
Modalities in Analysis and Veri�cationMads Dam�Swedish Institute of Computer ScienceJanuary 1, 1996There is currently a strong interest in programming languages and modelswhich attempt to integrate concurrency and distribution with structuring andabstraction mechanisms normally seen in sequential settings. Examples are mani-fold: concurrent and distributed extensions of ML such as Facile or CML, Erlang,concurrent constraint programming languages such as AKL or OZ, PICT, and theActor programming model. Also in the object-oriented community strong trendsin the direction of treating concurrency and distribution as \�rst-class citizens"can be discerned, viz. OMG's work on CORBA, Microsoft's OLE, or Ericsson'sDELOS language. Even though a strict scrutiny of some of these examples mightnot invariably warrant this terminology, we refer to systems in models or lan-guages like the above as \higher order concurrent systems". Common to them isthat they provide processes or object as concurrent or distributed entities com-municating along named channels along which information is passed, in the formof e.g. values, channels, references to other entities, or program scripts. The be-havioral encapsulation of such entities, whether it be used for automated programanalysis, for veri�cation, or for dynamic request-provider matching must reecttheir communication capabilities, for instance by means of type systems extendedwith modal or temporal information. However, such an integration of functional(in the general sense of \parametric") and reactive behaviour poses severe, andvery interesting, challenges to the currently established technologies for programveri�cation and analysis. There are two basic di�culties:1. Because system components can execute in parallel and interfere there isno simple and obvious way in which the behaviour of a composite systemcan be inferred from that of its parts. This in contrast to the situationfor sequential languages where this is the paradigm for e.g. denotational oroperational semantics, and type systems.2. Because processes can be parametric upon general subcomponents they cannot in general be represented as �nite state transition systems. Rather,�Work supported by ESPRIT BRA project 6454 \CONFER". Adress: SICS, Box 1263, S-16428 Kista, Sweden. Email: mfd@sics.se. Tel. +46 8 752 1549. Fax +46 8 751 7230.1



they produce dynamic process networks where the e�cient runtime creation(and killing) of subprocesses is central. Also formalisms like the �-calculus,even though it does not pass processes around, rely crucially on dynamicprocess creation for its expressive power. As a consequence the substantialamount of technology developed for communicating �nite state machines isnot readily applicable for these kinds of applications.Of course these points are crucially dependent on the range of properties one isinterested in. At one end it is easy to devise type systems in which no temporalinformation is captured at all, like the extensions of ML's type system in Facile orCML. For more general program properties there seems to be two viable directions:1. Automated approaches, using e.g. symbolic or abstract interpretation-basedtechniques to extract �nite-state (and hence analysable) approximationsfrom models which are inherently in�nite-state.2. Axiomatic approaches using meta-theoretical reasoning, temporal reasoning,or compositional techniques.In the former direction, symbolic techniques have been used in the context ofmodel checking and bisimulation checking in the context of static process networkfragments of value-passing process calculi and the �-calculus [8, 9, 13]. However,these approaches by themselves have serious di�culties in dealing with dynamicprocess creation. One way of overcoming this problem is to use abstraction to de-rive �nite-state approximations of underlying in�nite-state models. For instance,Nielson and Nielson [19] derives a CCS-like �nite-state process representing thecausal aspects of general CML programs using a type and e�ect system. Such�nite-state representations can then be analysed in various ways, for instance forcommunication topology or channel utilisation (c.f. [20]). Abstract interpretationtechniques have been very successful in for instance sharply reducing state spacerequirements for problems with very large, but �nite, state spaces [5]. An impor-tant property is to preserve validity under abstraction. For instance, in [5] validityin a universal fragment of CTL� is preserved. Other authors have considered otherfragments [6, 11]. Also positive and negative interpretations can be combined toprovide sound, but incomplete interpretations of richer logics, as in [16, 7].At the end of the day, however, if exact and very generally applicable analysesare called for then automated approaches are in our opinion likely to fall shortof the target. As examples of the type of properties we ultimately wish to verify,consider the following kinds of properties of a process P :� No matter what agent P receives on channel a, if that agent ever tries toaccess x then a noti�cation will be emitted on channel b.� P will eventually output a reference to an � list on channel c.� In any environment, if message m is ever emitted along out then m wasearlier received along in. 2



While often considered impractical it is conceivable that such properties can inprinciple be dealt with using proof-based methods. For instance, the operationalsemantics of higher-order concurrent programs is often not too di�cult to embedin a framework for formalised mathematics (c.f. [18]). However, such an approachis unlikely to provide by itself the kind of support needed for any practical appli-cations.Ultimately, for systems and properties of this generality we believe that thebottom line is the di�cult problem of compositionality: How can functional andtemporal properties of a process P (x; y) be inferred, automatically or manually,from those of its components x and y in the setting of dynamic process networksand higher-order communication? In the area of temporal logic the problem ofcompositionality has occupied researchers for a long time, and many techniqueshave been proposed, including rely-guarantee pairs (c.f. [22, 1]), history variables(c.f. [21]), quotienting (c.f. [4, 3]), reduction (c.f. [17]), phantom moves, simu-lations, edge propositions, or quiescent traces (c.f. [2, 12, 15, 24]), to name buta few. These techniques, however, give only partial and ad-hoc solutions in thatthey work only for particular concurrency primitives, static process networks and,most often, linear time logic only. Recently, in [10], we presented an approachto compositional veri�cation which seems to overcome many of the di�culties ofearlier work in this direction, and which seemed to suggest that maybe the prob-lem of providing general, sound, and powerful reasoning tools for compositionalveri�cation may not be quite as hard as it has been considered to be in the past 1.Drawing inspiration from earlier work by Stirling [23] and Winskel [25] we showedhow a compositional proof system for establishing modal �-calculus properties ofgeneral CCS processes could be built in a systematic fashion. Since we did notlimit attention to the �nite state fragment of CCS dynamic process networks couldeasily be represented, and we gave a simple example of a dynamic process networkto show the power of our approach. Compositional proof system for CCS vs themodal �-calculus were considered earlier, for instance by Andersen et al (c.f. [3]),but applicable to �nite-state problems only.Much work remains to be done before we can truly claim that veri�cation ofhigher-order concurrent systems is feasible. We need to experiment more withproof systems such as that of [10] to �gure out its scope in practice as well astheory, to extend the work to parameter-passing languages, and to �nd goodways of embedding automated approches into a basically interactive, proof systembased approach. Moreover, other approaches, including symbolic ones, to dynamicprocess network veri�cation needs to be investigated too, for instance along thelines of [14]. However, we see the general area of open systems veri�cation basedon quite generally applicable, interactive, proof-oriented methods as having quiteconsiderable long-term potential in helping to bridge the quite acute and growinggap between systems development practice and formal methods.1This is not the same as suggesting that compositional veri�cation in itself is easy, which itis not. 3
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