Model Checking Mobile Processes!

Mads Dam?
Swedish Institute of Computer Science
Box 1263
S-164 28 Kista

Sweden

!Preliminary version published as “Model Checking Mobile Processes”, Lecture Notes
in Computer Science 715 (1993) pp. 22-36
2Work supported by ESPRIT BRA project 6454 “CONFER”

Abstract

We introduce a temporal logic for the polyadic m-calculus based on fixed point
extensions of Hennessy-Milner logic. Features are added to account for parametri-
sation, generation, and passing of names, including the use, following Milner, of
dependent sum and product to account for (unlocalised) input and output, and
explicit parametrisation on names using lambda-abstraction and application. The
latter provides a single name binding mechanism supporting all parametrisation
needed. A proof system and decision procedure is developed based on Stirling
and Walker’s approach to model checking the modal p-calculus using constants.
One difficulty, for both conceptual and efficiency-based reasons, is to avoid the ex-
plicit use of the w-rule for parametrised processes. A key idea, following Hennessy
and Lin’s approach to deciding bisimulation for certain types of value-passing
processes, is the relativisation of correctness assertions to conditions on names.
Based on this idea a proof system and decision procedure is obtained for arbitrary
w-calculus processes with finite control, m-calculus correlates of CCS finite-state
processes, avoiding the use of parallel composition in recursively defined processes.

1 Introduction

The propositional p-calculus has recently emerged as a powerful instrument for
specifying temporal properties of processes (c.f. [17, 4]), and model checkers for
checking propositional p-calculus properties against finite-state (CCS) processes
have been developed and implemented (c.f. [8, 18, 2]). For most practical applica-
tions, however, mechanisms for parameter passing and quantification are invalu-
able. Based on CCS the w-calculus of Milner, Parrow, and Walker [13] has recently
been proposed as a way of formally describing mobility in process structures such
as mobile telephone networks (Orava, Parrow [14]). In fact the 7-calculus can well
be viewed as a prototypical value passing calculus, a view being reinforced by the
capacity of the 7w-calculus to encode data types [10], lambda calculus [11], and
higher order processes [15].

As a temporal logic for the w-calculus, however, the propositional u-calculus is
not directly suitable, lacking, as it does, mechanisms for parametrisation, passing,
generation, and quantification of names. In this paper we demonstrate

1. how such facilities can be added to the propositional p-calculus, resulting in
a very expressive temporal logic for the m-calculus, and

2. how a proof system and tableau based model checking algorithm for this
richer logic can be built, based, concretely, on Stirling and Walker’s approach
to model checking the modal g-calculus [18].

Note that (2) is far from trivial, since there is no prior reason to believe that the
mechanisms for parameter handling and those for fixed points do not interfere.
Indeed the contrary, if anything, should be supposed, since name passing causes
even the simplest processes to be infinite state.

A number of problems must be addressed. The first concerns the choice of
base modalities. Our work is based on the logic of Milner [10] for the polyadic
w-calculus, an extension of the w-calculus to support the communication of tuples.
A key feature of this logic is the use of dependent sum (¥) and product (here V)
to handle (un-localised) output and input of name-parameters.

The second hurdle concerns the need for fixed points to be parametrised on
names. To see the necessity of this consider the following single element memory

cell (in CCS-like notation)
MEM(z) £ outz. MEM(z) + in(y).MEM(y)

A characteristic property of MEM(x) is, informally, that it always outputs the last
element input, or, rephrased without reference to pasttime modalities, that when-
ever an element is input then that same element is output until some new element
is input. Trying to formalise this property using the ideas of the propositional
p-calculus results in the following parametrised fixed point

6 = vX(x).in(y)) X (y) A [oute’] (x = o A X(a')).

This example illustrates the extent to which name-parametrisation pervades the
syntax of formulas. By using explicit name-parametrisation and instantiation
by A-abstraction and application all parametrisation needed can be handled by
a single name-binding mechanism. Thus, as an example, we replace ¢ by the
formula

v XAz [in]V(Ay.(Xy)) A Jout] (A’ .2 = 2’ A (X2')).

In this manner a large degree of orthogonality is revealed between propositional
connectives, modal connectives, fixed points, abstraction and application, and
quantifiers.

A third hurdle concerns the doubling of names in the w-calculus as both vari-
ables and constants. This makes a standard version of the rule of generalisation
for correctness assertions A : ¢ such as

Az : ox

V-INTRO: Ao

(x not free in A or ¢)

unsound. For instance it will license the inference

y.0| 2.0 : [r]false
(Ax)(y.0 | 7.0) : VAz.[r]false

which is clearly invalid. An alternative is to use an w-rule for A : V¢, perhaps
restricted to names free in A or ¢ plus one to serve as a representative of names
free in neither. While sound, such an approach, however, has some disadvantages:
Its schematic form makes it somewhat unattractive from a proof-theoretic point of
view, but more seriously it is inefficient, forcing names to be treated distinctly even
where this may not be necessary. An alternative which has been pursued in the
context of value-passing calculi by Hennessy and Lin [5] for bisimulation checking,
and by Hennessy and Liu [6] for modal logics, is to explicitly relativise correctness
assertions to conditions ¢ on names. Such name conditions are expressions in the
first-order language of names with equality. The problem with V-INTRO is that by
taking = to be fresh it is thereby implicitly assumed to be distinct from all names
that are not fresh. If relativised correctness assertions are written ¢ = A : ¢ the
rule of generalisation is regained in the following form:

ck Az : ¢ox

RELATIVISED-V-INTRO: —8— ———
cHA:Vo

(z not free in A, ¢, or ¢)

where by requiring = to be not free in ¢ ensuring that no prior assumptions about
x are made neither explicitly nor implicitly. Name conditions are expressions in
the first-order language of names with equality.

A fourth hurdle concerns model checking and how to deal with fixed points.
We adopt the approach of Stirling and Walker [18] using constants to keep track
of the way fixed point occurrences are unfolded during model checking. The use
of constants allows alternating fixed points, crucial for the expression of many

liveness and fairness related properties, to be handled in an elegant fashion. The
approaches to model checking in the propositional p-calculus applies only to finite-
state processes. For the w-calculus restricting to true finite-state processes is far
too restrictive since even the simplest m-calculus processes exhibit infinite-state
behaviour. A much more liberal notion is obtained as a direct generalisation of
the notion of finite-state process in CCS by disallowing just processes which have
occurrences of the parallel combinator | within recursive definitions. Processes
which adhere to this restriction are termed finite control. What is surprising is
that this condition turns out to be the only one needed for model checking to work
and be decidable. We present as the main result of the paper a proof-, or tableau
system for relativised correctness assertions for finite control processes which is
sound and complete, and use it as the basis for a decision procedure.

In sections 2 and 3 we present our version of the polyadic m-calculus and its
operational semantics. In order to support the relativisation of correctness as-
sertions to name conditions the operational semantics is modified by similarly
relativising the structural congruence and commitment relations to name parti-
tions. These are partitions of the name spaces determining the identifications and
distinctions assumed. Distinctions alone, as introduced by Milner et al in [13],
are too weak since both positive and negative assertions about the identity of
names are needed. Interestingly, name partitions provides machinery to include
into the polyadic w-calculus the conditional bAB where b is a boolean expression,
behaving like A when b is true and like B when b is false. In section 4 the ex-
tended p-calculus is introduced, and in section 5 the proof system for relativised
correctness assertions is given. The remainder of the paper are devoted to proofs
of soundness, completeness, and decidability of this proof system. These proofs
extend corresponding proofs for the modal p-calculus due to Stirling and Walke
[18], and Streett and Emerson [19]. In section 6 an alternative semantics, called
symbolic following Hennessy and Lin [5], of the extended p-calculus is given which
relativise formulas to general name conditions rather than just name partitions.
The symbolic semantics provides to a large extent the purely local parts of the
soundness, completeness, and decidability proofs. Soundness is proved in section 7
and the decision procedure is given in section 8. In section 9 the decision procedure
is proved terminating and well-defined, and then completeness and decidability is
proved in section 10. Finally section 11 contains the conclusion and discussions of
related work.

2 The Polyadic w-calculus

The version of the w-calculus used here is a version of Milner’s polyadic w-calculus
[10], somewhat modified to involve conditionals and an operational semantics rel-
ativised to name partitions. The letters z,y, z, ... are used to range over names
of which there is a countably infinite supply, A, B over agents, and D over agent
identifiers. Actions, a, 3, are either names, co-names of the form 7, or the dis-

tinguished constant 7. We assume a countable infinity of distinct names. If «
is a name x then n(«) (the name of «) is @. and p(«a) (the polarity of «) is —.
Otherwise if &« = 7 then n(«) = « and p(x) = +. The syntax of agents is given as
follows:

Boolean expressions:

b:::x:y|—|b|b/\b
Agents:
Au=0|A+Ala.A|A|A|BAA|(A2)A| Az | (va)A| D |fixD. A |[2]A

For most connectives the intended meaning is familiar from CCS and the 7-calculus
[9, 13]. Conditionals are agents of the form bAB, and (Ax) and [z] are used for
unlocalised input and output, to be localised by a prefixing operator «.-. In
CCS terms x.(Ay)A is z(y).A and T.[y]A is Ty.A. The restriction operator is
v. We use recursively defined agents rather than replication as in [10] as we
are interested in the subcalculus of the polyadic w-calculus which arises from
disallowing uses of | in recursively defined agents, mirroring the notion of finite
state process in CCS. Agents in this subcalculus are termed finite control. For
technical reasons we assume that recursions fixD.A are guarded in the sense that
each occurrence of D in A is within the scope of a prefix operator a.—, and that
they are fully parametrised in the sense that recursive agents fixD.A have no free
occurrences of names. Furthermore we generally presuppose agents not to contain
free occurrences of agent identifiers.

The syntax as given here is flat: No distinctions are made between processes,
abstractions, and concretions as in [10]. To recover these distinctions we assign
to well-formed agents A an integer arity n, written A : n. The set of all well-
formed agents is denoted A. Processes are agents of arity 0, abstractions are
agents of negative arity, and concretions are agents of positive arity. The following
assignment of arities is relative to an assignment D : n of arities to agent identifiers:

A:0 B:0 A:n n<o0 A:n n>0 A:0

0:0 A+ B:0 z.A4:0 T.A:0 7.A:0
A:0 B:0 A:n B:n A:n n<0 A:n—1 n<0
A|B:0 bAB : n (Az)A:n—1 Az :n
A:n D:n A:n A:n n>0
(vz)A:n fixD.A:n []A:n+1

Example 2.1 The agent (fixD.(Ax)(z.(Ay)Dy))x is a well-formed process under
the assumption D : —1. The agents x.(Ay)[y]0 and x.(Ay)[y|0 are ill-formed.

The operators (Az)A and (vx)A introduce binding of the free occurrences of
x and T in A. For an agent A, fn(A) is the set of names occurring freely in A,
and A{y/x} is A with all free occurrences of x substituted for y. In general this
involves alpha-conversion of A to avoid capture of names.

4

1. =, is an equivalence relation preserved by all non-binding operators

2. If A=(,,). B then (va)A =. (vz)B.

3. A=.Bif Aand B are alpha-convertible.

4. Abelian monoid laws for + and 0, i.e. A; 4 (Ay + A3) =. (A1 + A2) + A3,
Ay + Ay =. Ay + Ay, and A4+ 0 =, A.

5. Abelian monoid laws for | and 0.

6. bAB=.(-b)BA.

7. Ifel=bthen bAB =, A.

8. ((Ax)A)yy=. A{y/z}.

9. fixD.A=. A{fixD.A/D}.
10. (v2)0 =, 0, (vz)(vy)A =. (vy)(ve)A, (ve)(ve)A = (va)A.
11. If 2 ¢ fn(B) then ((vz)A) | B = (va)(A | B).
12, If @ # y then (vy)(Az)A =. (A2)(vy)A and (vy)[z]A =, [z](vy)A.

Figure 1: Structural congruence relation

3 Operational Semantics

The operational semantics of agents is, following Milner [10], given in terms of a
structural congruence relation = together with a commitment relation . This
style of semantics was introduced by Milner in [11] to which the reader is referred
for justification of many of the clauses given below. Here the structural congruence
and commitment relations are parametrised on name partitions, partitions ¢ on
the set of names. This provides the strengthening of the notion of distinctions [13]
needed to deal with general name conditions rather than just the positive match
operator of [13]. A name partition ¢ identifies the names z and y if and only if z
and y are members of the same partition. Thus name partitions provide models
for boolean expressions and first-order conditions on names, and we write £ |= ¢
if € is a model for ¢. Name partitions extend to actions in the obvious way by
e E ap = ag iff either oy = 1, ag = @3, and ¢ |E 21 = 23; or a = Ty, ay = Ty,
and ¢ E o1 = x9; or oy = az = 7. In addition to interpreting booleans and
first-order name conditions we need an operation for the generation of new names:

(va)e = {S = {z} | § € e} U {{z}}.

The conditions governing the relativised structural congruence relation =, are
shown on fig. 1. Note that for the structural congruence relation (but not for the
commitment relation) relativisation to name partitions is needed only because of
conditionals. An unrelativised structural congruence relation = can be derived
from the relativised one by Ae = Be whenever A =. B. This congruence relation
is closely related to the one considered by Milner in [10]. The difference is that
we do not here in general assume conversion under A, i.e. a rule such as

If A=. B forall &’ such that {S —{a}|S €&} ={5—{x} |95 €¢e} then
(M)A =. (A\x)B.

Thus the term “congruence” for the structural congruence relation is actually
misplaced, and for the remainder of the paper we refer to =. as the structural
equivalence relation instead.

Another justification for =. is in terms of an appropriate normal form theorem.
Say an agent A is in normal form if it is either an abstraction of the form (Ax)A, a
concretion of the form [x]A or (va)[z]A, or a process P generated by the abstract
syntax

P:=0|P+P|a.A|P]|P]|(va)P

Proposition 3.1 (Normal forms) Given any well-formed agent A and any name
partition ¢ there ts a normal form B such that A =. B.

PROOF We prove a somewhat more general statement. Say that A is e-admissible,

if
1. A is well-formed,
2. there is a normal form B such that A =. B, and
3. it A:n and n < 0 then for all z, Az is s-admissible.

We show for all well-formed agents A and all name partitions ¢ that A is e-
admissible. First we need to show that both arities and e-admissibility is preserved
by structural equivalence.

Lemma 3.2 Let A be any agent.
1. If A:n and A=. B then B :n.

2. If A is e-admissible and A =. B then B is e-admissible.

PROOF 1: An easy induction in the structure of proof of A =. B. 2: Induction in
|n| where n is the arity of A, using 1. O (Lemma 3.2)

Let now &’ be any name partition and A any well-formed agent. A is allowed
to contain free guarded occurrences of identifiers, and identifiers are assumed to
be assigned an arity. We use induction in the structure of A to show that if A’ is
any instance of A obtained by substituting names for names and agents of arity
n for free guarded occurrences of identifiers of arity n then A’ is e-admissible
thus completing the proof. We consider the cases for the conditional, lambda
abstraction, application, and recursive definition. The remaining cases are similar.

A = bA1 Ay, Either ¢ = b or ¢ | —b. Assume without loss of generality the first.
Then A’ =. A} where A} is the corresponding substitution instance of A;. By the
induction hypothesis A} is e-admissible. By Lemma 3.2.2 so is A’.

A = (Ax)B. Ais well-formed by assumption, and A is in normal form. Let y be
any name. By the induction hypothesis B’{y/x} is e-admissible where B’ is the
appropriate substitution instance of B. Then by Lemma 3.2.2 (A’)y is e-admissible
too. Thus A’ is e-admissible.

A = Bx. By the induction hypothesis B’ is e-admissible where B’ is the expected
substitution instance of B. Then by definition so is A’.

A = fixD.B. Since A is well-formed by assumption, and all occurrences of D in
B are guarded, B’ is e-admissible where B’ is the substitution instance of B that
corresponds to A’, and which substitutes A for D. But then by Lemma 3.2.2 A’
is also e-admissible. O (Lemma 3.1)

In fact the proof of Proposition 3.1 can be used to show that B can be found
of size not greater than that of A where size is measured in e.g. depth of parse
tree.

We proceed to define the relativised commitment relation A >. «.B. The
definition uses the operation of pseudo-application, and the extension of paral-
lel composition to pairs of abstractions and concretions as in [10]. The pseudo-
application of A to B, A- B, is defined only when A : —n and B : n for some
(positive or negative) n. If n = 0then A- B =A| B. If n >0, A = (Ax)A,
and B = [y|B' then A- B = A{y/x} - B', and if instead B = (vy)[y]B’ then
A-B=(vy)(A{y/x} - B’). The case for n < 0 is defined symmetrically. Secondly
A | B is extended to the case when only one of A, B is a process by (in case B is
a process) ((Ax)A) | B = (Az)(A | B) where @ & fn(B), ([x]A) | B = [z](A]| B),
and ((va)[z]A) | B = (va)[z](A | B) where © & fn(B). The case for A is defined
symmetrically.

The commitment relation is now given in fig. 2. Note that although this is
not necessary since | is assumed to be commutative, we have chosen to include
symmetrical versions of the rules SUM, cOMM and PAR. This is merely a tech-
nical convenience. As for the structural equivalence relation we can derive an
unrelativised version by Ae > (a.B)e whenever A . «a.B. In the absence of
conditionals, > is exactly the commitment relation of [10].

4 Adding Name Passing to the Propositional
u-calculus

In this section we extend the propositional p-calculus with name-parametrisation
and dependent sum and product as in [10]. The result is a powerful temporal
logic for the polyadic w-calculus characterising late strong bisimulation equivalence
[10, 12]. By explicitly introducing lambda-abstraction and application of names
all parametrisation issues for fixed points and dependent types are catered for in a
uniform way. Formulas, ranged over by ¢,), are thus interpreted as sets of agents
parametrised on names. The letters X Y, Z range over propositional variables
each assigned an arity n € w, written X : n. The syntax of formulas is given as

7

ACT: ———————— SUM: Ao B
T oaAd s aA A+ Ay -, B

Ay = 2. By Ay >.7.B

COMM: E=a =
Al | AQ >'5 T.(B1 . BQ) (| y)
PAR: Ay = a.B RES-1: A >'(1/x)6 T.B
T AL | Ay - al(B | Ag)) (va)A ». T.(va)B
. A >-(l,l,)5 a.B
RES-2: (va)A >. a.(vz)B (& # n(a))
STRUCT: A=, Ay Ay =.a.By By =. B,

Al . a.By

+ symmetrical versions of rules suM, cOMM and PAR

Figure 2: Commitment relation

follows:

o n= w=yletylons|ove|<a>s|lals]
X|vX.¢|uX.¢| .o |62 |S¢|Ve|Te

Briefly the logical connectives can be understood as follows: A and V are the usual
boolean connectives; <a> and [a] are the labelled modal connectives; v (not to
be confused with the w-calculus v-operator) is the greatest fixed point operator
used, typically, for invariant properties; u is the least fixed point operator used for
eventualities; A and application is used for name-parametrisation; ¥ is dependent
sum used for concretions, for instance ¥¢ is satisfied by a concretion [z]A for
which A satisfies ¢x; and finally V and J are quantifiers expressing properties of
abstractions. For instance V¢ is satisfied by an abstraction A for which Az satisfies
ox for all x, and d¢ is satisfied by an abstraction A for which Ax satisfies ¢x for
some . Thus the logical correlate of (agent) abstraction is quantification. We use
o as a meta-variable ranging over {v, u}. As for agents we assume for technical
convenience that recursive (v or y) formulas have no free occurrences of names.
The only binder of names is A, and v and p are binders of propositional variables.
Formulas are generally identified up to renaming of bound names or variables.

As for the w-calculus attention is restricted to well-formed formulas by ex-
tending the assignment of arities to variables to arbitrary well-formed formulas by
letting x =y : 0, x # y : 0, and closing under the rules:

¢:0 :0 ¢:0 P:0 ¢:0 ¢:0

dNY:0 eV 0 <a>¢:0 [a]d: 0
X:n ¢:n o:n o:n+1
cX.9p:n Ar.p:n+1 ox :n

o:n+1 o:n+1 o:n+1
Yp:n Vo :n ¢ :n

A simple generalisation is to extend nonzero arities to boolean and modal
formulas by pointwise extensions as for instance for conjunction:

o:n P:n
dNY:n

No expressive power is gained by this modification.

We proceed to define the semantics of formulas. First machinery is intro-
duced to account for free occurrences of propositional variables. A proposition
environment is a mapping p which given a propositional variable X of arity m, an
m-vector of names y1, . .., ¥, and a name partition € gives a set pXyy -+ - y,,e C A.
Let now ¢ : n. Given a proposition environment p, an n-vector zy---x, of
names, and a name partition ¢, the “standard” interpretation of ¢ produces a
set ||@]|px1---ane C Ao If ¢ does not contain free occurrences of propositional
variables then ¢ is said to be propositionally closed. For such ¢, ||¢||px1--- v,
does not depend on p and is thus abbreviated ||¢||z1 - - - #,2. The standard inter-
pretation is shown in fig. 3. Here the complete boolean algebra structure of 24 is
inherited pointwise to proposition environments and interpretations. The symbols
C, M, and U are used to denote the induced lattice ordering, infimum, and supre-
mum, respectively. Notice that for formulas in positive form (i.e. with negations
applied to propositional variables only) the modal g-calculus can be viewed as a
sublanguage of the language considered here, and that the semantics assigned by
fig. 3 to this sublanguage is the usual one (c.f. [18]).

5 Proof System

In this section we introduce a proof system for relativised correctness assertions
¢k A : ¢. The intended interpretation of such assertions is that A € ||¢||e
whenever ¢ = ¢. A complication, however, concerns the need to handle fixed
point formulas. For this we adopt the approach of Stirling and Walker [18] by
including into the syntax of formulas constants U to denote occurrences of fixed
point formulas. A definition list is a sequence A = (Uy — ¢1),...,(Un — én),
associating to each U; the propositionally closed formula A(U;) = ¢;. Here A is
required to satisfy the conditions:

1. each U; is unique, and

2. each A(U;) mentions only constants among {Uy,...,U;_1}.

For A as above, dom(A) 2 {U1,..., Uy}, and if U ¢ dom(A) and each constant
occurring in ¢ is included in dom(A) then A- (U + ¢) is the update of A associat-
ing ¢ to U. If A is admissible for ¢ in the sense that each constant occurring in ¢

|z = yllpe

|z # yllpe

lo A 9|
oV |

[<a>¢llpe

Ilalellpe

1 X1|p
lvX.¢llp
|nX.9llp

Az gllpzr - e

[oxlpzy -
15¢llps - -

IVl py - --
136l py - - -

]

TpE

]

]

n€

n€

n€

. A ifeEa=y
otherwise
A

ifeEa#y

o # otherwise

= llell el

= llellu el

= {4|38,B. A».3.B.c|Fa=p,Bc|d|pe}
= {A|VG,B.if A-. . Bandelma=p

then B € [|6]|pe}

= pX
= W/ ISE lollplX — f1}

= S 1 ollp[X — f1E [}

= lp{el/z}|pas - - -ane

= |Iollpzar - ane

= {A| A= [z]B, and B € ||¢||pray---a,e}U

{A| A=, (va)[z]B,z & fn(¢)U{a1,...,2,}, and
B e ||¢llpzay - -wn((ve)e)}

= {A|Vz.Az € ||P||pra1 - 2ne}
= {A]|3Jx. Az € ||P||pra - 2ne},

Figure 3: Standard semantics

10

is in dom(A) then ¢a is constant-free formula resulting from recursively replacing
each occurrence of a constant in ¢ by its definition. Note that, as fixed point
formulas are required to be fully parametrised, formulas ¢ and ¢a have identical
sets of free names.

Thus relativised correctness assertions, or sequents, have the form ¢ Fa A : ¢
where A is a well-formed process, A is admissible for ¢, and ¢a is propositionally
closed and of arity 0. The sequent ¢ Fa A : ¢ is then true, if A € ||¢a|le whenever
e = ¢. We present a proof, or tableau system for sequents. The proof system
consists of a collection of axioms and proof rules which describe the local properties
of the logical connectives, plus an additional rule to deal with properties which
depend on the infinite behaviour of agents. The following abbreviations are used
in the local proof rules shown in fig. 4:

1. o and 3 c-match: Either « = 8 = 7, or else E ¢ D n(a) = n(f), and
p(@) = p(B).

2. x fresh: Relative to a proof rule

fn(A) U fn(o).

b Alig!
ckaAid

x fresh means that « ¢ fn(c) U

3. A=, B: For all e, if ¢ | ¢ then A =, B.
4. A=, B: For all ¢, if ¢ |E ¢ then A >, B.

The rules should be fairly uncontroversial given the semantics of formulas and our
previous comments.

In addition to the local rules the proof system is equipped with the following
single rule for discharging hypotheses:

[Far AU 21+ 2,]

cka AUz 2,

DIS:
cka AUz 2,

(Ed o)

where it is required that A(U) is a formula of the form v X.¢, and that the given
derivation of ¢ Fao A : U x1---x, is nontrivial, in the sense that it contains an
application of an introduction rule. The following example shows that the side-
condition |= ¢’ D ¢ is indeed necessary: Let

B = fixD.73.[y|e1.(Ay)(Dy)
A = z.(Ay)(y = 2)(B)(0).
Then, if the side-condition on DIS is absent, the following false sequent is derivable:
true Fa A [VAy.(y # 2) V (X.<T2>EAy.(y = 2) A ([e1]V . X)).

There is a close relationship between the proof system of fig. 4 and the tableau
system of Stirling and Walker [18]. For the fragment of closed positive modal

11

Introduction rules:

BOX:

EQ: (Fedax=y)

cka Az =y

INEQ:

ckaAia#y (Fed>a#y)

ckA A chbaA A
cFA Ao AW

AND:

chFA Ao OR.9: chka A
chkaA AV T ockA AoV
) ckaA B¢
DIA: Fad <asd (A>.a.B)
{taB:¢|A>upB.B, Fd De,aand § -match}
cha A:lale

OR-1:

chawesxg) AU 212y
cka Ao X.paq- -2y

cha Ao X =U]ay---a,

FIX:

FOLD: (A(U) =0X.9)

LAMBDA:

SIGMA-2:

Structural rules:

EQUIV:

ckaA B¢

chka AU 212,

cha Aro{ay/a} xg-ay, APP cbka Az a2y

cha A (Az.@) 212y ’ cha A (dx) ay -2,
chFAa A2y

cha[r1)]A: Yo ag-- -1y

cANN{z# y|ynot fresh} Fa A{z/a}: ¢z a1 - -2,
cha (va)[z]A X a1z,

SIGMA-1:

(z fresh)

. CI—AAy:qﬁyxl---xn
FORALL: S R (y fresh)

cba Ay oy,

EXISTS:
cka A:doxq-- -2y

citbFaA:¢p caba Ao
c1Veaba Ao

Fa A:
EX-COND: 3;.0 |A_A A(:bcb (z & fn(A)Ufn(oa))

) ciba Ao a
CONS: o Fadid (Fe2Der)

OR-COND:

N) chba A ()

(A=, B) REN: A Aol

(Fecdw=y)

Figure 4: Local proof rules

12

p-calculus formulas and CCS agents, the two systems coincide in the sense that
there is a successful tableau for A Fa ¢ in the notation of [18] iff there is a proof
of true Fao A : ¢ in the system of fig. 4.

Note that BOX causes the proof system to be infinitary. This problem, however,
is only superficial, as we proceed to show. While the set of antecedents of BOX
{dFa B:0¢| A»s 8.B, E ¢ D ¢,a and f ¢-match} is infinite, only a
finite number of name conditions ¢ and =.-equivalence classes need actually be
considered. The key is to apply the box-rules only when A is in normal form, and
then disregarding the structural equivalence relation. Thuslet A =- Bif A >. B
is derivable using =. only for alpha conversions. The following finitary version of

BOX results:
{C/ |_A B . (/5 | Cl,CQ}

cha A:lale

FIN-BOX:

where C; and C; are the following conditions:
e Ci: A= 3.B, = D¢, aand f ¢-match, and A is in normal form.

o Cy: ¢ is minimal in the sense that if ¢’ is any other name condition such
that C; holds with ¢ in place of ¢/, and if = ¢ D ¢”, then E " D ¢

Similarly we can replace the rule DIA by the rule FIN-DIA where the side-condition
A . a.B is replaced by the condition A > «a.B.

Proposition 5.1 (Finitary box-rules) A sequent ¢ Fa A : ¢ is derivable using
BOX and DIA iff it is derivable using FIN-BOX and FIN-DIA.

PRrROOF This is a consequence of the following standardisation property: If A .
«. B then there are A’; B” such that A’ is in normal form, A =. A’, A’ -_ B’, and
B =.B. O

In the remainder of the paper we tacitly assume that the rules FIN-BOX and
FIN-DIA are being used in place of BOX and DIA. Note that strictly speaking
FIN-BOX remains infinitary due to the fact that name conditions range over syn-
tactical name conditions rather than sets of names. This, however, can easily be
overcome, for instance by using normal forms. We obtain the following soundness,
completeness, and decidability results for finite control processes:

Theorem 5.2 (Soundness, Completeness, Decidability) Let ¢ Fa A : ¢ be a se-
quent with A of finite control.

1. The following conditions are equivalent:

(a) cta A: ¢ is derivable.
(b) ctba A: ¢ is true.

2. Deriwvability of cba A : ¢ is decidable. a

13

The remaining part of the paper is devoted to a proof of Theorem 5.2. First
we give a direct characterisation of true sequents in terms of a symbolic seman-
tics. Using this semantics we proceed to prove soundness. For decidability and
completeness we then present the model checking algorithm, show its termination,
and, using this, finally establish completeness and decidability.

6 Symbolic Semantics

The point of the symbolic semantics is to replace the relativisation of the standard
semantics to name partitions with relativisation to more general name conditions,
thus providing a direct semantical correlate of the notion of true sequent. Thus
the symbolic semantics assigns to each ¢ of arity n a set ||@]| 6x1---2z,c C A
where 6 is a symbolic environment. Such environments differ from proposition
environments p only in that they depend on general name conditions instead of
name partitions.

For technical reasons attention needs to be restricted to name-condition maps
f:e— S C A which are well-behaved (abbreviated w-b) in the sense that

fler V) = (fer) N (fez)

for all ¢1, ¢3. A symbolic environment 6 is then well-behaved if 6 Xyq - - -y 1s well-
behaved for all X : k£ and yq, ..., yr. Well-behaved maps are closed under arbitrary
infima and suprema. Note, however, that while suprema of chains of well-behaved
maps can be computed pointwise, this is not generally true for arbitrary suprema.

As in section 4, ||¢||,6x1---z,c is abbreviated to ||¢||,z1---z,c when ¢ is
propositionally closed. To define ||-||, it is convenient first by mutual recursion
to define its specialisation ||-||, ; to normal forms, and then derive ||-||, itself in the
following manner:

[l 61 wne =
{A|Ve,BeNF, if A=, B and € = c then B € quan&l;l CeeXpCe)

where c¢. abbreviates the condition

AN{z=ylz,yeNekErv=ylU{z#y|z,ye NeclEz#y}),

and N = fn(A) U fn(¢) U {x1,...,2,}. The same abbreviation is used in the
definition of ||-||,; shown in fig 5. The correctness of the symbolic semantics is
expressed in the following Lemma:

Lemma 6.1 Let ¢ : n and ¢ propositionally closed. Then A € ||¢|| ,x1- - xnc iff
forall e, A €||¢||la1--- xne whenever ¢ = c.

ProorWe show:

14

Iz = yll,, soc

Iz # yll,, soc

16V ¥l poc

[<a>¢l|,, fée

]l sée

1 X[, 81 g

v X.9ll, f0a1 - -anc

X Bl b1 e
Az.¢l],, ;021 -ane

|pa1l],poas - -
120, p0w2- -

Vel g8z
13614822

-TpC

TpC

TpC

TpC

{NF if EeDa=y
0

otherwise

NF if EeDa#y
) otherwise

161l T 1AL 5

VRISl s6er O l|o]l, 6ee [l e D er Voea}

Ullell,sée) U (191l £0¢)

{A € NF | Ve, if ¢ = ¢ then 33, B, A >, 5.B,

eEa=0, and B € ||¢|| ,6c.}

{A€eNF |Ve,3,B, ifel=¢, A>. .B, and

¢ l=a=p, then B € ||¢||,0c.}

{AeNF|AecéXay - anc}

(A€ NF | A€ (U | C [l 01X = fer--r0c)

{AeNF[Ae(M{f |0l 80X — FIE fH)er---2nc}

o4zr /el 622 ne

N

{A=T[JA [A € |lgl] 621 - 2nciU

{A = (va)[x]A" | 3 fresh ay. A{ay/a} €

[0l ;0z1 -+ 2n(c A N{z1 # y | y not fresh})}

{A = (Az)A"| 3 fresh 1. A{a1/2} € ||¢]| 621 - 2xnc}

{A =)Ao A{aq/2} € ||@] 021 - -2}

where ¢/ = ¢ A A{z1 # 2 | z not fresh} if 21 fresh,

and ¢’ = ¢ otherwise

Figure 5: Symbolic semantics

15

1. For all name substitutions e,
A€ ||B],plar - zne il A€ |B]lpry - wne
where p’ is derived from p by
7
P Xy yme = {pXyr - yme | € = ¢}
2. Whenever 6 is well-behaved then
[l 0z1 - zuler V e2) = ([l 021 - wner) A (|6l 621+ Tpc2).

Together (1) and (2) implies the desired conclusion. We first prove that (1) follows
from (2). Observe first that

o], p'x1 - anc. = {A| VB € NF,if A=, B, then B € "¢"nfp/$1 CeeTpCe b

It thus suffices to show that A & Hqﬁanp’:z:l capee iff A € |@]|pxr - - xne, assum-
ing A € NF. The following Lemma expresses the contravariance of |-, in its
last argument, and allows unused names to be projected out.

Lemma 6.2 1. If = e D ey then H¢an5l'1 cee ey C H¢an5l'1 R e
2. Suppose thatx ¢ N. Then A € ||@||, 621 uciff A € [[9]], ;021 xa(Ta.c),

PrOOF1. Structural induction in ¢. 2. The if-direction follows from 1, and the
only-if direction is proved by structural induction. O(Lemma 6.2)

We now prove (1) by induction in the structure of ¢, assuming A € NF:

Ac oV,
i A€ ol], e or A€ il e or
der, oo A€ @], p'er N []], 40 c2 and E e Dt Ve
i A€ 6ll,yofen or A€ [0l pofee, or
der, oo A€ ||@|], sp'er O[], ;p'c2 and = e D ey, or
A€ 9l g0 0 [l gpler and = . > e
(Using 6.2.2 and property of c¢.)
iff A€o, p'ccor A€, p'cc (by 6.2.1)
ifft A€ ||é]|pe or A € ||¢0]|pe (by the induction hypothesis)
it Aellov le

A€ [l zp e
iff Ve, 8, B.ife' Ec., A=o 5.B, and &'(a) = &'(B)then B € ||¢||,p cer
ifft VB,B.if A>.3.B, and ¢(a) = (), then B € ||¢]|,p'c.

16

ifft V3,B.if A=, (.B, and ¢(a) = £(f3), then B € ||8]|pe
(By the induction hypothesis)
ift - A€ |l[a]o]lpe
A=)l A" € |86, ptos - ees
iff I fresh y. A'{y/a} € ||¢|l,p'ya1 - znlce A \{y # z | z not fresh})
iff Jy & N. Ay/w} € 19llp'ys - - wncwy)e
ifft 3y & N. Ay/a} € [|ollpyar - - wnl(vy)e)
(By the induction hypothesis)
it (va)[z]A" = A € ||X¢||par - xne
A= (dx)A' € H‘v’qunfp’xl R
iff Ty & N. Afy/x} € llollp'ywr- - wace
iff vy Aly/a} € l[oll,p'ye-- - wnce
(By (2))
iff vy, Ay/a} € [[dllpyas - wne
(By the induction hypothesis)
it (Ax)A" = A € ||¢]lpa1--- 22

The remaining cases, except those for fixed points, are proved by similar methods.
For the fixed points it suffices from the assumption that ¢ satisfies (1) and (2) for
greatest fixed points to show:

(a) If g E||¢]|p[X > g¢] then ¢' E ||¢]|,p'[X — ¢'] where ¢’ is defined by
Jyi-yme=[Woyr - yme | € E ¢}

(b) If f T ¢]l,p[X = f] and f is well-behaved then fT C ||| p[X — fT] where
fTis defined by

nyl---ym€ o fyl---ymcs
where ¢, is computed relative to fn(¢) U {y1,...,ym}.

We leave the proof of (a) to the reader. For (b) note first that if f is well-behaved
then

(p[X = f1])' = p'[X = f].
Suppose that f T ||¢],p'[X +— f], i.e. for all z1,...2, and ¢, fo1---2,c C
o|l,.p [X — flzy---x,e. Then in particular for all e, faq---2,c. C ||8]],p'[X —
flx1 - - xpce where ¢, is computed relative to fn(¢) U {x1,...2,}. By the above

observation it follows that fay---z,c. C ||¢],(p[X — fT])/l‘l Ce X, Ce, CONSE-
quently by the induction hypothesis for (1) and the definition of T, ffz;- - z,c C

17

|8]|p[X +— fT]ay---2,e as was to be shown since 1, ...z, and ¢ were arbitrary.
The checks for least fixed points are dual to the cases for greatest fixed points.

Next for the proof of (2), assuming that 6 is well-behaved:

H¢ V 77Z)an5(cl vV 02)
= U608 1], 564 = 1 v s o & v)
U(l[¢ll,,;0(c1 V e2)) U ([l4]],;6(e1 V e2))
= UllIell, ;8¢]l 6¢; |

EaDdVe,and Ee DV}
U(l[@ll,,;0(er Ve2)) U ([[¢]],;0(cr V e2))
= JtlIall, ;8(cin vV ean) N[N 6(cra Veaa) |

|: c1 O €11 vV C1,2 and |: Cy DO 21 vV 0272}

U(l[@ll,,;6(c1 V e2)) U ([[eh]],,6(c1 V e2))

= U{Hqunf‘SCLl N Hﬁanf&C?,l N qub"nf50172
QH?Z’an‘S@J Fca DaiVeagand =e D ey Vst

U2l poe0) N (o], 6¢2)) U ([0l 0e0) O (Il 0¢2))
(by the induction hypothesis)

= (Ulllell pera]l poerz [er D era Veera} U ([0, 6e1) U (I[d]], p0e1)) N

(U8l pbean V][0l pbe2z [ez D eza Voeanh U ([[]l,,56e2) U ([0l 56¢2))
(By calculation)

= oVl e nlo Vv, bc
[[e]@]l,,;6(c1 V e2)
= {AeNF |Ve,p,B.ifeEcy Ve, A=.p.B, ande Fa=0
then B € ||¢||,6c.}
{AeNF |Ve,p,B.if cEFaorelEe), A-.3.B,ande lma=p
then B € ||¢||,6c-}
= (leléll 8er) O (a9l bc2)

The remaining cases follow in equally straightforward manners from the induction

hypothesis, and are left to the reader. O(Lemma 6.1)

7 Soundness

Crucial to the proofs of soundness, completeness, and decidability is the use of
ordinal approximations v*X.¢ and p®X.¢. These are defined as follows:

HZ/OX.qﬁHS(S:pl ceezpe = A

18

[X b2 wie = 6]l 0[X = ([X6 O]ar - wac
Hl//\X.¢HS5$1“‘$nC = ﬂ HZ/O[X¢H55:E1$ C

a< A
H/LOX.qﬁHS(S:Ijl---xnc = 0
[X || br - wne = ||l 6[X = [X 8)ar -+ e
i Kbl g1 pe = U " Xl b1 e
a< A

It follows by standard techniques that M,|r*X.¢|| ¢ is the greatest fixed point
of AMf.]|o||,0[X — f], and that U, ||p*X.¢| 6 is the least. In fact only reference
to countable ordinals are needed. Note, however, that we need also to verify
that ||[v*X.¢|| 6 and ||x®X.¢||,6 are well-behaved for all ordinals o, whenever ¢ is
well-behaved too. That this is so can be seen from the proof of Lemma 6.1.

We can then proceed to prove soundness. The proof given here follows the
lines of the corresponding proof in [18].

Theorem 7.1 (Soundness) If cba A: ¢ is derivable then it is true.

PROOF First observation to note is that if all antecedents of a local rule are true
then so is the conclusion. This follows immediately from the symbolic semantics,
Lemma 6.1. Suppose then that a proof of ¢ =o A : ¢ is given, and that cFx A : ¢
is false, i.e. (by Lemma 6.1) A € ||¢all,c. For every sequent occurring in the
proof, if it is false then so is an antecedent of that sequent. If a sequent has no
antecedents then it is true. Thus we can find a constant U/; such that

1. it is possible to trace a path upwards through the proof using only false
sequents from the sequent ¢ o A : ¢ to a sequent of the form ¢; Fa, Ay :
U1=’1?1,1 o Tlmg

2. Ay(U7) is a v-formula, and

3. If U is another v-constant introduced strictly before U; (i.e. occurring before

Uy in Ay) then (1) and (2) fails to hold of U.

For if no such U; exists then it will be possible to trace an infinite path upwards
from ¢ Fao A : ¢, but this is impossible. Note that we can additionally require
the traced path to be as short as possible. Thus ¢; Fa, Ay @ Uyzqq-- - 21,m, 18
prevented from being an occurrence of a hypothesis.

Having now reached the sequent ¢; Fa, Ay : Uy 1+ - 21,5, the proof proceeds
iteratively, in the limit tracing an infinite path through the given (finite) proof.
The first iteration step proceeds as follows:

Consider the subproof rooted in ¢ Fa, Ay @ Uyz1q-- 21,m,. Using ordinal
approximations we can find a minimal « such that if Aq(U;) = vX.¢; then

Al € HI/OZX.¢1A1 T11 0 Tim, Hscl.

19

We index occurrences of Uy in the subproof. Thus occurrences of Uy indexed by
o are interpreted as v® X.¢, rather than simply vX.¢; in determining truthhood
of sequents. At the root sequent U; is indexed by « and subsequently, every time
Uy is unfolded, the index is minimised (while preserving truthhood/falsehood of
sequents), and thus strictly decreased. Using this procedure all occurrences of
U; are indexed. For the only rule that could prevent this from being true is FIX
eliminating U;. But then the choice of U; would have violated the convention that
constants are defined at most once.

In the indexed subproof the root sequent ¢; Fa, Ay @ Uwqq -+ 21, 1s false.
We now show that we can find some new constant U; such that

1. it is possible to trace a path in the indexed subproof using only false sequents
upwards from ¢; Fa, Ay @ Ufay1--- 21, to a sequent of the form ¢; Fa,
Ay U2=’1?2,1 T2 me

2. Ay(Us) is a v-formula, and

3. If U is another v-constant introduced strictly before U, then (1)—(2) fails to
hold of U.

4. U, is introduced strictly after U.

Starting from the root sequent the path is built step by step. Having reached a false
sequent ¢ Far A’ : @' it is either an occurrence of a hypothesis, or else it has some
antecedent which is false too. If the latter case applies and a suitable U; has not
yet been found, the construction merely proceeds. Suppose the first case applies
with ¢’ of the form, say, U’z --- 2! ,. It cannot be that U’ was introduced before
U, since otherwise U’ would have been chosen instead of U;. Neither can it be the
case that U’ = U;. For suppose otherwise. Let then o' index U; at this hypothesis
occurrence. Since the path from ¢ Fao A ¢ to ¢4 Fa, Ay Uy g 21, Was
chosen as short as possible, the construction must previously have encountered a
sequent of the form ¢’ a0 A’ : U2 --- 2! , which was not an occurrence of a
hypothesis, and such that = ¢ D ¢”, by rule DIS. Since ¢ Far A’ @ ¢ is false,
A g U2 -2l ||, Then A" & ||[UX 2y -+, ||,¢" either. But o” is strictly
greater than o/, and o/ was chosen minimal such that A’ & |[U&" 2 - - x|l a
contradiction. The only possibility is thus that U’ be introduced strictly after Uy.
But then we’re done, since we have identified one possible candidate for U,, and
among all candidates we can then choose one for which (3) above is true.

Note that, again, by choosing the path as small as possible we can ensure that
ca Fa, Ayt Usagq -+ - 23, 1s not an occurrence of a hypothesis. For if it were we
would find some application of DIS discharging this hypothesis, and concluding the
sequent ¢, Fa, Ay @ Usxay -+ g, for some ¢;. The application of this sequent
must be above the current root sequent ¢; Fa, Ay @ Ufay1- - 21 ,,, since if it
were below the convention preventing redefinition of constants would be violated.
But then the path construction would have terminated when reaching the sequent
ey ba, Ay iUz -+ - 29.m,, and we're done.

20

The construction can now proceed iteratively from the false sequent ¢ Fa,
Ay 1 Usgq -+ 22 4,, and the proof is concluded. O

& The Decision Procedure

In this section we describe the decision procedure central to the completeness and
decidability parts of Theorem 5.2. Let an initial sequent ¢o Fa, Ao : ¢o be given
such that Ag is of finite control. The decision procedure provides a strategy for
building a proof of ¢y Fa, Ao : ¢o, provided such a proof exists. The procedure
builds proofs in a refinement- or goal-directed manner as is usual in tableaux-based
approaches. The key issue is to allow attention to be restricted to finite subsets
of state spaces which are in general infinite.
First the issue of choice of free and bound names is addressed. Define

8 rns(A) max{|fn(B)| | B a subterm of A}
8 rns(@) 2 max{|fn(y)| | ¥ a subterm of ¢}

fpar(A) 2 pumber of occurrences of | in A

We then fix a set Ng = {y1,...,9%} of names from which all free and bound
occurrences af names will be chosen, where

E = 5n(A0) - (par(Ao) + 1) + 1n(60) + 1.

The factor f,.,(Ao) + 1 is needed to avoid name clashes during scope extrusion.
An alternative to using Ny for both bound and free names is to use Ny for free
names only, and then use de Bruijn’s indexes for bound variables. Whereas little
seems to be gained from the latter approach from the point of view of worst case
complexity or clarity of presentation, the use of de Bruijn’s indexes may prove
valuable in speeding up actual implementations.

Rather than general name conditions the proof building procedure uses finite
representations of name partitions. Partitions of a finite set N of names have
obvious representations as name conditions. Such conditions ¢ have the property
that whenever z,y € N then either ¢ D x =y or =c¢ D x # y. Call a condition
with this property N-prime (or just prime if N is understood from context). Note
that if ¢ is N-prime then Jx.c is N — {z}-prime, and if y &€ N U fn(c¢) then
dfr=y] 2 cAha=yand (l/y)cé cANNax #y|x e N} are NU {y}-prime. By
means of the rules OR-COND and EX-COND, ¢y Fa, Ao : ¢o can be replaced by a
finite set of sequents of the form ¢ Fa, Ao : ¢o where fn(c;) = fn(Ag) U fn(¢o),
and where ¢, is fn(c))-prime. We can therefore assume the initial sequent itself to
have this property, and let the procedure maintain it invariant.

At each step the procedure either terminates or else it chooses to refine the
current goal, say ¢ A : ¢, by an instance of one of the proof rules. We assume
of ¢ that it is prime, and that all names occurring freely or bound in A or ¢ are

21

in Ny. The choice of proof rule is guided by the structure of ¢. Using EQUIV and
EX-COND A can be assumed to be in normal form, and fn(¢) can if needed be
replaced by its restriction to fn(A)Ufn(¢). Guided by the outermost connective of
¢, the procedure now proceeds as described by the pseudo-ML function check?2 of
fig. 6. The definition of check2 uses a few anxillary functions and abbreviations:

e normalform(A,c) returns a normal form A’ such that A =. A’ for some ¢
such that ¢ |= ¢. Since fn(¢) = fn(A) Ufn(¢) and ¢ is fn(¢)-prime, the choice
of ¢ is irrelevant, and normalform(A,c) is thus well-defined by Proposition
3.1. It is assumed of normalform(A,c) that whenever (va)B is a subterm of
normalform(A,c) then x has a free occurrence in B.

e i abbreviates vectors xy---x,, and if ¥ = 2y --- 2, then (y,7) = ya1- - a,,
hd(#) = @1 and t1(Z) = 23+ - .

e restrict({zy,...,x,},¢) = Ja1,...,2p.c.
e newcon(A) determines a new constant not in dom(A).

e newname(A, ¢, ¥) determines a name in Ny not in fn(A) Ufn(¢) U {7} if one

exists.

In most cases check? is self-explanatory. Here we comment only on the case of
¢ of the form UZ. For the purpose of handling constants a table indicating what
constant sequents have previously been refined is maintained. Suppose first that
no sequent of the form ¢ Far A : ¢ for some A’ and ¢ such that = ¢ < ¢ has been
visited. Then we record that ¢ Fao A : ¢ has now been visited, and proceed by
checking ¢ Fa A : ¢1[X := U]Z& when A(U) = 0X.¢;. Logically, the recording of
¢ kFa A: ¢ amounts to nought when o = y. However, when o = v it corresponds to
refinement by DIS. If on the other hand a sequent of the form ¢ Far A : ¢ as above
has already been visited then, if ¢ = pu, the procedure terminates unsuccessfully
(as the chosen strategy for refining ¢ Far A : ¢ did not succeed in eliminating the
recursion), and if o = v it terminates successfully (since the current goal can then
be discharged).

In the next section we prove that the model checking procedure of fig. 6 is
well-defined, and then in section 10 we show that it is correct.

9 Termination and Well-definedness

An invocation of check(c Fao A : ¢) can, if it yields a well-defined result, be
viewed as determinining not only a truth-value, but also a set of proof structures.
The aim of the present section is to show that on all inputs check is indeed
well-defined, and determines a a set of proof structures all members of which are
generated by the local and global rules of section 5. To show this the following
must be established:

22

fun check(cha A: ¢) = initialize visited table;
for all ¢ such that fn(¢’) = fn(A) U fn(¢), ¢ is fn(c')-prime, and = ¢ D e
checkl1(d'Fa A: ¢ ()

fun checki(chkpa A: ¢ ¥) =
let A’ = normalform(A,c)
in check2(restrict(fn(A") Ufn(¢),c) Fa A': ¢ ¥) end
and check2(cka A:¢ 7) =
case ¢ of
y=z=>|FcDy==z |
yEe=> Feoyste |
&1 N\ @3 => check2(cka A: ¢y ¥) andalso check2(chka A: ¢y) |
&1V ¢ => check2(ctka A: ¢y T) orelse check2(chka A: ¢y) |
<a>¢y => for some Ay, § such that =¢ D a = and A =, 5. A;:
checkl1(ctka Ay : ¢y T) |
[a]@y => for all Ay, § such that e D a = and A =. 5.A;:
checkl1(ctka Ay : ¢y T) |
cX.¢1 => let U = newcon(A) in check2(chka (pvx.¢) A: U 7) end |
U => if visited ¢kFp A: 0 &
then (case A(U) of vX.¢y => true | uX.¢4 => false)
else mark cFa A: ¢ 7 visited;
(case A(U) of 0X.¢1 => check2(cha A: [X :=U] &)) |
Ay.¢1 => check2(cka A: ¢1{hd (&) /y} t1(D)) |
$1y => check2(cta A: g1 (y,2)) |
Y1 => (case A of
[y]A1 => checkl(cta Ar:¢1 (y,2)) |
(vy)[y]A1 => let z = newname(A,¢;,7)
in checkl1((vz)etka A{z/y}: ¢1 (2,%)) end | _ => false) |
Vo, => (case A of
(Ay)A; => let z = newname(A,¢1,7)
in checkl((vz)eka A1{z/y}: ¢1 (2,%)) andalso
Vz' e fn(A)Ufn(¢r) U {7}:
checkl(c[z = 2| Fa Ai{z/y} : 61 (2,7)) end | _ => false) |
d¢; => (case A of
(Ay)A; => let z = newname(A,¢1,7)
in checkl1((vz)eka A1{z/y}: ¢1 (2,%)) orelse
2" € fn(A) Utn(¢éq) U {7}
checkl(clz = 2| Fa Ai{z/y} : 61 (2,7)) end | _ => false)

Figure 6: Pseudo-ML functions check, checkl, check?2.

23

1. That, using the algorithm of fig. 6, only a finite number of agents are
reachable.

2. Using (1), that the algorithm terminates on all inputs.
3. That the algorithm determines a well-defined truth-value on all inputs.

4. That each refinement step determined by the algorithm corresponds to a
well-defined proof structure.

Together these results show that if a sequent is true then there is a proof for it. It
does not follow, however, that the proof has no undischarged hypotheses occurring
in it. The proof of this (completeness) is delayed till section 10.

9.1 Agents

We define the relation A — B intended to capture the ways agents A in single
steps give rise to other agents B using the algorithm of fig. 6. Parametrising
the definition is the set Ny determined from an initial sequent as in section 8.
The relation — is given as the least relation which respects alpha-conversion with
bound names in Ny (i.e. such that A — B whenever A and B are alpha-congruent
and B results from A by replacing bound names in Ny by bound names in Nj),
and for which the following properties hold:

l.A+B— A A+B—B
2. a.d— A
3. bAB — A, bAB — B
4. (o)A — A
5. Az — A
6. fixD.A — AlfixD.A/D]
7. [2]A— A
8. If A— B and « € in(B) then (va)A — (vz)B
9. (va)A — A
10. (rz)(Ay)A — (\y)(va)A
11. Iz £ y then (va)[y]A — [y](vz)A

12. (va)(vy)ly]A — (vy)lyl(vae)A
13. fA— A then A|B— A'"|Band B|A— B| A’

24

14 ((A2)A) [B — (Ax)(A | B), A[((Az)B) — (Az)(A | B)
15. ([2]4) | B — [2](A | B), A[([¢]B) — [¢](A] B)
16. ((ve)A) | B — (va)(A| B), A|((vz)B) — (vz)(A| B)
We first show that the relation A — B correctly reflects the intention:

Proposition 9.1 If check2(d Far A" : ¢ %) is invoked from check2(cta A :
¢ T) then A —= A'.

PROOF Suppose that ¢ is N-prime and that fn(A) € N. We need to show the
following:

1. A normal form A’ can be computed such that A =. A’.
2. If Ais a process and A > «.B then A —* normalform(B,c).
3. (M)A — A{y/z}, (va)[z]A — A{y/x}, and [x]A — A whenever y € Ng.

Of these, (1) can be seen to hold from the proof of Proposition 3.1, (2) by inspecting
the rules defining =2, and (3) holds by definition. O

£

We then proceed to prove finiteness:
Lemma 9.2 (Finiteness) For all A, {B | A —* B} is finite.

ProoOF By Konig’s Lemma, since the assumption of guarded recursion ensures
that {B | A — B} is always finite, it suffices to show that any infinite derivation

with Ag = A visits a finite number of distinct agents only, i.e. R(d) = {A; | 1 € w}
is finite. To show this we define the size, |A|, of A in the following manner:

o= |D| =1
|A+ B| = [bAB| = |A| + |B| + 1
. A = [(Az)A| = |Az| = [[2]A] = [fixD.A| = [A] + 1
(va)A| = 2-|A] + 1
|A| B| = |A]-|B]

Lemma 9.3 All axioms among (1)—(16) except (6) decrease size, and all rules
amonyg (1)—(16) preserve size decrease O(Lemma 9.3)

25

Thus, for d to be infinite the unfolding axiom (6) must be appealed to infinitely
often (or else alpha conversions are used almost always—this situation is left to
the reader to dispose of). We assume here that we can find some ¢y for which A;,
has the form C; (Bi, 1, .., Biy.m) where Cy, is an m-ary context built using only
operators of the form [z], (Ax), (va), or |, and for which each B; has no occurrences
of parallel composition. The situation where this assumption might fail is when
one of the B, ; fails to have the desired form but is never again “touched” by
d. This situation can be handled by entirely analogous techniques as the case we
consider here. Now for all ¢« > 49, A; will have a similar form C;(B;1,..., Bin),
and for each j : 1 <35 <m, either B; ; = B}, or else B; ; — B4y ;. In addition
we can assume that for infinitely many ¢, does B;; — B4 ;, since otherwise it
suffices to pick a larger zg. Thus the proof has been reduced to showing

(i) only a finite number of distinct C; are reachable

(ii) any derivation d that does not involve parallel composition visits a finite
number of distinct agents only.

To prove (i) we introduce a new little transition system on contexts, and prove it
finite. Formally, contexts are terms C' generated by the abstract syntax

Cu=[]] (va)C | (a)C | [6)C | C|C

Here [-] is the empty context. Say of a context C' that x is wvisible through C
if either there is some occurrence of [-] in C' not within the scope of a binding
occurrence of x, or else x occurs unbound in C'. Rule (5) below shows where this
notion is needed. The transition relation — is now determined in the following
way where {) ranges over operators among (vx), (Ax), and [z] with @ € Ny:

1. If 7 and Cy are alpha congruent then C; — C

w

- (QC1) [C2 = Q(Cy [C2), Gy | (Q202) = Q(C | Cy)
4. [2]C = C, (va)C — C, (Ax)C — C{y/x} whenever y € Ny

ot

. (va)QC — Qva)C
6. if C1 — (1 and « is visible through C7 then (va)C; — (va)C}
7. 1f01—>0{then01|CQ—>C{|CQaHdCQ|Cl—>CQ|C{

It is easy to verify that for ¢ > io, if A; has the form C;(B;1,..., Bim) and A;qq
similarly the form C;11(Biy11,..., Bit1,m) and for each j : 1 < 5 < m, either
Bij = Biy1j or Bi; — Bij1, then either C; = C4q or C; — Ciyq. To prove (i) it
therefore suffices to establish the following Lemma:

26

Lemma 9.4 For all C, {C"| C == C'} is finite.

PRrROOF If C —* €’ say that C’ is reachable (from C'). For delimiting the reachable
contexts we need the notion of legitimate prefix. First, a (context) prefizis a string
Q-+ Q,, where each §; is either (va), (Ax), or [z], @ € Ny. Write p- C for the

context obtained by prefixing C' with the prefix p. A prefix Qy---Q,, is legitimate
if

(i) at most one §; has the form either (Az) or [z] for some x € Ny, and

(ii) the total number of occurrences of operators of the form (va) or (Az) for
some x € Ny is at most |Ny].

We can now prove Lemma 9.4 by induction in the size of C:

C = []: If suffices to show that any context reachable from [-] has the form
p - [-] where p is a legitimate prefix. To show this assume that p is legitimate and
that p - [-] — C’. Then C’ has the form p’ - [-]. Clearly condition (i) above is

satisfied. To see that also (ii) is satisfied suppose for a contradiction that it is
not, so that p’ has |Ng| 4+ 1 occurrences of a binding operator. Then p’ must have
the form p;(va)paQps for some « where © binds x. But this cannot happen since
the justification of p - [-] — p’ - [-] must have appealed to rule (6) for justifying
(va)p” - [[] — (va)p2Qps - [-] for some p”. But x is not visible through p;Qps;—a
contradiction.

C = (va)C": We show that any context reachable from C has the form p-C; where
p is a legitimate prefix and 7 is reachable from C’. So assume that p - C; — 5.
The only case that needs considering is when p has the form p'(va), Cy the form
QCY, and Cy the form pQ(va)-C]. We then need to show that pQ(va) is legitimate,
but this follows exactly as in the previous case.

C = (Az)C": The only contexts reachable from C' are those reachable from C'{y/x}
for some y € Ny.

C = [2]C": As the previous case.

C = (4 | Cy: We show that any context reachable from C has the form p-(C] | C3)
where p is legitimate, C] is reachable from (4, and C} reachable from C5. The
only cases that need considering are applications of rule (3), but these follow as

in the case for restriction above. O (Lemma 9.4)
We then proceed to the proof of (ii).

Lemma 9.5 Suppose that A has no occurrences of |. For all derivations d =

Ag— - = Ay — - with Ag = A, R(d) is finite.

PROOF The proof uses the notion of legitimate prefix, introduced in the proof
of Lemma 9.4, and proceeds by induction in the size of A. The cases for 0, +,
prefixing, conditional, abstraction, application, and concretion follow directly from
the induction hypothesis. This leaves two cases to be considered. For restriction

27

the proof is a correlate of the corresponding case in the proof of Lemma 9.4. So
assume that A = fixD.A’. We to show that any agent reachable from A has the
form p-(A"[A/D]) where p is a legitimate prefix and A” is reachable from A’, thus
completing the proof by the induction hypothesis. To each transition A; — A;14
is associated a unique justification, a proof using the axioms and rules among (1)
(16) together with alpha-conversion. Say that step i refers to A, if the justification
of the transition A; — A,;41 involves an appeal to (6) with D instantiated to itself,
and A to A’. Suppose now that A; has the form p - (A”[A/D]) such that A” is
reachable from A’. Handling the case where step ¢ is an instance of one of the
axioms (10)—(12) as in the proof of Lemma 9.4 only one potentially problematic
case remains, namely where step ¢ refers to A. This, however, can only be the
case when A" has the form p’ - D for p’ a prefix, and in this situation it must, as
we have seen, be the case that the prefix pp’ is legitimate. Thus A;;; has been
brought into the desired form. O (Lemma 9.5) O (Lemma 9.2)

9.2 Termination

We next use the finiteness of {B | A —* B} to show termination, following
the strategy introduced by Stirling and Walker [18] for the case of the modal
p-calculus. Define the size, |¢], of a formula ¢ as follows:

v =yl =l #yl=[X]=U]=1

[0 A =l¢ V] = max(|g], []) + 1
[<a>¢| = [[a]g] = |oX.¢| = [Ax.¢| = [px| = [E¢| = [Vo| = [3¢] = [¢] + 1
and then extend this measure to sequents ¢ Fa A : ¢ by

IA(U)ay -+ ay,| if ¢ is of the form Uz --- 2,

|o| otherwise

|c|—AA:q$|:{

Theorem 9.6 Function check terminates on all inputs.

PRrOOF Consider a finite or infinite structure originating in the sequent ¢y Fa,
Ag : ¢o and generated by a run of check. By Proposition 9.1 all agents occurring
in the structure stay within the finite set {A | Ag —* A}. Since each refinement
step is finitely branching, to show that no infinite such proof structure can exist,
by Konigs Lemma it suffices to show that there can be no infinite sequences

s=cola, Ao GoyeosCnba, Ant dn,. ..

such that for all 7 > 0, ¢; Fa; A; @ ¢; derives ¢iyq ba,, Aipr @ @441 in one step. So
assume for a contradiction that such a sequence exists. Since the size of formulas
decrease strictly under all refinement steps except for those unfolding constants
we can find a subsequence

r_ Y / Y
s'=cybay Ayt @pse s ban ALt gl

28

of s which is infinite, and for which all ¢! have the form U;x;1 - 2;,,,. We show
that for infinitely many ¢ is U; the same constant U. If it is not let 7o be maximal

such that U;, = Uy. Then

|C;'0+1 '_A§0+1 A;'O-H : ¢20+1| < |C;'0 '_Ago A;'O : ¢;0|

, , . .
as |Ai0+1(Ui0+1xio+171 e xi0+17mi0+1)| < |Ai0(Ui0xi071 e xi07mi0)|' Repeatmg, let ¢
be maximal such that U;, = U, 4;. Similarly,

/ / Y / / Y
|Ci1+1 '_A§1+1 Az’1+1 : ¢i1+1| < |Ci0+1 '_A§0+1 Az’0+1 : ¢i0+1|-
Thus some U must occur infinitely often among the U;. Let then
"o "wo.oqn 7 "o.on
s'=cylbar Agt @gy e Fan ALt oy,

be the (infinite) subsequence of &' for which ¢! has the form Uy, 1 -y, for all
¢ > 0. Since all y; ;, are chosen from the finite set Ny, and since the number of
distinct AY is finite, and since also the number of Ny-inequivalent ¢! is finite, s”
must be finite too, a contradiction. a

9.3 Normal Termination

While Theorem 9.6 shows that sketch terminates on all inputs it does not follow
that on all inputs sketch produces a well-defined truth-value. For it may be that
a call of newname (A, ¢,7) is ill-defined because Ny C fn(A) U fn(¢) U {Z}. We
show here that this situation can not arise. The key Lemma which needs to be
proved is the following:

Lemma 9.7 For all A, if Ao —* A, then |In(A,)| < 81ns(Ao) - (Bpar(Ao) + 1)
PROOF Assume that
We show |fn(A,)| < t5ns(Ao) - (Bpar(Ao) + 1) by structural induction, using the

notion of legitimate prefix introduced in the proot of 9.4. For all case except A, v,
recursion, and parallel composition, the result follows directly from the induction
hypothesis, so only these four are considered:

Ao = (Aa)A). If n > 0 it must be the case that (up to an initial sequence of
alpha-conversions) Ag — Ajp is an instance of (4), i.e. that A; = A{, so that
Ay —* A,,. Then by the induction hypothesis,

n(An)] < fpns(Ag) - (fpar(Ap) +1)
= 1ins(Ao) - (Bpar(Ao) +1)

Ap = (va)Ap. It must be the case that A, has the form p - A/ for p a legitimate
prefix, that Ay — p'- Al for some p’ and A/, and that either p and p’ are identical,

29

or else p differs from p’ only in that it (up to possible alpha-conversions of the
bound name x) has an occurrence of (vx). In either case the result is immediate
by the induction hypothesis.

Ao = Aoa | Aogz. In this case A, has the form p- (A, 1 | Anz2) for some legitimate
prefix p. Then for each ¢ € {1,2} we find legitimate prefixes p; such that Ag; —*
pi - Ani, and p is the merge of p; and py in a manner such that if [«] occurs in p
with z in a bound position then so it does in whichever p; that contains [z]. By
the induction hypothesis,

[n(pi - Ani)| < Bpns(Aoi) - (Bpar(Aoy) +1)
for e =1 and ¢ = 2. Now
fn(An)] [fn(p1 - An)| + [fn(pz - Anz)l
Brns(A1)« (Bpar(Aon) + 1) + Epns(Ao2) - (Bpar(Ao2) +1)
Let B be whichever of Ag1/Agz2 such that f5,5(B) is maximal. Then
Brns(A1) * (Bpar(Aor) + 1) + Epns(Ao2) - (Bpar(Aoz) +1)
< Arns(B) - (Bpar(Aop) + fpar(Ao2) +2)

= ijns(B)) (ijar(AO) + 1)
< ijns(AO)) (ijar(AO) + 1)

<
<

completing the case.

Ao = fixD.Af. Since £,4,(Ao) = 0 by the assumption of finite control it suffices to
show that |fn(A,)| < frns(Ao). We then find legitimate prefixes p and p’ such that

fixD. Ay —" p-fixD.A =" A,

A, has the form p’ - Al [fixD.A/D], and A —* A’. Note that we can assume
that p has no free occurrences of names since if it had, before fixD.Aj would be
subsequently unfolded, the free name (occurring in an output prefix) would be
eliminated by an application of (7). By the induction hypothesis we know that

(A < Hras(Ap)

= ffns(Ao)
The only case in which |fn(A,)| could be greater than |fn(A’)| is when p’ contains
an occurrence of an output prefix [y] such that the occurrence of y in [y] is free in p'.

This, however, can only happen if we can factorise the derivation p-fixD. Ay —* A,
as follows

p-fixD. Ay =% p" - AllfixD.Ay /D] == A,

such that p” has no free occurrence of y (i.e. A, results from A”[fixD.Aj/D] by
applications of 8, 9, and 11), and such that Aj —* A”. Moreover fn(A”) = fn(A’)U
{y}. But then, since we know by the induction hypothesis that |[fn(A”)| < §5.5(Ao)
the proof is complete. a

Normal termination is now an easy Corollary:

30

Corollary 9.8 Function check terminates normally on all inputs.

ProoF Use Lemma 9.7. O

9.4 Well-definedness and Soundness

It remains to check that the proof structure induced by an invocation of check (¢ Fa
A ¢) is indeed a valid proof structure according to the proof rules of fig. 4.

Lemma 9.9 On all inputs check determines a well-defined proof structure ac-
cording to the local and global proof rules.

PrOOF It suffices to observe, as in the proof of Proposition 9.1 that if A is a
process and A > «a.B then A —* normalform(B,c). O

Thus:

Corollary 9.10 (Soundness of check) [If check(c Fa A : ¢) returns the value
true then the sequent cFa A : ¢ is true.

ProOOF By Lemma 9.9 check(cka A : ¢) determines a well-defined proof struc-
ture. A simple inductive arguments shows that if the value returned is true then
all hypotheses of the induced proof have been discharged. But then ¢ A : ¢ by
7.1. O

10 Completeness and Decidability

For completeness it now only remains to check that if a sequent is true then the
set of proof structures determined by an invocation of check on that sequent has
a member with no undischarged occurrences of assumptions. The proof of this
follows the approach of Streett and Emerson [19].

Theorem 10.1 (Completeness) If the sequent ¢ Fa A : ¢ is true then it is deriv-
able.

PROOF Suppose A € |[@a|,c and assume given a set of proof structures induced
by an invocation of check(c Fa A : ¢). This set is well-defined and each of
its members are well-defined as proof structures generated by the local and global
proof rules. We show that at least one member of this set will have no undischarged
occurrences of hypotheses.

Let Uy, ..., U, be the sequence of u-constants of A in order of definition. Each
n-length string w = a4, ..., a, of ordinals determines the definition list A, that
coincides with A on all v-constants, and for each U;, 1 < < n, if A(U;) = uX;.¢;,
say, then A,(U;) = u* X;.¢;. The signature of ¢ Fa A1 ¢, W(c Fa A : ¢), is

31

then the lexicographically least string w such that A € ||¢a,||,c. Using ordinal
approximations it is clear that if ¢ Fao A : ¢ is true then it has a well-defined
signature.

We explain how to find a candidate proof of ¢ o A : ¢ in stages. At each stage
we keep track of a current set of candidate proof structures, P, and a current set
of sequents (or more precisely, sequent occurrences), S, to be further refined. The
set & has the property that no sequent in S occurs above another. Then P has the
property that the subproofs obtained from each proof in P by restricting attention
to sequents above the root and not above a sequent in the §, are identical.

Initially P is the entire set of proof structures determined by an invocation
of check2(c Fa A : @), and S is the singleton {¢ Fao A : ¢}. We explain how
to complete stage n. Pick a member of S, say ¢ Far A" : ¢'. Suppose that
check2(d Far A" : ¢') does not recurse. Then the search is finished since either
¢' is an equation or an inequation which must be provable since it is true, or else
¢' is a constant, and we will then have to prove that ¢’ is a v-constant so that
d Far A" : ¢’ is a discharged occurrence of a hypothesis. In either case ¢ Far A" : ¢
is removed from the S, and we proceed to stage n + 1. So assume instead that
check2(d' Far A" : ¢') does recurse. Choose then a maximal subset of P such that

1. ¢ Far A’ : @' is the conclusion of the same rule instance.

2. The antecedents of ¢ Far A" : ¢’ have minimal signatures.

Note that either the rule instance is determined, or else (in the cases for disjunc-
tions or diamonds) each potential rule instance has only one antecedent. It follows
from the symbolic semantics that a nonempty subset with these properties can be
chosen. Having made the choice P is replaced by the chosen subset, and § is
updated by replacing ¢ Far A’ : ¢’ by its antecedents.

The result is a well-defined proof structure. Moreover, the only undischarged
occurrences of sequents in this proof structure are sequents of the form ¢ Fa
A" Uxy -+ 2, where U is a p-constant. We need to show that no such sequents
can occur. So assume that the resulting proof has an undischarged occurrence
of ¢ Far A" : Uxy---2,,. This means that we find an earlier visited sequent
of the form ¢’ Fan A" ¢ Uy, with | ¢ D ¢. We show that W(c Fas
A v Uxyoay) < W(Fan A" 2 Uy ---2,). Suppose that U is the n’th
p-constant in order of definition. Then the initial refinement step applied to
" Fan A" 2 Uxy--- 2, the tule FOLD, strictly decreases signature in its n’th
position. No subsequent refinement step can increase signature in positions smaller
than or equal to n. Thus

W(C/ Far A ¢/) < W(C” Fan A’ ¢/)

But since = ¢’ D¢, W(" Far A" ¢') S W(d Far A ¢'). Moreover, W(c" Fas
A @) = W(" Fan A" ¢') since the two sequents differ only in constants that
are no longer reachable. But this is a contradiction. O

Decidability, then, is an immediate Corollary.

32

Corollary 10.2 Derivability of sequents is decidable.

PRrROOF By termination, soundness and the proot of the Completeness Theorem
we know that a sequent is derivable if and only if the application of the model
checking algorithm to that sequent results in the value “true”. O

11 Conclusion and Related Work

Algorithms for value passing process calculi have been considered recently by a
number of authors. For bisimulation equivalence Jonsson and Parrow [7] have
considered data-independent programs, and Hennessy and Lin [5] have presented
an algorithm for a certain class of “standard” symbolic transition graphs. Applied
to the w-calculus both these classes are strictly weaker than the notion of finite
control agent introduced in the present paper. In particular we avoid the technical
conditions that prohibit reuse of variables in the algorithm of Hennessy and Lin.
Note that it is likely that our model checker can be used for deciding bisimulation
equivalence of finite control agents via a notion of characteristic formula (c.f. [3]).
A closely related proof system for a version of Hennessy-Milner logic adapted to
value-passing has been introduced by Hennessy and Liu [6]. Parts of our proof
system appear originally in their work: The structural rules, and the rules for
boolean connectives, V and 3. However, they fail to consider fixed points or other
temporal operators, and thus their logic is far too weak to be of any practical
interest. Indeed it is the handling of just recursively defined agents and properties
in the presence of name passing and generation which forms the main contribution
of the present paper. Other significant differences concern our choice of basic
connectives and our focus on the w-calculus.

Many issues related to the work reported here needs to be further examined.
More consideration is needed from both practical and theoretical perspectives of
the features required from a temporal logic along the lines of the one we describe.
Relations to the w-calculus encodings of data types, lambda calculus, and the
higher order 7-calculus should be investigated. The efficiency and usability of our
proof system and decision procedure needs to be evaluated on practical examples.
Mechanisms for compositional verification should be developed, perhaps along the
lines of Stirling [16], or Andersen and Winskel [1]. Concerning early bisimulation
equivalence a temporal logic characterising this equivalence instead of late bisim-
ulation equivalence can be devised using the basic modalities of e.g. [12] in place
of those considered here. We envisage no significant problems in obtaining similar
results for such a logic.

Acknowledgements

Thanks are due to Joachim Parrow, Lars-Ake Fredlund, and Bjérn Victor for
discussions on the w-calculus.

33

References

1]

2]

7]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

H. Andersen and G. Winskel. Compositional checking of satisfaction. In Proc.
3rd Workshop on Computer Aided Verification, pages 4965, July 1991.

R. Cleaveland, J. Parrow, and B. Steffen. A semantics based verification
tool for finite state systems. In Proc. 9th IFIP Symp. Protocol Specification,
Verification and Testing, 1989.

R. Cleaveland and B. Steffen. Computing behavioural relations, logically. In
Proc. ICALP’91, 1991.

M. Dam. CTL* and ECTL* as fragments of the modal mu-calculus. In Proc.
17th Coll. Trees in Algebra and Programming, Lecture Notes in Computer
Science, 581:145-164, 1992. To appear in Theoretical Computer Science.

M. Hennessy and H. Lin. Symbolic bisimulations. Dept. of Computer Science,
University of Sussex, Report 1/92, 1992.

M. Hennessy and X. Liu. A modal logic for message passing processes. Dept.
of Computer Science, University of Sussex, Report 3/93, 1993.

B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of
non-finite-state programs. Information and Computation, 1992.

K. G. Larsen. Proof systems for Hennessy-Milner logic with recursion. in

Proc. 13th CAAP Lecture Notes in Computer Science, 299, 1988.

R. Milner. Communication and Concurrency. Prentice Hall International,

1989.

R. Milner. The polyadic w-calculus: A tutorial. Technical Report ECS-LFCS-
91-180, Laboratory for the Foundations of Computer Science, Department of
Computer Science, University of Edinburgh, 1991.

R. Milner. Functions as processes. Mathematical Structures in Computer

Science, 2:119-141, 1992.

R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes.
Technical Report R91:03, SICS, 1991. To appear in Theoretical Computer
Science.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and
II. Information and Computation, 100(1):1-40 and 41-77, 1992.

F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal
Aspects of Computing, pages 497-543, 1992.

34

[15] D. Sangiorgi. From m-calculus to higher-order m-calculus—and back. To

appear in Proc. TAPSOFT’93, 1993.

[16] C. Stirling. Modal logics for communicating systems. Theoretical Computer

Science, 49:311-347, 1987.

[17] C. Stirling. Modal and temporal logics for processes. Technical Report ECS-
LFCS-92-221, LFCS, Dept. of Computer Science, University of Edinburgh,
1992.

[18] C. Stirling and D. Walker. Local model checking in the modal mu-calculus.
Theoretical Computer Science, 89:161-177, 1991.

[19] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure
for the propositional mu-calculus. Information and Computation, 81:249-264,

1989.

35

