
Model Checking Mobile Processes1Mads Dam2Swedish Institute of Computer ScienceBox 1263S-164 28 KistaSweden
1Preliminary version published as \Model Checking Mobile Processes", Lecture Notesin Computer Science 715 (1993) pp. 22-362Work supported by ESPRIT BRA project 6454 \CONFER"

AbstractWe introduce a temporal logic for the polyadic �-calculus based on �xed pointextensions of Hennessy-Milner logic. Features are added to account for parametri-sation, generation, and passing of names, including the use, following Milner, ofdependent sum and product to account for (unlocalised) input and output, andexplicit parametrisation on names using lambda-abstraction and application. Thelatter provides a single name binding mechanism supporting all parametrisationneeded. A proof system and decision procedure is developed based on Stirlingand Walker's approach to model checking the modal �-calculus using constants.One di�culty, for both conceptual and e�ciency-based reasons, is to avoid the ex-plicit use of the !-rule for parametrised processes. A key idea, following Hennessyand Lin's approach to deciding bisimulation for certain types of value-passingprocesses, is the relativisation of correctness assertions to conditions on names.Based on this idea a proof system and decision procedure is obtained for arbitrary�-calculus processes with �nite control, �-calculus correlates of CCS �nite-stateprocesses, avoiding the use of parallel composition in recursively de�ned processes.

1 IntroductionThe propositional �-calculus has recently emerged as a powerful instrument forspecifying temporal properties of processes (c.f. [17, 4]), and model checkers forchecking propositional �-calculus properties against �nite-state (CCS) processeshave been developed and implemented (c.f. [8, 18, 2]). For most practical applica-tions, however, mechanisms for parameter passing and quanti�cation are invalu-able. Based on CCS the �-calculus of Milner, Parrow, and Walker [13] has recentlybeen proposed as a way of formally describing mobility in process structures suchas mobile telephone networks (Orava, Parrow [14]). In fact the �-calculus can wellbe viewed as a prototypical value passing calculus, a view being reinforced by thecapacity of the �-calculus to encode data types [10], lambda calculus [11], andhigher order processes [15].As a temporal logic for the �-calculus, however, the propositional �-calculus isnot directly suitable, lacking, as it does, mechanisms for parametrisation, passing,generation, and quanti�cation of names. In this paper we demonstrate1. how such facilities can be added to the propositional �-calculus, resulting ina very expressive temporal logic for the �-calculus, and2. how a proof system and tableau based model checking algorithm for thisricher logic can be built, based, concretely, on Stirling and Walker's approachto model checking the modal �-calculus [18].Note that (2) is far from trivial, since there is no prior reason to believe that themechanisms for parameter handling and those for �xed points do not interfere.Indeed the contrary, if anything, should be supposed, since name passing causeseven the simplest processes to be in�nite state.A number of problems must be addressed. The �rst concerns the choice ofbase modalities. Our work is based on the logic of Milner [10] for the polyadic�-calculus, an extension of the �-calculus to support the communication of tuples.A key feature of this logic is the use of dependent sum (�) and product (here 8)to handle (un-localised) output and input of name-parameters.The second hurdle concerns the need for �xed points to be parametrised onnames. To see the necessity of this consider the following single element memorycell (in CCS-like notation)MEM(x) �= outx:MEM(x) + in(y):MEM(y)A characteristic property of MEM(x) is, informally, that it always outputs the lastelement input, or, rephrased without reference to pasttime modalities, that when-ever an element is input then that same element is output until some new elementis input. Trying to formalise this property using the ideas of the propositional�-calculus results in the following parametrised �xed point� = �X(x):[in(y)]X(y) ^ [outx0](x = x0 ^X(x0)):1

This example illustrates the extent to which name-parametrisation pervades thesyntax of formulas. By using explicit name-parametrisation and instantiationby �-abstraction and application all parametrisation needed can be handled bya single name-binding mechanism. Thus, as an example, we replace � by theformula �X:�x:[in]8(�y:(Xy))^ [out]�(�x0:x = x0 ^ (Xx0)):In this manner a large degree of orthogonality is revealed between propositionalconnectives, modal connectives, �xed points, abstraction and application, andquanti�ers.A third hurdle concerns the doubling of names in the �-calculus as both vari-ables and constants. This makes a standard version of the rule of generalisationfor correctness assertions A : � such as8-intro: Ax : �xA : 8� (x not free in A or �)unsound. For instance it will license the inferencey:0 j z:0 : [�]false(�x)(y:0 j x:0) : 8�x:[�]falsewhich is clearly invalid. An alternative is to use an !-rule for A : 8�, perhapsrestricted to names free in A or � plus one to serve as a representative of namesfree in neither. While sound, such an approach, however, has some disadvantages:Its schematic form makes it somewhat unattractive from a proof-theoretic point ofview, but more seriously it is ine�cient, forcing names to be treated distinctly evenwhere this may not be necessary. An alternative which has been pursued in thecontext of value-passing calculi by Hennessy and Lin [5] for bisimulation checking,and by Hennessy and Liu [6] for modal logics, is to explicitly relativise correctnessassertions to conditions c on names. Such name conditions are expressions in the�rst-order language of names with equality. The problem with 8-intro is that bytaking x to be fresh it is thereby implicitly assumed to be distinct from all namesthat are not fresh. If relativised correctness assertions are written c ` A : � therule of generalisation is regained in the following form:relativised-8-intro: c ` Ax : �xc ` A : 8� (x not free in A, �, or c)where by requiring x to be not free in c ensuring that no prior assumptions aboutx are made neither explicitly nor implicitly. Name conditions are expressions inthe �rst-order language of names with equality.A fourth hurdle concerns model checking and how to deal with �xed points.We adopt the approach of Stirling and Walker [18] using constants to keep trackof the way �xed point occurrences are unfolded during model checking. The useof constants allows alternating �xed points, crucial for the expression of many2

liveness and fairness related properties, to be handled in an elegant fashion. Theapproaches to model checking in the propositional �-calculus applies only to �nite-state processes. For the �-calculus restricting to true �nite-state processes is fartoo restrictive since even the simplest �-calculus processes exhibit in�nite-statebehaviour. A much more liberal notion is obtained as a direct generalisation ofthe notion of �nite-state process in CCS by disallowing just processes which haveoccurrences of the parallel combinator j within recursive de�nitions. Processeswhich adhere to this restriction are termed �nite control. What is surprising isthat this condition turns out to be the only one needed for model checking to workand be decidable. We present as the main result of the paper a proof-, or tableausystem for relativised correctness assertions for �nite control processes which issound and complete, and use it as the basis for a decision procedure.In sections 2 and 3 we present our version of the polyadic �-calculus and itsoperational semantics. In order to support the relativisation of correctness as-sertions to name conditions the operational semantics is modi�ed by similarlyrelativising the structural congruence and commitment relations to name parti-tions. These are partitions of the name spaces determining the identi�cations anddistinctions assumed. Distinctions alone, as introduced by Milner et al in [13],are too weak since both positive and negative assertions about the identity ofnames are needed. Interestingly, name partitions provides machinery to includeinto the polyadic �-calculus the conditional bAB where b is a boolean expression,behaving like A when b is true and like B when b is false. In section 4 the ex-tended �-calculus is introduced, and in section 5 the proof system for relativisedcorrectness assertions is given. The remainder of the paper are devoted to proofsof soundness, completeness, and decidability of this proof system. These proofsextend corresponding proofs for the modal �-calculus due to Stirling and Walke[18], and Streett and Emerson [19]. In section 6 an alternative semantics, calledsymbolic following Hennessy and Lin [5], of the extended �-calculus is given whichrelativise formulas to general name conditions rather than just name partitions.The symbolic semantics provides to a large extent the purely local parts of thesoundness, completeness, and decidability proofs. Soundness is proved in section 7and the decision procedure is given in section 8. In section 9 the decision procedureis proved terminating and well-de�ned, and then completeness and decidability isproved in section 10. Finally section 11 contains the conclusion and discussions ofrelated work.2 The Polyadic �-calculusThe version of the �-calculus used here is a version of Milner's polyadic �-calculus[10], somewhat modi�ed to involve conditionals and an operational semantics rel-ativised to name partitions. The letters x; y; z; : : : are used to range over namesof which there is a countably in�nite supply, A;B over agents, and D over agentidenti�ers. Actions, �; �, are either names, co-names of the form x, or the dis-3

tinguished constant � . We assume a countable in�nity of distinct names. If �is a name x then n(�) (the name of �) is x. and p(�) (the polarity of �) is �.Otherwise if � = x then n(�) = x and p(x) = +. The syntax of agents is given asfollows:Boolean expressions: b ::= x = y :b b ^ bAgents:A ::= 0 A+A �:A A j A bAA (�x)A Ax (�x)A D �xD:A [x]AFor most connectives the intendedmeaning is familiar from CCS and the �-calculus[9, 13]. Conditionals are agents of the form bAB, and (�x) and [x] are used forunlocalised input and output, to be localised by a pre�xing operator �:�. InCCS terms x:(�y)A is x(y):A and x:[y]A is xy:A. The restriction operator is�. We use recursively de�ned agents rather than replication as in [10] as weare interested in the subcalculus of the polyadic �-calculus which arises fromdisallowing uses of j in recursively de�ned agents, mirroring the notion of �nitestate process in CCS. Agents in this subcalculus are termed �nite control. Fortechnical reasons we assume that recursions �xD:A are guarded in the sense thateach occurrence of D in A is within the scope of a pre�x operator �:�, and thatthey are fully parametrised in the sense that recursive agents �xD:A have no freeoccurrences of names. Furthermore we generally presuppose agents not to containfree occurrences of agent identi�ers.The syntax as given here is
at: No distinctions are made between processes,abstractions, and concretions as in [10]. To recover these distinctions we assignto well-formed agents A an integer arity n, written A : n. The set of all well-formed agents is denoted A. Processes are agents of arity 0, abstractions areagents of negative arity, and concretions are agents of positive arity. The followingassignment of arities is relative to an assignmentD : n of arities to agent identi�ers:0 : 0 A : 0 B : 0A +B : 0 A : n n � 0x:A : 0 A : n n � 0x:A : 0 A : 0�:A : 0A : 0 B : 0A j B : 0 A : n B : nbAB : n A : n n � 0(�x)A : n � 1 A : n� 1 n � 0Ax : nA : n(�x)A : n D : n A : n�xD:A : n A : n n � 0[x]A : n+ 1Example 2.1 The agent (�xD:(�x)(x:(�y)Dy))x is a well-formed process underthe assumption D : �1. The agents x:(�y)[y]0 and x:(�y)[y]0 are ill-formed.The operators (�x)A and (�x)A introduce binding of the free occurrences ofx and x in A. For an agent A, fn(A) is the set of names occurring freely in A,and Afy=xg is A with all free occurrences of x substituted for y. In general thisinvolves alpha-conversion of A to avoid capture of names.4

1. �" is an equivalence relation preserved by all non-binding operators2. If A �(�x)" B then (�x)A �" (�x)B.3. A �" B if A and B are alpha-convertible.4. Abelian monoid laws for + and 0, i.e. A1 + (A2 +A3) �" (A1 +A2) + A3,A1 +A2 �" A2 + A1, and A+ 0 �" A.5. Abelian monoid laws for j and 0.6. bAB �" (:b)BA.7. If " j= b then bAB �" A.8. ((�x)A)y �" Afy=xg.9. �xD:A �" Af�xD:A=Dg.10. (�x)0 �" 0, (�x)(�y)A �" (�y)(�x)A, (�x)(�x)A �" (�x)A.11. If x 62 fn(B) then ((�x)A) j B �" (�x)(A j B).12. If x 6= y then (�y)(�x)A �" (�x)(�y)A and (�y)[x]A �" [x](�y)A.Figure 1: Structural congruence relation3 Operational SemanticsThe operational semantics of agents is, following Milner [10], given in terms of astructural congruence relation � together with a commitment relation �. Thisstyle of semantics was introduced by Milner in [11] to which the reader is referredfor justi�cation of many of the clauses given below. Here the structural congruenceand commitment relations are parametrised on name partitions, partitions " onthe set of names. This provides the strengthening of the notion of distinctions [13]needed to deal with general name conditions rather than just the positive matchoperator of [13]. A name partition " identi�es the names x and y if and only if xand y are members of the same partition. Thus name partitions provide modelsfor boolean expressions and �rst-order conditions on names, and we write " j= cif " is a model for c. Name partitions extend to actions in the obvious way by" j= �1 = �2 i� either �1 = x1, �2 = x2, and " j= x1 = x2; or �1 = x1, �2 = x2,and " j= x1 = x2; or �1 = �2 = � . In addition to interpreting booleans and�rst-order name conditions we need an operation for the generation of new names:(�x)" = fS � fxg j S 2 "g [ffxgg:The conditions governing the relativised structural congruence relation �" areshown on �g. 1. Note that for the structural congruence relation (but not for thecommitment relation) relativisation to name partitions is needed only because ofconditionals. An unrelativised structural congruence relation � can be derivedfrom the relativised one by A" � B" whenever A �" B. This congruence relationis closely related to the one considered by Milner in [10]. The di�erence is thatwe do not here in general assume conversion under �, i.e. a rule such as5

If A �"0 B for all "0 such that fS � fxg j S 2 "0g = fS � fxg j S 2 "g then(�x)A �" (�x)B.Thus the term \congruence" for the structural congruence relation is actuallymisplaced, and for the remainder of the paper we refer to �" as the structuralequivalence relation instead.Another justi�cation for �" is in terms of an appropriate normal form theorem.Say an agent A is in normal form if it is either an abstraction of the form (�x)A, aconcretion of the form [x]A or (�x)[x]A, or a process P generated by the abstractsyntax P ::= 0 P + P �:A P j P (�x)PProposition 3.1 (Normal forms) Given any well-formed agent A and any namepartition " there is a normal form B such that A �" B.ProofWe prove a somewhat more general statement. Say that A is "-admissible,if 1. A is well-formed,2. there is a normal form B such that A �" B, and3. if A : n and n < 0 then for all x, Ax is "-admissible.We show for all well-formed agents A and all name partitions " that A is "-admissible. First we need to show that both arities and "-admissibility is preservedby structural equivalence.Lemma 3.2 Let A be any agent.1. If A : n and A �" B then B : n.2. If A is "-admissible and A �" B then B is "-admissible.Proof 1: An easy induction in the structure of proof of A �" B. 2: Induction injnj where n is the arity of A, using 1. 2 (Lemma 3.2)Let now "0 be any name partition and A any well-formed agent. A is allowedto contain free guarded occurrences of identi�ers, and identi�ers are assumed tobe assigned an arity. We use induction in the structure of A to show that if A0 isany instance of A obtained by substituting names for names and agents of arityn for free guarded occurrences of identi�ers of arity n then A0 is "-admissiblethus completing the proof. We consider the cases for the conditional, lambdaabstraction, application, and recursive de�nition. The remaining cases are similar.A = bA1A2. Either " j= b or " j= :b. Assume without loss of generality the �rst.Then A0 �" A01 where A01 is the corresponding substitution instance of A1. By theinduction hypothesis A01 is "-admissible. By Lemma 3.2.2 so is A0.6

A = (�x)B. A is well-formed by assumption, and A is in normal form. Let y beany name. By the induction hypothesis B 0fy=xg is "-admissible where B 0 is theappropriate substitution instance of B. Then by Lemma 3.2.2 (A0)y is "-admissibletoo. Thus A0 is "-admissible.A = Bx. By the induction hypothesis B 0 is "-admissible where B 0 is the expectedsubstitution instance of B. Then by de�nition so is A0.A = �xD:B. Since A is well-formed by assumption, and all occurrences of D inB are guarded, B 0 is "-admissible where B 0 is the substitution instance of B thatcorresponds to A0, and which substitutes A for D. But then by Lemma 3.2.2 A0is also "-admissible. 2 (Lemma 3.1)In fact the proof of Proposition 3.1 can be used to show that B can be foundof size not greater than that of A where size is measured in e.g. depth of parsetree.We proceed to de�ne the relativised commitment relation A �" �:B. Thede�nition uses the operation of pseudo-application, and the extension of paral-lel composition to pairs of abstractions and concretions as in [10]. The pseudo-application of A to B, A � B, is de�ned only when A : �n and B : n for some(positive or negative) n. If n = 0 then A � B = A j B. If n > 0, A = (�x)A0,and B = [y]B 0 then A � B = A0fy=xg � B 0, and if instead B = (�y)[y]B 0 thenA �B = (�y)(A0fy=xg �B 0). The case for n < 0 is de�ned symmetrically. SecondlyA j B is extended to the case when only one of A;B is a process by (in case B isa process) ((�x)A) j B = (�x)(A j B) where x 62 fn(B), ([x]A) j B = [x](A j B),and ((�x)[x]A) j B = (�x)[x](A j B) where x 62 fn(B). The case for A is de�nedsymmetrically.The commitment relation is now given in �g. 2. Note that although this isnot necessary since j is assumed to be commutative, we have chosen to includesymmetrical versions of the rules sum, comm and par. This is merely a tech-nical convenience. As for the structural equivalence relation we can derive anunrelativised version by A" � (�:B)" whenever A �" �:B. In the absence ofconditionals, � is exactly the commitment relation of [10].4 Adding Name Passing to the Propositional�-calculusIn this section we extend the propositional �-calculus with name-parametrisationand dependent sum and product as in [10]. The result is a powerful temporallogic for the polyadic �-calculus characterising late strong bisimulation equivalence[10, 12]. By explicitly introducing lambda-abstraction and application of namesall parametrisation issues for �xed points and dependent types are catered for in auniform way. Formulas, ranged over by �; , are thus interpreted as sets of agentsparametrised on names. The letters X;Y;Z range over propositional variableseach assigned an arity n 2 !, written X : n. The syntax of formulas is given as7

act: �:A �" �:A sum: A1 �" BA1 +A2 �" Bcomm: A1 �" x:B1 A2 �" y:B2A1 j A2 �" �:(B1 �B2) (" j= x = y)par: A1 �" �:BA1 j A2 �" �:(B j A2) res-1: A �(�x)" �:B(�x)A �" �:(�x)Bres-2: A �(�x)" �:B(�x)A �" �:(�x)B (x 6= n(�))struct: A1 �" A2 A2 �" �:B1 B1 �" B2A1 �" �:B2+ symmetrical versions of rules sum, comm and parFigure 2: Commitment relationfollows: � ::= x = y x 6= y � ^ � � _ � <�>� [�]�X �X:� �X:� �x:� �x �� 8� 9�Brie
y the logical connectives can be understood as follows: ^ and _ are the usualboolean connectives; <�> and [�] are the labelled modal connectives; � (not tobe confused with the �-calculus �-operator) is the greatest �xed point operatorused, typically, for invariant properties; � is the least �xed point operator used foreventualities; � and application is used for name-parametrisation; � is dependentsum used for concretions, for instance �� is satis�ed by a concretion [x]A forwhich A satis�es �x; and �nally 8 and 9 are quanti�ers expressing properties ofabstractions. For instance 8� is satis�ed by an abstraction A for which Ax satis�es�x for all x, and 9� is satis�ed by an abstraction A for which Ax satis�es �x forsome x. Thus the logical correlate of (agent) abstraction is quanti�cation. We use� as a meta-variable ranging over f�; �g. As for agents we assume for technicalconvenience that recursive (� or �) formulas have no free occurrences of names.The only binder of names is �, and � and � are binders of propositional variables.Formulas are generally identi�ed up to renaming of bound names or variables.As for the �-calculus attention is restricted to well-formed formulas by ex-tending the assignment of arities to variables to arbitrary well-formed formulas byletting x = y : 0, x 6= y : 0, and closing under the rules:� : 0 : 0� ^ : 0 � : 0 : 0� _ : 0 � : 0<�>� : 0 � : 0[�]� : 0X : n � : n�X:� : n � : n�x:� : n + 1 � : n + 1�x : n8

� : n+ 1�� : n � : n+ 18� : n � : n+ 19� : nA simple generalisation is to extend nonzero arities to boolean and modalformulas by pointwise extensions as for instance for conjunction:� : n : n� ^ : nNo expressive power is gained by this modi�cation.We proceed to de�ne the semantics of formulas. First machinery is intro-duced to account for free occurrences of propositional variables. A propositionenvironment is a mapping � which given a propositional variable X of arity m, anm-vector of names y1; : : : ; ym, and a name partition " gives a set �Xy1 � � � ym" � A.Let now � : n. Given a proposition environment �, an n-vector x1 � � � xn ofnames, and a name partition ", the \standard" interpretation of � produces aset k�k�x1 � � �xn" � A. If � does not contain free occurrences of propositionalvariables then � is said to be propositionally closed. For such �, k�k�x1 � � �xn"does not depend on � and is thus abbreviated k�kx1 � � �xn". The standard inter-pretation is shown in �g. 3. Here the complete boolean algebra structure of 2A isinherited pointwise to proposition environments and interpretations. The symbolsv, u, and t are used to denote the induced lattice ordering, in�mum, and supre-mum, respectively. Notice that for formulas in positive form (i.e. with negationsapplied to propositional variables only) the modal �-calculus can be viewed as asublanguage of the language considered here, and that the semantics assigned by�g. 3 to this sublanguage is the usual one (c.f. [18]).5 Proof SystemIn this section we introduce a proof system for relativised correctness assertionsc ` A : �. The intended interpretation of such assertions is that A 2 k�k"whenever " j= c. A complication, however, concerns the need to handle �xedpoint formulas. For this we adopt the approach of Stirling and Walker [18] byincluding into the syntax of formulas constants U to denote occurrences of �xedpoint formulas. A de�nition list is a sequence � = (U1 7! �1); : : : ; (Um 7! �m),associating to each Ui the propositionally closed formula �(Ui) = �i. Here � isrequired to satisfy the conditions:1. each Ui is unique, and2. each �(Ui) mentions only constants among fU1; : : : ; Ui�1g.For � as above, dom(�) �= fU1; : : : ; Umg, and if U 62 dom(�) and each constantoccurring in � is included in dom(�) then � �(U 7! �) is the update of � associat-ing � to U . If � is admissible for � in the sense that each constant occurring in �9

kx = yk�" = (A if " j= x = y; otherwisekx 6= yk�" = (A if " j= x 6= y; otherwisek� ^ k = k�k u k kk� _ k = k�k t k kk<�>�k�" = fA j 9�;B: A �" �:B; " j= � = �;B 2 k�k�"gk[�]�k�" = fA j 8�;B: if A �" �:B and " j= � = �then B 2 k�k�"gkXk� = �Xk�X:�k� = tff j f v k�k�[X 7! f]gk�X:�k� = uff j k�k�[X 7! f] v fgk�x:�k�x1 � � �xn" = k�fx1=xgk�x2 � � �xn"k�xk�x1 � � �xn" = k�k�xx1 � � �xn"k��k�x1 � � �xn" = fA j A �" [x]B; and B 2 k�k�xx1 � � �xn"g[fA j A �" (�x)[x]B; x 62 fn(�)[fx1; : : : ; xng; andB 2 k�k�xx1 � � �xn((�x)")gk8�k�x1 � � �xn" = fA j 8x:Ax 2 k�k�xx1 � � �xn"gk9�k�x1 � � �xn" = fA j 9x:Ax 2 k�k�xx1 � � �xn"g;Figure 3: Standard semantics
10

is in dom(�) then �� is constant-free formula resulting from recursively replacingeach occurrence of a constant in � by its de�nition. Note that, as �xed pointformulas are required to be fully parametrised, formulas � and �� have identicalsets of free names.Thus relativised correctness assertions, or sequents, have the form c `� A : �where A is a well-formed process, � is admissible for �, and �� is propositionallyclosed and of arity 0. The sequent c `� A : � is then true, if A 2 k��k" whenever" j= c. We present a proof, or tableau system for sequents. The proof systemconsists of a collection of axioms and proof rules which describe the local propertiesof the logical connectives, plus an additional rule to deal with properties whichdepend on the in�nite behaviour of agents. The following abbreviations are usedin the local proof rules shown in �g. 4:1. � and � c-match: Either � = � = � , or else j= c � n(�) = n(�), andp(�) = p(�).2. x fresh: Relative to a proof rule c0`�0A0 :�0c`�A:� , x fresh means that x 62 fn(c) [fn(A) [fn(�).3. A �c B: For all ", if " j= c then A �" B.4. A �c B: For all ", if " j= c then A �" B.The rules should be fairly uncontroversial given the semantics of formulas and ourprevious comments.In addition to the local rules the proof system is equipped with the followingsingle rule for discharging hypotheses:dis: [c0 `�0 A : U x1 � � �xn]...c `� A : U x1 � � � xnc `� A : U x1 � � � xn (j= c0 � c)where it is required that �(U) is a formula of the form �X:�, and that the givenderivation of c `� A : U x1 � � �xn is nontrivial, in the sense that it contains anapplication of an introduction rule. The following example shows that the side-condition j= c0 � c is indeed necessary: LetB = �xD:x2:[y]x1:(�y)(Dy)A = x1:(�y)(y = z)(B)(0):Then, if the side-condition on dis is absent, the following false sequent is derivable:true `� A : [x1]8�y:(y 6= z) _ (�X:<x2>��y:(y = z) ^ ([x1]8�y:X)):There is a close relationship between the proof system of �g. 4 and the tableausystem of Stirling and Walker [18]. For the fragment of closed positive modal11

Introduction rules: eq: c `� A : x = y (j= c � x = y)ineq: c `� A : x 6= y (j= c � x 6= y)and: c `� A : � c `� A : c `� A : � ^ or-1: c `� A : �c `� A : � _ or-2: c `� A : c `� A : � _ dia: c `� B : �c `� A : <�>� (A �c �:B)box: fc0 `� B : � j A �c0 �:B; j= c0 � c; � and � c0-matchgc `� A : [�]�fix: c `��(U 7!�X:�) A : U x1 � � �xnc `� A : �X:� x1 � � �xnfold: c `� A : �[X := U] x1 � � �xnc `� A : U x1 � � �xn (�(U) = �X:�)lambda: c `� A : �fx1=xg x2 � � �xnc `� A : (�x:�) x1 � � �xn app: c `� A : � x x1 � � �xnc `� A : (�x) x1 � � �xnsigma-1: c `� A : � x1 � � �xnc `� [x1]A : �� x2 � � �xnsigma-2: c ^Vfz 6= y j y not freshg `� Afz=xg : � z x1 � � �xnc `� (�x)[x]A : �� x1 � � �xn (z fresh)forall: c `� Ay : � y x1 � � �xnc `� A : 8� x1 � � �xn (y fresh)exists: c `� Ay : � y x1 � � �xnc `� A : 9� x1 � � �xnStructural rules: or-cond: c1 `� A : � c2 `� A : �c1 _ c2 `� A : �ex-cond: c `� A : �9x:c `� A : � (x 62 fn(A)[fn(��))cons: c1 `� A : �c2 `� A : � (j= c2 � c1)equiv: c `� A : �c `� B : � (A �c B) ren: c `� A : �(x)c `� A : �(y) (j= c � x = y)Figure 4: Local proof rules12

�-calculus formulas and CCS agents, the two systems coincide in the sense thatthere is a successful tableau for A `� � in the notation of [18] i� there is a proofof true `� A : � in the system of �g. 4.Note that box causes the proof system to be in�nitary. This problem, however,is only super�cial, as we proceed to show. While the set of antecedents of boxfc0 `� B : � j A �c0 �:B; j= c0 � c; � and � c0-matchg is in�nite, only a�nite number of name conditions c0 and �c0 -equivalence classes need actually beconsidered. The key is to apply the box-rules only when A is in normal form, andthen disregarding the structural equivalence relation. Thus let A ��" B if A �" Bis derivable using �" only for alpha conversions. The following �nitary version ofbox results: fin-box: fc0 `� B : � j C1; C2gc `� A : [�]�where C1 and C2 are the following conditions:� C1: A ��c0 �:B, j= c0 � c, � and � c0-match, and A is in normal form.� C2: c0 is minimal in the sense that if c00 is any other name condition suchthat C1 holds with c00 in place of c0, and if j= c0 � c00, then j= c00 � c0.Similarly we can replace the rule dia by the rule fin-dia where the side-conditionA �c �:B is replaced by the condition A ��c �:B.Proposition 5.1 (Finitary box-rules) A sequent c `� A : � is derivable usingbox and dia i� it is derivable using fin-box and fin-dia.Proof This is a consequence of the following standardisation property: If A �"�:B then there are A0, B 0 such that A0 is in normal form, A �" A0, A0 ��" B0, andB0 �" B. 2In the remainder of the paper we tacitly assume that the rules fin-box andfin-dia are being used in place of box and dia. Note that strictly speakingfin-box remains in�nitary due to the fact that name conditions range over syn-tactical name conditions rather than sets of names. This, however, can easily beovercome, for instance by using normal forms. We obtain the following soundness,completeness, and decidability results for �nite control processes:Theorem 5.2 (Soundness, Completeness, Decidability) Let c `� A : � be a se-quent with A of �nite control.1. The following conditions are equivalent:(a) c `� A : � is derivable.(b) c `� A : � is true.2. Derivability of c `� A : � is decidable. 213

The remaining part of the paper is devoted to a proof of Theorem 5.2. Firstwe give a direct characterisation of true sequents in terms of a symbolic seman-tics. Using this semantics we proceed to prove soundness. For decidability andcompleteness we then present the model checking algorithm, show its termination,and, using this, �nally establish completeness and decidability.6 Symbolic SemanticsThe point of the symbolic semantics is to replace the relativisation of the standardsemantics to name partitions with relativisation to more general name conditions,thus providing a direct semantical correlate of the notion of true sequent. Thusthe symbolic semantics assigns to each � of arity n a set k�ks�x1 � � �xnc � Awhere � is a symbolic environment. Such environments di�er from propositionenvironments � only in that they depend on general name conditions instead ofname partitions.For technical reasons attention needs to be restricted to name-condition mapsf : c 7! S � A which are well-behaved (abbreviated w-b) in the sense thatf(c1 _ c2) = (fc1) \ (fc2)for all c1; c2. A symbolic environment � is then well-behaved if �Xy1 � � � yk is well-behaved for allX : k and y1; : : : ; yk. Well-behaved maps are closed under arbitraryin�ma and suprema. Note, however, that while suprema of chains of well-behavedmaps can be computed pointwise, this is not generally true for arbitrary suprema.As in section 4, k�ks�x1 � � �xnc is abbreviated to k�ksx1 � � �xnc when � ispropositionally closed. To de�ne k�ks it is convenient �rst by mutual recursionto de�ne its specialisation k�knf to normal forms, and then derive k�ks itself in thefollowing manner:k�ks�x1 � � � xnc =fA j 8";B 2 NF; if A �" B and " j= c then B 2 k�knf�x1 � � �xnc"gwhere c" abbreviates the condition^(fx = y j x; y 2 N; " j= x = yg [fx 6= y j x; y 2 N; " j= x 6= yg);and N = fn(A) [fn(�) [fx1; : : : ; xng. The same abbreviation is used in thede�nition of k�knf shown in �g 5. The correctness of the symbolic semantics isexpressed in the following Lemma:Lemma 6.1 Let � : n and � propositionally closed. Then A 2 k�ksx1 � � �xnc i�for all ", A 2 k�kx1 � � �xn" whenever " j= c.ProofWe show: 14

kx = yknf �c = (NF if j= c � x = y; otherwisekx 6= yknf �c = (NF if j= c � x 6= y; otherwisek� ^ knf = k�knf u k knfk� _ knf �c = [fk�knf �c1 \ k knf �c2 jj= c � c1 _ c2g[(k�knf �c) [(k knf�c)k<�>�knf�c = fA 2 NF j 8"; if " j= c then 9�;B; A �" �:B;" j= � = �; and B 2 k�ks�c"gk[�]�knf �c = fA 2 NF j 8"; �; B; if " j= c; A �" �:B; and" j= � = �; then B 2 k�ks�c"gkXknf �x1 � � �xnc = fA 2 NF j A 2 �Xx1 � � �xncgk�X:�knf �x1 � � �xnc = fA 2 NF j A 2 (tff j f v k�knf �[X 7! f]g)x1 � � �xncgk�X:�knf �x1 � � �xnc = fA 2 NF j A 2 (uff j k�knf �[X 7! f] v fg)x1 � � �xncgk�x:�knf�x1 � � �xnc = k�fx1=xgknf �x2 � � �xnck�x1knf�x2 � � �xnc = k�knf �x1 � � �xnck��knf �x2 � � �xnc = fA = [x1]A0 j A0 2 k�ks�x1 � � �xncg[fA = (�x)[x]A0 j 9 fresh x1: Afx1=xg 2k�ks�x1 � � �xn(c^ Vfx1 6= y j y not freshg)gk8�knf�x2 � � �xnc = fA = (�x)A0 j 9 fresh x1: A0fx1=xg 2 k�ks�x1 � � �xncgk9�knf�x2 � � �xnc = fA = (�x)A0 j 9x1:A0fx1=xg 2 k�ks�x1 � � �xnc0gwhere c0 = c ^Vfx1 6= z j z not freshg if x1 fresh,and c0 = c otherwiseFigure 5: Symbolic semantics
15

1. For all name substitutions ",A 2 k�ks�0x1 � � � xnc" i� A 2 k�k�x1 � � �xn"where �0 is derived from � by�0Xy1 � � � ymc = \f�Xy1 � � � ym" j " j= cg:2. Whenever � is well-behaved thenk�ks�x1 � � � xn(c1 _ c2) = (k�ks�x1 � � � xnc1) ^ (k�ks�x1 � � � xnc2):Together (1) and (2) implies the desired conclusion. We �rst prove that (1) followsfrom (2). Observe �rst thatk�ks�0x1 � � �xnc" = fA j 8B 2 NF; if A �" B; then B 2 k�knf�0x1 � � �xnc"g:It thus su�ces to show that A 2 k�knf�0x1 � � �xnc" i� A 2 k�k�x1 � � � xn", assum-ing A 2 NF. The following Lemma expresses the contravariance of k�knf in itslast argument, and allows unused names to be projected out.Lemma 6.2 1. If j= c1 � c2 then k�knf�x1 � � �xnc2 � k�knf�x1 � � � xnc1.2. Suppose that x 62 N . Then A 2 k�knf�x1 � � � xnc i� A 2 k�knf�x1 � � �xn(9x:c).Proof1. Structural induction in �. 2. The if-direction follows from 1, and theonly-if direction is proved by structural induction. 2(Lemma 6.2)We now prove (1) by induction in the structure of �, assuming A 2 NF:A 2 k� _ knf�0c"i� A 2 k�knf�0c"; or A 2 k knf�0c"; or9c1; c2: A 2 k�knf�0c1 \ k knf�0c2 and j= c" � c1 _ c2i� A 2 k�knf�0c"; or A 2 k knf�0c"; or9c1; c2: A 2 k�knf�0c1 \ k knf�0c2 and j= c" � c1; orA 2 k�knf�0c1 \ k knf�0c2 and j= c" � c2(Using 6.2.2 and property of c")i� A 2 k�knf�0c" or A 2 k knf�0c" (by 6.2.1)i� A 2 k�k�" or A 2 k k�" (by the induction hypothesis)i� A 2 k� _ k�"A 2 k[�]�knf�0c"i� 8"0; �;B: if "0 j= c"; A �"0 �:B; and "0(�) = "0(�)then B 2 k�ks�0c"0i� 8�;B: if A �" �:B; and "(�) = "(�); then B 2 k�ks�0c"16

i� 8�;B: if A �" �:B; and "(�) = "(�); then B 2 k�k�"(By the induction hypothesis)i� A 2 k[�]�k�"A = (�x)[x]A0 2 k��knf�0x1 � � �xnc"i� 9 fresh y: A0fy=xg 2 k�ks�0yx1 � � �xn(c" ^^fy 6= z j z not freshg)i� 9y 62 N: A0fy=xg 2 k�ks�0yx1 � � �xnc(�y)"i� 9y 62 N: A0fy=xg 2 k�k�yx1 � � �xn((�y)")(By the induction hypothesis)i� (�x)[x]A0 = A 2 k��k�x1 � � � xn"A = (�x)A0 2 k8�knf�0x1 � � �xnc"i� 9y 62 N: Afy=xg 2 k�ks�0yx1 � � � xnc"i� 8y: A0fy=xg 2 k�ks�0yx1 � � � xnc"(By (2))i� 8y: A0fy=xg 2 k�k�yx1 � � � xn"(By the induction hypothesis)i� (�x)A0 = A 2 k�k�x1 � � � xn"The remaining cases, except those for �xed points, are proved by similar methods.For the �xed points it su�ces from the assumption that � satis�es (1) and (2) forgreatest �xed points to show:(a) If g v k�k�[X 7! g] then g0 v k�ks�0[X 7! g0] where g0 is de�ned byg0y1 � � � ymc = \fgy1 � � � ym" j " j= cg:(b) If f v k�ks�0[X 7! f] and f is well-behaved then fy v k�k�[X 7! fy] wherefy is de�ned by fyy1 � � � ym" = fy1 � � � ymc"where c" is computed relative to fn(�) [fy1; : : : ; ymg.We leave the proof of (a) to the reader. For (b) note �rst that if f is well-behavedthen (�[X 7! fy])0 = �0[X 7! f]:Suppose that f v k�ks�0[X 7! f], i.e. for all x1; : : : xn and c, fx1 � � �xnc �k�ks�0[X 7! f]x1 � � �xnc. Then in particular for all ", fx1 � � �xnc" � k�ks�0[X 7!f]x1 � � �xnc" where c" is computed relative to fn(�) [fx1; : : : xng. By the aboveobservation it follows that fx1 � � � xnc" � k�ks(�[X 7! fy])0x1 � � �xnc", conse-quently by the induction hypothesis for (1) and the de�nition of fy, fyx1 � � � xn" �17

k�k�[X 7! fy]x1 � � �xn" as was to be shown since x1; : : : xn and " were arbitrary.The checks for least �xed points are dual to the cases for greatest �xed points.Next for the proof of (2), assuming that � is well-behaved:k� _ knf�(c1 _ c2)= [fk�knf�c01 \ k knf�c02 jj= c1 _ c2 � c01 _ c02g[(k�knf�(c1 _ c2)) [(k knf�(c1 _ c2))= [fk�knf�c01 \ k knf�c02 jj= c1 � c01 _ c02 and j= c2 � c01 _ c02g[(k�knf�(c1 _ c2)) [(k knf�(c1 _ c2))= [fk�knf�(c1;1 _ c2;1) \ k knf �(c1;2 _ c2;2) jj= c1 � c1;1 _ c1;2 and j= c2 � c2;1 _ c2;2g[(k�knf�(c1 _ c2)) [(k knf�(c1 _ c2))= [fk�knf�c1;1 \ k�knf �c2;1 \ k knf�c1;2\k knf �c2;2 jj= c1 � c1;1 _ c1;2 and j= c2 � c2;1 _ c2;2g[((k�knf�c1) \ (k�knf�c2)) [((k knf�c1) \ (k knf�c2))(by the induction hypothesis)= ([fk�knf�c1;1 \ k knf�c1;2 jj= c1 � c1;1 _ c1;2g [(k�knf�c1) [(k knf�c1)) \([fk�knf�c2;1 \ k knf�c2;2 jj= c2 � c2;1 _ c2;2g [(k�knf�c2) [(k knf�c2))(By calculation)= k� _ knf �c1 \ k� _ knf�c2k[�]�knf�(c1 _ c2)= fA 2 NF j 8"; �;B: if " j= c1 _ c2; A �" �:B; and " j= � = �then B 2 k�ks�c"g= fA 2 NF j 8"; �;B: if (" j= c1 or " j= c2); A �" �:B; and " j= � = �then B 2 k�ks�c"g= (k[�]�knf�c1) \ (k[�]�knf�c2)The remaining cases follow in equally straightforward manners from the inductionhypothesis, and are left to the reader. 2(Lemma 6.1)7 SoundnessCrucial to the proofs of soundness, completeness, and decidability is the use ofordinal approximations ��X:� and ��X:�. These are de�ned as follows:k�0X:�ks�x1 � � �xnc = A18

k��+1X:�ks�x1 � � �xnc = k�ks�[X 7! k��X:�ks�]x1 � � � xnck��X:�ks�x1 � � �xnc = \�<� k��X:�ks�x1 � � �xnck�0X:�ks�x1 � � �xnc = ;k��+1X:�ks�x1 � � �xnc = k�ks�[X 7! k��X:�ks�]x1 � � �xnck��X:�ks�x1 � � �xnc = [�<� k��X:�ks�x1 � � �xncIt follows by standard techniques that u�k��X:�ks� is the greatest �xed pointof �f:k�ks�[X 7! f], and that t�k��X:�ks� is the least. In fact only referenceto countable ordinals are needed. Note, however, that we need also to verifythat k��X:�ks� and k��X:�ks� are well-behaved for all ordinals �, whenever � iswell-behaved too. That this is so can be seen from the proof of Lemma 6.1.We can then proceed to prove soundness. The proof given here follows thelines of the corresponding proof in [18].Theorem 7.1 (Soundness) If c `� A : � is derivable then it is true.Proof First observation to note is that if all antecedents of a local rule are truethen so is the conclusion. This follows immediately from the symbolic semantics,Lemma 6.1. Suppose then that a proof of c `� A : � is given, and that c `� A : �is false, i.e. (by Lemma 6.1) A 62 k��ksc. For every sequent occurring in theproof, if it is false then so is an antecedent of that sequent. If a sequent has noantecedents then it is true. Thus we can �nd a constant U1 such that1. it is possible to trace a path upwards through the proof using only falsesequents from the sequent c `� A : � to a sequent of the form c1 `�1 A1 :U1x1;1 � � �x1;m1,2. �1(U1) is a �-formula, and3. If U is another �-constant introduced strictly before U1 (i.e. occurring beforeU1 in �1) then (1) and (2) fails to hold of U .For if no such U1 exists then it will be possible to trace an in�nite path upwardsfrom c `� A : �, but this is impossible. Note that we can additionally requirethe traced path to be as short as possible. Thus c1 `�1 A1 : U1x1;1 � � �x1;m1 isprevented from being an occurrence of a hypothesis.Having now reached the sequent c1 `�1 A1 : U1x1;1 � � � x1;m1 the proof proceedsiteratively, in the limit tracing an in�nite path through the given (�nite) proof.The �rst iteration step proceeds as follows:Consider the subproof rooted in c1 `�1 A1 : U1x1;1 � � � x1;m1. Using ordinalapproximations we can �nd a minimal � such that if �1(U1) = �X:�1 thenA1 62 k��X:�1�1x1;1 � � �x1;m1ksc1:19

We index occurrences of U1 in the subproof. Thus occurrences of U1 indexed by�0 are interpreted as ��0X:�1 rather than simply �X:�1 in determining truthhoodof sequents. At the root sequent U1 is indexed by � and subsequently, every timeU1 is unfolded, the index is minimised (while preserving truthhood/falsehood ofsequents), and thus strictly decreased. Using this procedure all occurrences ofU1 are indexed. For the only rule that could prevent this from being true is fixeliminating U1. But then the choice of U1 would have violated the convention thatconstants are de�ned at most once.In the indexed subproof the root sequent c1 `�1 A1 : U�1 x1;1 � � �x1;m1 is false.We now show that we can �nd some new constant U2 such that1. it is possible to trace a path in the indexed subproof using only false sequentsupwards from c1 `�1 A1 : U�1 x1;1 � � � x1;m1 to a sequent of the form c2 `�2A2 : U2x2;1 � � � x2;m2,2. �2(U2) is a �-formula, and3. If U is another �-constant introduced strictly before U2 then (1){(2) fails tohold of U .4. U2 is introduced strictly after U1.Starting from the root sequent the path is built step by step. Having reached a falsesequent c0 `�0 A0 : �0 it is either an occurrence of a hypothesis, or else it has someantecedent which is false too. If the latter case applies and a suitable U2 has notyet been found, the construction merely proceeds. Suppose the �rst case applieswith �0 of the form, say, U 0x01 � � � x0m0. It cannot be that U 0 was introduced beforeU1 since otherwise U 0 would have been chosen instead of U1. Neither can it be thecase that U 0 = U1. For suppose otherwise. Let then �0 index U1 at this hypothesisoccurrence. Since the path from c `� A : � to c1 `�1 A1 : U1x1;1 � � �x1;m1 waschosen as short as possible, the construction must previously have encountered asequent of the form c00 `�0 A0 : U�001 x01 � � �x0m0 which was not an occurrence of ahypothesis, and such that j= c0 � c00, by rule dis. Since c0 `�0 A0 : �0 is false,A0 62 kU�01 x01 � � �x0m0ksc0. Then A0 62 kU�01 x01 � � �x0m0ksc00 either. But �00 is strictlygreater than �0, and �00 was chosen minimal such that A0 62 kU�001 x01 � � � x0m0ksc00, acontradiction. The only possibility is thus that U 0 be introduced strictly after U1.But then we're done, since we have identi�ed one possible candidate for U2, andamong all candidates we can then choose one for which (3) above is true.Note that, again, by choosing the path as small as possible we can ensure thatc2 `�2 A2 : U2x2;1 � � �x2;m2 is not an occurrence of a hypothesis. For if it were wewould �nd some application of dis discharging this hypothesis, and concluding thesequent c02 `�2 A2 : U2x2;1 � � �x2;m2 for some c02. The application of this sequentmust be above the current root sequent c1 `�1 A1 : U�1 x1;1 � � � x1;m1, since if itwere below the convention preventing rede�nition of constants would be violated.But then the path construction would have terminated when reaching the sequentc02 `�2 A2 : U2x2;1 � � � x2;m2, and we're done.20

The construction can now proceed iteratively from the false sequent c2 `�2A2 : U2x2;1 � � �x2;m2, and the proof is concluded. 28 The Decision ProcedureIn this section we describe the decision procedure central to the completeness anddecidability parts of Theorem 5.2. Let an initial sequent c0 `�0 A0 : �0 be givensuch that A0 is of �nite control. The decision procedure provides a strategy forbuilding a proof of c0 `�0 A0 : �0, provided such a proof exists. The procedurebuilds proofs in a re�nement- or goal-directed manner as is usual in tableaux-basedapproaches. The key issue is to allow attention to be restricted to �nite subsetsof state spaces which are in general in�nite.First the issue of choice of free and bound names is addressed. De�ne]fns(A) �= maxfjfn(B)j j B a subterm of Ag]fns(�) �= maxfjfn()j j a subterm of �g]par(A) �= number of occurrences of j in AWe then �x a set N0 = fy1; : : : ; ykg of names from which all free and boundoccurrences af names will be chosen, wherek =]fns(A0) � (]par(A0) + 1) +]fns(�0) + 1:The factor]par(A0) + 1 is needed to avoid name clashes during scope extrusion.An alternative to using N0 for both bound and free names is to use N0 for freenames only, and then use de Bruijn's indexes for bound variables. Whereas littleseems to be gained from the latter approach from the point of view of worst casecomplexity or clarity of presentation, the use of de Bruijn's indexes may provevaluable in speeding up actual implementations.Rather than general name conditions the proof building procedure uses �niterepresentations of name partitions. Partitions of a �nite set N of names haveobvious representations as name conditions. Such conditions c have the propertythat whenever x; y 2 N then either j= c � x = y or j= c � x 6= y. Call a conditionwith this property N-prime (or just prime if N is understood from context). Notethat if c is N -prime then 9x:c is N � fxg-prime, and if y 62 N [fn(c) thenc[x = y] �= c ^ x = y and (�y)c �= c ^ Vfx 6= y j x 2 Ng are N [fyg-prime. Bymeans of the rules or-cond and ex-cond, c0 `�0 A0 : �0 can be replaced by a�nite set of sequents of the form c00 `�0 A0 : �0 where fn(c00) = fn(A0) [fn(�0),and where c00 is fn(c00)-prime. We can therefore assume the initial sequent itself tohave this property, and let the procedure maintain it invariant.At each step the procedure either terminates or else it chooses to re�ne thecurrent goal, say c `� A : �, by an instance of one of the proof rules. We assumeof c that it is prime, and that all names occurring freely or bound in A or � are21

in N0. The choice of proof rule is guided by the structure of �. Using equiv andex-cond A can be assumed to be in normal form, and fn(c) can if needed bereplaced by its restriction to fn(A)[fn(�). Guided by the outermost connective of�, the procedure now proceeds as described by the pseudo-ML function check2 of�g. 6. The de�nition of check2 uses a few anxillary functions and abbreviations:� normalform(A; c) returns a normal form A0 such that A �" A0 for some "such that " j= c. Since fn(c) = fn(A)[fn(�) and c is fn(c)-prime, the choiceof " is irrelevant, and normalform(A; c) is thus well-de�ned by Proposition3.1. It is assumed of normalform(A; c) that whenever (�x)B is a subterm ofnormalform(A; c) then x has a free occurrence in B.� ~x abbreviates vectors x1 � � �xn, and if ~x = x1 � � �xn then (y; ~x) = yx1 � � � xn,hd(~x) = x1 and tl(~x) = x2 � � � xn.� restrict(fx1; : : : ; xng; c) = 9x1; : : : ; xn:c.� newcon(�) determines a new constant not in dom(�).� newname(A;�; ~x) determines a name in N0 not in fn(A) [fn(�) [f~xg if oneexists.In most cases check2 is self-explanatory. Here we comment only on the case of� of the form U~x. For the purpose of handling constants a table indicating whatconstant sequents have previously been re�ned is maintained. Suppose �rst thatno sequent of the form c0 `�0 A : � for some �0 and c0 such that j= c$ c0 has beenvisited. Then we record that c `� A : � has now been visited, and proceed bychecking c `� A : �1[X := U]~x when �(U) = �X:�1. Logically, the recording ofc `� A : � amounts to nought when � = �. However, when � = � it corresponds tore�nement by dis. If on the other hand a sequent of the form c0 `�0 A : � as abovehas already been visited then, if � = �, the procedure terminates unsuccessfully(as the chosen strategy for re�ning c0 `�0 A : � did not succeed in eliminating therecursion), and if � = � it terminates successfully (since the current goal can thenbe discharged).In the next section we prove that the model checking procedure of �g. 6 iswell-de�ned, and then in section 10 we show that it is correct.9 Termination and Well-de�nednessAn invocation of check(c `� A : �) can, if it yields a well-de�ned result, beviewed as determinining not only a truth-value, but also a set of proof structures.The aim of the present section is to show that on all inputs check is indeedwell-de�ned, and determines a a set of proof structures all members of which aregenerated by the local and global rules of section 5. To show this the followingmust be established: 22

fun check(c `� A : �) = initialize visited table;for all c0 such that fn(c0) = fn(A) [fn(�), c0 is fn(c0)-prime, and j= c0 � c:check1(c0 `� A : � ())fun check1(c `� A : � ~x) =let A0 = normalform(A; c)in check2(restrict(fn(A0) [fn(�),c) `� A0 : � ~x) endand check2(c `� A : � ~x) =case � ofy = z => j= c � y = z |y 6= z => j= c � y 6= z |�1 ^ �2 => check2(c `� A : �1 ~x) andalso check2(c `� A : �2 ~x) |�1 _ �2 => check2(c `� A : �1 ~x) orelse check2(c `� A : �2 ~x) |<�>�1 => for some A1, � such that j= c � � = � and A �c �:A1:check1(c `� A1 : �1 ~x) |[�]�1 => for all A1, � such that j= c � � = � and A �c �:A1:check1(c `� A1 : �1 ~x) |�X:�1 => let U = newcon(�) in check2(c `��(U 7!�X:�1) A : U ~x) end |U => if visited c `� A : � ~xthen (case �(U) of �X:�1 => true | �X:�1 => false)else mark c `� A : � ~x visited;(case �(U) of �X:�1 => check2(c `� A : �1[X := U] ~x)) |�y:�1 => check2(c `� A : �1fhd(~x)=yg tl(~x)) |�1y => check2(c `� A : �1 (y; ~x)) |��1 => (case A of[y]A1 => check1(c `� A1 : �1 (y; ~x)) |(�y)[y]A1 => let z = newname(A,�1,~x)in check1((�z)c `� A1fz=yg : �1 (z; ~x)) end | => false) |8�1 => (case A of(�y)A1 => let z = newname(A,�1,~x)in check1((�z)c `� A1fz=yg : �1 (z; ~x)) andalso8z0 2 fn(A) [fn(�1) [f~xg:check1(c[z = z0] `� A1fz=yg : �1 (z; ~x)) end | => false) |9�1 => (case A of(�y)A1 => let z = newname(A,�1,~x)in check1((�z)c `� A1fz=yg : �1 (z; ~x)) orelse9z0 2 fn(A) [fn(�1) [f~xg:check1(c[z = z0] `� A1fz=yg : �1 (z; ~x)) end | => false)Figure 6: Pseudo-ML functions check, check1, check2.23

1. That, using the algorithm of �g. 6, only a �nite number of agents arereachable.2. Using (1), that the algorithm terminates on all inputs.3. That the algorithm determines a well-de�ned truth-value on all inputs.4. That each re�nement step determined by the algorithm corresponds to awell-de�ned proof structure.Together these results show that if a sequent is true then there is a proof for it. Itdoes not follow, however, that the proof has no undischarged hypotheses occurringin it. The proof of this (completeness) is delayed till section 10.9.1 AgentsWe de�ne the relation A ! B intended to capture the ways agents A in singlesteps give rise to other agents B using the algorithm of �g. 6. Parametrisingthe de�nition is the set N0 determined from an initial sequent as in section 8.The relation! is given as the least relation which respects alpha-conversion withbound names in N0 (i.e. such that A! B whenever A and B are alpha-congruentand B results from A by replacing bound names in N0 by bound names in N0),and for which the following properties hold:1. A+B ! A, A+B ! B2. �:A! A3. bAB ! A, bAB! B4. (�x)A! A5. Ax! A6. �xD:A! A[�xD:A=D]7. [x]A! A8. If A! B and x 2 fn(B) then (�x)A! (�x)B9. (�x)A! A10. (�x)(�y)A! (�y)(�x)A11. If x 6= y then (�x)[y]A! [y](�x)A12. (�x)(�y)[y]A! (�y)[y](�x)A13. If A! A0 then A j B ! A0 j B and B j A! B j A024

14. ((�x)A) j B ! (�x)(A j B), A j ((�x)B)! (�x)(A j B)15. ([x]A) j B ! [x](A j B), A j ([x]B)! [x](A j B)16. ((�x)A) j B ! (�x)(A j B), A j ((�x)B)! (�x)(A j B)We �rst show that the relation A! B correctly re
ects the intention:Proposition 9.1 If check2(c0 `�0 A0 : � ~y) is invoked from check2(c `� A :� ~x) then A!� A0.Proof Suppose that c is N -prime and that fn(A) � N . We need to show thefollowing:1. A normal form A0 can be computed such that A �c A0.2. If A is a process and A ��c �:B then A!� normalform(B; c).3. (�x)A! Afy=xg, (�x)[x]A! Afy=xg, and [x]A! A whenever y 2 N0.Of these, (1) can be seen to hold from the proof of Proposition 3.1, (2) by inspectingthe rules de�ning ��" , and (3) holds by de�nition. 2We then proceed to prove �niteness:Lemma 9.2 (Finiteness) For all A, fB j A!� Bg is �nite.Proof By K�onig's Lemma, since the assumption of guarded recursion ensuresthat fB j A! Bg is always �nite, it su�ces to show that any in�nite derivationd = A0 ! � � � ! An ! � � �with A0 = A visits a �nite number of distinct agents only, i.e. R(d) = fAi j i 2 !gis �nite. To show this we de�ne the size, jAj, of A in the following manner:j0j = jDj = 1jA+Bj = jbABj = jAj+ jBj+ 1j�:Aj = j(�x)Aj = jAxj = j[x]Aj = j�xD:Aj = jAj+ 1j(�x)Aj = 2 � jAj+ 1jA j Bj = jAj � jBjLemma 9.3 All axioms among (1){(16) except (6) decrease size, and all rulesamong (1){(16) preserve size decrease 2(Lemma 9.3)25

Thus, for d to be in�nite the unfolding axiom (6) must be appealed to in�nitelyoften (or else alpha conversions are used almost always|this situation is left tothe reader to dispose of). We assume here that we can �nd some i0 for which Ai0has the form Ci0(Bi0;1; : : : ; Bi0;m) where Ci0 is an m-ary context built using onlyoperators of the form [x], (�x), (�x), or j, and for which eachBj has no occurrencesof parallel composition. The situation where this assumption might fail is whenone of the Bi0;j fails to have the desired form but is never again \touched" byd. This situation can be handled by entirely analogous techniques as the case weconsider here. Now for all i � i0, Ai will have a similar form Ci(Bi;1; : : : ; Bi;m),and for each j : 1 � j � m, either Bi;j = Bi+1;j, or else Bi;j ! Bi+1;j. In additionwe can assume that for in�nitely many i, does Bi;j ! Bi+1;j, since otherwise itsu�ces to pick a larger i0. Thus the proof has been reduced to showing(i) only a �nite number of distinct Ci are reachable(ii) any derivation d that does not involve parallel composition visits a �nitenumber of distinct agents only.To prove (i) we introduce a new little transition system on contexts, and prove it�nite. Formally, contexts are terms C generated by the abstract syntaxC ::= [�] j (�x)C j (�x)C j [x]C j C j CHere [�] is the empty context. Say of a context C that x is visible through Cif either there is some occurrence of [�] in C not within the scope of a bindingoccurrence of x, or else x occurs unbound in C. Rule (5) below shows where thisnotion is needed. The transition relation ! is now determined in the followingway where
 ranges over operators among (�x), (�x), and [x] with x 2 N0:1. If C1 and C2 are alpha congruent then C1 ! C22. [�]!
[�]3. (
C1) j C2 !
(C1 j C2), C1 j (
C2)!
(C1 j C2)4. [x]C ! C, (�x)C ! C, (�x)C ! Cfy=xg whenever y 2 N05. (�x)
C !
(�x)C6. if C1 ! C 01 and x is visible through C 01 then (�x)C1 ! (�x)C 017. if C1 ! C 01 then C1 j C2 ! C 01 j C2 and C2 j C1 ! C2 j C 01It is easy to verify that for i � i0, if Ai has the form Ci(Bi;1; : : : ; Bi;m) and Ai+1similarly the form Ci+1(Bi+1;1; : : : ; Bi+1;m) and for each j : 1 � j � m, eitherBi;j = Bi+1;j or Bi;j ! Bi+1;j , then either Ci = Ci+1 or Ci ! Ci+1. To prove (i) ittherefore su�ces to establish the following Lemma:26

Lemma 9.4 For all C, fC 0 j C !� C 0g is �nite.Proof If C !� C 0 say that C 0 is reachable (from C). For delimiting the reachablecontexts we need the notion of legitimate pre�x. First, a (context) pre�x is a string
1 � � �
n where each
i is either (�x), (�x), or [x], x 2 N0. Write p � C for thecontext obtained by pre�xing C with the pre�x p. A pre�x
1 � � �
n is legitimateif (i) at most one
i has the form either (�x) or [x] for some x 2 N0, and(ii) the total number of occurrences of operators of the form (�x) or (�x) forsome x 2 N0 is at most jN0j.We can now prove Lemma 9.4 by induction in the size of C:C = [�]: If su�ces to show that any context reachable from [�] has the formp � [�] where p is a legitimate pre�x. To show this assume that p is legitimate andthat p � [�] ! C 0. Then C 0 has the form p0 � [�]. Clearly condition (i) above issatis�ed. To see that also (ii) is satis�ed suppose for a contradiction that it isnot, so that p0 has jN0j+ 1 occurrences of a binding operator. Then p0 must havethe form p1(�x)p2
p3 for some x where
 binds x. But this cannot happen sincethe justi�cation of p � [�] ! p0 � [�] must have appealed to rule (6) for justifying(�x)p00 � [�] ! (�x)p2
p3 � [�] for some p00. But x is not visible through p2
p3|acontradiction.C = (�x)C 0: We show that any context reachable from C has the form p�C1 wherep is a legitimate pre�x and C1 is reachable from C 0. So assume that p � C1 ! C2.The only case that needs considering is when p has the form p0(�x), C1 the form
C 01, and C2 the form p
(�x)�C 01. We then need to show that p
(�x) is legitimate,but this follows exactly as in the previous case.C = (�x)C 0: The only contexts reachable fromC are those reachable fromC 0fy=xgfor some y 2 N0.C = [x]C 0: As the previous case.C = C1 j C2: We show that any context reachable from C has the form p�(C 01 j C 02)where p is legitimate, C 01 is reachable from C1, and C 02 reachable from C2. Theonly cases that need considering are applications of rule (3), but these follow asin the case for restriction above. 2 (Lemma 9.4)We then proceed to the proof of (ii).Lemma 9.5 Suppose that A has no occurrences of j. For all derivations d =A0 ! � � � ! An ! � � � with A0 = A, R(d) is �nite.Proof The proof uses the notion of legitimate pre�x, introduced in the proofof Lemma 9.4, and proceeds by induction in the size of A. The cases for 0, +,pre�xing, conditional, abstraction, application, and concretion follow directly fromthe induction hypothesis. This leaves two cases to be considered. For restriction27

the proof is a correlate of the corresponding case in the proof of Lemma 9.4. Soassume that A = �xD:A0. We to show that any agent reachable from A has theform p � (A00[A=D]) where p is a legitimate pre�x and A00 is reachable from A0, thuscompleting the proof by the induction hypothesis. To each transition Ai ! Ai+1is associated a unique justi�cation, a proof using the axioms and rules among (1){(16) together with alpha-conversion. Say that step i refers to A, if the justi�cationof the transition Ai ! Ai+1 involves an appeal to (6) with D instantiated to itself,and A to A0. Suppose now that Ai has the form p � (A00[A=D]) such that A00 isreachable from A0. Handling the case where step i is an instance of one of theaxioms (10){(12) as in the proof of Lemma 9.4 only one potentially problematiccase remains, namely where step i refers to A. This, however, can only be thecase when A00 has the form p0 �D for p0 a pre�x, and in this situation it must, aswe have seen, be the case that the pre�x pp0 is legitimate. Thus Ai+1 has beenbrought into the desired form. 2 (Lemma 9.5) 2 (Lemma 9.2)9.2 TerminationWe next use the �niteness of fB j A !� Bg to show termination, followingthe strategy introduced by Stirling and Walker [18] for the case of the modal�-calculus. De�ne the size, j�j, of a formula � as follows:jx = yj = jx 6= yj = jXj = jU j = 1j� ^ j = j� _ j = max(j�j; j j) + 1j<�>�j = j[�]�j = j�X:�j = j�x:�j = j�xj = j��j = j8�j = j9�j = j�j+ 1and then extend this measure to sequents c `� A : � byjc `� A : �j = (j�(U)x1 � � �xnj if � is of the form Ux1 � � � xnj�j otherwiseTheorem 9.6 Function check terminates on all inputs.Proof Consider a �nite or in�nite structure originating in the sequent c0 `�0A0 : �0 and generated by a run of check. By Proposition 9.1 all agents occurringin the structure stay within the �nite set fA j A0 !� Ag. Since each re�nementstep is �nitely branching, to show that no in�nite such proof structure can exist,by K�onigs Lemma it su�ces to show that there can be no in�nite sequencess = c0 `�0 A0 : �0; : : : ; cn `�n An : �n; : : :such that for all i � 0, ci `�i Ai : �i derives ci+1 `�i+1 Ai+1 : �i+1 in one step. Soassume for a contradiction that such a sequence exists. Since the size of formulasdecrease strictly under all re�nement steps except for those unfolding constantswe can �nd a subsequences0 = c00 `�00 A00 : �00; : : : ; c0n `�0n A0n : �0n; : : :28

of s which is in�nite, and for which all �0i have the form Uixi;1 � � �xi;mi. We showthat for in�nitely many i is Ui the same constant U . If it is not let i0 be maximalsuch that Ui0 = U0. Thenjc0i0+1 `�0i0+1 A0i0+1 : �0i0+1j < jc0i0 `�0i0 A0i0 : �0i0 jas j�0i0+1(Ui0+1xi0+1;1 � � � xi0+1;mi0+1)j < j�0i0(Ui0xi0;1 � � � xi0;mi0)j. Repeating, let i1be maximal such that Ui1 = Ui0+1. Similarly,jc0i1+1 `�0i1+1 A0i1+1 : �0i1+1j < jc0i0+1 `�0i0+1 A0i0+1 : �0i0+1j:Thus some U must occur in�nitely often among the Ui. Let thens00 = c000 `�000 A000 : �000; : : : ; c00n `�00n A00n : �00n; : : :be the (in�nite) subsequence of s0 for which �00i has the form Uyi;1 � � � yi;ki for alli � 0. Since all yi;ji are chosen from the �nite set N0, and since the number ofdistinct A00i is �nite, and since also the number of N0-inequivalent c00i is �nite, s00must be �nite too, a contradiction. 29.3 Normal TerminationWhile Theorem 9.6 shows that sketch terminates on all inputs it does not followthat on all inputs sketch produces a well-de�ned truth-value. For it may be thata call of newname(A,�,~x) is ill-de�ned because N0 � fn(A) [fn(�) [f~xg. Weshow here that this situation can not arise. The key Lemma which needs to beproved is the following:Lemma 9.7 For all An, if A0 !� An then jfn(An)j �]fns(A0) � (]par(A0) + 1)Proof Assume that d = A0 ! � � � ! An ! � � �We show jfn(An)j �]fns(A0) � (]par(A0) + 1) by structural induction, using thenotion of legitimate pre�x introduced in the proof of 9.4. For all case except �, �,recursion, and parallel composition, the result follows directly from the inductionhypothesis, so only these four are considered:A0 = (�x)A00. If n > 0 it must be the case that (up to an initial sequence ofalpha-conversions) A0 ! A1 is an instance of (4), i.e. that A1 = A00, so thatA00 !� An. Then by the induction hypothesis,jfn(An)j �]fns(A00) � (]par(A00) + 1)=]fns(A0) � (]par(A0) + 1)A0 = (�x)A00. It must be the case that An has the form p �A0n for p a legitimatepre�x, that A00 ! p0 �A0n for some p0 and A0n, and that either p and p0 are identical,29

or else p di�ers from p0 only in that it (up to possible alpha-conversions of thebound name x) has an occurrence of (�x). In either case the result is immediateby the induction hypothesis.A0 = A0;1 j A0;2. In this case An has the form p � (An;1 j An;2) for some legitimatepre�x p. Then for each i 2 f1; 2g we �nd legitimate pre�xes pi such that A0;i !�pi � An;i, and p is the merge of p1 and p2 in a manner such that if [x] occurs in pwith x in a bound position then so it does in whichever pi that contains [x]. Bythe induction hypothesis,jfn(pi �An;i)j �]fns(A0;i) � (]par(A0;i) + 1)for i = 1 and i = 2. Nowjfn(An)j � jfn(p1 �An;1)j+ jfn(p2 �An;2)j�]fns(A0;1) � (]par(A0;1) + 1) +]fns(A0;2) � (]par(A0;2) + 1)Let B be whichever of A0;1=A0;2 such that]fns(B) is maximal. Then]fns(A0;1) � (]par(A0;1) + 1) +]fns(A0;2) � (]par(A0;2) + 1)�]fns(B) � (]par(A0;1) +]par(A0;2) + 2)=]fns(B) � (]par(A0) + 1)�]fns(A0) � (]par(A0) + 1)completing the case.A0 = �xD:A00. Since]par(A0) = 0 by the assumption of �nite control it su�ces toshow that jfn(An)j �]fns(A0). We then �nd legitimate pre�xes p and p0 such that�xD:A00 !� p � �xD:A!� An;An has the form p0 � A0n[�xD:A=D], and A00 !� A0n. Note that we can assumethat p has no free occurrences of names since if it had, before �xD:A00 would besubsequently unfolded, the free name (occurring in an output pre�x) would beeliminated by an application of (7). By the induction hypothesis we know thatjfn(A0n)j �]fns(A00)=]fns(A0)The only case in which jfn(An)j could be greater than jfn(A0n)j is when p0 containsan occurrence of an output pre�x [y] such that the occurrence of y in [y] is free in p0.This, however, can only happen if we can factorise the derivation p��xD:A00 !� Anas follows p � �xD:A00 !� p00 �A00n[�xD:A00=D]!� Ansuch that p00 has no free occurrence of y (i.e. An results from A00n[�xD:A00=D] byapplications of 8, 9, and 11), and such that A00 !� A00n. Moreover fn(A00n) = fn(A0n)[fyg. But then, since we know by the induction hypothesis that jfn(A00n)j �]fns(A0)the proof is complete. 2Normal termination is now an easy Corollary:30

Corollary 9.8 Function check terminates normally on all inputs.Proof Use Lemma 9.7. 29.4 Well-de�nedness and SoundnessIt remains to check that the proof structure induced by an invocation of check(c `�A : �) is indeed a valid proof structure according to the proof rules of �g. 4.Lemma 9.9 On all inputs check determines a well-de�ned proof structure ac-cording to the local and global proof rules.Proof It su�ces to observe, as in the proof of Proposition 9.1 that if A is aprocess and A ��c �:B then A!� normalform(B; c). 2Thus:Corollary 9.10 (Soundness of check) If check(c `� A : �) returns the valuetrue then the sequent c `� A : � is true.Proof By Lemma 9.9 check(c `� A : �) determines a well-de�ned proof struc-ture. A simple inductive arguments shows that if the value returned is true thenall hypotheses of the induced proof have been discharged. But then c `� A : � by7.1. 210 Completeness and DecidabilityFor completeness it now only remains to check that if a sequent is true then theset of proof structures determined by an invocation of check on that sequent hasa member with no undischarged occurrences of assumptions. The proof of thisfollows the approach of Streett and Emerson [19].Theorem 10.1 (Completeness) If the sequent c `� A : � is true then it is deriv-able.Proof Suppose A 2 k��ksc and assume given a set of proof structures inducedby an invocation of check(c `� A : �). This set is well-de�ned and each ofits members are well-de�ned as proof structures generated by the local and globalproof rules. We show that at least one member of this set will have no undischargedoccurrences of hypotheses.Let U1; : : : ; Un be the sequence of �-constants of � in order of de�nition. Eachn-length string w = �1; : : : ; �n of ordinals determines the de�nition list �w thatcoincides with � on all �-constants, and for each Ui, 1 � i � n, if �(Ui) = �Xi:�i,say, then �w(Ui) = ��iXi:�i. The signature of c `� A : �, W (c `� A : �), is31

then the lexicographically least string w such that A 2 k��wksc. Using ordinalapproximations it is clear that if c `� A : � is true then it has a well-de�nedsignature.We explain how to �nd a candidate proof of c `� A : � in stages. At each stagewe keep track of a current set of candidate proof structures, P, and a current setof sequents (or more precisely, sequent occurrences), S, to be further re�ned. Theset S has the property that no sequent in S occurs above another. Then P has theproperty that the subproofs obtained from each proof in P by restricting attentionto sequents above the root and not above a sequent in the S, are identical.Initially P is the entire set of proof structures determined by an invocationof check2(c `� A : �), and S is the singleton fc `� A : �g. We explain howto complete stage n. Pick a member of S, say c0 `�0 A0 : �0. Suppose thatcheck2(c0 `�0 A0 : �0) does not recurse. Then the search is �nished since either�0 is an equation or an inequation which must be provable since it is true, or else�0 is a constant, and we will then have to prove that �0 is a �-constant so thatc0 `�0 A0 : �0 is a discharged occurrence of a hypothesis. In either case c0 `�0 A0 : �0is removed from the S, and we proceed to stage n + 1. So assume instead thatcheck2(c0 `�0 A0 : �0) does recurse. Choose then a maximal subset of P such that1. c0 `�0 A0 : �0 is the conclusion of the same rule instance.2. The antecedents of c0 `�0 A0 : �0 have minimal signatures.Note that either the rule instance is determined, or else (in the cases for disjunc-tions or diamonds) each potential rule instance has only one antecedent. It followsfrom the symbolic semantics that a nonempty subset with these properties can bechosen. Having made the choice P is replaced by the chosen subset, and S isupdated by replacing c0 `�0 A0 : �0 by its antecedents.The result is a well-de�ned proof structure. Moreover, the only undischargedoccurrences of sequents in this proof structure are sequents of the form c0 `�0A0 : Ux1 � � � xm where U is a �-constant. We need to show that no such sequentscan occur. So assume that the resulting proof has an undischarged occurrenceof c0 `�0 A0 : Ux1 � � �xm. This means that we �nd an earlier visited sequentof the form c00 `�00 A0 : Ux1 � � �xm with j= c00 � c0. We show that W (c0 `�0A0 : Ux1 � � �xm) < W (c00 `�00 A0 : Ux1 � � �xm). Suppose that U is the n'th�-constant in order of de�nition. Then the initial re�nement step applied toc00 `�00 A0 : Ux1 � � �xm, the rule fold, strictly decreases signature in its n'thposition. No subsequent re�nement step can increase signature in positions smallerthan or equal to n. ThusW (c0 `�0 A0 : �0) < W (c00 `�00 A0 : �0):But since j= c00 � c0, W (c00 `�0 A0 : �0) � W (c0 `�0 A0 : �0). Moreover, W (c00 `�0A0 : �0) = W (c00 `�00 A0 : �0) since the two sequents di�er only in constants thatare no longer reachable. But this is a contradiction. 2Decidability, then, is an immediate Corollary.32

Corollary 10.2 Derivability of sequents is decidable.Proof By termination, soundness and the proof of the Completeness Theoremwe know that a sequent is derivable if and only if the application of the modelchecking algorithm to that sequent results in the value \true". 211 Conclusion and Related WorkAlgorithms for value passing process calculi have been considered recently by anumber of authors. For bisimulation equivalence Jonsson and Parrow [7] haveconsidered data-independent programs, and Hennessy and Lin [5] have presentedan algorithm for a certain class of \standard" symbolic transition graphs. Appliedto the �-calculus both these classes are strictly weaker than the notion of �nitecontrol agent introduced in the present paper. In particular we avoid the technicalconditions that prohibit reuse of variables in the algorithm of Hennessy and Lin.Note that it is likely that our model checker can be used for deciding bisimulationequivalence of �nite control agents via a notion of characteristic formula (c.f. [3]).A closely related proof system for a version of Hennessy-Milner logic adapted tovalue-passing has been introduced by Hennessy and Liu [6]. Parts of our proofsystem appear originally in their work: The structural rules, and the rules forboolean connectives, 8 and 9. However, they fail to consider �xed points or othertemporal operators, and thus their logic is far too weak to be of any practicalinterest. Indeed it is the handling of just recursively de�ned agents and propertiesin the presence of name passing and generation which forms the main contributionof the present paper. Other signi�cant di�erences concern our choice of basicconnectives and our focus on the �-calculus.Many issues related to the work reported here needs to be further examined.More consideration is needed from both practical and theoretical perspectives ofthe features required from a temporal logic along the lines of the one we describe.Relations to the �-calculus encodings of data types, lambda calculus, and thehigher order �-calculus should be investigated. The e�ciency and usability of ourproof system and decision procedure needs to be evaluated on practical examples.Mechanisms for compositional veri�cation should be developed, perhaps along thelines of Stirling [16], or Andersen and Winskel [1]. Concerning early bisimulationequivalence a temporal logic characterising this equivalence instead of late bisim-ulation equivalence can be devised using the basic modalities of e.g. [12] in placeof those considered here. We envisage no signi�cant problems in obtaining similarresults for such a logic.AcknowledgementsThanks are due to Joachim Parrow, Lars-�Ake Fredlund, and Bj�orn Victor fordiscussions on the �-calculus. 33

References[1] H. Andersen and G. Winskel. Compositional checking of satisfaction. In Proc.3rd Workshop on Computer Aided Veri�cation, pages 49{65, July 1991.[2] R. Cleaveland, J. Parrow, and B. Ste�en. A semantics based veri�cationtool for �nite state systems. In Proc. 9th IFIP Symp. Protocol Speci�cation,Veri�cation and Testing, 1989.[3] R. Cleaveland and B. Ste�en. Computing behavioural relations, logically. InProc. ICALP'91, 1991.[4] M. Dam. CTL� and ECTL� as fragments of the modal mu-calculus. In Proc.17th Coll. Trees in Algebra and Programming, Lecture Notes in ComputerScience, 581:145{164, 1992. To appear in Theoretical Computer Science.[5] M. Hennessy and H. Lin. Symbolic bisimulations. Dept. of Computer Science,University of Sussex, Report 1/92, 1992.[6] M. Hennessy and X. Liu. A modal logic for message passing processes. Dept.of Computer Science, University of Sussex, Report 3/93, 1993.[7] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class ofnon-�nite-state programs. Information and Computation, 1992.[8] K. G. Larsen. Proof systems for Hennessy-Milner logic with recursion. inProc. 13th CAAP Lecture Notes in Computer Science, 299, 1988.[9] R. Milner. Communication and Concurrency. Prentice Hall International,1989.[10] R. Milner. The polyadic �-calculus: A tutorial. Technical Report ECS-LFCS-91-180, Laboratory for the Foundations of Computer Science, Department ofComputer Science, University of Edinburgh, 1991.[11] R. Milner. Functions as processes. Mathematical Structures in ComputerScience, 2:119{141, 1992.[12] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes.Technical Report R91:03, SICS, 1991. To appear in Theoretical ComputerScience.[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I andII. Information and Computation, 100(1):1{40 and 41{77, 1992.[14] F. Orava and J. Parrow. An algebraic veri�cation of a mobile network. FormalAspects of Computing, pages 497{543, 1992.34

[15] D. Sangiorgi. From �-calculus to higher-order �-calculus|and back. Toappear in Proc. TAPSOFT'93, 1993.[16] C. Stirling. Modal logics for communicating systems. Theoretical ComputerScience, 49:311{347, 1987.[17] C. Stirling. Modal and temporal logics for processes. Technical Report ECS-LFCS-92-221, LFCS, Dept. of Computer Science, University of Edinburgh,1992.[18] C. Stirling and D. Walker. Local model checking in the modal mu-calculus.Theoretical Computer Science, 89:161{177, 1991.[19] R. S. Streett and E. A. Emerson. An automata theoretic decision procedurefor the propositional mu-calculus. Information and Computation, 81:249{264,1989.

35

