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Abstract

BAN logic is a propositional logic of knowledge for the verification of cryptographic
protocols. While BAN logic has been successful from a practical point of view, the
semantics of the epistemic (knowledge) modality is unclear. Several Kripke seman-
tics have been proposed, but they do not attempt at anything beyond a soundness
result. Completeness is prevented by the so called logical omniscience problem:
Agents in BAN can draw only feasibly computable consequences of their knowl-
edge, whereas agents in Kripke semantics are not so constrained. To circumvent
this problem, we index the epistemic possibility relation of Kripke semantics with
a message correlation, relating how cipher texts at the current state correspond to
cipher texts at the epistemically possible state. An agent is said to know a prop-
erty of a message if corresponding messages at epistemically possible states satisfy
that property. We obtain completeness with respect to message passing systems,
and decidability, by transferring canonical model and filtration constructions from
Kripke semantics.

Keywords: Epistemic logic, Cryptography, Logical Omniscience, BAN Logic,
Completeness

1 Introduction

BAN logic [4] is a propositional epistemic logic for the verification of cryp-
tographic protocols. From a practical point of view, BAN logic has turned
out to be quite successful: It produces short, informative derivations that can
reveal subtle protocol errors. However, the semantics of the epistemic (knowl-
edge) modality in BAN logic has remained problematic. While a number of
semantics have been proposed for BAN and BAN-like logics, none of them
capture accurately the intended meaning of the epistemic modality in BAN
(cf. [1,7,12,19,20,21,22,26]). This situation is unsatisfactory. Without a se-
mantics, it is unclear what is established by a derivation in the proof system
of BAN: A proof system is merely a definition, and as such it needs further



justification. Moreover, the restriction to proof system based protocol anal-
ysis is unfortunate. Indeed, elsewhere in epistemic logic, semantically based
techniques for analysing security protocols, for instance model checking, are
preferred (cf. [13,16,25]).

In this paper, we show that BAN logic, or a logic close to original BAN,
is decidable and is sound and complete with respect to concrete, run-based
models in the tradition of [9,18]. The completeness result provides strong
evidence that the semantics indeed captures the intended meaning in BAN. By
contrast, previous work on semantics for BAN-like logics does not go beyond
soundness results.

Any interpretation of BAN’s knowledge modality faces the so-called logical
omniscience problem [9]. To illustrate this, under BAN’s idealized treatment
of cryptography, the implication:

freshM → fresh {M}K (1)

should be regarded as valid, reflecting the fact that if the message M has never
appeared as a component of any message exchanged in the past, then neither
has {M}K . But in Kripke semantics, the standard semantics for knowledge,
if (1) is validated then so is:

A knows freshM → A knows fresh {M}K (2)

However, (2) goes against the intended meaning in BAN, since in BAN agent
A can know that M is inside {M}K only when A knows K. In general, ac-
cording to the intended (informal) meaning of knowledge, agents can only per-
form computationally feasible cryptographic calculations, whereas in Kripke
semantics agents draw arbitrary logical inferences, including cryptographic
calculations that are not computationally feasible. From the point of view of
modal logic, the problem is that Kripke semantics yields the rule of normality:

F → F ′

A knowsF → A knowsF ′

stating that if F → F ′ is valid, then so is A knowsF → A knowsF ′. But, this
rule is intuitively unsound for BAN logic, as the above example illustrates.

As another counterexample to the rule of normality, consider BAN’s flag-
ship rule, the message meaning rule, according to which if agent A receives
a ciphertext {M}K , which A did not send, and A knows that the key K to
it is secret between A and agent B, then A knows that B sent the cipher-
text {M}K . Clearly, the message meaning rule implicitly assumes a receiving
introspection validity:

A received M → A knows A received M (3)

Say we extend BAN, as in [12,19], with a predicate A rec, where A rec M holds



if M is a part of something A received. Trivially,

A received {M}K → A rec M (4)

is valid. However, by the rule of normality, (3) and (4) yield the following
validity:

A received {M}K → A knows A rec M (5)

which gives agent A unlimited decryption power, clearly contrary to the in-
tended meaning in BAN.

In Kripke semantics, agents A’s knowledge is interpreted through an epis-
temic possibility relation ∼A between states: At the current system state,
agent A knows that message M has property p, if M has property p at all
epistemically possible system states. Logical omniscience (the rule of nor-
mality) is inescapable, no matter how the epistemic possibility relation ∼A is
defined. Therefore, as (2) above illustrates, every extension to BAN is incom-
plete with respect to any Kripke semantics, assuming that the extension stays
faithful to the intended meaning of knowledge in BAN. Moreover, this gap
between the obtained validities and the intended meaning can become even
more severe as new predicates are added, as (5) shows. As it happens, all
semantics for BAN and BAN-like logics, except for [6], are based on Kripke
semantics (cf. [1,7,12,19,20,21,22,26]).

Outside the BAN literature, various semantics avoid logical omniscience,
but at the price of a drastic break with Kripke semantics (cf. [9,16,19]).
Recently, however, we showed (cf. [6]) how to avoid logical omniscience in
a mild generalization of Kripke semantics, inspired by so-called counterpart
semantics [15]. The idea is to modify Kripke semantics by permuting the data
(i.e., cryptographic messages) as we follow the epistemic possibility relation:
Agent A knows that message M has property p, if at every epistemically
possible system state, the message correlated to M satisfies property p. Due
to the permutation of messages, agents are no longer logically omniscient.

In [6] we established some of the basic properties of the generalized Kripke
semantics, including soundness. Here, we extend this work to show that a
faithful version of BAN is decidable and complete with respect to message
passing systems. We note that completeness for the original BAN logic [4]
cannot be expected. The original logic, as its authors make clear, leaves out
rules that are validated by any reasonable semantics, for instance generaliza-
tions to iterated modalities.

Our axiomatization uses, to begin with, some axioms specific to message
passing systems, including receiving introspection (3). The axiomatization
uses, in addition, standard modal axioms K, T, 4 and 5, but excludes the rule
of necessitation. The latter is weakened so that agents can only infer “‘feasibly
computable” theorems. Applying this weakening, we recover a substantial
part of original BAN logic, including the above mentioned message meaning
principle.



To obtain completeness and decidability, we transfer canonical model and
filtration constructions from Kripke semantics: After lifting the semantics
from concrete message passing systems to abstract counterpart models [15],
we build a canonical counterpart model, and then filter it into a finite message
passing system.

The rest of the paper is organized as follows. Section 2 defines our language
and reviews message passing systems. Section 3 interprets the language on
message passing systems using the generalized Kripke semantics. Section 4
defines a proof system which extends original BAN logic. Section 5 shows
the proof system to be sound, complete and decidable. Section 6, finally,
concludes.

2 Language and System

2.1 Language of Full Propositional BAN

We assume a language of propositional epistemic logic with atomic statements
specialized for message passing systems. Messages are generated by:

M, K ::= c | M · K | {M}K

where c ranges over a countable set C of message atoms (“constants”), · rep-
resents pairing and {−}− represents symmetric encryption. Assume a finite
subset A ⊆ C of agent names A, B, C, . . . The sub-message relation ≤ is the
smallest reflexive and transitive relation on messages such that M ≤ {M}K ,
K ≤ {M}K , M ≤ M ·M ′ and M ′ ≤ M ·M ′. A message space is a non-empty
set of messages closed under ≥, i.e., if M ≥ M ′ then the space contains M ′

if it contains M . We fix a finite message space T ; A message M is, from
now on, a message in the fixed space T . 1 The proofs of completeness and
decidability in section 5 depend on this restriction to a finite message space.
Atomic predicates p are as follows:

p ::= A received | A rec | A sent | A sen | A infers | unfresh | exists

The intended meaning is straightforward: A received M if agent A received
message M from the network, A rec M if M is a sub-message of some message
A received; The intended meaning of a sent M and a sen M are analogous;
A infersM if agent A deduces (“knows”) the message M and can use it as
decryption key; unfresh M if M is a sub-message of some message sent in an
old session; exists M if M is a sub-message of some message some agent or
other communicated. The set F of statements F is generated by:

F ::= p(M) | 2AF | F ∧ F | ¬F

1 We assume A ⊆ T .



where 2A is the epistemic modality for A, read “Agent A knows that”. Define
disjunction (∨), implication (→), equivalence (↔) and truth (⊤) in the usual
way. Write

∧
1≤i≤n

Fi for the nested conjunction F1 ∧ · · ·∧Fn, and let
∧

1≤i≤0

Fi be

⊤. For a set κ of messages, write A infers κ for the conjunction
∧

M∈κ

A infers M .

For a set ∆ of statements, write 2A∆ for the set {2AF | F ∈ ∆}.

The modality 2A is the only “epistemic” language construct; None of the
primitive predicates involve the notion of “feasible cryptographic computa-
tion” – except, of course, the predicate A infers. But, this predicate will be
eliminable in the logics we consider, and is kept for presentation purposes only.
By contrast, predicates in original BAN (and its successors), for instance sees,
said and secret, do depend on a model of “feasible decryptability”. Instead,
these “epistemic” predicates from original BAN are introduced as abbrevia-
tions, similar to [19]:

• A sees M =df 2AA rec M

• A said M =df 2AA sen M

• M secret of G =df (
∨

A∈G

A infers M) ∧ (
∧

A 6∈G

¬A infers M)

where G is a non-empty group of agents. As (5) in section 1 shows, the
adequacy of the above abbreviations requires that the epistemic modality fails
logical omniscience (the rule of normality). 2

Our language differs in other respects from the original BAN language [4].
First, original BAN has some constructs for asymmetric cryptography. Sec-
ond, there is no negation operator in original BAN, although several extensions
and variations to BAN do add negation (cf. [1,12,19,21,22,26]). Third, original
BAN includes messages that contain statements, so called idealized messages.
(As example 4.9 will illustrate, idealized messages can be replaced by explicit
protocol assumptions.) Fourth, we have dropped predicates good and controls;
good is dropped because it is analogous to secret, and controls is dropped since
it becomes superfluous when the epistemic modality is interpreted as knowl-
edge rather than belief [19]. We refer to [23] for a comprehensive presentation
of original BAN.

While our choice of basic predicates is intended to be representative of
the BAN-literature, the choice is not intended to be canonical; The focus in
this paper is on BAN’s epistemic modality, and not on the specific choice of
basic predicates. Our predicate infers appears (under various names, such as
“deduces”, “possesses”, “knows”, “has”) in most extensions to BAN logic (cf.
[1,3,10,19,21,23,26]), predicates received and sent appear, for instance, in BAN
extensions in [12,19,20], and predicates rec and sen in [12,19].

2 In [19], therefore, similar abbreviations use an epistemic modality for resource bounded,
so called algorithmic knowledge, without a Kripke semantics.



2.2 Message Passing System

We assume a standard form of message passing system, where agents take
turns to send and receive messages [9,18]. Freshness of messages will be deter-
mined along the lines of [1], using a special action begin epoch that signals the
start of a new time period (“epoch”). To aid the completeness construction,
we also add a set of internal (“silent”) actions; These will be used to enforce
message correlations in the canonical countermodel to non-theorems.

The details are as follows. Actions π are:

π ::= A sendsM | A receivesM | A int M | begin epoch

where int ranges over a finite set of primitive internal actions. An execution
history is a sequence h of the form:

h ::= i | h · π

where i : A −→ 2T ; The initialization i assigns a set i(A) of messages to
agent A, the messages A possesses when execution begins. A system is a
non-empty set H of execution histories, informally the set of executions of
some underlying protocol. Since H need not be closed under prefixing, H

may consist of only completed protocol runs.

The local history of agent A in history h, in symbols h|A, is the sequence
of observations that A makes during h:

(h · A sendsM)|A = (h|A) · A sendsM

(h · B sendsM)|A = (h|A), B 6= A

(h · A receivesM)|A = (h|A) · A receivesM

(h · B receivesM)|A = (h|A), B 6= A

(h · A int M)|A = (h|A) · A int M

(h · B int M)|A = (h|A), B 6= A

(h · begin epoch)|A= (h|A) · begin epoch

i|A= init i(A)

where initκ represents a local initialization which generates the set κ of mes-
sages. In short, agents observe the “global time” and their own communication
actions and internal actions.

We introduce the auxiliary notion of action trace. An action trace is a
finite, possibly empty sequence θ of initializations, local initializations and
actions:

θ ::= ǫ | θ · i | θ · initκ | θ · π

where ǫ is the empty sequence and κ ⊆ T . Thus, histories h and local histories
h|A are action traces. Write actions(θ) for the set of actions occurring in action
trace θ:



actions(ǫ)= ∅

actions(θ · i)= actions(θ) ∪ {i}

actions(θ · init κ)= actions(θ) ∪ {init κ}

actions(θ · π)= actions(θ) ∪ {π}

Write messages(θ) for the set of the messages initially possessed or communi-
cated in θ:

messages(ǫ) = ∅

messages(θ · i) = messages(θ) ∪
⋃

ran(i)

messages(θ · initκ) = messages(θ) ∪ κ

messages(θ · A sendsM) = messages(θ) ∪ {M}

messages(θ · A receivesM) = messages(θ) ∪ {M}

messages(θ · begin epoch)= messages(θ)

messages(θ · A int M) = messages(θ)

where ran(i) is the range of i.

2.3 Interpretation of Predicates

A predicate interpretation I on a system H assigns, to each predicate p and
history h ∈ H , an extension I(p, h) ⊆ T . An interpreted system based on H

is a pair I = 〈H, I〉, where I is an interpretation on H . The interpretation of
predicate A infers is left open until section 3.3. For remaining predicates, we
assume the following fixed interpretation:

I(A sent, h) = {M | (A sendsM) ∈ actions(h)}

I(A received, h) = {M | (A receivesM) ∈ actions(h)}

I(A rec, h) = {M | ∃M ′ ≥ M. A receivesM ′ ∈ actions(h)}

I(A sen, h) = {M | ∃M ′ ≥ M. A sendsM ′ ∈ actions(h)}

I(exists, h) = {M | ∃M ′ ≥ M. M ′ ∈ messages(h)}

The predicate unfresh is interpreted along the lines of [1], through the begin epoch
action: I(unfresh, h) contains sub-messages of messages sent prior to the latest
epoch, i.e., M ∈ I(unfresh, h), if and only if,

h = θ− · begin epoch · θ+ and M ∈ I(A sen, θ−)

for some A ∈ A and some action traces θ− and θ+. The interpretation of
unfresh is not critical. Other accounts can be dealt with by routine changes.
Admittedly, the interpretation of exists is somewhat ad hoc, since messages(h)
need not contain messages acted upon internally, i.e., messages(h) need not
include the message M even if (A int M) ∈ actions(h); The interpretation of
exists is chosen so as to facilitate the completeness construction.



3 Semantics

3.1 Kripke Semantics

In Kripke semantics, the epistemic modality 2A is interpreted through an epis-
temic possibility relation ∼A between states, in our case histories, as follows:

h |=I 2AF ⇔ ∀h′ ∈ H : h ∼A h′ ⇒ h′ |=I F

Intuitively, h ∼A h′ means that h and h′ appear identical from the point of
view of A. Truth conditions for Boolean operators and atomic statements are
as expected:

h |=I p(M)⇔M ∈ I(p, h)

h |=I F ∧ F ′ ⇔h |=I and h |=I F ′

h |=I ¬F ⇔h 6|=I F

Entailment and validity are also defined as usual. For a set ∆ of statements,
write h |=I ∆ if h |=I F for all F ∈ ∆. A set ∆ entails a statement F in
interpreted system I, written ∆ |=I F , if for all histories h ∈ H , if h |=I ∆
then h |=I F . A statement F is valid in I, written |=I F , if the empty set
entails F in I.

The epistemic possibility relation has a default definition for message pass-
ing systems, due to [9,18]: h ∼A h′, if and only if, h|A = h′|A. This default
definition is used in, for instance, [19,20] to interpret BAN’s epistemic modal-
ity. However, the default definition does not reflect the limited decryption
power of agents, as is intended in BAN logic.

Example 3.1 Consider an interpreted system I = 〈H, I〉 such that H con-
tains exactly two execution histories hB and hC . In hB, agent B encrypts her
own name and send the encryption to agent A, while in hC , agent C encrypts
her own name and send the encryption to agent A:

hB = i · B sends {B}K · A receives {B}K

hC = i′ · C sends {C}K ′ · A receives {C}K ′

where i(A) = ∅, i(B) = {K}, i(C) = ∅ and i′(A) = ∅, i′(B) = ∅ and
i′(C) = {K ′}. It is reasonable to assume that neither at hB nor at hC can agent
A decrypt the received cryptogram: Histories hB and hC are indistinguishable
to A. In other words, agent A does not know who (of agents B and C) sent
the cryptogram received. Contrary to this intuition, the default definition of
∼A makes agent A know who sent the message: hB |=I 2AB sent {B}K .

To avoid unintended consequences like those in example 3.1, the AT seman-
tics [1], and its descendants [22,26] weaken the requirement of local history
identity, so as to hide cryptographically inaccessible parts of the local his-
tory. Roughly, h ∼A h′ if h|A and h′|A are equivalent up to the structure
of unopened (undecrypted) ciphertexts. However, even after thus hiding in-
accessible parts of the local history, the semantics still remain unfaithful to



BAN. 3 There are two main problems: First, AT-style semantics invalidates
BAN’s message meaning rule, since AT-style semantics invalidates receiving
introspection (3) in section 1.

Example 3.2 Receiving introspection fails in example 3.1. Clearly, hB |=I

A received {B}K . However, in AT-style semantics, we have that hB ∼A hC ,
and therefore hB 6|=I 2AA received {B}K , since hC 6|=I A received {B}K .

Furthermore, no matter how ∼A is weakened, logical omniscience is un-
avoidable in any Kripke semantics, resulting in validities that are not intended
in BAN, such as (2) in section 1.

3.2 Generalized Kripke Semantics

Our departure from AT semantics, and from Kripke semantics in general,
starts by making the epistemic possibility relation ∼A record message corre-
spondences between histories.

Example 3.3 Continuing example 3.1, cryptogram {B}K at hB corresponds
to (“is a counterpart of”) cryptogram {C}K ′ at hC , in the sense that everything
that agent A observes of {B}K at hB, agent A also observes of {C}K ′ at hC .
In each case, A observes that the message is received, the message cannot be
opened, etc.

To make ∼A keep track of message correspondences, we relativize it to
a message permutation (counterpart mapping), a bijection ρ on the set of
messages. Informally, h ∼ρ

A h′ if any message M at h corresponds for A to
ρ(M) at h′. Formally, for h ∼ρ

A h′ to hold, we require that ρ respects the
observations (actions) of A in h, i.e., we require that

• ρ(h|A) = h′|A

where ρ is extended to local histories by point-wise application: ρ(initκ) =
init {ρ(M) | M ∈ κ}, ρ(h|A · A receivesM) = ρ(h|A) · A receives ρ(M),
etc. Moreover, for h ∼ρ

A h′ to hold, we require that ρ is consistent with
(“respects”) the keys I(A infers, h) available to agent A at h.

Definition 3.4 [Consistent Permutation] Permutation ρ is consistent with
κ ⊆ T , in symbols ρ ⊳ κ, if and only if,

(i) K ∈ κ ⇒ ρ({M}K) = {ρ(M)}ρ(K)

(ii) ρ(M · M ′) = ρ(M) · ρ(M ′)

(iii) ρ(c) = c, for c ∈ C

For a set κ ⊆ T , let ρ(κ) = {ρ(M) | M ∈ κ}.

Lemma 3.5 The following hold:

• ρ ⊳ κ, κ ⊇ κ′ =⇒ ρ ⊳ κ′ (Monotonicity)

3 But we acknowledge that only [1] was so intended.



• id ⊳ κ (Reflexivity)

• ρ ⊳ κ, ρ′ ⊳ ρ(κ) =⇒ (ρ′ ◦ ρ) ⊳ κ (Transitivity)

• ρ ⊳ κ =⇒ ρ−1 ⊳ ρ(κ) (Symmetry)

Proof. Monotonicity and reflexivity: Immediate. Transitivity: Assume that
ρ ⊳ κ and ρ′ ⊳ ρ(κ). We show that ρ′ ◦ ρ respects encryption with keys
in κ (i.e., condition 1 in definition 3.4), showing that r′ ◦ r respects clear
text (i.e., conditions 2 and 3 in definition 3.4) is trivial. Assume that K ∈
κ. By the assumptions, ρ({M}K) = {ρ(M)}ρ(K) and ρ′({ρ(M)}ρ(K)) =
{ρ′(r(M))}ρ′(ρ(K)). Thus, (ρ′ ◦ ρ)({M}K) = ρ′(ρ({M}K)) = ρ′({ρ(M)}ρ(K)) =
{ρ′(r(M))}ρ′(ρ(K)) = {(ρ′ ◦ ρ)(M)}(ρ′◦ρ)(K). Symmetry: Assume that ρ ⊳ κ.
We show that ρ−1 respects encryption with keys in ρ(κ) (i.e., condition 1 in
definition 3.4), showing that ρ−1 respects clear text (i.e., conditions 2 and 3
in definition 3.4) is analogous. Assume that K ∈ ρ(κ), i.e., ρ−1(K) ∈ κ. By
the assumption, ρ({ρ−1(M)}ρ−1(K)) = {ρ ◦ ρ−1(M)}ρ◦ρ−1(K) = {M}K . Thus,
ρ−1({M}K) = ρ−1 ◦ ρ({r−1(M)}ρ−1(K)) = {ρ−1(M)}ρ−1(K). 2

Conjoining the two requirements on ∼ρ
A, we stipulate that h ∼ρ

A h′ if ρ

carries h|A to h′|A and ρ is consistent with the keys available to A at h.

Definition 3.6 [Relativized Possibility Relation] h ∼ρ
A h′ in I, if and only if,

• ρ(h|A) = h′|A

• ρ ⊳ I(A infers, h)

Example 3.7 Continuing example 3.1, we may stipulate that agent A infers
only the messages received, i.e., I(A infers, hB) = {{B}K}. Let ρ be the
substitution on messages that swaps {B}K and {C}K ′. Then, ρ({B}K) =
{C}K ′, so ρ(hB|A) = hC |A. Moreover, ρ ⊳ I(A infers, hB), hence hB ∼ρ

A hC in
I. Thus, {B}K at hB corresponds for A to {C}K ′ at hc.

Given the relativized epistemic possibility relation, we say that an agent
knows a statement if corresponding statements hold at epistemically possible
histories; We lift permutations to statements in the obvious way: ρ(p(M)) =
p(ρ(M)), ρ(2AF ) = 2Aρ(F ), etc.

Definition 3.8 [Generalized Kripke]

h |=I 2AF ⇔ ∀ρ : ∀h′ ∈ H : h ∼ρ
A h′ ⇒ h′ |=I ρ(F )

Remaining truth conditions, as well as the notion of validity, are preserved
from section 3.1. The break with Kripke semantics should be clear. We check
a corresponding statement ρ(F ) at h′, and not the original statement F . As
a result, agents are no longer logically omniscient, as the following example
illustrates.

Example 3.9 Consider the interpreted system I of example 3.7. We obtain
(cf. soundness of axiom I in theorem 5.1), hB |=I 2AA received {B}K . If we



pick the permutation ρ from example 3.7, then ρ(B) = B and hB ∼ρ
A hC .

Since hC 6|=H A rec ρ(B), we have hB 6|=I 2AA rec B. This contradict logical
omniscience, since A received {B}K |= A rec B.

The consistency relation ⊳ is related to the states of knowledge and belief
of [2,24]. The definition 3.4 of ⊳ is not intended to be canonical: There are
alternative, equally reasonable, definitions. Most obviously, requirement (iii),
which reflects the assumption that atoms are “plain text”, could be restricted
to atoms in A. As another example, it might, perhaps, be reasonable to
restrict requirement (ii) to messages in the given set κ:

M ∈ κ, M ′ ∈ κ⇒ ρ(M · M ′) = ρ(M) · ρ(M ′)

M · M ′ ∈ κ⇒ ρ(M · M ′) = ρ(M) · ρ(M ′)

However, with this restriction, soundness for classical BAN (section 4.1) would
fail. (Specifically, BAN rules R7 and R8 in table 1 would be unsound.) As
regards the requirement that ρ must be a permutation, we note that symmetry
of ⊳ in lemma 3.5 depends on this requirement.

3.3 Inductive Interpretation

So far, we left the interpretation of infers open. However, a notion of message
inference is implicit in original BAN [4]: An agent infers a key if the agent
knows the key to be secret. 4 In symbols:

2AK secret of G → A infers K (6)

Extrapolating from (6), we obtain:

A infers K ↔ 2A

∨

p

p(K)

where p ranges over a selected set of relevant predicates. Here, for simplicity,
we shall take exists to be the only relevant predicate:

A infers K ↔ 2AexistsK (7)

However, the stipulation (7) requires a recursive definition, since the epistemic
modality 2A is defined in terms of the relativized possibility relation, which,
in turn, is defined through the interpretation of A infers (definition 3.6).

Definition 3.10 [Fixed Point Interpretation] An interpretation function I is
a fixed point on a system H , if condition (7) holds in the interpreted system
I = 〈H, I〉.

An inductive, rather than a co-inductive interpretation of A infers is ap-
propriate, since I(A infers, h) should assign the set of keys that agent A has

4 Cf. rules R1, R4 and R9 in table 1.



gathered some positive information about at history h. We introduce some
terminology. Interpretation I is smaller than I ′, I ≤ I ′ if I(A infers, h) ⊆
I ′(A infers, h) for all A ∈ A and all h ∈ H . 5

Definition 3.11 [Inductive Interpretation] Interpretation I is inductive on
system H , if I is a minimal fixed point on H . System I = 〈H, I〉 is inductive
if I is inductive on H .

Theorem 3.12 There is a unique inductive interpretation on every system.

Proof. From monotonicity of ⊳ (lemma 3.5). Let f be a function in the set
of interpretations on system H such that:

f(I)(A infers, h) = {K | h |=〈H,I〉 2AexistsK}

Assume that I is smaller than I ′, i.e., I(A infers, h) ⊆ I ′(A infers, h) for all A ∈
A and h ∈ H . Assume that K ∈ f(I)(A infers, h), i.e., h |=〈H,I〉 2AexistsK.
We proceed to show that h |=〈H,I′〉 2AexistsK. Pick any h′ ∈ H and per-
mutation ρ such that h ∼ρ

A h′ in 〈H, I ′〉, i.e., such that ρ(h|A) = h′|A and
ρ ⊳ I ′(A infers, h). By monotonicity of ⊳ (lemma 3.5), ρ ⊳ I(A infers, h).
Thus, h ∼ρ

A h′ in 〈H, I〉. By assumption, h′ |=〈H,I〉 exists ρ(K), i.e., h′ |=〈H,I′〉

exists ρ(K). Since h′ and ρ were chosen arbitrary, it follows that h |=〈H,I′〉

2AK, i.e., K ∈ f(I ′)(A infers, h). This establishes that f is monotone, and
therefore has a unique least fixed point. 2

Lemma 3.13 In inductive systems I:

(i) h ∼id
A h

(ii) h ∼ρ
A h′, h′ ∼ρ′

A h′′ =⇒ h ∼ρ′◦ρ
A h′′

(iii) h ∼ρ
A h′ =⇒ h′ ∼ρ−1

A h

Proof. (i): From reflexivity of ⊳ (lemma 3.5). (ii): From transitivity of ⊳

(lemma 3.5) and fixed point induction. (iii): From symmetry of ⊳ (lemma 3.5)
and fixed point induction. The fixed point induction is rather involved in each
case. For details, we refer to [5,6]. 2

According to (iii) in lemma 3.13, the apparent asymmetry in the definition
of the epistemic possibility relation disappears in inductive models. As a non-
inductive countermodel to (iii), consider the system H in example 3.1 with
an interpretation I such that I(A infers, hB) = {K} and I(A infers, hC) =
∅. Logical omniscience fails in inductive interpreted systems; The model in
example 3.9 is an example.

From now on, if no interpretation I is given, we implicitly assume the
inductive interpretation: h |=H F , if and only if, h |=I F for the inductive
interpreted system I based on H ; Statement F is valid in system H if h |=H F

for all h ∈ H .

5 Recall that the interpretation of predicates other than infers is fixed.



Many semantics proposed for BAN and BAN-like logics uses a customary
Dolev-Yao style, operational definition of inferred messages [8]: Roughly, a
message is inferred if it is an initial possession, or if it is received, or if it is the
first or second pairing component of an inferred message, or if it is the body
of an inferred symmetric encryption locked with an inferred key. In [5], it is
shown that the inductive interpretation (definition 3.11) is at least as inclusive
as a Dolev-Yao style interpretation, and that the two interpretations agree on
atomic messages under certain reasonable requirements on message passing
systems. For composite messages, it is shown that the inductive interpretation
withstands the well-known Duck-Duck-Goose counter example [11] to Dolev-
Yao style interpretations.

4 Logic

4.1 Classical BAN Logic

We introduce rules of original BAN logic [4] as requirements on theories. A
theory is a set L of statements such that L contains all Boolean tautologies
and L is closed under modus ponens, i.e., if F → F ′ ∈ L and F ∈ L then
F ′ ∈ L. A statement F is derivable from a set ∆ of statements in theory L,
∆ ⊢L F , if there is a finite number of statements F1, ..., Fn ∈ ∆ such that
(

∧
1≤i≤n

Fi) → F ∈ L. As usual, we write ⊢L F for ∅ ⊢L F , and we omit the

subscript L whenever L is clear from the context. Let fromB : M abbreviate,
say, B · M .

Definition 4.1 [Classical BAN] A theory is a classical BAN logic if it satisfies
all conditions in table 1.

Note that rule R1, the well-known message meaning rule, assumes that
agents are honest, in the sense that the first component inside a cipher text,
if locked with a secret key, is a reliable sender field.

In definition 4.1, we define a class of logics, rather than a single logic, since
the original BAN logic is open ended and leaves out rules that are intuitively
valid. For instance, seeing introspection:

A sees M ⊢ 2AA sees M (8)

is not part of the original BAN logic, even though it is clearly implicit in
requirement R1. 6 As another illustration, all requirements may be generalized
to iterated modalities. For instance, requirement R2 may be generalized to
2A2B C sees M · M ′ ⊢ 2A2BC sees M .

While the definition 4.1 keeps close to the original definition of BAN logic
in [4], it nonetheless simplifies the original definition. As explained in section

6 Some BAN extensions add the seeing introspection rule, cf. [3].



R1 A sees {fromB : M}K , 2AK secret of G ⊢ 2A B said M , B ∈ G

R2 A sees M · M ′ ⊢ A sees M

R3 A sees M · M ′ ⊢ A sees M ′

R4 A sees {M}K , 2AK secret of G ⊢ A sees M

R5 2AB said M · M ′ ⊢ 2AB said M

R6 2AB said M · M ′ ⊢ 2AB said M ′

R7 2Afresh M ⊢ 2Afresh M · M ′

R8 2Afresh M ′ ⊢ 2Afresh M · M ′

R9 2Afresh M, 2AK secret of G ⊢ 2Afresh {M}K

R10 2AF ⊢ F

Table 1
Classical BAN

2.1, original BAN logic includes idealized messages, language constructs for
public key as well as some further predicates.

4.2 BAN Theories

Since the definition 4.1 of classical BAN logics leaves out intuitively valid
rules (as does original BAN logic itself), we should not expect completeness
for an arbitrary classical BAN logic; We need stronger proof rules. Write
∃M ′ ≥ M.F (M) for the finite disjunction

∨
M ′≥M

F (M ′). 7

Definition 4.2 [BAN Theory] A theory L is a BAN theory, if and only if, L

contains the axioms and is closed under the rules in table 2.

7 Since the message space is finite, there are finitely many M
′.



Weakening of S5

PNec
ρ(F ), ∀ρ ⊳ κ

A infers κ → 2AF

K 2A(F → F ′) → 2AF → 2AF ′

T 2AF → F

4 2AF → 2A2AF

5 ¬2AF → 2A¬2AF

Introspection

I pA(M) → 2ApA(M), pA ∈ {A received, A sent}

Infers Reduction

Red A infers K ↔ 2Aexists K

Global Clock

GC unfresh M → ∃M ′ ≥ M.
∨

A∈A

(A sent M ′ ∧ 2Aunfresh M ′)

Monotonicity

Mono p(M) → p(M ′), M ≥ M ′, p ∈ {exists , A rec, A sen, unfresh}

Predicates Mix

M1 A received M → A rec M

M2 A sent M → A sen M

M3 A received M → exists M

M4 A sent M → exists M

M5 A rec M → ∃M ′ ≥ M.A received M ′

M6 A sen M → ∃M ′ ≥ M.A sent M ′

M7 exists M → ∃M ′ ≥ M.
∨

A∈A

A infers M ′

Table 2
BAN Theory

The permutation necessitation rule PNec, which weakens the standard rule
of necessitation, formalizes the intuition that an agent knows all “feasibly



computable” theorems. To illustrate, from the set of statements

{exists {M}K → exists M | M, K ∈ T }

rule PNec yields the statement A infers K → 2A(exists {M}K → exists M).
The rule PNec is quasi-semantic in that it uses the consistency relation ⊳. But,
since there are finitely many permutations, rule PNec is finitary, i.e., involves a
finite set of premises. When combined with axiom K, PNec yields a weakening
of normality, according to which an agent knows “feasibly computable” logical
implications of what the agent knows. Extend permutations to sets ∆ of
statements in the obvious way: ρ(∆) = {ρ(F ) | F ∈ ∆}.

Lemma 4.3 (Permutation Normality) Assume that L is a BAN theory
and assume that ρ(∆) ⊢L ρ(F ) for all ρ ⊳ κ. Then, A infersκ, 2A∆ ⊢L 2AF .

Proof. Assume that ρ(∆) ⊢L ρ(F ), ∀ρ ⊳ κ. Since the message space is finite,
there are only finitely many permutations. Let ρ1, ..., ρn be all permutations
ρ such that ρ ⊳ κ. For each i ∈ {1, ..., n} there is a finite ∆i ⊆ ∆ such that
ρi(∆i) ⊢L ρi(F ). Thus for each i ∈ {1, ..., n}: ρi(∆1, ..., ∆n) ⊢L ρi(F ). Since
∆1, ..., ∆n is finite, by rule PNec and axiom K : A infers κ, 2A(∆1, ..., ∆n) ⊢L

2AF . Since ∆i ⊆ ∆: A infers κ, 2A∆ ⊢L 2AF . 2

As its proof shows, lemma 4.3 depends on the restriction to a finite message
space.

Axioms K, T, 4 and 5 are standard for introspective knowledge. The
introspection axiom I says that an agent knows if it sent or received a message.
Axiom Red states that an agent infers a message precisely if the agent knows
it exists. According to axiom GC, any unfresh message M is part of some
message M ′ some agent A sent long ago. The axiom reflects the assumption
that the time is, to some extent, common knowledge: If agent A sent message
M ′ long ago, then agent A knows it sent M ′ long ago, and so knows that M ′

is unfresh. In a temporal logic extension, axiom GC would reduce to sending
introspection (axiom I), general epistemic-temporal interaction axioms and
non-epistemic axioms for predicates. The remaining axioms are non-epistemic
and straightforward. In particular, axiom Mono says that A rec, A sen, exists
and unfresh are monotone with respect to the sub-message relation ≥.

At first sight, it might appear as if predicates A rec and A sen are superflu-
ous: By axioms Mono, M1, M2, M5 and M6 it follows that every BAN theory
contains:

A rec M ↔ ∃M ′ ≥ M.A received M ′

A sen M ↔ ∃M ′ ≥ M.A sent M ′

Nonetheless, the predicates are not eliminable. For instance, BAN theories
need not contain any of the following: 8

8 Soundness theorem 5.1 can be used to show this.



2A∃M ′ ≥ M.A received M ′ → 2AA rec M

2A∃M ′ ≥ M.A sent M ′ → 2AA sen M

In the above implications, recall that ∃M ′ ≥ M.F (M ′) is just an abbreviation
of the disjunction

∨
M ′≥M

F (M ′).

4.3 Embedding of Classical BAN Logic

By way of the definitions in section 2.1 of classical BAN predicates sees, said
and secret, as well as the obvious abbreviation freshM =df ¬unfreshM , the
conditions of classical BAN can be derived using the following lemma.

Lemma 4.4 Assume that L is a BAN theory. Assume that ρ(∆) ⊢L ρ(F ) for
all ρ ⊳ {K}.

(i) 2A K secret ofG, 2A∆ ⊢L 2AF .

(ii) A seesK, 2A∆ ⊢L 2AF .

Proof. (1): From axiom Red and axiom T, K secret of G ⊢ exists K, i.e., by
lemma 4.3, 2AK secret of G ⊢ 2AexistsK, i.e., by axiom Red, 2AK secret of G ⊢
A infersK. By assumption and lemma 4.3, we reach (1). (2): From axioms
Mono, M3 and M5, A recK ⊢ exists K, i.e., by lemma 4.3, 2AA recK ⊢
2AexistsK, i.e., by axiom Red, A seesK ⊢ A infersK. By assumption and
lemma 4.3, we reach (2). 2

Theorem 4.5 BAN theories satisfy classical BAN conditions R2 - R10.

Proof. From axiom Mono and lemma 4.4. 2

In fact, through successive application of lemma 4.4, theorem 4.5 can be
generalized to classical BAN conditions with iterated modalities. For instance,
BAN theories satisfy the following generalization of condition R9 :

2A2BfreshM, 2A2BK secret ofG ⊢ 2A2Bfresh {M}K

To obtain classical BAN condition R1, we add an origination axiom:

Ksecret of G → A rec {fromB : M}K → (9)

B said {fromB : M}K ∧ B sees K

Theorem 4.6 Any BAN theory that contains the origination axiom (9) sat-
isfies classical BAN condition R1.

Proof. From axiom Mono, B sen {fromB : M}K ⊢ B sen M . By lemma
4.4.2, we obtain 2BB sen {fromB : M}K , B sees K ⊢ 2BB sen M , i.e.,
B said {fromB : M}K , B sees K ⊢ B said M . By lemma 4.4.1, we get
2AB said {fromB : M}K , 2AB sees K, 2AK secret of G ⊢ 2AB said M .
Condition R1 follows by lemma 4.4.1 applied to (9). 2



Of course, axiom (9) is only applicable to a group G of honest agents who
supply sender fields inside their ciphertexts. But, a weaker form of origination
axiom is more generally applicable:

Ksecret ofG → (A rec {M}K →
∨

B∈G

(B said {M}K ∧ B sees K) (10)

Proposition 4.7 Any BAN theory that contains the weaker origination ax-
iom (10) satisfies the condition:

A sees {M}K , 2AK secret ofG ⊢ 2A

∨

B∈G

B saidM

Proof. From axiom Mono, B sen {M}K ⊢ B sen M . By lemma 4.4.2, we
get B said {M}K , B sees K ⊢ B said M , i.e., we obtain

∨
B∈G

(B said {M}K ∧

B sees K) ⊢
∨

B∈G

B said M . Applying lemma 4.4.1, we obtain 2AK secret of G,

2A

∨
B∈G

(B said {M}K∧B sees K) ⊢ 2A

∨
B∈G

B said M . The proposition follows

by lemma 4.4.1 applied to (10). 2

Theorems 4.5 and 4.6 and proposition 4.7 provide some justification to
our definition of sees and said. The following proposition lends some further
support.

Corollary 4.8 Any BAN theory contains:

(i) A seesM → 2AA seesM

(ii) ¬A seesM → 2A¬A seesM

(iii) A saidM → 2AA saidM

(iv) ¬A saidM → 2A¬A saidM

(v) A receivedM → A seesM

(vi) A sentM → A saidM

Proof. (1): Axiom 4. (2): Axiom 5. (3): Axiom 4. (4): Axiom 5. (5):
From axiom M1 and lemma 4.3, 2AA receivedM → 2AA recM , i.e., by
axiom I, A receivedM → A seesM . (6): From axiom M2 and lemma 4.3,
2AA sentM → 2AA senM , i.e., by axiom I, A sentM → A saidM . 2

4.4 Theory Base

Theorem 4.6 and proposition 4.7 suggest that we might be interested in BAN
theories generated from a base of “extra axioms”. In fact, BAN-style protocol
analysis normally add protocol specific rules. 9

9 Either explicitly (cf. [14,22,26]) or implicitly by substituting “idealized” messages for
messages in the protocol description.



Example 4.9 Consider the Needham-Schröder Shared Key Protocol [17] be-
tween principals A and B and with key server S. If the server sends the cipher
text {N · B · K · M}KA

, and KA is A:s server key, then the server generated
K for A and B:

S said {N · B · K · M}KA
, KA secret of {A, S}, fresh N (11)

→ K secret of {A, B, S}

Furthermore, agent A does not send the kind of cipher texts sent by the key
server S:

KA secret of {A, S} → ¬A said {N · B · K · M}KA
(12)

Assume a BAN theory that contains protocol specific axioms (11) and (12), for
all keys N , K and Ka and all messages M , and contains the weaker origination
axiom (10) for G ={A, S}. Then, the BAN theory also contains the following
authentication specification:

A received {N · B · K · {K · A}KB
}KA

, 2AKAsecret of {A, S}, 2AfreshN

→ 2AK secret of {A, B, S}

stating that if A receives the message {N · B · K · {K · A}KB
}KA

from the
server, knows the key KA to this message, and knows that the nonce N

inside is fresh, then A knows that the key K provided inside is secret be-
tween A, B and S. The derivation proceeds as follows. From (12), we get
KA secret of {A, S},

∨
A′∈{A,S}

A′ said {N ·B ·K ·M}KA
⊢ S said {N ·B ·K ·M}KA

.

By lemma 4.4,

2AKA secret of {A, S}, 2A

∨

A′∈{A,S}

A′ said {N · B · K · M}KA
(13)

⊢ 2AS said {N · B · K · M}KA

From weak origination axiom (10) and lemma 4.4, we get 2AKA secret of {A, S},
A sees {N ·B ·K ·M}KA

⊢ 2A

∨
A′∈{A,S}

A′ said {N ·B ·K ·M}KA
. By corollary

4.8.5,

2AKA secret of {A, S}, A received {N · B · K · M}KA
(14)

⊢ 2A

∨

A′∈{A,S}

A′ said {N · B · K · M}KA

Combining (13) and (14),

2AKA secret of {A, S}, A received {N ·B·K·M}KA
⊢ 2AS said {N ·B·K·M}KA

The specification follows from this and the application of lemma 4.4 on (11).

We define the BAN theory induced by a finite set A of statements, in
symbols LA, as the smallest BAN theory containing the finite set A; We shall



refer to A as the theory base of LA. Note that the origination schemata (9)
and (10), as well as the protocol specific schemata (11) and (12) in example
4.9, are finite, since the message space is finite.

5 Soundness, Completeness and Decidability

Recall that a statement is valid in a message passing system H , if it is valid
in the inductive interpreted system I based on H . Write ‖∆‖ for the set of
all systems H validating all statements in ∆. The set ∆ is sound with respect
to a class C of systems, if C ⊆ ‖∆‖. The set ∆ is complete with respect to
C, if ∆ contains all statements valid in all systems in C.

Theorem 5.1 (Soundness) LA is sound with respect to ‖A‖.

Proof. Boolean tautologies and modus ponens: Routine. Rule PNec: As-
sume |=I ρ(F ), ∀ρ ⊳ κ. Pick any h ∈ H such that h |=I A infers κ. Then,
κ ⊆ I(A infers, h). Pick any ρ and h′ ∈ H such that h ∼ρ

A h′. Then,
ρ ⊳ I(A infers, h). By monotonicity of ⊳ (lemma 3.5), ρ ⊳ κ. By assump-
tion, |=I ρ(F ), and so h′ |=I ρ(F ). Since ρ and h′ were chosen arbitrar-
ily, h |=I 2AF . Axiom K : Routine. Axioms T, 4 and 5 : Lemma 3.13.
Axiom I : Assume that h |=I A receivedM and h ∼ρ

A h′ in I. From the
first assumption, A receivesM ∈ Actions(h|A), so by the second assump-
tion, A receives ρ(M) ∈ Actions(h′|A), i.e., h′ |=I A received ρ(M). Since h′

and ρ are arbitrary, h |=I 2AA receivedM . Axiom I for A sentM is analo-
gous. Axiom Red : Induction property (7). Axiom GC : Since agent A ob-
serves action begin epoch and action A sends, i.e., (h · begin epoch)|A =
(h|A)·begin epoch and (h·A sendsM)|A = (h|A)·A sendsM . Non-epistemic
axioms: Routine. 2

We obtain a strong form of completeness by showing that, for any given
protocol base A, any statement valid in systems defined by A is provable
using the rules and axioms of table 2, augmented by axioms taken from A.
The proof of completeness is deferred to section 5.1 below.

Theorem 5.2 (Completeness) LA is complete with respect to ‖A‖.

Thus, the protocol base A semantically guarantees a specification only if
the specification is a theorem of LA. Contrast this with the usual verification
practice in BAN, based on an open ended proof system: If the specification is
unprovable, it can be concluded that either the protocol assumptions do not
ensure the specification or the base logic needs to be extended (cf. [4,23]).

Completeness theorem 5.2 is evidence that our notion of validity is faithful
to BAN. In fact, since the protocol base is freely chosen, the theorem suggests
not only that validity with respect to all systems is faithful to BAN, but also
that validity with respect to selected classes of systems is faithful. Clearly,
applications such as model checking require the latter and stronger form of
faithfulness.



Theorem 5.3 (Decidability) LA is decidable.

5.1 Proof of Completeness and Decidability

We shall reach completeness and decidability by way of a finite model property:
If F is not a theorem of LA, then there is a finite system HF ∈ ‖A‖ such
that HF invalidates F . To construct the countersystem HF , we first lift the
semantics from systems to a more general class of structures, counterpart
models (section 5.1.1). We then build a canonical counterpart model CLA that
validates precisely the theorems of LA (section 5.1.2). Finally, we transform
CLA, while preserving validity of A and non-validity of F , into a finite system
HF (section 5.1.4).

5.1.1 Counterpart Model

We abstract from our semantics on systems to a semantics on abstract coun-
terpart models [15]. A counterpart model is a triple C = 〈W,−→, Int〉, where
W is a set of worlds (states), −→ρ

A⊆ W × W for each agent A ∈ A and each
message permutation ρ, and Int(p, w) is a set of messages, intuitively the set
of messages satisfying predicate p at w. Intuitively, w −→ρ

A w′ says that any
M at w, could, for all A knows, be ρ(M) at w′. The semantics of section 3.2
is generalized in the obvious way:

w |=C 2AF ⇔∀ρ : ∀w′ ∈ W : w −→ρ
A w′ ⇒ w′ |=C ρ(F )

w |=C p(M)⇔M ∈ Int(p, w)

Truth conditions for boolean operators are standard.

Counterpart models are used in counterpart semantics [15], a semantics
for first order modal logic. However, in counterpart semantics, one updates
the assignment to logical variables as one moves along the possibility relation
from one state to another, rather than, as we do here, update the terms inside
the evaluated statement F .

5.1.2 Canonical Counterpart Model

Next, we build a canonical counterpart model that validates precisely the
theorems of a given BAN theory. Assume a BAN theory L. A set ∆ of
statements is consistent if there is no statement ¬F such that ∆ ⊢ ¬F and
∆ ⊢ F . 10 ∆ is maximal consistent if there is no consistent set ∆′ such that
∆′ ⊃ ∆. Using the standard Lindenbaum construction we obtain:

Lemma 5.4 (Extension Lemma) If ∆ 6⊢ F , there is a maximal consistent
set ∆′ ⊇ ∆ such that F 6∈ ∆′.

The canonical counterpart model for BAN theory L is CL = 〈WL,−→
L

, IntL〉, where

10 Since the BAN theory L is clear from the context, we drop the subscripted L from ⊢L.



• WL is the set of all maximal consistent sets

• IntL(w, p) = {M | p(M) ∈ w}

• w −→ρ
A

L

w′ ⇔ ρ ⊳ IntL(A infers, w) and ∀F : 2AF ∈ w ⇒ ρ(F ) ∈ w′

Lemma 5.5 (Truth lemma) w |=CL
F ⇔ F ∈ w.

Proof. By induction in (the number of statement operators in) F , using per-
mutation normality (Lemma 4.3). The base case, for atomic F , is immediate.
The induction step, for boolean operators, uses standard properties of maximal
consistent sets. For the epistemic modality let w|A be the set {F | 2AF ∈ w}.
For the only-if direction first:

2AF 6∈ w

⇒ ρ(w|a) 6⊢ ρ(F ) & ρ ⊳ IntL(a uses, w), ∃ρ (By rule PNec) (15)

⇒ ρ(w|a) ⊆ w′ & ρ(F ) 6∈ w′, ∃w′ ∈ WL (By lemma 5.4) (16)

⇒w′ 6|=CL
ρ(F ) (By the ind. hyp.) (17)

⇒∀F : 2AF ∈ w ⇒ ρ(F ) ∈ w′ (By (16)) (18)

⇒w −→ρ
A

L

w′ (By (15) and (18)) (19)

⇒w 6|=CL
2AF (By (17) and (19))

For the if-direction:

2AF ∈ w & w −→ρ
A

L

w′ & w′ ∈ WL

⇒ ρ(F ) ∈ w′

⇒w′ |=CL
ρ(F ) (By the ind. ass.)

⇒w |=CL
2AF (By the assumptions)

2

The canonical counterpart model validates precisely all theorems.

Corollary 5.6 (Canonical Model Corollary) |=CL
F ⇔⊢L F .

Proof. From extension lemma 5.4 and truth lemma 5.5. 2

If w is related to w′ under permutation ρ, then ρ transforms what the
agent knows in w to what the agent knows in w′.

Lemma 5.7 If w −→ρ
A

L

w′, then 2AF ∈ w ⇔ 2Aρ(F ) ∈ w′.

Proof. From axioms 4 and 5. Assume that w −→ρ
A

L

w′.

2AF ∈ w

⇒2A2AF ∈ w (Axiom 4)

⇒2Aρ(F ) ∈ w′ (Since w −→ρ
A

L

w′)

For the converse:



2AF 6∈ w

⇒¬2AF ∈ w

⇒2A¬2AF ∈ w (Axiom 5)

⇒¬2Aρ(F ) ∈ w′ (Since w −→ρ
A

L

w′)

⇒2Aρ(F ) 6∈ w′

2

5.1.3 Filtration

In the section following this one, we transform the canonical model into a
system, while preserving validity of theorems and non-validity of a given non-
theorem F . In this section, we lay down conditions that assure that such a
transformation succeeds: We define a notion of filtration from a counterpart
model to an interpreted system, such that the filtration preserves truth values
in a set Γ of statements.

Assume a set Γ of statements, a counterpart model C = 〈W,−→, Int〉 and
an interpreted system I = 〈H, I〉. A relation  ⊆ W × H is a Γ-filtration
from C to I if whenever w  h then

(i) Int(p, w) = I(p, h)

(ii) w −→ρ
A w′ ⇒ ∃h′ ∈ H : w′

 h′, h ∼ρ
A h′

(iii) h ∼ρ
A h′ ⇒ ∃w′ ∈ W : w′

 h′, w |=C 2AF ⇒ w′ |=C ρ(F ), if 2AF ∈ Γ

From now on, we assume that Γ is closed in two respects: Γ is closed under
sub-statements, i.e., if F ∈ Γ and F ′ is a sub-statement of F then F ′ ∈ Γ, and
Γ is closed under message permutations, i.e., if F ∈ Γ and ρ is any permutation
of messages then ρ(F ) ∈ Γ. 11

Lemma 5.8 (Filtration Lemma) Assume that  is a Γ-filtration from C
to I, w  h and F ∈ Γ. Then, w |=C F ⇔ h |=I F .

Proof. By induction on F . The base case, for atomic F , is filtration condition
(i). The induction step, for boolean operators, is immediate. The induction
step, for the epistemic modality: Assume, first, h |=I 2AF .

w −→ρ
A w′

⇒w′
 h′ ∧ h ∼ρ

A h′, ∃h′ ∈ H (Filt.cond. (ii))

⇒ h′ |=I ρ(F ) (Since h |=I 2AF )

⇒w′ |=C ρ(F ) (Induct. assum., Γ is closed)

⇒w |=C 2AF (w′ and r are arbitrary)

For the converse, assume that w |=C 2AF .

h ∼ρ
A h′

⇒w′
 h′ ∧ (w |=C 2AF ⇒ w′ |=C ρ(F )), ∃w′ (Filt.cond. (iii))

11 Since the message space is finite, there are finitely many permutations.



⇒w′ |=C ρ(F ) (Since w |=C 2AF )

⇒ h′ |=I r(F ) (Induct. assum., Γ is closed)

⇒ h |=I 2AF (h′ and ρ are arbitrary)

2

5.1.4 Canonical System

We build a filtration from the canonical counterpart model CL = 〈WL,−→
L

, IntL〉 into an interpreted system, transforming each maximal consistent set
w into one or more histories h. To this end, we first transform an arbitrary
set ∆ of statements into two actions sets, a set Actions−(∆) of “old” actions
and a set Actions+(∆) of “recent” actions:

Actions−(∆)=
⋃

A∈A

Actions−(∆, A)

Actions+(∆)=
⋃

A∈A

Actions+(∆, A)

where Actions−(∆, A) is the set:

• {A sends M : (A sent M) ∈ ∆ ∧ (2AunfreshM) ∈ ∆}

and Actions+(∆, A) is the union of the following three sets:

(i) {A receives M : (A receivedM) ∈ ∆}

(ii) {A sends M : (A sent M) ∈ ∆ ∧ (2AunfreshM) 6∈ ∆}

(iii) {A intF : (2AF ) ∈ ∆}

In (iii), we assume that internal actions are of the form a intF , where F is
any statement. 12

Assume a set Γ of statements. We relate a state w in the canonical coun-
terpart model to a history h, in symbols w  h, if and only if, for some
initialization i and some action traces θ− and θ+:

• h = i · θ− · begin epoch · θ+

• i(A) = {M | (A infersM) ∈ w ∩ Γ}, A ∈ A

• Actions(θ−) = Actions−(w ∩ Γ)

• Actions(θ+) = Actions+(w ∩ Γ)

In order to obtain a finite system, we exclude any history that repeats actions,
i.e., contains at least two occurrences of the same action π(M). Thus, we define
the canonical system – the system that we filter the canonical counterpart
model into – as the set HL of all repetition-free histories obtained from states

12 This assumes a slightly different definition of internal action than that of Section 2.2.
Alternatively, we could introduce a intF as an abbreviation for an internal action of the
form a int M .



in WL:

HL = {h : ∃w ∈ WL s.t. w  h and h is repetition-free}

Let the canonical interpretation IL interpret predicates A sent , A received ,
A rec, A sen and exists according to the requirements in section 2.3:

IL(A sent, h) = {M | (A sendsM) ∈ actions(h)},

and so on for the other predicates. For the remaining predicate, A infers, let:

IL(A infers, i · θ) = i(A) (20)

Finally, set the canonical interpreted system to IL = 〈HL, IL〉. We proceed to
show that  is a Γ-filtration from CL to IL, under certain assumptions on Γ:
We assume, from now on, that Γ is finite and contains all atomic statements
and contains 2AA received M , 2AA sent M , 2AA infers M , 2Aexists M and
2Aunfresh M for all A ∈ A and messages M . 13 As before, we also assume
that Γ is closed under sub-statements and message permutations ρ.

Lemma 5.9 (Filtration Condition 1) If w  h, then IntL(p, w) = IL(p, h).

Proof. Assume that w  h. Case p = A received:

M ∈ IntL(A received, w)

⇔A received M ∈ w

⇔A received M ∈ w ∩ Γ (Since Γ contains atomic statements)

⇔A receives M ∈ Actions+(w ∩ Γ)

⇔A receives M ∈ Actions(h) (Since w  h)

⇔M ∈ IL(A received, h)

Case p = A rec:

M ∈ IntL(A rec, w)

⇔A rec M ∈ w

⇔A received M ′ ∈ w, ∃M ′ ≥ M (By M1, M5, Mono)

⇔M ′ ∈ IntL(A received, w), ∃M ′ ≥ M

⇔M ′ ∈ IL(A received, h), ∃M ′ ≥ M (By case p = A received)

⇔M ∈ IL(A rec, h)

Cases p = A sent and p = A sen are analogous. Case p = unfresh:

M ∈ IntL(unfresh, w)

⇔ unfresh M ∈ w

⇔A sent M ′, 2Aunfresh M ′ ∈ w, ∃A.∃M ′ ≥ M (By GC, T, Mono)

⇔A sent M ′, 2Aunfresh M ′ ∈ w ∩ Γ, ∃A.∃M ′ ≥ M (By conditions on Γ)

⇔A sends M ′ ∈ Actions−(w ∩ Γ), ∃A.∃M ′ ≥ M

⇔M ∈ IL(unfresh, h) (Since w  h)

13 Recall that the message space is finite.



Case p = exists: Let Actions(∆) = Actions−(∆) ∪ Actions+(∆).

M ∈ IntL(exists, w)

⇔ exists M ∈ w

⇔ (A sent M ′ ∨ A received M ′ ∨ A infers M ′) ∈ w, (By M7, M3, M4,

∃A.∃M ′ ≥ M and Mono,Red, T )

⇔A sent M ′ ∈ w ∩ Γ

or A received M ′ ∈ w ∩ Γ

or A infers M ′ ∈ w ∩ Γ, ∃A.∃M ′ ≥ M (By conditions on Γ)

⇔A sends M ′ ∈ Actions(w ∩ Γ)

or A receives M ′ ∈ Actions(w ∩ Γ)

or A infers M ′ ∈ w ∩ Γ, ∃A.∃M ′ ≥ M

⇔M ′ ∈ messages(h), ∃M ′ ≥ M (Since w  h)

⇔M ∈ IL(exists, h)

Case p = A infers:

M ∈ IntL(A infers, w)

⇔A infers M ∈ w

⇔A infers M ∈ w ∩ Γ (By conditions on Γ)

⇔M ∈ IL(A infers, h) (Since w  h)

2

Lemma 5.10 (Filtration Condition ii) If w  h and w −→ρ
A

L

w1, there is

h1 ∈ HL such that w1  h1 and h ∼ρ
A h1 in IL.

Proof. Assume that w  h and w −→ρ
A

L

w1. From the latter assump-

tion, ρ ⊳ IntL(A infers, w), i.e., by lemma 5.9 and the first assumption, ρ ⊳

IL(A infers, h). Pick some h1 ∈ HL such that w1  h1. Let:

h|A =(init κ) · θ− · begin epoch · θ+

h1|A =(init κ1) · θ
−
1 · begin epoch · θ+

1

for some action traces θ−, θ+, θ−1 , θ+
1 and sets κ, κ1 ⊆ T . We shall show that:

ρ(κ) =κ1 (21)

ρ(Actions(θ−)) =Actions(θ−1 ) (22)

ρ(Actions(θ+)) =Actions(θ+
1 ) (23)

The lemma then follows by shuffling the inside of θ−1 and the inside of θ+
1 :

After shuffling, we obtain ρ(h|A) = h1|A, and so h ∼ρ
A h1, but still h1 ∈ HL

and w1  h1. For (21):

M ∈ κ

⇔ (A infersM) ∈ w ∩ Γ (Since w  h)

⇔ (A infersM) ∈ w (By conditions on Γ)

⇔ (2AexistsM) ∈ w (By Red)



⇔ (2Aexists ρ(M)) ∈ w1 (By lemma 5.7, w −→ρ
A

L

w1)

⇔ (A infers ρ(M)) ∈ w1 (By Red)

⇔ (A infers ρ(M)) ∈ w1 ∩ Γ (By conditions on Γ)

⇔ ρ(M) ∈ κ1 (Since w1  h1)

For (22):

A sends M ∈ Actions(θ−)

⇔A sends M ∈ Actions−(w ∩ Γ) (Since w  h)

⇔ (A sent M) ∈ w ∩ Γ

and (2AunfreshM) ∈ w ∩ Γ

⇔ (2AA sent M) ∈ w ∩ Γ

and (2AunfreshM) ∈ w ∩ Γ (By I, T , conditions on Γ)

⇔ (2AA sent ρ(M)) ∈ w1 ∩ Γ

and (2Aunfresh ρ(M)) ∈ w1 ∩ Γ (By lemma 5.7, w −→ρ
A

L

w1)

⇔ (A sent ρ(M)) ∈ w1 ∩ Γ

and (2Aunfresh ρ(M)) ∈ w1 ∩ Γ (By I, T )

⇔A sends ρ(M) ∈ Actions−(w1 ∩ Γ)

⇔A sends ρ(M) ∈ Actions(θ−1 ) (Since w1  h1)

To establish (23), we show that A receives M ∈ Actions(θ+) if and only if
A receives ρ(M) ∈ Actions(θ+

1 ), and similarly for internal and send actions.
For receive actions:

A receives M ∈ Actions(θ+)

⇔A receives M ∈ Actions(h)

⇔A receives M ∈ Actions+(w ∩ Γ) (Since w  h)

⇔A received M ∈ w ∩ Γ

⇔2AA received M ∈ w ∩ Γ (By I, T , conditions on Γ)

⇔2AA received ρ(M) ∈ w1 ∩ Γ (By lemma 5.7 and

w −→ρ
A

L

w1 and conditions on Γ)

⇔A received ρ(M) ∈ w1 ∩ Γ (By I, T , conditions on Γ)

⇔A receives ρ(M) ∈ Actions+(w1 ∩ Γ)

⇔A receives ρ(M) ∈ Actions(h1) (Since w1  h1)

⇔A receives ρ(M) ∈ Actions(θ+
1 )

The proof for internal actions is similar and left to the reader. For send actions:

A sends M ∈ Actions(θ+)

⇔A sends M ∈ Actions+(w ∩ Γ) (Since w  h)

⇔ (A sent M) ∈ w ∩ Γ

and (2AunfreshM) 6∈ w ∩ Γ



⇔ (2AA sent M) ∈ w ∩ Γ

and (2AunfreshM) 6∈ w ∩ Γ (By I, T , conditions on Γ)

⇔ (2AA sent ρ(M)) ∈ w1 ∩ Γ

and (2Aunfresh ρ(M)) 6∈ w1 ∩ Γ (By lemma 5.7, w −→ρ
A

L

w1)

⇔ (A sent ρ(M)) ∈ w1 ∩ Γ

and (2Aunfresh ρ(M)) 6∈ w1 ∩ Γ (By I, T )

⇔A sends ρ(M) ∈ Actions+(w1 ∩ Γ)

⇔A sends ρ(M) ∈ Actions(θ+
1 ) (Since w1  h1)

2

Lemma 5.11 (Filtration Condition iii) Assume that h ∼ρ
A h′ in IL and

w  h. Then, there is w′ ∈ WL such that w′
 h′, and for all (2AF ) ∈ Γ:

w |=CL
2AF ⇒ w′ |=CL

ρ(F ).

Proof. Assume that w  h and h ∼ρ
A h′ in IL. Then, h′ ∈ HL, i.e., w′

 h′

for some w′ ∈ WL. Assume (2AF ) ∈ Γ. Then,

w |=CL
2AF

⇒ (2AF ) ∈ w ∩ Γ (By lemma 5.5)

⇒A intF ∈ Actions+(w ∩ Γ)

⇒A intF ∈ Actions(h) (By w  h)

⇒A int ρ(F ) ∈ Actions(h′) (By h ∼ρ
A h′)

⇒A int ρ(F ) ∈ Actions+(w′ ∩ Γ) (By w′
 h′)

⇒2Aρ(F ) ∈ w′

⇒ ρ(F ) ∈ w′ (By axiom T )

⇒w′ |=CL
ρ(F ) (By lemma 5.5)

2

Having thus established all three filtration conditions, we know that  is
a filtration.

Corollary 5.12  is a Γ-filtration from the canonical counterpart model to
the canonical interpreted system.

Proof. From lemmas 5.9, 5.10 and 5.11. 2

To reach completeness theorem 5.2, it remains to be shown that IL is
inductive.

Lemma 5.13 The canonical interpreted system is inductive.

Proof. We show first that the canonical interpretation function IL is fixed
point. Assume that w  h.

h |=IL
A infersK

⇔AinfersK ∈ w (Lemma 5.9)

⇔2AexistsK ∈ w (Axiom Red)



⇔ h |=IL
2AexistsK (Lemmas 5.5 + 5.8, corollary 5.12

and 2AexistsK ∈ Γ)

To show that IL is minimal, we show that if K ∈ IL(A infers, h) then h |=〈HL,I′〉

2Aexists K for any interpretation function I ′ on HL. 14

K ∈ IL(A infers, h) and h ∼ρ
A h′ in 〈HL, I ′〉 (24)

⇒K ∈ messages(h|A) (From (20) and (24)) (25)

⇒ ρ(h|A) = h′|A (From (24)) (26)

⇒ ρ(K) ∈ messages(h′|A) (From (25) + (26))

⇒ ρ(K) ∈ I ′(exists, h′)

⇒ h′ |=〈HL,I′〉 exists ρ(K)

⇒ h |=〈HL,I′〉 2AexistsK (Since h′ and ρ are arbitrary)

2

Lemma 5.14 (Finite Model Property) If 6⊢LA F , there is a finite system
H ∈ ‖A‖ such that 6|=H F .

Proof. From canonical model corollary 5.6, filtration lemma 5.8, lemma 5.12
and lemma 5.13. Assume that 6⊢LA F . From canonical model corollary 5.6,
6|=CLA

F and |=CLA
A. Let Γ be the smallest set closed under message per-

mutations and sub-statements, and containing F and A, and containing all
atomic statements, containing 2AA received M , 2AA sent M , 2Aexists M ,
2AA infers M and 2AunfreshM , for all A ∈ A and messages M . Γ is fi-
nite, since A is finite. By filtration lemma 5.8, lemma 5.12 and lemma 5.13,
6|=HLA

F and |=HLA
A, where HLA is the canonical system for theory LA and

filtration set Γ. By construction, HLA is finite, as Γ is finite. 2

From Finite Model Property 5.14, we immediately get completeness theo-
rem 5.2. By soundness and the proof of completeness it is not difficult to find
a bound n such that F ∈ LA, if and only if, F is valid in all systems in ‖A‖
with at most n histories, each of size less than n. This is sufficient to establish
Decidability Theorem 5.3.

6 Conclusion

Several Kripke semantics for BAN have been proposed in the literature. How-
ever, no logic faithful to BAN is complete with respect to Kripke semantics,
due to the logical omniscience problem. Indeed, there have been no complete-
ness results so far for BAN and BAN-like logics.

Adopting a recently proposed generalization of Kripke semantics that avoids
logical omniscience, we have shown that a logic faithful to BAN, with full
boolean operators, is decidable, and that it is sound and complete with re-
spect to message passing systems. Completeness and decidability generalize

14 The interpretation of predicates other than infers is fixed.



to logics induced by an arbitrary theory base. The theory base may express
how participants in a specific protocol are expected to behave, or state gen-
eral assumptions about the network, such as origination assumptions. Since
the theory base is arbitrary, the completeness result helps to bring out that
validity is faithful to BAN, not only validity with respect to all systems, but
also validity with respect to selected classes of systems. Clearly, applications
such as model checking require this stronger form of faithfulness.

In the future, we intend to explore model checking of BAN logic specifica-
tions, transferring techniques [13] from standard Kripke semantics.
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