to consider the
cases of how a co-execution is produced by extending another co-execution.
We prove the statement for wn+1, where wn+1 = wn • [(Cn+1, qn+1)] for some
qn+1. Notice that since both are co-executions, the function extract maps both
to the same set. It can not be however that extractwn+1 = extractwn • E ′

for some E� or E�, for these extensions contain always three elements, two
automata states and an action, and therefore can not be extracted when the
co-execution is extended with only one pair. This means that the security
relevant trace of En+1 is the same with that of En and the result holds by
induction hypothesis. The other cases are proved similarly. �

B.2 Proof of Theorem 6.2

The proof of this theorem is quite complicated as it brings together many
concepts of the paper such as the symbolic and the ConSpec automaton, co-
execution, and operational semantics of annotations.

Let us first assume that the level I annotated program is valid. Intuitively,
our goal is to show that any execution of the program can be “completed”
with automaton states to form a co-execution of the program with the policy
automaton (the ConSpec automaton for the policy). This means for each con-
figuration in the execution such an automaton state should be found that the
pair sequence that is formed is a co-execution. We use the value of the ghost
state as the automaton state. Remember the conditions for a configuration-
automaton state pair sequence to be a co-execution. The first condition is
that the automaton component of the first pair is the initial automaton state.
When execution begins, the ghost state is the initial state, thus satisfies this
condition. The second is that for a pre-action, the automaton state is up-

47



dated sometime before the action takes place, but after the previous action in
the series. The ghost state is updated immediately before the execution of a
pre-action, since a ghost assignment is placed before each instruction which
may yield a preaction when executed. (Similarly for post-actions but with
an update to automaton state/ghost state immediately after.) We call a co-
execution where the monitor updates are done immediately before (or after)
a s.r.a. a closest updating co-execution. For the ghost state to be a monitor
for the program, it should also be updated to the correct automaton state.
We prove this using the way a ConSpec automaton is induced by a symbolic
automaton and the way the (same) symbolic automaton induces the level I
annotations. There is one catch: if at some configuration of the execution,
the ghost state is undefined and a security relevant action is performed, the
ghost state remains undefined; but such a sequence can never be co-execution.
The reason is that the “undefined” state of the automaton does not have any
outgoing transitions, thus the automaton sequence extracted from such a pair
sequence would not be a run of the automaton. The validity assumption is
used to rule out this possibility. So we also show in the course of the proof
that if the annotated program is valid, then a security relevant action is not
executed when the ghost state is undefined.

We first present some new definitions that will be used in the course of the
proof like extended execution and closest updating co-execution.

Preliminaries In the text below, the program T annotated with level I
annotations for policy P is TP . Furthermore, pc(C) denotes the value of the
program counter and M(C) the method at the top frame of configuration C.
Finally, σ(−→gs) denotes the value of the ghost state given at the environment
σ.

The following property follows from the definition of level I annotations.

Property B.1 Let C be an unexceptional configuration of program T. If
A�

M [pc(C)] = ε in TP , then act �
A(C) = ε. Let C ′ be configuration following C

in an execution of program T. If C ′ is unexceptional and A�
M [pc(C)] = ε in

TP , then act �
A(C,C ′) = ε.

Definition B.2 (Extended Execution) Given an annotated program TA,
a sequence of extended configurations
(ψ0, C0, σ0,Σ0)(ψ1, C1, σ1,Σ1) . . . is termed an extended execution of TA, if:

• (ψ0, C0, σ0,Σ0) is the initial extended configuration as defined on page 6.1,
and

• ∀i. Γ∗ � (ψi, Ci, σi,Σi) → (ψi+1, Ci+1, σi+1,Σi+1)

That is, any Γ∗-derivation that definition 6.1 refers to is an extended execution.

48



The projection of an extended execution to its second component isolates the
execution of the JVM program, and is described similar to the definition of the
first projection function in section 5. An extended execution is called complete
if it executes the precondition (if any) of the instruction at the program counter
of its last configuration to completion.

Definition B.3 (Complete Extended Execution) Given a finite execution E =
C0 . . . Cn−1Cn of program T, the extended execution
XE = (ψ0, C

′
0, σ0,Σ0) . . . (ψm−1, C

′
m−1, σm−1,Σm−1)(ψm, C

′
m, σm,Σm−1) of the

annotated program TP is the complete extended execution of E if XE ↓ 2 = E
and ψm = ε.

Given a finite execution En = C0 . . . Cn of program T, notice that the following
hold for the execution En+1 = C0 . . . CnCn+1, where (ε, Cn, σ,Σ) is the last
element of XEn:

(1) If Cn is not an application method call or a return, and Cn+1 is not
exceptional, i.e. rule (5) of table 2 applies:

XEn+1 = XEn • (AM(Cn+1)[pc(Cn+1)], Cn+1, σ,Σ) . . . (ε, Cn+1, σ
′,Σ) (B.1)

for some σ′.
(2) If Cn is a return or is exceptional with an exception that can not be

handled in the current method, i.e. rule (6) applies:

XEn+1 = XEn •
(Ensures(Γ∗(M(Cn))), Cn+1, σg � σ′

l,Σ
′) . . . (ε, Cn+1, σ

′,Σ′)
(B.2)

where σ = σg � σl for some σg and σl and Σ = σ′
lΣ

′.
(3) If Cn is an application method call and Cn+1 is not exceptional, i.e. rule

(7) applies:

XEn+1 = XEn •
Requires(Γ∗(M(Cn+1))) · AM(Cn+1)[1], Cn+1, σg � σ0

l , σl · Σ)

. . . (ε, Cn+1, σ
′, σl · Σ)

(B.3)

where σ = σg � σl for some σg and σl.
(4) Finally, if Cn was not exceptional but Cn is exceptional, i.e. rule (8)

applies:
XEn+1 = XEn • (ε, Cn+1, σ,Σ) (B.4)

Constructing the Co-execution A sequence of configuration-automaton
state pairs are constructed from a sequence of extended configurations using

49



the function subw . This function forms a sequence by sampling the machine
configuration and the ghost state whenever one of the two is updated. If the
machine configuration changes in consecutive extended configurations, the se-
quence is extended with the machine configuration and the ghost state of this
second If the current extended configuration is the last in the sequence, then
the sequence is not extended further. If a configuration induces a preaction, the
annotated program TP updates the ghost state immediately before transiting
to the next configuration (that is “executing the method”). If two consecutive
configurations induce a non-exceptional postaction, the ghost state is updated
immediately after transiting to the second configuration (that is upon return).
However, in the case of an exceptional postaction the update is not immediate.
When two consecutive configurations C and C ′ induce an exceptional action,
the new state can not be obtained by sampling the ghost state some time dur-
ing the extended execution that ends with C ′. The reason is that there is no
annotation associated with exceptional configurations and the ghost update
is done in this case at the precondition of the first instruction of the handler.
This precondition is executed after at the extended execution of the configu-
ration following C ′. In order to sample the ghost value in such a situation, we
consider a maximal execution of which the finite execution is a prefix of. This
way we get to “peek” to the new value of the ghost state.

Let E = C0 . . . Cj−1Cj be a finite execution and let XE = (ψ0, C
′
0, σ0,Σ0) . . .

(ψk, C
′
k, σk,Σk) be its corresponding extended execution. Notice that the first

extended configuration correspond to the execution of RequiresI
〈main〉. If the last

two configurations (Cj−1, Cj) of E do not induce an exceptional action, the se-
quence of configuration-automaton state pairs corresponding to this extended
execution is defined as

w(XE) = (C0, q0) subw((ψ1, C
′
1, σ1,Σ1) . . . (ψk, C

′
k, σk,Σk))

where q0 is the initial state of AP and subw is defined below. If Cj−1 and Cj

induce an exceptional action, we extract the co-execution using the complete
extended execution X ′ of E ′ = C0 . . . CjCj+1. The value of the ghost state at
the last element of X ′ is taken in this case.

• subw((ψ1, C1, σ1,Σ1)·(ψ2, C2, σ2,Σ2)·X ′) = (C2, σ2(
−→gs))·subw((ψ2, C2, σ2,Σ2)·

X ′) if C1 −→JVM C2

• subw((ψ1, C1, σ1,Σ1)·(ψ2, C2, σ2,Σ2)·X ′) = (C2, σ2(
−→gs))·subw((ψ2, C2, σ2,Σ2)·

X ′) if ψ1 = (−→gs := α1| . . . |αk) · ψ2 for some k �= 1
• subw((ψ1, C1, σ1,Σ1) · (ψ2, C2, σ2,Σ2) ·X ′) = subw((ψ2, C2, σ2,Σ2) ·X ′) oth-

erwise.
• subw(ψ,C, σ,Σ) = ε

In the definition above, the update of the ghost state causes a sampling only
if the update is not done by the last condition of the conditional update. The
reason is that for a level I annotated program, an update on the ghost state

50



using the last condition of the conditional expression is a stutter.

Definition 5.1 captures all interleavings of the monitor and the program, for a
monitor that updates the security state every time a s.r.a. occurs. If a configu-
ration induces a preaction, the update should happen before the transition to
the next configuration. If two consecutive configurations induce a postaction,
the update should be done after the transition to the latter configuration.
The definition aims to specify the interval where the update may be done
for the interleaving to be a co-execution. A co-execution is a closest updat-
ing co-execution if the monitor makes a corresponding transition at the latest
possible point when the update is for a preaction and at the earliest possible
point when the update is for a postaction.

Definition B.4 (Closest Updating Co-execution) A co-execution is clos-
est updating co-execution if the following holds for consecutive pairs (C1, q1)
(C2, q2) (C3, q3) (C4, q4):

• act �
A(C1) ∈ A� ∧ (C2, q2) −→JVM (C3, q3) ⇒ (C1, q1) −→AUT (C2, q2)

• act �
A(C1, C2) ∈ A� ∧ ¬Exc(C2) ⇒ (C2, q2) −→AUT (C3, q3)

• act �
A(C1, C2) ∈ A� ∧ Handled(C2) ⇒ (C2, q2) −→JVM (C3, q3) ∧

(C3, q3) −→AUT (C4, q4)

The Proof We now prove that, the configuration-automaton state pairs
extracted from a level I annotated program is a co-execution, provided that
the annotations are valid and vice versa. What is more, due to the shape of
the annotations, we prove that these co-executions are closest updating.

Lemma B.5 TP is valid, if and only if, for every maximal execution E of T,
the extracted sequence w(XE) of the complete extended execution XE of TP is
closest updating and w(XE) ↓ 1 = E.

Proof. There are two aspects to the proof. First, we are showing that ghost
assignments follow security relevant method executions and are performed
according to the way described in the policy. Second, that no security relevant
action execution happens when the ghost state is undefined if and only if the
annotated program is valid.

We proceed by induction on the length of E.

(Base Case) When the number of configurations in E is 1, the complete ex-
tended execution is the execution of RequiresI

〈main〉 and the precondition of the
first instruction of 〈main〉. The more involved case arises if this precondition is
not empty. Otherwise, w(C0) = (C0, q0) by construction. Similarly, if AI

〈main〉[1]
includes a ghost assignment then the constructed sequence depends on which
condition the assignment was done for. Let us consider the case when k �= 1.

51



In this case, the constructed sequence is w(C0) = (C0, q0)(C0, σ0(
−→gs)), where

σ0 is the mapping at the end of the extended execution. By definition, this
is a co-execution if act �

〈main〉(C0) ∈ A� and δ�(q0, act
�
〈main〉(C0)) = σ0(

−→gs). This
can be proven using the definition of before annotations and the way ConSpec
automaton is extracted from symbolic automaton.

(Induction Hypothesis) For all executions Ei = C0 . . . Ci−2Ci−1 of length i such
that i ≤ n and act �

A(Ci−2, Ci−1) is not an exceptional post action, we assume
that w(Xi) is a co-execution where w(Xi) ↓ 1 = Ei if and only if all boolean
formulae asserted in the complete extended execution Xi holds except possibly
the assertions Defined � and Definede asserted in the course of the execution
of the precondition of pc(Ci−1).

Notice that this induction hypothesis is sufficient, since no maximal execution
can end with an exceptional configuration that is immediately preceded by
an exceptionally security relevant API method call. Similarly, for no maximal
execution Defined � or Definede is asserted in the course of the execution of the
precondition of pc(Ci−1). If the maximal execution is one which returns from
the 〈main〉, then pc(Ci−1) is return and hence no definedness precondition. If
the maximal execution is one which ends exceptionally, then this exception is
not one thrown by a security relevant API method.

(Inductive Step) Consider the execution En+1 = C0 . . . Cn−1Cn of T and its
corresponding extended execution XEn+1 .

We consider the different forms of the pair Cn−1, Cn:

• Cn−1 and Cn are both not exceptional, and Cn−1 is not an application method
call:
We have assumed that the statement holds for En = C0 . . . Cn−1. Since
XEn+1 is an extension of XEn , the assertions met in XEn+1 hold if and only
if assertions met in XEn and X hold where XEn+1 = XEn · X. By the
induction assumption, the assertions met in XEn of TP hold if and only if
w(XEn) is a co-execution and w(XEn) ↓ 1 = En.

Let the last element of XEn be (ε, Cn−1, σ,Σ) for some σ and Σ, execut-
ing method of Cn be M and pc(Cn) be L. Notice that since Cn−1 is not
exceptional, L is not a handler instruction. By the definition of a complete
extended execution, the first element of the suffix X is (AM [L], Cn, σ,Σ),
and its last element is (ε, Cn, σ

′,Σ) for some σ′ that is determined by the
assignments in AM [L]. That is X corresponds to the execution of the anno-
tation sequence that is associated with L in M : AM [L]. By the definition of
subw and w:

w(XEn+1) = w(XEn)(Cn, σ(−→gs)) · subw(X)

52



By the definition of level I annotations,

AM [L] = Ae
M [L− 1][1] · A�

M [L− 1][1] · A�
M [L] ·A�

M [L][0] · Ae
M [L][0]

In the rest of the argument of this case, we take Ae
M [L − 1][1] = ε for

simplicity. This annotation otherwise would set gpc to 0, which does not
change the argument.

Notice that, again by the definition of level I annotations, AM [L] contains
at most two assignments to the ghost state in this case. (For all L′, A�

M [L′][1]
and A�

M [L′] can contain at most one ghost assignment (to the ghost state),
while A�

M [L′][0], Ae
M [L′][0] and Ae

M [L′−1][1] can not contain any.) In order to
go through all shapes the suffix subw(X) can have, we consider the possible
ghost assignments in X:
· A�

M [L− 1][1] = ε, A�
M [L] = ε

In this case there are no ghost assignments in AM [L] and so subw(X) = ε
by definition. Then, w(XEn+1) = w(XEn)(Cn, σ(−→gs)).

From this and the induction hypothesis, the following can be con-
cluded: (i) w(XEn+1)) ↓ 1 = En+1 by the definition of ↓, (ii) w(XEn+1)
is an interleaving, since the last element of w(XEn) is (Cn−1, σ(−→gs)) and
Cn−1 −→JVM Cn.

By the definition of the extract function:

extract(w(XEn+1)) = extract(w(XEn))act �
A(Cn−1, Cn)act �

A(Cn)

By property B.1, act �
A(Cn) = ε and act �

A(Cn−1, Cn) = ε. By the induction
hypothesis, w(XEn+1) is a co-execution.

Assume that w(XEn+1) is a closest updating co-execution The only way
this is possible is that w(XEn) is itself a closest updating co-execution, and
act �

A(Cn) = ε, act �
A(Cn−1, Cn) = ε. (Otherwise there would be ghost up-

dates executed in w(XEn+1))). The latter we have already shown to hold.
By the induction hypothesis, if w(XEn) is a c.u. co-execution then all as-
sertions (except possibly the definedness assertions Defined � and Definede

executed for pc(Cn−1)) hold. Since A�
M [L] = ε, there is no Defined � that

is asserted in the precondition of pc(Cn−1), hence the only assertions that
should be shown to hold are Defined � and Definede of pc(Cn−1). If pc(Cn−1)
is not a method invocation instruction, there is no definedness assertions
in its precondition, and we are done. If pc(Cn−1) is a method invocation
instruction, either Cn−1 is either an application method call or an API
method call. In the former case, both Defined � and Definede hold vacu-
ously since the premise of the boolean formula does not hold, that is the
object that the method is invoked on is not one of those mentioned in
these assertions.

Let us consider the case where Cn−1 is an API method call. Since there
are no jumps to instructions after method calls, pc(Cn−1) should be L−1.
By the definition of AFTER annotations, A�

M [L − 1][1] = ε implies that

53



A�
M [L − 1][0] = ε, so there is no Defined � for pc(Cn−1). If it is also the

case that Ae
M [L − 1][0] = ε, we are done. If there is a Definede however,

we have to show that this also holds.
Suppose that Definede which comes from Ae

M [L − 1][0] does not hold.
Then an alternative execution of the program can be constructed by re-
placing Cn with C ′

n where C ′
n is exceptional. Since L− 1 is exceptionally

security relevant (otherwise there would be no Definede asserted for Cn−1),
there is a handler H for L−1. Now consider the alternative execution that
is achieved by extending the execution with C ′

n+1 where pc(Cn−1) = H :
E ′ = C0 . . . Cn−1C

′
nC

′
n+1. Then w(XE′) can not be a co-execution. We

reach a contradiction.
· A�

M [L− 1][1] �= ε, A�
M [L] = ε

Then the suffix X is as follows:

((−→gs := ce) · A�
M [L][0] · Ae

M [L][0], Cn, σ,Σ) (1)

→∗ ((−→gs := α1| · · · · · |αk) · A�
M [L][0] · Ae

M [L][0], Cn, σ,Σ) (2)

→ (A�
M [L][0] · Ae

M [L][0], Cn, σ
′,Σ) (3)

→∗ (ε, Cn, σ
′′,Σ) (4)

By definition, subw(X) = ε if k = 1 and subw(X) = (Cn, σ
′(−→gs)) oth-

erwise. Notice that σ′′(−→gs) = σ′(−→gs) since there are no assignments to the
ghost state in the steps between (3) and (4) and furthermore if k = 1,
σ′(−→gs) = σ(−→gs), by the definition of level I annotations.

By the definition of AFTER annotations, A�
M [L−1][1] �= ε if M [L−1] =

invokevirtual (c.m) for some class c and method m. That is the in-
struction at above the current program counter is a method invocation
instruction. By the assumption that there are no direct jumps to instruc-
tions immediately below method calls, the previous configuration is either
a method call (to an API method) or a method return (from an application
method).
(⇐) This direction is similar to the argument for the case above.
(⇒) As is apparent from the execution of X, subw(X) is determined by

the value of k above:
(1) k = 1:

This corresponds to the case where we have a stuttering if the
ghost state is defined when the assignment begins executing.
This type of stuttering is meant to occur when the current call
is not to a security relevant action, in order to not to update
the state unnecessarily with this assignment. This last condition
can be satisfied also if the ghost state is not defined when the
assignment begins executing. In this case, for the extracted se-
quence to be a co-execution, the method return should not be
a postaction.

By the definition of subw , subw(X) = ε and w(XEn+1) is the

54



same as case 1 above. The argument that this is an interleaving
and that its first projection is En is also identical. The equa-
tion B.2 also holds. For w(XEn+1) to be a co-execution then,
we should show that no security relevant actions are induced by
the addition of configuration Cn to the execution En−1. By prop-
erty B.1, act �

A(Cn) = ε. If Cn−1 is a return from an application
method, act �

A(Cn−1, Cn) = ε. The case where Cn−1 is a method
call to an API is more complicated. This case is to prove that,
although this instruction has been annotated, in this case the
method called as a result of virtual method resolution turned
out not to be security relevant.

Let Cn−1 be ((M,L−1, s·d·s′, lv)·R, h�) and Cn be ((M,L, v ·
s′, lv)·R, h�) for some actual arguments s, some location d, some
stack s′ and return value v. Notice that there exists a class
c′ such that c′ defines type(h�, d).m and type(h�, d) <: c. (If
this was not the case, Cn would be exceptional.) Now suppose
(v, c′, m, s, h�, h�) is a postaction of the induced automaton AP .
Then there should exist, for some names x, x1, . . . xn, a symbolic
postaction a�

s = (τx, c′, m, ((τ1 x1), . . . , (τn xn))) of As such that
the type of v is τ , the type of s[0] is τ1 etc. It would then be the
case that type(h�, d) ∈ RS((c,m), A�

s \ Ae
s), by the definition of

RS. Notice that σ(gthis) = d by the execution of A�[L− 1][0] in
XEn−1 .

Since k = 1, either ¬(gthis : c′1 ∨ . . . ∨ gthis : c′p) or −→gs =−→⊥ or both of them holds at (2) where RS((c,m), A�
s \ Ae

s) =
{c′1, . . . , c′p}. If only the first holds, at (2), d is not an object

of one of these classes, type(h�, d) �∈ RS((c,m), A�
s \ Ae

s). (We
assume that type(h�, d) = type(h�, d), that is an API call does
not change the type of the object it is called on) We reach a
contradiction, showing that act �

A(Cn−1, Cn) = ε. Hence,
extract(w(XEn+1)) is a co-execution. If both holds, then the re-
turn is again not security relevant and extract(w(XEn+1)) is a
co-execution.

If only the second holds however act �
A(Cn−1, Cn) ∈ A� and

extract(w(XEn+1)) can not be a co-execution since there is no
outgoing transitions from the undefined state in a ConSpec au-
tomaton induced from the symbolic automaton of the policy. In
order to rule out this case, we should prove that σ(−→gs) �= ⊥. Now
we use the assumption that all assertions in XEn+1 holds. This
is only the case if all assertions of XEn holds. By the definition
of AFTER annotations, A�[L − 1][0] asserts that if gthis is of a
class which is a member of RS((c,m), A�

s \Ae
s, then σ(−→gs) �= ⊥.

Hence it can not be the case only the second conjunct holds.
(2) k > 1:

55



Let σ(−→gs) = q and σ′(−→gs) = q′, by the definition of subw and of
extract :

w(XEn+1) = w(XEn)(Cn, q)(Cn, q
′)

extract(w(XEn+1)) = extract(w(XEn))act �
A(Cn−1, Cn)qq

′act �
A(Cn)

In order to show that w(XEn+1) is an interleaving, we should
prove that there exists an action a ∈ A such that δ(q, a) = q′.
From this, it will also follow that w(XEn+1) ↓ 1 = En+1. To
prove that w(XEn+1) is a co-execution, however, we should prove

a stronger statement, namely that δ�(q, act �
A(Cn−1, Cn)) = q′.

(This is the only possibility since by property B.1, act �
A(Cn) = ε)

This is the case when one of the conditions (other than the
last condition) of the conditional assignment is satisfied and the
ghost state is set accordingly. We show that this is the case only
if Cn−1 is a return from a post security relevant method call and
that the ghost state is set correctly.

Since k > 1, in the execution segment above, α1 has the

following form: (−→gs �= −→⊥) ∧ gthis : c′i ∧ a → −→e , where c′i ∈
RS((c,m), A�

s \Ae
s). Note that α1 holds at (2). This implies that

−→gs �= −→⊥ at σ.
We first show that Cn can not be a return from an applica-

tion method. (If this was the case the return would be from an
application method, hence not security relevant). Assume that
this is the case, let this method which is returning be c′, m and
the object it was called on be d. (That is, the second frame in
the activation stack of Cn−1 is (M,L− 1, s · d · s′) for some ac-
tual arguments s, and some stack s′) Since the call was made
by the instruction invokevirtual c.m, it should be the case
that c′ defines (type(d, h), m) where h is the heap at the time
of the method call. Notice that gthis = d, since it was set to
this value by A�[L− 1][0] just before the method call was made
and since it is local so it is not changed during the execution of
the application method. (We further assume that the applica-
tion method does not change the type of the object it is called
on) This means that c′ ∈ RS((c,m), A�

s \ Ae
s), which can not

be the case since it is an application method. Hence we reach
a contradiction, showing that Cn can not be a return from an
application method.

The only possibility left is that Cn is a return from an API
method. Let Cn−1 be ((M,L − 1, s · d · s′, lv) · R, h�) and Cn

be ((M,L, v · s′, lv) · R, h�) for some actual arguments s, some
location d, some stack s′, return value v and heaps h�, h�. Let
(c.m) : (γ → τ). Since α1 is a part of the ghost assignment, the

56



symbolic automaton should include the action
a�

s = (τx, c′i, m, ((τ1 x1), . . . , (τ|γ| x|γ|))) for some names x, x1, . . .
and types τ, τ1, . . . such that the type of v is τ , the type of s[0] is
τ1 etc. What is more there exists a predicate b and an expression
tuple E such that (a�

s, b, E) ∈ δ�
s and a = abρ where ab is the

boolean formula for predicate b and −→eE as defined in section 6.2.
The substitution ρ = [v/x, g0/x0, . . . gk−1/xn−1, gthis/this] by
this construction. Notice that σ(gthis) = d by the execution of
A�[L − 1][0] in XEn−1 and hence c′i defines type(h�, d).m. Thus
(v, c′, m, s, h�, h�) is a postaction of the induced automaton AP .
We have proven that act �

A(Cn−1, Cn) ∈ A�.
We are left to prove that δ�(q, act �

A(Cn−1, Cn)) = q′. Since α1

holds at (2),

‖ abρ ‖ (Cn, σ) = true ⇔‖ b ‖ qIh�h� = true

where I = [x �→ v, x1 �→ s[0], . . .]. Using the same interpretation,

‖ −→eEρ ‖ (Cn, σ) = q′ ⇔‖ E(si) ‖ qIh�h� = q′(si)

for all security state variables si of −→gs. The result then follows
from the way a ConSpec automaton is induced by a symbolic
automaton.

(3) k = 0:

Let σ(−→gs) = q and σ′(−→gs) = q′, by the definition of subw and
of extract :

w(XEn+1) = w(XEn)(Cn, q)(Cn, q
′)

extract(w(XEn+1)) = extract(w(XEn))act �
A(Cn−1, Cn)qq

′act �
A(Cn)

In order to show that w(XEn+1) is an interleaving, we should
prove that there exits an action a ∈ A such that δ(q, a) = q′.
From this, it will also follow that w(XEn+1) ↓ 1 = En+1. To
prove that w(XEn+1) is a co-execution, however, we should prove

a stronger statement, namely that δ�(q, act �
A(Cn−1, Cn)) = q′.

(This is the only possibility since by property B.1, act �
A(Cn) = ε)

It is possible to show in this case that Cn is a return from a
security relevant method call by a similar argument. The idea
is that if Cn was a return from an application method call, the
last condition of the conditional assignment would instead have
been satisfied, hence k would have been 1. Since this is not the
case, we know that Cn is a return from an API call. What is
more, let this method be c′.m. Then c′ ∈ RS((c,m), A�

s \ Ae
s.

Notice that none of the conditions in the assignment hold, that

57



is k = 0, if either σ(−→gs) = ⊥ or σ(−→gs) �= ⊥ but the guards are
not satisfied. In both cases, after this assignment the ghost state
is undefined: σ′(−→gs) = ⊥.

The case that k = 0 may only occur if the ghost state becomes
undefined since the return from the API method was a violation.
Since the last condition does not hold, we know that the ghost
state was not undefined at σ and we know that the object the
method was called is of one of the classes in RS((c,m), A�

s \
Ae

s. This means that the call is security relevant. Since none of
the conditions before the last was satisfied, this is a violating
postaction. By the definition of the way a ConSpec automaton
is extracted from a symbolic automaton, any such state has a
transition to the undefined state. Hence δ�(q, act �

A(Cn−1, Cn)) =

q′, where q′ =
−→⊥ and we are done.

Hence, w(XEn+1) is a co-execution.

· The cases where A�
M [L−1][1] = ε, A�

M [L] �= ε and where A�
M [L−1][1] �= ε,

A�
M [L] �= ε are proved similar to the case above.

• Cn−1 and Cn are both not exceptional, and Cn−1 is an application method
call:
This case is similar to the one above when Cn−1 is not an application method
call.

• Cn−1 is exceptional, while Cn is not exceptional: The only interesting sub-
case of this case is when Cn−2 is an API method call and act �

A(Cn−2, Cn−1) �=
ε. In this case, notice that w(XEn+1) is not an extension of w(XEn), but
rather of w(XEn−1), by the definition of w function.

• Cn−1 is not exceptional, while Cn is exceptional: The only interesting sub-
case of this case is when Cn−2 is an API method call and act �

A(Cn−2, Cn−1) �=
ε. Then the special construction described for w(X) when X has an excep-
tional configuration as last element and the element before the last is an
API call is used.

�

Proposition B.6 Given a program T and a policy P, if for every execution
E of T there exists a co-execution w of T and AP such that w ↓ 1 = E, then
the sequence w(XE) extracted from the extended execution XE corresponding
to this execution is also a co-execution such that w(XE) ↓ 1 = E and w(XE)
is closest updating.

Proof. For each co-execution, a closest updating co-execution can be con-
structed by postponing the transition of the monitor for a preaction until the
configuration which calls this security relevant method is reached and by per-
forming the transition of the monitor right after the return of the security

58



method call if the update is for a postaction.

�

Theorem 6.2 (Level I Characterization) The level I annotated program T for
policy P is valid, if and only if, T adheres to P.

Proof.

The result follows in one direction from theorem 5.3, proposition B.6 and
lemma B.5; the other direction follows from lemma B.5 and theorem 5.3. �

B.3 Proof of Theorem 6.4

Theorem 6.4 The level II annotated program T with embedded state −→ms is
valid if and only if for each execution E of T, the sequence w(E,−→ms) is a
method-local co-execution.

Proof. (Sketch) The idea of the proof is to sample pre- and post-actions
from E, immediately preceded and followed by a sample of the embedded
state −→ms. The sequence extracted in this way is almost a potential derivation,
but in the case of a postaction followed, some time later, by a preaction,
an intermediate automaton state may be missing. It is not clear, however,
how to sample this state. Also, it is necessary to ensure that embedded state
updates do not cross method boundaries. To this end, extracted sequences
need to be completed by (a) missing intermediate automaton states, and (b)
indicators of method boundary crossings at: method invocations that are not
security relevant actions, return instructions, exceptional configurations with
an unhandled exception, and at the first instruction of each method.

First, we note that the embedded state −→ms is equal to the ghost state −→gs at
sampling points if and only if the synchronisation assertions added at level II
hold. We show in the proof of theorem 6.2 that the ghost state and machine
configurations constitute a co-execution if and only if level I annotated pro-
gram is valid. If the level II annotated program is valid then the sampling of
the embedded stated as described above amounts to taking the co-execution
of the ghost state and the program and “skipping” some ghost updates, which
the embedded state does not follow (as the sampling of the embedded state
is not done as frequently). Then extract II applied to this sequence falls in the
set stated in definition 6.3.

(⇐) In this direction, we show the result by taking any execution E of a
valid level II annotated program. Since level II annotations include level I

59



annotations, by theorem B.5 one can construct a co-execution of this program
and the automaton AP , in the sense of section 5, using the ghost state. By
the placement of the synchronisation annotations, the value of the embedded
state can be inferred at sampling points, using the value of the ghost state.
Then, it is left to show that for the embedded state to be a monitor for the
policy, it is sufficient that the embedded state is in synch with the ghost state
at the points where level II annotations are asserted. For instance, the ghost
state gets updated for a preaction, immediately before the action and by the
validity of the level II annotations, at this point the embedded state is equal
to the ghost state, hence if the embedded state has been a monitor until this
point, this property will be preserved for the next action.

The proof is by induction on the length of the execution:

(Base Case:) The sequence produced for an execution C0 depends on whether
it is a sampling point or not. C0 is not preceded by any configuration, and is
not exceptional. Therefore, if pc(C0) is an invokevirtual or a return C0 is
a sampling point and the sequence is w(C0,

−→ms) = (C0, q) where q = C0(
−→ms).

Otherwise, w(C0,
−→ms) = (C0, q0). Let us carry out the case when this is a

return. By the synchronisation annotation asserted by the Ensures clause of
〈main〉, −→ms = −→gs at C0. Since there are no ghost assignments associated with a
return instruction, the ghost state is still the initial state of the automaton at
C0. The result of applying the extract function is then extract II(w) = q0brkq0.

(Induction Hypothesis:) For all executions Ek of length k ≤ n, if the level
II annotation of T with embedded state −→ms is valid, then w(Ek,

−→ms) is a
method-local co-execution.

(Inductive Step:) Assume that the level II annotation of T with embedded
state −→ms is valid and consider the execution En+1 = C0 . . . Cn. The sequence
w(C0 . . . Cn,

−→ms) is built by extending w(En,
−→ms) with the pair (Cn, q). Notice

that since w(En,
−→ms) is a method-local co-execution, the result of applying the

extract II function returns a sequence ending with some state q, except the case
where Cn−1 is an API method call that induces a preaction. If Cn is a sampling
point, the state component q of this pair is Cn(

−→ms); the state component is
the same as the state component of the last pair of w(C0 . . . Cn−1,

−→ms), if Cn

is not a sampling point. By lemma B.5, we know that w(XEn) is a closest
updating co-execution and w(XEn) ↓ 1 = En. Let the last element of XEn be
ε, Cn, σ,Σ for some σ and Σ.

We consider the different cases for the pair Cn−1, Cn. Notice that for all cases
except the last, Cn is a sampling point.

• Cn is an API method call and Cn−1 is not a method call: By the definition

60



of extract II,

extract II(w(En,
−→ms)) = extract II(w(C0 . . . Cn−1,

−→ms)) Cn(−→ms)act �(Cn)

By the validity assumption and the way level II annotations are inserted,
Cn(

−→ms) = σ(−→gs).
• Unhandled(Cn): invokevirtual instruction or if n = 0.
• Cn is not of the above: In this case, Cn is not a sampling point. Furthermore,

by the definition of extract II: hence extract II(w(En,
−→ms)) = extract II(w(En−1,−→ms)) and the claim holds by the induction hypothesis.

• The other cases are similar.

(⇒) The argument goes as follows: we take an arbitrary method-local co-
execution and show that any execution that yields such a co-execution vali-
dates its assertions. For instance, as a base case, take qbrkq. By definition of
extract II, the sequence that yields this co-execution includes one and only one
configuration which is an application method call. There are no other method
calls (if this was the case the resulting co-execution would contain more au-
tomaton states.). Since the sampling begins with the initial automaton state
q0, q should be q0. There are no s.r.a’s and the ghost state is also the initial
state throughout the execution, thus validating both the assertions on the
ghost state being defined (if any) and the synchronisation assertion immedi-
ately before the method call. (Notice that there are no other assertions as
there are no other states extracted and hence has no other sampling points.)�

B.4 Proof of Theorem 7.2

Before we proceed with the proof of the theorem, we clarify our notion of local
validity.

For a fully annotated program, checking validity can be reduced to the simpler
problem of checking local validity by referring to the axiomatic semantics of
instructions. Local validity can be checked by generating verification condi-
tions for each instruction and for method entry and exit points, by using the
corresponding pre- and post-conditions and checking that these verification
conditions hold. As mentioned before, our logic is an adaptation of the logic
of Bannwart and Müller [7,8], which in turn is a specialization of the logic of
Poetzsch-Heffter and Müller [32] to bytecode. In this section, we first intro-
duce this logic briefly, noting the differences it has with the one presented in
section 6.1. Then we define a notion of local validity, the correctness of which
is based on the results of Bannwart and Müller. In this way, the definition of
local validity is clear and can be used in the proof of the theorem.

61



Bannwart-Müller Logic The logic is for a bytecode language with object-
oriented features such as classes and objects, inheritance, fields, and virtual
method resolution, as well as unstructured control flow with conditional and
unconditional jumps, which makes it suitable for our purposes. Instead of using
triples for instruction specifications as in classic Hoare logic, programs are
annotated by associating a single assertion with each instruction, interpreted
as its precondition. For an instruction I, its precondition has to be established
by all predecessors of I, which usually includes the instruction that precedes I
in the program text as well as all instructions that jump to I. We also follow
this approach for specifying instructions.

Bannwart and Müller allow different specifications to be attached to the
method implementation and the method body. What is more, it is possible
to pose a common pre- and post-condition to all methods that can be in-
voked using the same method invocation instruction. Properties of methods
are expressed by Hoare triples of the form {P}comp{Q}, where P and Q are
first-order formulae and comp is a method body, a method implementation, or
a “virtual” method, explained in more detail below. The triple {P}comp{Q}
expresses the following refined partial correctness property: if the execution of
comp starts in a state satisfying P , then (1) this computation terminates in a
state in which Q holds, or (2) comp aborts due to errors beyond the semantics
of the programming language (for instance, internal JVM errors), or (3) comp
does not terminate.

In both our logic and this logic, individual instruction specifications can be
combined at the level of method bodies. This is due to the following guarantees
on the structure of Java bytecode: the instruction sequence constituting a
method body is always entered at the first instruction and left after the last
instruction 6 and all jumps are local within a method body. The body of the
method c.m is denoted with body(c.m). A method body specification is then
written as {P}body(c.m){Q}, where the precondition P is the precondition of
the first instruction and the postcondition Q is the precondition of the return
instruction. Method implementation specifications play a similar role to that of
Requires and Ensures in our logic, except that the postcondition of a method
implementation need not hold at an exceptional exit from the method. These
are denoted with {P}imp(c.m){Q} for method c.m.

The proofs are constructed in this logic using rules that combine specifica-
tions on a lower level to infer specifications on a higher level and language
independent rules. Here we only present a few rules from the version of this
logic where exceptions not considered (i.e. [8]) in order to give an intuition
to the user. The details of the logic, including reasoning on programs that

6 Note that methods in which return instructions occur earlier can be rewritten so
to redirect all returns to the last return instruction in order to satisfy this condition.

62



contain exception handling can be found in [7]. A sequent in this proof system
has the following form:

Φ � {P}comp{Q}
where Φ is a set of method specifications needed for dealing with recursive
methods. The rule about method body specifications, which combines the
assertions occurring in the method body as explained above is as follows:

∀i ∈ {|body(c.m)|}. (Φ � {A[i]}Li : Ii)

Φ � {A[1]}body(c.m){A[|body(c.m)|]}
To infer the method implementation specifications, the following rule is used:

Φ, {P}imp(c.m){Q} � {P ∧ r0 �= null}body(c.m){Q}
Φ � {P}imp(c.m){Q}

The assertion r0 �= null guarantees that, at the point where the method body
starts executing, the address to the object the method is called on is stored in
the local variable r0 and that it is not null. The rule also shows how assertions
such as {P}imp(c.m){Q} are added to the set of assumptions.

Specifications on virtual methods are meant to capture method specifications
imposed by the specification of an invokevirtual instruction on any method
that can be called as a result of the execution of this instruction. In order to
prove the precondition P for the instruction invokevirtual c.m, it has to
be proven that (i) {P ′}virtual(c.m){Q′}, i.e. the methods that can be called
by this instruction satisfy their method specification, (ii) that P implies the
precondition P ′ of the virtual method specification, with actual arguments
substituted for the formal parameters, and that (iii) the postcondition Q′ of
the method specification implies the precondition of the instruction following
invokevirtual. In turn, to be able to prove {P}virtual(c.m){Q}, it has to be
proven that the specification holds for each method that can be called. This
is done through proving {P ∧ r0 : c′}imp(c′.m){Q} for the implementation of
each method c′.m where c′ <: c and where the assertion r0 : c′ guarantees that
the method is called on an object of type c′.

Our method specifications and the related rules are simplifications of this
logic. While Bannwart-Müller logic is both sound and complete [7] with re-
spect to the language presented above, we only aim at soundness for program
specifications of a particular shape, specifically for specifications described in
detail in sections 6.2, 6.3 and 7. Here we only note that when the program
is fully annotated in our scheme, all methods (with the exception of 〈main〉
which is not to be called from inside the program) have the same specifica-
tion. Furthermore, both method specifications (the pre- and post-condition
of methods) and the pre- and post-condition of method invocation instruc-
tions mention the same (invariant) assertion. Finally, this invariant does not
mention formal arguments. Our Requires and Ensures clauses correspond to

63



method implementation pre- and post-conditions of Bannwart-Müller logic,
respectively. Notice that method body specifications do not correspond to our
Requires and Ensures clauses, as a method body pre-condition is asserted each
time there is a jump to the first instruction from within the body, since it is
identical to the precondition of the first instruction. Therefore the rules of
Bannwart-Müller logic become superfluous. Our only extension to this logic is
the use of ghost variables and ghost assignments. Ghost variables can be seen
as regular variables which are not affected by program code. We treat ghost
assignments the same way as program instructions as these are not boolean
expressions.

Local Validity In section 7, we described how a program inlined for a pol-
icy with a simple inliner can be fully annotated so that the validity of the
annotations implies adherence of the program to the policy. Consequently, the
problem of policy adherence for an inlined program is reduced to checking
local validity. In this section, we introduce a suitable notion of fully annotated
programs and conditions for a fully annotated program to be locally valid.

A fully annotated program is, then, a program where a sequence of annotations
γ are associated with each instruction and with the Requires clause, and where
only a single assertion is associated with the Ensures clause; each instruction
specification and Requires clause consists of a single boolean expression or an
alternating sequence of ghost assignments and boolean expressions α, with the
first and last elements being a boolean expression. This definition guarantees
that each ghost assignment is preceded and succeeded by a boolean expression.
The expression before a ghost assignment can then be used as its specification,
like it is done for program instructions.

In the definition of local validity, we use the function wp(M [L]) for computing
the local weakest precondition of an instruction presented for a subset of JVM
instructions in table 3. The notion of local validity is defined as expected,
namely that (i) the method precondition implies the annotation associated
with the first instruction, (ii) the precondition of the return instruction implies
the method post-condition, (iii) the pre-condition of an instruction implies the
weakest precondition of the instruction provided it is not a method invocation,
(iv) the last assertion before a ghost assignment implies the first assertion after
the ghost assignment where the ghost values are replaced with the conditional
expression of the assignment, (v) the pre-condition of an instruction implies
the pre-condition of any handler that covers the instruction and it implies
the post-condition of the method if it can raise an exception not covered
by any handler of the method, (vi) for all method invocation instructions
L, there exists an assertion α such that the pre-condition of the instruction
implies the conjunction of the pre-condition of any method, which can be
called by the instruction and α, while the conjunction of α and the post-

64



condition of any method, which can be called by the instruction, imply the
pre-condition of L + 1, furthermore if a method that can be called by this
instruction raises exceptions, then the post-condition of the called method
implies the pre-condition of the corresponding handler if any, or implies the
postcondition of the caller method, (vii) finally, the initializations to the static
variables done by the initial static heap is sufficient to make the pre-condition
of 〈main〉 valid.

In the definition below, the function head returns the first element of an anno-
tation sequence and last , the last element. StaticsT denotes the set of static

variables c.f of T and for all c.f ∈ StaticsT, vc.f is equal to shT0 (c.f). We let
|= denote standard first-order logic validity.

Definition B.7 (Local Validity) A fully annotated program T is locally
valid if for every virtual method M = (P,H,A,Requires,Ensures) the fol-
lowing holds:

(i) |= last(Requires) ⇒ head(A[1]),
(ii) |= last(A[|P |]) ⇒ Ensures,
(iii) for all L ∈ Dom(P ) where M [L] is not a method invocation instruction:

|= last(A[L]) ⇒ wp(M [L]),
(iv) whenever γ · α · (−→g := ce) · α′ · γ′ is an instruction specification,

|= α⇒ α′[ce/−→g ]

(v) for all L ∈ Dom(P ), if M [L] can raise an exception with type c, one of the
following holds:

a) There exists a handler (L1, L2, L
′, c′) that handles this exception, and

|= last(A[L]) ⇒ head(A[L′])

b) There does not exist a handler for label L and exception c, and

|= last(A[L]) ⇒ Ensures

(vi) for a label L ∈ Dom(P ) where M [L] = invokevirtual c.m, and for all
methods c′.m that can be invoked as a result of the execution of this instruc-
tion and virtual method resolution, let c′.m = (P ′, H ′, A′,Requires ′,Ensures ′)
and c′.m be of arity n. Then there exists the assertion α which mentions
only local and (local) ghost variables, such that:
· |= last(A[L]) ⇒ (head(Requires ′) ∧ α),
· |= α ∧ Ensures ′ ⇒ head(A[L+ 1]),
· If c′.m raises an exception then either there exists a handler with desti-

nation L′ and |= Ensures ′ ⇒ head(A[L′]) or there is no such handler and
|= Ensures ′ ⇒ Ensures.

65



(vii)
|= ∧

c.f∈StaticsT

c.f = vc.f ⇒ head(Requires〈main〉)

The assertion α mentioned in item (vi) is used for assertions that are preserved
by the method call, that is assertions on local program and ghost variables.
Note that this notion of local validity includes recursive methods, since we
do not require that the called method be a different method from the caller
method. This, in effect, means that the method specification can be assumed
at the point of the recursive call, which is in line with [8].

Showing that a locally valid program is valid also in the sense of definition 6.1
can be done based on the soundness result 7 of [8], detailed and extended to
exceptions in [7]. Such a proof consists of extending Bannwart-Müller logic
with a rule for ghost assignments, extending the soundness proof they present
with this rule and showing that a proof tree can be constructed to infer
{RequiresM}imp(M){EnsuresM} for each method M of the program in this
logic. The proof construction is straightforward as our local validity definition
is simply an application of the proof rules in a restricted setting. A rule for
handling ghost variables is not hard to develop either, guided by the fact that
ghost assignments are very much like ordinary assignment statements that do
not alter the machine configuration, and would resemble rule (iv) above.

The Proof

Theorem 7.2 Suppose that I is an inliner satisfying property 7.1. Let T be a
program, and P a ConSpec policy. The fully annotated inlined program I(T,P)
is locally valid.

Proof. (Sketch) We show that the verification conditions resulting from the
full annotation of I(T,P) are valid and efficiently checkable. To simplify the
presentation, we consider here post-actions only; the argument is easily adapted
to pre-actions and exception actions.

Notice that for fully annotated programs, every instruction is annotated by
a non-empty sequence of logical assertions alternating with ghost variable

7 Their soundness result states that whenever � {P}body (c.m){Q}, it is the case
that for all initial configurations C that c.m can start running with (i.e. configura-
tions with the right number of values for arguments are on the stack etc.) and all
configurations C ′, if C ′ is a terminating configuration with the current method c.m,
C is related to C ′ with the reflexive, transitive closure of the transition relation of
the operational semantics and P holds at C, then Q holds at C ′. In order to prove
this result, they prove a similar result for single steps of the machine.

66



assignments, always starting and ending with a logical assertion. Notice also
that Ensures(Γ∗(M)) and Exsures(Γ∗(M)) are all equal to the synchronization
assertion −→gs = −→ms for fully annotated programs. The first and last elements
of the annotation sequence of Requires(Γ∗(M)) is also the synchronization
assertion (except for 〈main〉, in which case last(Requires(Γ∗(M))) is again−→gs = −→ms). Similarly, notice that for all instructions L, where L is not the label
of an inlined instruction and is not a security relevant action, last(AIII

M [L]) is
the synchronization assertion.

We assume that the return instruction is not the first instruction of an excep-
tion handler, the last element in its annotation sequence is the synchronisation
annotation. We also assume that the inlined instructions do not raise excep-
tions.

Then, a full annotation of I(T,P) gives rise to a set of verification conditions
described as follows.

First, there are three types of verification conditions arising from method
compositionality, namely:

• last(Requires(Γ∗(M))) ⇒ head(AIII
M [1]),

• last(AIII
M [R]) ⇒ Ensures(Γ∗(M)),

• For all instructions L that is not a method call and that can raise an un-
handled exception last(AIII

M [L]) ⇒ Ensures(Γ∗(M))

where R is the label of the return instruction in method M , and where last is
a function on sequences returning the last element. The inlined instructions
are assumed not to raise any exceptions, so no verification condition for ex-
ception raising is generated by these. Additionally, only inlined instructions
and method calls change the embedded monitor state, hence the simple form
of the verification conditions of the latter type. In the first two cases and in
the last case when L is not the label of a method call, the antecedent and the
consequent are (syntactically) equal to the synchronisation assertion. These
verification conditions are therefore valid, and validity is efficiently checkable.

Second, every ghost variable assignment −→g := ce gives rise to a verification
condition. If α · (−→g := ce) · α′ is a subsequence of AIII

M [L] for some L where
α and α′ are logical assertions, then α⇒ α′[ce/−→g ] is a verification condition.
Due to the normalization performed in the annotation completion, α must
contain a conjunct α′[ce/−→g ]. Such verification conditions are therefore valid,
validity being efficiently checkable.

Third, every non-method-call instruction M [L] gives rise to a verification con-
dition last(AIII

M [L]) ⇒ wp(M [L]). There are three cases to be considered: (a) if
M [L] is a non-inlined instruction with non-inlined successor instructions only,
last(AIII

M [L]) is syntactically equal to wp(M [L]) by construction; (b) if M [L]

67



is a non-inlined instruction followed by an inlined instruction (in the case of
post-actions only, the latter indicates the beginning of an inlined block serving
to record the current values of the parameters and the object with which the
following potentially security relevant instruction is called), then the synchro-
nization assertion −→gs = −→ms must appear as a conjunct in both last(AIII

M [L])
and wp(M [L]), and the only other conjuncts in the latter must be either of the
shape Defined � or s[i] = s[i]; (c) if M [L] is an inlined instruction, last(AIII

M [L])
must contain a conjunct wp(M [L]) by construction. In all three cases, the
verification condition is valid, validity being efficiently checkable; the only in-

teresting case here is presented by Defined �, the consequent −→gs �= −→⊥ of which
is implied by −→gs = −→ms. Similarly, every non-method call instruction M [L] that
can raise an exception which is handled by the handler at label H gives rise to
the verification condition last(AIII

M [L]) ⇒ head(AIII
M [H ]). By the assumption

that the inlined instructions do not raise an exception, this instruction can
not be an inlined instruction. There are two cases to consider: (a) if M [H ] is a
non-inlined instruction, then both the antecedent and the consequent are the
synchronisation annotation; (b) if the handler M [H ] is an inlined instruction
(which is possible only if it is the first instruction a code inlined for a poten-
tially preaction occurring in the original handler) this case becomes a subcase
of the proof for pre-actions, handled similar to the final part of this proof.

Finally, every method-call instruction M [L] calling some method M ′ gives rise
to three types of verification conditions. If the method call is not potentially
post-security relevant, these are:

• last(AIII
M [L]) ⇒ Requires(Γ∗(M ′)),

• Ensures(Γ∗(M ′)) ⇒ head(AIII
M [L+ 1]), and

• For all handler instructions H of L, Ensures(Γ∗(M ′)) ⇒ head(AIII
M [H ])

In the first two formulas, the antecedent and the consequent are (syntactically)
equal by construction, and hence valid. The last set of verification conditions
are valid and efficiently checkable by the argument for the case when M [L] is
not a method-call presented above where last(AIII

M [L]) should be replaced by
Ensures(Γ∗(M ′)).

If M [L] is calling some method M ′ which is potentially security relevant, the
three types of verification conditions are

• last(AIII
M [L]) ⇒ Requires(Γ∗(M ′)) ∧ φ,

• Ensures(Γ∗(M ′)) ∧ φ⇒ head(AIII
M [L+ 1]), and

• For all instruction handler instructions H of L, Ensures(Γ∗(M ′)) ∧ φ ⇒
head(AIII

M [H ])

where φ is the formula (g0 = r0) ∧ . . . ∧ (gn−1 = rn−1) ∧ (gthis = rthis). Notice
that the invoked method does not change the local variables and the eval-

68



uation stack of the caller method (except for popping arguments from the
stack and pushing its return value). Then a formula mentioning variables not
changed by the invoked method (such as φ) can be added to both the pre-and
postconditions of the invoked method [8].

The first of these conditions is again easy to show valid, since Requires(Γ∗(M ′))
and all conjuncts in φ also appear as conjuncts in last(AIII

M [L]) by construc-
tion. The third set of verification conditions are similar to the last cases of the
argument above, when M [L] is calling a non-potentially security relevant ac-
tion. The only really involved case in the whole proof is the second verification
condition.

Let α1, . . . , αm be the guarded expressions gthis : c′i∧ abρi → −→eEρi, 1 ≤ i ≤ m,
and α be ¬(gthis : c′1 ∨ . . . ∨ gthis : c′p) → −→gs, all induced by the policy for
the instruction M [L] = invokevirtual (c.m) as described in Section 6.2 (cf.
After Annotations). Then the second element of AIII

M [L + 1] must be a ghost
assignment −→gs := ce where ce is the conditional expression α1 | · · · | αm | α.
The block inlined immediately after the (potentially post-security relevant)
instruction M [L] has the important property that its weakest pre-condition
w.r.t. the head assertion of the first instruction following the block (which is
the synchronisation assertion −→gs = −→ms) is the logical assertion

∧
1≤i≤m rthis : c′i ∧ abρ

′
i → −→gs = −→eEρ

′
i

∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) → −→gs = −→ms

where the substitution ρ′i is defined as [s[0]/x, r0/x0, . . . rn−1/xn−1, rthis/this,−→ms/−→gs] if r = (τ x) and as [r0/x0, . . . rn−1/xn−1, rthis/this,
−→ms/−→gs] if r = void .

Therefore, head(AIII
M [L+ 1]) must be the logical assertion

φ

∧ Defined �

∧ ∧
1≤i≤m rthis : c′i ∧ abρ

′
i → ce = −→eEρ

′
i

∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) → ce = −→ms

where φ is as explained above, and where ce is the tuple of conditional ex-
pressions −→cei, obtained from ce by replacing each expression vector −→eE occur-
ring in ce with its i-th component. Now, validity of the verification condition
Ensures(Γ∗(M ′)) ∧ φ ⇒ head(AIII

M [L + 1]) is established as follows. The first
conjunct φ (actually a set of conjuncts) of head(AIII

M [L + 1]) appears as a
conjunct in Ensures(Γ∗(M ′))∧ φ. The second conjunct Defined � is implied by
Ensures(Γ∗(M ′))∧φ because Ensures(Γ∗(M ′)) is −→gs = −→ms, which implies −→gs �=−→⊥ . Every conjunct rthis : c′i∧ abρ

′
i → ce = −→eEρ

′
i is valid under the equalities of

Ensures(Γ∗(M ′)) ∧ φ, since then every guard rthis : c′i ∧ abρ
′
i matches exactly

69



the guard of αi, and −→eEρi is equal to −→eEρ
′
i. Validity can thus be easily checked

mechanically by simple equational reasoning and (syntactic) guard matching.
Finally, validity of the conjunct ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) → ce = −→ms is
established similarly.

When M [L] can give rise to an exceptional postaction, the last set of verifica-
tion conditions look slightly different. Notice that our inliner inserts a handler
for each such potentially security relevant instruction that handles all types
of exceptions. Let the label of the first instruction of this handler to be H for
the instruction M [L], then the three verification conditions are:

• last(AIII
M [L]) ⇒ Requires(Γ∗(M ′)) ∧ φ ∧ (gpc = L) and

• Ensures(Γ∗(M ′)) ∧ φ ∧ (gpc = L) ⇒ head(AIII
M [L+ 1]), and

• Ensures(Γ∗(M ′)) ∧ φ ∧ (gpc = L) ⇒ head(AIII
M [H ])

where φ is the formula (g0 = r0)∧ . . .∧ (gn−1 = rn−1)∧ (gthis = rthis). The non-
trivial case is then to show that the third verification condition is valid and
efficiently checkable. This argument is similar to the argument made above
for the non-exceptional case. �

70


