

Decentralized Real-time Monitoring
of Network-wide Aggregates

 Rolf Stadler, Mads Dam,
Alberto Gonzalez, Fetahi Wuhib

ACCESS Linnaeus Center
KTH Royal Institute of Technology

Stockholm, Sweden

stadler@ee.kth.se

ABSTRACT
The traditional monitoring paradigm of network and systems
management, characterized by a central entity polling individual
devices, is not adequate for today’s large-scale networked systems
whose states and configurations are highly dynamic. We outline
principles for monitoring such new systems and stress the need
for protocols that continuously monitor network-wide aggregates.
To keep the overhead at acceptable levels, such protocols must be
tunable, e.g., allow controlling the trade-off between accuracy and
overhead. We describe and compare two of our efforts in
developing protocols for decentralized monitoring of aggregates;
one is based on spanning trees, the other on gossiping.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations – Network Monitoring.

General Terms
Algorithms, Management, Performance, Experimentation.

Keywords
Monitoring, Aggregation, tree-based protocols, gossip protocols

1. INTRODUCTION
Monitoring, i.e., the process of acquiring state information from a
network or networked system, is fundamental to system
operation. In traditional network and systems management,
monitoring is performed on a per-device basis, whereby a
monitoring station periodically polls devices in its domain for the
values of local variables, such as device counters or performance
parameters. These variables are then processed on the
management station to compute an estimate of a network-wide
state, which is analyzed and acted upon by other management
programs. SNMP is probably the best-known protocol that
supports this monitoring paradigm.

Over the past 20 years, this paradigm has proved fairly successful
for networks of moderate size, whose configurations rarely

change and whose states evolve slowly and thus do not require
intervention within seconds by an outside system. These
assumptions however do not hold for many of today’s networked
systems. In the following, we outline our thoughts on a
monitoring system for networks that are very large, whose
configuration changes frequently, and whose state is highly
dynamic and thus must be available at control points with short
delay. While we address the issues from a networking
perspective, we believe that the concepts put forward are
applicable to a range of networked systems, including data centers
where the devices of interest are not network elements but
processor cards, for instance.

1. A self-organizing monitoring layer inside the managed
system. To ensure scalability and fast reaction times, the
processing associated with monitoring should be carried out
inside the network if possible. We thus advocate research towards
a light-weight, distributed management layer inside the network
that offers end-to-end monitoring primitives to management
applications and end systems outside the network.

2. Monitoring network-wide aggregates. The monitoring layer
must provide estimates of aggregates of local variables in real-
time. Such aggregates may be computed across nodes in a
neighborhood, a network domain or the entire network. Simple
examples of aggregates include sums, averages, extremal values,
percentiles and histograms of device counters.

Aggregates contain information about the state of an entire
system, as opposed to that of a single device, and many
management applications depend on such data. For the purpose of
quality assurance, for instance, it may be required to continuously
track the number of VoIP flows in a network domain or the
distribution of traffic composition across all links. Similarly, to
achieve a given level of availability, it may be necessary to know,
at all times, the percentage of links that operate above 50%
utilization and to identify the 10 most loaded links.

3. Polling, continuous monitoring, threshold detection. Three
basic primitives a monitoring layer must provide are distributed
polling, continuous estimation, and threshold detection for
network-wide aggregates. Polling, also referred as 1-time queries,
gives a snapshot of the aggregate. Often, the evolution of the
aggregate over time is of interest, which requires a different set of
protocols that perform continuous monitoring. Detecting that an
aggregate crosses a configured threshold is a basic means for
anomaly detection. While such a primitive can be realized in a
straightforward way through using a protocol for continuous
monitoring, such an approach is hopelessly inefficient in large
networks and an alternative method must be devised [12]. In order

to keep the complexity of the management layer low and to
enable efficient, effective and scalable operation, all these
protocols must be self-configuring, robust, and tunable at runtime.

4. Controlling the performance trade-offs in monitoring. In
large-scale networks, continuous monitoring with maximum
achievable accuracy of even a single aggregate can become
unfeasible due to high traffic and processing overhead. In
addition, modern routers contain hundreds of counters that are
locally available for monitoring, many of which are needed in
aggregated form to support autonomic management.
Consequently, when designing monitoring protocols, the
engineering trade-offs must be controllable at invocation or even
at run-time. Monitoring protocols can be optimized towards
providing estimates with low overhead, small delay, high
accuracy, or high degree of robustness. As jointly optimizing
these metrics is generally not possible, the right operating point in
the parameter space created by these metrics must be chosen. For
instance, recent results suggest that allowing for modest errors in
estimating an aggregate can reduce the protocol overhead by an
order of magnitude in a realistic setting [4]. Taking into account
that different management applications have different
requirements regarding the quality of the estimates (delay,
accuracy, etc.), the operating point must be a control parameter of
a protocol. By allowing a management application to change the
operating point at run-time, monitoring functions can be built that
adapt their operation to the required quality of monitoring data,
which may change over time.

The best-known approach to computing aggregates in a
distributed fashion involves creating and maintaining a spanning
tree (in the monitoring layer) and aggregating state information
along that tree, bottom-up from the leaves towards the root (e.g.,
[2][23][17][4]). Such a tree can be built in a decentralized, self-
stabilizing manner, which provides the monitoring protocol with
robustness properties. A second, less-studied approach involves
the use of gossip protocols, which typically rely on randomized
communication to disseminate and process state information in a
network (e.g., [14][19][10][11]).

While both types of protocols execute on a network graph, which
can be realized as an overlay in the monitoring layer described
above, there are strong differences between tree-based and gossip-
based aggregation. First, gossip-based aggregation protocols tend
to be simpler as they do not maintain a distributed tree. Second, in
tree-based aggregation, the result of an aggregation operation is
available at the root node. In gossip-based aggregation however,
estimates of the aggregate are available on all nodes, and they
generally converge towards the true aggregate, for many network
topologies, with an upper bound that is logarithmic in time and
system size. Third, failure handling is very different for tree-
based aggregation than for gossip-based aggregation. If a node
fails, a tree-based aggregation protocol needs to reconstruct the
aggregation tree. With gossip protocols, a node failure can
produce so-called mass loss, which causes a bias in the
aggregation process and needs to be corrected.

In the following, we report on our recent and ongoing work in
continuous monitoring of aggregates. In the context of the above
four principles, we have previously developed a protocol for
distributed polling that is based on an echo algorithm [15] and are
currently engineering protocols for threshold detection, both tree-
based [12] and gossip-based [13].

2. Monitoring using Tree-based Aggregation
In this section, we summarize some of our recent work on
continuous monitoring with accuracy objectives, which aims at
achieving an efficient and scalable solution. Specifically, we
outline A-GAP, a generic aggregation protocol with controllable
accuracy. It allows for continuously estimating aggregates of
local variables by (i) creating and maintaining a self-stabilizing
spanning tree and (ii) incrementally aggregating the variables
along that tree. It is push-based in the sense that changes in
monitored variables are sent towards the management station
along the aggregation tree. The protocol controls the management
overhead by filtering updates on all nodes. The filters periodically
adapt to the dynamics of the monitored variables and the network
environment. All operations in A-GAP, including computing the
aggregation function and filter configuration, are executed in a
decentralized and asynchronous fashion to ensure robustness and
achieve scalability. As a distinctive feature, the protocol provides
an estimation of the error distribution at the management station
in real-time. Furthermore, it supports a variety of control
objectives, including percentiles and average (absolute) error, the
latter of which is used in this paper. More details than given here
can be found in [4][3].

2.1 System Architecture
The protocol assumes a distributed management architecture,
whereby each network device participates in the monitoring task
by running a management process, either internally or on an
external, associated device. These management processes
communicate via a management overlay network for the purpose
of monitoring. We also refer to this overlay as the network graph.
The topology of the overlay can be chosen independently from
the topology of the underlying physical network. The protocol
creates a spanning tree on this overlay, interconnecting all
physical devices, such that each node on this spanning tree
contains a leaf node and an aggregating node of the aggregation
tree (see figure 1).

2.2 Problem Statement
We consider a dynamically changing network graph
G(t) = (V(t), E(t)), in which nodes n ∈ V(t) and edges/links

Aggregating
Node

Leaf
Node

Global
Aggregate

Partial
Aggregate

Local
variable

Root
Physical
Node

Management
Station

3

3

5 2

2

7

75

4

12

1

10

3

25

Figure 1. Aggregation tree with aggregation function

e ∈ E(t) ⊆ V(t) x V(t) appear and disappear over time. Each
leaf n has an associated local variable wn(t), which is an integer-
valued quantity. The term local variable is used to represent a
local state variable or device counter that is being subjected to
monitoring. Local variables are updated asynchronously with a
given sampling rate.

The objective is to engineer a protocol on this network graph that
provides a management station with a continuous estimate of
Σnwn(t) for a given accuracy (Σ denotes an aggregation function).
The protocol should execute with minimal overhead in the sense
that it minimizes the (maximum) processing load over all nodes.
The load is expressed as the number of updates per second a node
has to process. The accuracy is expressed as the average absolute
error of the estimate over time. We use here SUM as aggregation
function. Other functions can be supported as well, as discussed
[4].

2.3 Protocol Description
A-GAP, the protocol discussed in this section, is based on GAP
(Generic Aggregation Protocol), which we developed in our
earlier work [18]. GAP is an asynchronous distributed protocol
that builds and maintains a BFS (Breadth First Search) spanning
tree on an overlay network. The tree is maintained in a similar
way as the algorithm that underlies the 802.1d Spanning Tree
Protocol (STP). In GAP, each node holds information about its
children in the BFS tree, in order to compute the partial aggregate,
i.e., the aggregate value of the local variables from all nodes of
the subtree where this node is the root. GAP is event-driven in
the sense that messages are exchanged as results of events, such
as the detection of a new neighbor on the overlay, the failure of a
neighbor, an aggregate update or a change in a local variable. A-
GAP inherits from GAP the functions of creating and maintaining
the aggregation tree (specifically, handling node arrivals,
departures and failures) and that of incremental aggregation.

A tree-based protocol like GAP can cause a high load on the root
node and on nodes close to the root, specifically in large
networks, since each change in a local variable creates a sequence
of update messages along the path from a leaf node to the root. In
order to reduce this overhead, one can either apply a rate
limitation scheme, which imposes an upper bound on message
rates on each link, or one can introduce a filter scheme, whereby a
node ignores updates when only small changes to its partial
aggregate are reported. To control the protocol overhead, A-GAP
employs a filter scheme. One could develop a protocol similar to
A-GAP, which employs a rate limitation scheme, by adapting the
approach described in Section 2.4 from filter computation to rate
computation. Note that, for both of these schemes, the overhead is
reduced at the cost of introducing an error in estimating the
aggregate.

2.4 Filter computation
Estimating the aggregate at the root node with minimal overhead
for a given accuracy can be formalized as an optimization
problem. Let n be a node in the network graph, ωn the rate of
updates received by node n from its children, Fn the filter width of
node n, Eroot the distribution of the estimation error at the root
node, and ε the accuracy objective. The problem can then be
stated as: Minimize { }n

nMax ω s.t. E[|E
root

|]≤ ε, whereby ωn and

Eroot depend on the filter widths (Fn)n, which are the decision
variables.

We developed a stochastic model for the monitoring process,
which is based on discrete-time Markov chains and describes
individual nodes in their steady state [4]. For each node n, the
model relates the error En of the partial aggregate of n, the step
sizes that indicate changes in the partial aggregate, the rate of
updates n sends and the filter width Fn. At a leaf node, the change
of the local variable over time is modeled as a random walk. The
stochastic model permits us to compute the distribution Eroot of
the estimation error at the root node and the rate of updates ωn
processed by each node.

To solve the optimization problem, A-GAP employs a distributed
heuristic, which maps the global problem into a local problem that
each node solves in an asynchronous fashion. This way, each
node periodically computes the local filters and (local) accuracy
objectives for its children. A-GAP continuously estimates the step
sizes in the leaf nodes for the random-walk model using a
maximum likelihood estimator (MLE). Note that these step sizes
are the only variables that the protocol estimates. All other
variables are dynamically computed based on these estimates.

2.5 Evaluation Results
We evaluated A-GAP through extensive simulations and present
here results from only two scenarios, related to a) controlling the
trade-off between protocol overhead and estimation error and b)
estimating the error distribution in real-time. Both scenarios share
the following settings. The management overlay follows the
physical topology of Abovenet, an ISP, with 654 nodes and 1332
links. Link speeds in the overlay are 100 Mbps. The
communication delay is 4 ms, and the time to process a message
at a node is 1 ms. The local management variable represents the
number of HTTP flows entering the network at a given node, and
thus the monitored aggregate is the current number of HTTP
flows in the network. (In the Abovenet scenarios, the aggregate is
in the order of 20.000 flows.) The local variables are updated
asynchronously, once every second. The evolution of the local
variables is simulated based on packet traces that were captured
by the University of Twente at two of their network access points
and then processed by us to obtain traces for all nodes in the
simulation [4].

Figure 2 shows a result from the first scenario and shows the
protocol overhead (i.e., the maximum number of processed
updates across all nodes) in function of the experienced error.
Every point in the graph corresponds to a simulation run. We
observe that the overhead decreases monotonically as the
estimation error increases. Consequently, the overhead can be
reduced by allowing a larger estimation error, and the error
objective is an effective control parameter. For example,
compared to an error objective of 0 (which results in an
experienced error of 4.5), an error objective of 2 flows
(experienced error 5) reduces the load by 30%; an error objective
of 20 flows (experienced error 21) leads to an 85% reduction in
load.

Figure 3 relates to the second scenario and shows the predicted
error distribution computed by A-GAP and the actual error
measured in a simulation run, for an error objective of 8. (The
vertical bars indicate the average actual error.) As one can see, the
predicted error distribution is close to the actual distribution.

More importantly, the distributions have long tails. While the
average error in this measurement period is 8.76, the maximum
error during the simulation run is 44 and the maximum possible
error (that would occur in an infinite measurement period) is 70.

We have implemented A-GAP and deployed it on a testbed of 16
commercial routers where it is used for monitoring IP flows [3].
The testbed measurements are consistent with the simulation
studies we performed for different topologies and network sizes,
which proves the feasibility of the protocol design, and, more
generally, the feasibility of effective and efficient real-time flow
monitoring in large network environments.

2.6 Related Work
Most current research in monitoring aggregates is carried out in
the context of wireless sensor networks, where energy constraints
are paramount and the objective is to maximize the lifetime of the
network. Further, many recent works on monitoring the evolution
of aggregates over time focus on n-time queries that estimate the
aggregate at discrete times and are realized as periodic snapshots
(e.g., [2][16]).

The trade-off between accuracy and overhead for continuous
monitoring of aggregates has been studied first by Olston et al.
who proposed a centralized monitoring protocol to control the
trade-off [6][7].

The main differentiator between A-GAP and related protocols is
its stochastic model of the monitoring process. This model allows
for a prediction of the protocol performance, in terms of overhead
and error, and for the support of flexible error objectives. In fact,
all protocols known to us that allow controlling the trade-off
between accuracy and overhead support only the maximum error
as accuracy objective; in practical applications, however, the
average error or a percentile error are often more useful metrics.

3. Monitoring using Gossip protocols for
Aggregation
This section summarizes one of our recent results in the context of
robust and scalable monitoring. Specifically, we report on a
gossip protocol, G-GAP, which enables continuous monitoring of
network-wide aggregates. Further, we provide an initial
comparative assessment of G-GAP against GAP, a tree-based
aggregation protocol (see Section 2.3), using simulation.
Surprisingly, we find that the tree-based aggregation protocol

consistently outperforms the gossip protocol for comparative
overhead, both in terms of accuracy and robustness. For further
details, see [11].

3.1 Elements of the protocol design
G-GAP is based on push-synopsis, a gossip protocol for
computing aggregates proposed by Kempe et al. [10]. The main
extension to the push-synopses protocol is a scheme that renders
the protocol robust to crash failures (except for cases where
neighbors fail within short time of each other). The basic idea is
that each node distributes recovery shares of its state to its
neighbors and keeps track of its recently sent messages. These
shares are then used to restore the protocol invariants (i.e.,
conserve the mass of the system) in case a node is deemed to have
failed.

The convergence analysis for G-GAP reduces to that of push-
synopses, as we can establish time bounds after which, in stable
state, the behavior of G-GAP and push-synopses is identical.

G-GAP is assumed to execute on a network graph in the same
architectural setting as described in Section 2.

3.2 Related work
Several approaches have been pursued in addressing node
failures, and the associated problem of mass loss, with gossip-
based aggregation. A straightforward approach is to restart the
gossip protocol periodically [19]. While this does not prevent
mass loss from occurring, it reduces the extent to which mass loss
accumulates and thus mitigates estimation errors.

Mehyar et al. [20] recently presented a solution for computing the
average of local values on a dynamically changing network graph.
While there are similarities in the use of recovery information
between Mehyar’s protocol and G-GAP, there are major
differences in the protocol design. First, failure recovery is an
integral part of Mehyar’s protocol, while it is a well-defined
modular part of G-GAP that can be left out or replaced. Second,
our protocol supports a range of aggregation functions, whereas
the protocol in [20] has been designed for the computation of
averages, and it is unclear to which extent it generalizes to other
functions, such as SUM or other synopses.

An early example of a system addressing node failures is the
Astrolabe monitoring system [21]. There, a tree-based scheme is
used for aggregation, while a gossip protocol disseminates partial

0

100

200

300

400

500

600

0 5 10 15 20 Average Error

U
pd

at
es

/s
ec

Figure 2. Protocol overhead incurred by A-GAP as a function

of the experienced error e.

0

0,01

0,02

0,03

0,04

0,05

-40 -30 -20 -10 0 10 20 30 40Error

Absolute
Avg Error

Actual Error

Error Predicted
by A-GAP

Figure 3. Distribution of the error predicted by A-GAP and

the actual error at the root node

aggregates among peers in the tree hierarchy. Gossiping is used to
achieve robustness, by allowing a pre-selected child node to
instantly replace a parent node in case the latter fails. In this case
the mass loss problem does not arise, since gossiping is not used
for aggregation, but only for dissemination of information.

3.3 Comparative Evaluation to tree-based
aggregation
We give simulation results for two scenarios, one focusing on
controlling the trade-off between protocol overhead and
estimation accuracy, the other scenario assessing the influence of
the node failure rate on the estimation accuracy. We provide
measurement results for both the gossip protocol G-GAP and the
tree-based protocol GAP, which are compared for similar
overhead. The overhead is measured in round rates. For G-GAP a
round rate of 1 per sec means that the protocol executes one round
per second, resulting in 1msg/sec per overlay link. For GAP a
round rate of 1 per sec results in a maximum of 1msg/sec per
overlay link.

In both scenarios, the network topology, the traces of the local
variables and the simulation parameters are the same as or very
similar to those given in Section 2. In contrast to the setup in
Section 2 though, the overlay topology is generated by GoCast [8]
with target connectivity of 10, which produces an average
distance of 3.1 hops and a diameter of 4 hops in the overlay.
Furthermore, the aggregation function is AVERAGE.

In the first scenario, we measure the estimation accuracy of G-
GAP and GAP as a function of the protocol overhead. We run
simulations for round rates of 1 to 10 messages per sec.

Figure 4 gives the results. Each measurement point corresponds to
a simulation run. The top of the bars indicate the 90th percentile
of the estimation error. As expected, for both protocols,
increasing the round rate results in decreasing the estimation
error. Therefore, the round rate controls the trade-off between
estimation accuracy and protocol overhead. In addition, for
comparable overhead (i.e. the same round rates), the average error
in G-GAP is around 8 times that of GAP.

In the second scenario, we compare the estimation accuracy of G-
GAP with that of GAP by measuring the estimation error as a
function of the failure rate for a comparable overhead. We assume
a failure detection service in the system that allows a node to

detect the failure of a neighbor within 1 sec. We vary the failure
rate from 0 to 10 node failures/sec. Failure arrivals follow a
Poisson process, and they are uniformly distributed over all
running nodes. A failed node recovers after 10sec.

Figure 5 shows the results. As can be seen from the figure, the
error for both GAP and G-GAP increases with the failure rate. We
also see that the slope is steeper and the spread is wider for G-
GAP than for GAP. This result is surprising to us. We would have
expected a gossip protocol to perform better, compared to a tree-
based protocol, under high node failure rates.

4. Discussion
Research into efficient state aggregation under constraints has
recently been proposed in different contexts (e.g., [1][22]). What
makes the problem unique and interesting for the field at
hand−network operations−are the constraints that are specific to a
distributed monitoring layer, the rich functionality of network
management operations, and the potentially large number of
concurrently executing monitoring operations within such a layer.

The work presented in this paper is part of our effort towards a
comparative assessment of tree-based vs. gossip-based approaches
to distributed real-time monitoring, which we believe to be of
significant practical relevance. We are interested in how typical
protocol representatives from both approaches compare
performance-wise when certain defining parameters in network
scenarios are varied, such as the sampling frequency of the local
variables, the network size, the rate of node failures, etc. Such
comparisons are challenging, as it is difficult to generalize
simulation results beyond particular scenario setups and measured
parameter ranges.

An aspect that merits in-depth study in our opinion is the impact
of the network graph (i.e., the overlay topology) on the
performance of a monitoring protocol. Results are available on
how network graphs determine convergence properties of gossip
protocols (e.g., [10][5]). From an engineering perspective, it is of
interest to identify topological parameters, such as the node
degree, as control parameters for controlling protocol trade-offs.
This would make it possible, for instance, to initialize a protocol,
together with its network graph, with the desired operating point.

The example of A-GAP demonstrates the advantages of having a
model of the monitoring process and being able to dynamically

Figure 5: Estimation error vs. failure rate
Figure 4: Estimation error vs. protocol overhead

compute model variables during protocol execution, e.g., to
provide, in real-time, estimates of the protocol’s performance
(overhead and estimation error in the case of A-GAP). For the
problem to become tractable in practice and solvable with feasible
overhead, simplifying assumptions must be made. In the case of
A-GAP such assumptions include the independence of local
variables and the omission of communication and computing
delays. We showed that such simplifications can be justified
within the parameter ranges of our evaluation.

5. References
[1] A Giridhar, PR Kumar: “Towards a Theory of In-Network

Computation in Wireless Sensor Networks,” IEEE
Communication Magazine, April 2006.

[2] A. Deligiannakis, Y. Kotidis and N. Roussopoulos,
“Hierarchical in-Network Data Aggregation with Quality
Guarantees,”, In Proc. 9th International Conference on
Extending Database Technology (EDBT’04), Heraklion –
Crete, Greece, March 14-18, 2004.

[3] A. Gonzalez Prieto and R. Stadler: “Monitoring Flow
Aggregates with Controllable Accuracy,” 10th IFIP/IEEE
International Conference on Management of Multimedia and
Mobile Networks and Services (MMNS 2007), San José,
California, USA, Oct 31 - Nov 2, 2007.

[4] A. Gonzalez Prieto, R. Stadler: "A-GAP: An Adaptive
Protocol for Continuous Network Monitoring with Accuracy
Objectives", IEEE Transactions on Network and Service
Management (TNSM), Vol. 4, No. 1, June 2007.

[5] A. Olshevsky, J.N. Tsitsiklis. “Convergence rates in
distributed consensus averaging,”45th IEEE Conference on
Decision and Control (CDC 06), San Diego, CA, Dec 08.

[6] C. Olston, B. T. Loo and J. Widom, “Adaptive Precision
Setting for Cached Approximate Values”, ACM SIGMOD
2001, Santa Barbara, USA, May 2001.

[7] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for
continuous queries over distributed data streams”, ACM
SIGMOD 2003, San Diego, USA, June 2003.

[8] C. Tang, and C. Ward, “GoCast: Gossip-Enhanced Overlay
Multicast for Fast and Dependable Group Communication,”
In Proc. International Conference on Dependable Systems
and Networks (DSN'05), Yokohama, Japan, June 28 - July
1,2005.

[9] D. Jurca, R. Stadler: “Computing Histograms of Local
Variables for Real-Time Monitoring using Aggregation
Trees,” 11th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2009), Long Island,
NY, June 1-5, 2009.

[10] D. Kempe, A. Dobra and J. Gehrke, “Gossip-Based
Computation of Aggregate Information,” In Proc. of the 44th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS’03), Cambridge, MA, USA, October 11-14,
2003.

[11] F. Wuhib, M. Dam, R. Stadler, A. Clemm: “Robust
Monitoring of Network-wide Aggregates through
Gossiping,” 10th IFIP/IEEE International Symposium on
Integrated Management (IM 2007), Munich, Germany, May
21-25, 2007.

[12] F. Wuhib, M. Dam, R. Stadler: “Decentralized Detection of
Global Threshold Crossings Using Aggregation Trees,”
Computer Networks, Vol. 52, No. 9, pp 1745-1761, 2008.

[13] F. Wuhib, M. Dam, R. Stadler: “Gossiping for Threshold
Detection,” 11th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2009), Long Island,
NY, June 1-5, 2009.

[14] K. Birman, “The promise, and limitations, of gossip
protocols, “ACM SIGOPS Operating Systems Review
archive, Volume 41, Issue 5, October 2007.

[15] K.S. Lim and R. Stadler, “Real-time Views of Network
Traffic Using Decentralized Management,” 9th IFIP/IEEE
International Symposium on Integrated Network
Management (IM’2005), Nice, France, May 16-19, 2005.

[16] M. A. Sharaf et al, “Balancing energy efficiency and quality
of aggregate data in sensor networks”, ACM International
Journal on Very Large Data Bases, 13(4):384–403,
December 2004.

[17] M. A. Sharaf, J. Beaver, A. Labrinidis and P. K.
Chrysanthis, “Balancing energy efficiency and quality of
aggregate data in sensor networks,” The International Journal
on Very Large Data Bases, vol. 13, issue 4, pp. 384-403,
December 2004.

[18] M. Dam and R. Stadler: “A generic protocol for network
state aggregation,” RVK 05, Linköping, Sweden, June 14-16,
2005.

[19] M. Jelasity, A. Montresor and O. Babaoglu, “Gossip-based
aggregation in large dynamic networks,” ACM Transactions
on Computer Systems, vol. 23, Issue 3, pp. 219-252, August
2005.

[20] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, R. Murray,
“Asynchronous Distributed Averaging on Communication
Networks,” IEEE/ACM Transactions on Networking, August
2007.

[21] R. van Renesse, K. Birman, and W. Vogels, “Astrolabe: A
Robust and Scalable Technology for Distributed System
Monitoring,” ACM Transactions on Computer Systems, Vol.
21, Issue 2, pp.164-206, May 2003.

[22] S. Keshav: “Efficient and Decentralized Computation of
Approximate Global State,” ACM SIGCOMM CCR, Jan
2006.

[23] S. Madden and M. Franklin and J. Hellerstein and W. Hong,
“TAG: a Tiny Aggregation Service for Ad-Hoc Sensor
Networks,” Fifth Symposium on Operating Systems Design
and Implementation (USENIX - OSDI '02), Boston, MA,
USA, December 9-12, 2002.

