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ABSTRACT 
The traditional monitoring paradigm of network and systems 
management, characterized by a central entity polling individual 
devices, is not adequate for today’s large-scale networked systems 
whose states and configurations are highly dynamic. We outline 
principles for monitoring such new systems and stress the need 
for protocols that continuously monitor network-wide aggregates. 
To keep the overhead at acceptable levels, such protocols must be 
tunable, e.g., allow controlling the trade-off between accuracy and 
overhead. We describe and compare two of our efforts in 
developing protocols for decentralized monitoring of aggregates; 
one is based on spanning trees, the other on gossiping. 

Categories and Subject Descriptors 
C.2.3 [Computer-Communication Networks]: Network 
Operations – Network Monitoring.           

General Terms 
Algorithms, Management, Performance, Experimentation. 

Keywords 
Monitoring, Aggregation, tree-based protocols, gossip protocols 

1. INTRODUCTION 
Monitoring, i.e., the process of acquiring state information from a 
network or networked system, is fundamental to system 
operation. In traditional network and systems management, 
monitoring is performed on a per-device basis, whereby a 
monitoring station periodically polls devices in its domain for the 
values of local variables, such as device counters or performance 
parameters. These variables are then processed on the 
management station to compute an estimate of a network-wide 
state, which is analyzed and acted upon by other management 
programs. SNMP is probably the best-known protocol that 
supports this monitoring paradigm.  

Over the past 20 years, this paradigm has proved fairly successful 
for networks of moderate size, whose configurations rarely 

change and whose states evolve slowly and thus do not require 
intervention within seconds by an outside system. These 
assumptions however do not hold for many of today’s networked 
systems. In the following, we outline our thoughts on a 
monitoring system for networks that are very large, whose 
configuration changes frequently, and whose state is highly 
dynamic and thus must be available at control points with short 
delay. While we address the issues from a networking 
perspective, we believe that the concepts put forward are 
applicable to a range of networked systems, including data centers 
where the devices of interest are not network elements but 
processor cards, for instance. 

1. A self-organizing monitoring layer inside the managed 
system. To ensure scalability and fast reaction times, the 
processing associated with monitoring should be carried out 
inside the network if possible. We thus advocate research towards 
a light-weight, distributed management layer inside the network 
that offers end-to-end monitoring primitives to management 
applications and end systems outside the network.  

2. Monitoring network-wide aggregates. The monitoring layer 
must provide estimates of aggregates of local variables in real-
time. Such aggregates may be computed across nodes in a 
neighborhood, a network domain or the entire network. Simple 
examples of aggregates include sums, averages, extremal values, 
percentiles and histograms of device counters.  

Aggregates contain information about the state of an entire 
system, as opposed to that of a single device, and many 
management applications depend on such data. For the purpose of 
quality assurance, for instance, it may be required to continuously 
track the number of VoIP flows in a network domain or the 
distribution of traffic composition across all links. Similarly, to 
achieve a given level of availability, it may be necessary to know, 
at all times, the percentage of links that operate above 50% 
utilization and to identify the 10 most loaded links.  

3. Polling, continuous monitoring, threshold detection. Three 
basic primitives a monitoring layer must provide are distributed 
polling, continuous estimation, and threshold detection for 
network-wide aggregates. Polling, also referred as 1-time queries, 
gives a snapshot of the aggregate. Often, the evolution of the 
aggregate over time is of interest, which requires a different set of 
protocols that perform continuous monitoring. Detecting that an 
aggregate crosses a configured threshold is a basic means for 
anomaly detection. While such a primitive can be realized in a 
straightforward way through using a protocol for continuous 
monitoring, such an approach is hopelessly inefficient in large 
networks and an alternative method must be devised [12]. In order 

 



  

to keep the complexity of the management layer low and to 
enable efficient, effective and scalable operation, all these 
protocols must be self-configuring, robust, and tunable at runtime. 

4. Controlling the performance trade-offs in monitoring. In 
large-scale networks, continuous monitoring with maximum 
achievable accuracy of even a single aggregate can become 
unfeasible due to high traffic and processing overhead. In 
addition, modern routers contain hundreds of counters that are 
locally available for monitoring, many of which are needed in 
aggregated form to support autonomic management. 
Consequently, when designing monitoring protocols, the 
engineering trade-offs must be controllable at invocation or even 
at run-time. Monitoring protocols can be optimized towards 
providing estimates with low overhead, small delay, high 
accuracy, or high degree of robustness. As jointly optimizing 
these metrics is generally not possible, the right operating point in 
the parameter space created by these metrics must be chosen. For 
instance, recent results suggest that allowing for modest errors in 
estimating an aggregate can reduce the protocol overhead by an 
order of magnitude in a realistic setting [4]. Taking into account 
that different management applications have different 
requirements regarding the quality of the estimates (delay, 
accuracy, etc.), the operating point must be a control parameter of 
a protocol. By allowing a management application to change the 
operating point at run-time, monitoring functions can be built that 
adapt their operation to the required quality of monitoring data, 
which may change over time. 

The best-known approach to computing aggregates in a 
distributed fashion involves creating and maintaining a spanning 
tree (in the monitoring layer) and aggregating state information 
along that tree, bottom-up from the leaves towards the root (e.g., 
[2][23][17][4]). Such a tree can be built in a decentralized, self-
stabilizing manner, which provides the monitoring protocol with 
robustness properties. A second, less-studied approach involves 
the use of gossip protocols, which typically rely on randomized 
communication to disseminate and process state information in a 
network (e.g., [14][19][10][11]). 

While both types of protocols execute on a network graph, which 
can be realized as an overlay in the monitoring layer described 
above, there are strong differences between tree-based and gossip-
based aggregation. First, gossip-based aggregation protocols tend 
to be simpler as they do not maintain a distributed tree. Second, in 
tree-based aggregation, the result of an aggregation operation is 
available at the root node. In gossip-based aggregation however, 
estimates of the aggregate are available on all nodes, and they 
generally converge towards the true aggregate, for many network 
topologies, with an upper bound that is logarithmic in time and 
system size. Third, failure handling is very different for tree-
based aggregation than for gossip-based aggregation. If a node 
fails, a tree-based aggregation protocol needs to reconstruct the 
aggregation tree. With gossip protocols, a node failure can 
produce so-called mass loss, which causes a bias in the 
aggregation process and needs to be corrected.  

In the following, we report on our recent and ongoing work in 
continuous monitoring of aggregates. In the context of the above 
four principles, we have previously developed a protocol for 
distributed polling that is based on an echo algorithm [15] and are 
currently engineering protocols for threshold detection, both  tree-
based [12] and gossip-based [13]. 

2. Monitoring using Tree-based Aggregation 
In this section, we summarize some of our recent work on 
continuous monitoring with accuracy objectives, which aims at 
achieving an efficient and scalable solution. Specifically, we 
outline A-GAP, a generic aggregation protocol with controllable 
accuracy. It allows for continuously estimating aggregates of 
local variables by (i) creating and maintaining a self-stabilizing 
spanning tree and (ii) incrementally aggregating the variables 
along that tree. It is push-based in the sense that changes in 
monitored variables are sent towards the management station 
along the aggregation tree. The protocol controls the management 
overhead by filtering updates on all nodes. The filters periodically 
adapt to the dynamics of the monitored variables and the network 
environment. All operations in A-GAP, including computing the 
aggregation function and filter configuration, are executed in a 
decentralized and asynchronous fashion to ensure robustness and 
achieve scalability. As a distinctive feature, the protocol provides 
an estimation of the error distribution at the management station 
in real-time. Furthermore, it supports a variety of control 
objectives, including percentiles and average (absolute) error, the 
latter of which is used in this paper. More details than given here 
can be found in [4][3]. 

2.1 System Architecture 
The protocol assumes a distributed management architecture, 
whereby each network device participates in the monitoring task 
by running a management process, either internally or on an 
external, associated device. These management processes 
communicate via a management overlay network for the purpose 
of monitoring. We also refer to this overlay as the network graph. 
The topology of the overlay can be chosen independently from 
the topology of the underlying physical network. The protocol 
creates a spanning tree on this overlay, interconnecting all 
physical devices, such that each node on this spanning tree 
contains a leaf node and an aggregating node of the aggregation 
tree (see figure 1). 

2.2 Problem Statement 
We consider a dynamically changing network graph  
G(t) = (V(t), E(t)), in which nodes n ∈  V(t)  and edges/links  
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Figure 1. Aggregation tree with aggregation function 



  

e  ∈  E(t)  ⊆  V(t) x V(t)  appear and disappear over time. Each 
leaf n has an associated local variable wn(t), which is an integer-
valued quantity. The term local variable is used to represent a 
local state variable or device counter that is being subjected to 
monitoring. Local variables are updated asynchronously with a 
given sampling rate.  

The objective is to engineer a protocol on this network graph that 
provides a management station with a continuous estimate of 
Σnwn(t) for a given accuracy (Σ denotes an aggregation function). 
The protocol should execute with minimal overhead in the sense 
that it minimizes the (maximum) processing load over all nodes. 
The load is expressed as the number of updates per second a node 
has to process. The accuracy is expressed as the average absolute 
error of the estimate over time. We use here SUM as aggregation 
function. Other functions can be supported as well, as discussed 
[4]. 

2.3 Protocol Description 
A-GAP, the protocol discussed in this section, is based on GAP 
(Generic Aggregation Protocol), which we developed in our 
earlier work [18]. GAP is an asynchronous distributed protocol 
that builds and maintains a BFS (Breadth First Search) spanning 
tree on an overlay network. The tree is maintained in a similar 
way as the algorithm that underlies the 802.1d Spanning Tree 
Protocol (STP). In GAP, each node holds information about its 
children in the BFS tree, in order to compute the partial aggregate, 
i.e., the aggregate value of the local variables from all nodes of 
the subtree where this node is the root.  GAP is event-driven in 
the sense that messages are exchanged as results of events, such 
as the detection of a new neighbor on the overlay, the failure of a 
neighbor, an aggregate update or a change in a local variable. A-
GAP inherits from GAP the functions of creating and maintaining 
the aggregation tree (specifically, handling node arrivals, 
departures and failures) and that of incremental aggregation.  

A tree-based protocol like GAP can cause a high load on the root 
node and on nodes close to the root, specifically in large 
networks, since each change in a local variable creates a sequence 
of update messages along the path from a leaf node to the root. In 
order to reduce this overhead, one can either apply a rate 
limitation scheme, which imposes an upper bound on message 
rates on each link, or one can introduce a filter scheme, whereby a 
node ignores updates when only small changes to its partial 
aggregate are reported. To control the protocol overhead, A-GAP 
employs a filter scheme. One could develop a protocol similar to 
A-GAP, which employs a rate limitation scheme, by adapting the 
approach described in Section 2.4 from filter computation to rate 
computation. Note that, for both of these schemes, the overhead is 
reduced at the cost of introducing an error in estimating the 
aggregate.  

2.4 Filter computation 
Estimating the aggregate at the root node with minimal overhead 
for a given accuracy can be formalized as an optimization 
problem. Let n be a node in the network graph, ωn the rate of 
updates received by node n from its children, Fn the filter width of 
node n, Eroot the distribution of the estimation error at the root 
node, and ε the accuracy objective. The problem can then be 
stated as: Minimize { }n

nMax ω    s.t.   E[|E
root

|]≤ ε,  whereby ωn and 

Eroot depend on the filter widths (Fn)n, which are the decision 
variables. 

We developed a stochastic model for the monitoring process, 
which is based on discrete-time Markov chains and describes 
individual nodes in their steady state [4]. For each node n, the 
model relates the error En of the partial aggregate of n, the step 
sizes that indicate changes in the partial aggregate, the rate of 
updates n sends and the filter width Fn. At a leaf node, the change 
of the local variable over time is modeled as a random walk. The 
stochastic model permits us to compute the distribution Eroot of 
the estimation error at the root node and the rate of updates ωn 
processed by each node.  

To solve the optimization problem, A-GAP employs a distributed 
heuristic, which maps the global problem into a local problem that 
each node solves in an asynchronous fashion. This way, each 
node periodically computes the local filters and (local) accuracy 
objectives for its children. A-GAP continuously estimates the step 
sizes in the leaf nodes for the random-walk model using a 
maximum likelihood estimator (MLE). Note that these step sizes 
are the only variables that the protocol estimates. All other 
variables are dynamically computed based on these estimates. 

2.5 Evaluation Results  
We evaluated A-GAP through extensive simulations and present 
here results from only two scenarios, related to a) controlling the 
trade-off between protocol overhead and estimation error and b) 
estimating the error distribution in real-time. Both scenarios share 
the following settings. The management overlay follows the 
physical topology of Abovenet, an ISP, with 654 nodes and 1332 
links. Link speeds in the overlay are 100 Mbps. The 
communication delay is 4 ms, and the time to process a message 
at a node is 1 ms. The local management variable represents the 
number of HTTP flows entering the network at a given node, and 
thus the monitored aggregate is the current number of HTTP 
flows in the network. (In the Abovenet scenarios, the aggregate is 
in the order of 20.000 flows.) The local variables are updated 
asynchronously, once every second. The evolution of the local 
variables is simulated based on packet traces that were captured 
by the University of Twente at two of their network access points 
and then processed by us to obtain traces for all nodes in the 
simulation [4].  

Figure 2 shows a result from the first scenario and shows the 
protocol overhead (i.e., the maximum number of processed 
updates across all nodes) in function of the experienced error. 
Every point in the graph corresponds to a simulation run. We 
observe that the overhead decreases monotonically as the 
estimation error increases. Consequently, the overhead can be 
reduced by allowing a larger estimation error, and the error 
objective is an effective control parameter. For example, 
compared to an error objective of 0 (which results in an 
experienced error of 4.5), an error objective of 2 flows 
(experienced error 5) reduces the load by 30%; an error objective 
of 20 flows (experienced error 21) leads to an 85% reduction in 
load.  

Figure 3 relates to the second scenario and shows the predicted 
error distribution computed by A-GAP and the actual error 
measured in a simulation run, for an error objective of 8. (The 
vertical bars indicate the average actual error.) As one can see, the 
predicted error distribution is close to the actual distribution. 



  

More importantly, the distributions have long tails. While the 
average error in this measurement period is 8.76, the maximum 
error during the simulation run is 44 and the maximum possible 
error (that would occur in an infinite measurement period) is 70.  

We have implemented A-GAP and deployed it on a testbed of 16 
commercial routers where it is used for monitoring IP flows [3]. 
The testbed measurements are consistent with the simulation 
studies we performed for different topologies and network sizes, 
which proves the feasibility of the protocol design, and, more 
generally, the feasibility of effective and efficient real-time flow 
monitoring in large network environments. 

2.6 Related Work 
Most current research in monitoring aggregates is carried out in 
the context of wireless sensor networks, where energy constraints 
are paramount and the objective is to maximize the lifetime of the 
network. Further, many recent works on monitoring the evolution 
of aggregates over time focus on n-time queries that estimate the 
aggregate at discrete times and are realized as periodic snapshots 
(e.g., [2][16]).  

The trade-off between accuracy and overhead for continuous 
monitoring of aggregates has been studied first by Olston et al. 
who proposed a centralized monitoring protocol to control the 
trade-off [6][7]. 

The main differentiator between A-GAP and related protocols is 
its stochastic model of the monitoring process. This model allows 
for a prediction of the protocol performance, in terms of overhead 
and error, and for the support of flexible error objectives. In fact, 
all protocols known to us that allow controlling the trade-off 
between accuracy and overhead support only the maximum error 
as accuracy objective; in practical applications, however, the 
average error or a percentile error are often more useful metrics. 

3. Monitoring using Gossip protocols for 
Aggregation 
This section summarizes one of our recent results in the context of 
robust and scalable monitoring. Specifically, we report on a 
gossip protocol, G-GAP, which enables continuous monitoring of 
network-wide aggregates. Further, we provide an initial 
comparative assessment of G-GAP against GAP, a tree-based 
aggregation protocol (see Section 2.3), using simulation. 
Surprisingly, we find that the tree-based aggregation protocol 

consistently outperforms the gossip protocol for comparative 
overhead, both in terms of accuracy and robustness. For further 
details, see [11]. 

3.1 Elements of the protocol design 
G-GAP is based on push-synopsis, a gossip protocol for 
computing aggregates proposed by Kempe et al. [10]. The main 
extension to the push-synopses protocol is a scheme that renders 
the protocol robust to crash failures (except for cases where 
neighbors fail within short time of each other). The basic idea is 
that each node distributes recovery shares of its state to its 
neighbors and keeps track of its recently sent messages. These 
shares are then used to restore the protocol invariants (i.e., 
conserve the mass of the system) in case a node is deemed to have 
failed. 

The convergence analysis for G-GAP reduces to that of push-
synopses, as we can establish time bounds after which, in stable 
state, the behavior of G-GAP and push-synopses is identical. 

G-GAP is assumed to execute on a network graph in the same 
architectural setting as described in Section 2. 

3.2 Related work 
Several approaches have been pursued in addressing node 
failures, and the associated problem of mass loss, with gossip-
based aggregation. A straightforward approach is to restart the 
gossip protocol periodically [19]. While this does not prevent 
mass loss from occurring, it reduces the extent to which mass loss 
accumulates and thus mitigates estimation errors.  

Mehyar et al. [20] recently presented a solution for computing the 
average of local values on a dynamically changing network graph. 
While there are similarities in the use of recovery information 
between Mehyar’s protocol and G-GAP, there are major 
differences in the protocol design. First, failure recovery is an 
integral part of Mehyar’s protocol, while it is a well-defined 
modular part of G-GAP that can be left out or replaced. Second, 
our protocol supports a range of aggregation functions, whereas 
the protocol in [20] has been designed for the computation of 
averages, and it is unclear to which extent it generalizes to other 
functions, such as SUM or other synopses. 

An early example of a system addressing node failures is the 
Astrolabe monitoring system [21]. There, a tree-based scheme is 
used for aggregation, while a gossip protocol disseminates partial 
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aggregates among peers in the tree hierarchy. Gossiping is used to 
achieve robustness, by allowing a pre-selected child node to 
instantly replace a parent node in case the latter fails. In this case 
the mass loss problem does not arise, since gossiping is not used 
for aggregation, but only for dissemination of information. 

3.3 Comparative Evaluation to tree-based 
aggregation 
We give simulation results for two scenarios, one focusing on 
controlling the trade-off between protocol overhead and 
estimation accuracy, the other scenario assessing the influence of 
the node failure rate on the estimation accuracy. We provide 
measurement results for both the gossip protocol G-GAP and the 
tree-based protocol GAP, which are compared for similar 
overhead. The overhead is measured in round rates. For G-GAP a 
round rate of 1 per sec means that the protocol executes one round 
per second, resulting in 1msg/sec per overlay link. For GAP a 
round rate of 1 per sec results in a maximum of 1msg/sec per 
overlay link. 

In both scenarios, the network topology, the traces of the local 
variables and the simulation parameters are the same as or very 
similar to those given in Section 2. In contrast to the setup in 
Section 2 though, the overlay topology is generated by GoCast [8] 
with target connectivity of 10, which produces an average 
distance of 3.1 hops and a diameter of 4 hops in the overlay. 
Furthermore, the aggregation function is AVERAGE. 

In the first scenario, we measure the estimation accuracy of G-
GAP and GAP as a function of the protocol overhead. We run 
simulations for round rates of 1 to 10 messages per sec.  

Figure 4 gives the results. Each measurement point corresponds to 
a simulation run. The top of the bars indicate the 90th percentile 
of the estimation error. As expected, for both protocols, 
increasing the round rate results in decreasing the estimation 
error. Therefore, the round rate controls the trade-off between 
estimation accuracy and protocol overhead. In addition, for 
comparable overhead (i.e. the same round rates), the average error 
in G-GAP is around 8 times that of GAP. 

In the second scenario, we compare the estimation accuracy of G-
GAP with that of GAP by measuring the estimation error as a 
function of the failure rate for a comparable overhead. We assume 
a failure detection service in the system that allows a node to 

detect the failure of a neighbor within 1 sec. We vary the failure 
rate from 0 to 10 node failures/sec. Failure arrivals follow a 
Poisson process, and they are uniformly distributed over all 
running nodes.  A failed node recovers after 10sec. 

Figure 5 shows the results. As can be seen from the figure, the 
error for both GAP and G-GAP increases with the failure rate. We 
also see that the slope is steeper and the spread is wider for G-
GAP than for GAP. This result is surprising to us. We would have 
expected a gossip protocol to perform better, compared to a tree-
based protocol, under high node failure rates. 

4. Discussion 
Research into efficient state aggregation under constraints has 
recently been proposed in different contexts (e.g., [1][22]). What 
makes the problem unique and interesting for the field at 
hand−network operations−are the constraints that are specific to a 
distributed monitoring layer, the rich functionality of network 
management operations, and the potentially large number of 
concurrently executing monitoring operations within such a layer. 

The work presented in this paper is part of our effort towards a 
comparative assessment of tree-based vs. gossip-based approaches 
to distributed real-time monitoring, which we believe to be of 
significant practical relevance. We are interested in how typical 
protocol representatives from both approaches compare 
performance-wise when certain defining parameters in network 
scenarios are varied, such as the sampling frequency of the local 
variables, the network size, the rate of node failures, etc. Such 
comparisons are challenging, as it is difficult to generalize 
simulation results beyond particular scenario setups and measured 
parameter ranges.  

An aspect that merits in-depth study in our opinion is the impact 
of the network graph (i.e., the overlay topology) on the 
performance of a monitoring protocol. Results are available on 
how network graphs determine convergence properties of gossip 
protocols (e.g., [10][5]). From an engineering perspective, it is of 
interest to identify topological parameters, such as the node 
degree, as control parameters for controlling protocol trade-offs. 
This would make it possible, for instance, to initialize a protocol, 
together with its network graph, with the desired operating point.  

The example of A-GAP demonstrates the advantages of having a 
model of the monitoring process and being able to dynamically 

Figure 5: Estimation error vs. failure rate  
Figure 4: Estimation error vs. protocol overhead  



  

compute model variables during protocol execution, e.g., to 
provide, in real-time, estimates of the protocol’s performance 
(overhead and estimation error in the case of A-GAP). For the 
problem to become tractable in practice and solvable with feasible 
overhead, simplifying assumptions must be made. In the case of 
A-GAP such assumptions include the independence of local 
variables and the omission of communication and computing 
delays. We showed that such simplifications can be justified 
within the parameter ranges of our evaluation.  
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