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Thus ! expresses a relativisation of properties to properties of parallel contexts.As parallel composition is usually assumed to be commutative the restriction toleft-multiplication is harmless. With this de�nition the implication can be used asa general handle to address the di�cult problem of deriving compositional theoriesfor concurrency. One rule for parallel composition is su�cient, namely:x j= �!  y j= �x� y j=  The problem of compositionality has thus been transformed into the problem ofverifying implicative properties. As a property-transformer this implication hasnumerous well-known relatives in Computer Science. The classical example is theweakest preconditions of Dijstra [9]. In concurrency close relatives are the weakestinner environments of Larsen [17] and the doubly relativised turnstiles of Stirling[27].The relation to relevant and linear logics arise in the following way: Parallelcomposition is usually assumed to be associative as well as commutative, and topossess an identity 1. For instance in CCS (Milner [20]) the identity is NIL; inSCCS (Milner [19]) it is 1; and in theoretical CSP (Brookes et al [6]) it is RUNfor � the operator jj and STOP for � the operator jjj. With this structure theimplication of (1) corresponds naturally to the consequence relation �1; : : : ; �n j=  that holds whenever x1 j= �1; : : : ; xn j= �n implies x1 � � � � � xn j=  where theempty product is 1. Letting �, 	 range over �nite strings of formulas observethen that the following structural rules are validated:Reexivity: � j= �Permutation: � j= �	 j= � (	 a permutation of �)Cut: � j= � 	1; �;	2 j=  	1;�;	2 j=  Moreover with the intended interpretation of � as parallel composition the fol-lowing structural rules will in general fail:Contraction: �; �; � j=  �; � j=  Weakening: � j=  �; � j=  so the consequence relation is indeed linear in the sense of Girard [13].Related observations have been made in the context of Petri nets by a numberof authors (Brown [7], Gehlot and Gunter [12], Marti-Oliet and Meseguer [18],Winskel and Engberg [11]). Abadi and Plotkin [1] uses an implication related toours to account for the assumption-guarantee principle for safety properties (c.f.2



Pnueli [25]). Other ways of relating linear logic to concurrency have also beentried: Abramsky and Vickers [3] uses quantales, a topological variant of linearlogic, to account for notions of process testing; and Abramsky and Jagadeesan [2]uses dataow networks to interpret proofs in linear logic.1.1 Outline of PaperWith the interpretation (1) the intensional (or multiplicative, in Girard's termi-nology [13]) fragment expresses purely structural properties of processes and isthus by itself of little interest. Other connectives are needed to capture also thedynamic properties of processes. Our aim in the present paper is to explore waysin which such extensions can be made while both1. obtaining close connections to linear and relevant logics, and2. giving concrete computational justi�cations for the choice of models andconnectives.The computational setting which we take as basic is that of process calculi suchas CCS and SCCS [20, 19]. Processes are terms given computational meaningby an operational semantics in the style of Plotkin [24]. Formulas, as in e.g.Hennessy-Milner logic [15], denote sets of processes expressing their computationalcapabilities. Thus formulas can suitably be viewed as process speci�cations, andtypical process veri�cation problems include:a. Given speci�cation �, does there exist a process satisfying �?b. Given speci�cation � and process p, does p satisfy �?This interpretation of processes and properties is, however, far too concrete andsyntactic to support a really tight connection to linear and relevant logics. A moreliberal approach is to consider instead models based on algebras with a structureakin to that of processes up to a suitable notion of semantical equivalence. This isthe approach taken in the �rst part of this paper. We take as our point of departurea notion of model for positive linear and relevant logics whose underlying frame isa semilattice-ordered monoid. The intention is to relate the monoid operation toparallel composition and the semilattice operation to some form of choice operator.Logically this notion of model is a generalisation of Urquhart's semilattice modelfor relevant logics capable of capturing a wide range of positive linear and relevantlogics in a uniform way. We give three examples of frames based on fragments ofthe synchronous calculus SCCS, two appropriate to positive linear logic, and oneappropriate to the positive fragment of the relevant system R. The semanticalequivalences used are simulation and bisimulation equivalence (c.f. Hennessy,Milner [15]), and the testing equivalence of De Nicola and Hennessy [21].Building frames based on process calculi shows soundness of the axiom systemsconcerned. The �rst part of the paper addresses two main questions:3



1. How can the general notion of frame be extended to cover also dynamicbehaviour, and how can the logic be extended to reect this?2. In particular, can 1. be answered in such a manner that completeness isobtainable too?The answers we propose are based on extensions of frames by unary operators,akin to the pre�xing operators of CCS and SCCS, and a constant 0 for deadlockor divergence. Two equational classes of frames are considered, one for whichpotentiality for deadlock/divergence is ignored, and one where it is viewed ascatastrophic. The �rst case is appropriate to safety properties, and the second toliveness properties. Computationally, these classes are motivated by containingas initial members two of the frames considered earlier based on SCCS with acorresponding version of testing equivalence. Or in other words: The equationsdetermining the class of frames concerned gives a sound and complete axioma-tisation of processes up to a form of testing equivalence. Logically this addedframe structure is reected by forwards and backwards modalities ja> and <aj.We give an axiomatisation of these modalities which is shown to be sound andcomplete with respect to both classes of frames, and which is moreover shown tobe conservative over linear logic.Of particular computational interest, however, are the interpretations inducedon process terms proper. That is, the interpretations on terms p induced byp j= � i� [p]' j= � where ' is the semantical equivalence concerned. Theseinterpretations form the topic of the second main part of the paper. It is impor-tant to obtain a characterisation of the process-based interpretations in purelyoperational/syntactical terms, since it is this characterisation which gives directcomputational meaning to formulas, analogous, for instance, to the way transitionsystems give computational meaning to formulas in Hennessy-Milner logic. Weobtain such a characterisation and show the usual logical characterisation resultthat p ' q i� for all formulas �; p j= � i� q j= �: (2)The completeness results for arbitrary frames obtained in the �rst part of thepaper do not apply to the process-based models. Thus they are insu�cient foranswering problems such as a. and b. above which motivated our work fromthe outset. One reason for the failure of completeness is the extraordinary ex-pressive power of formulas when only the concrete process-based interpretationsare considered. Using the modal operators an extensional falsehood constant ?denoting the empty set is de�nable. Then �! ? denotes the inconsistency of �(p j= �! ? i� no q exists for which q j= �), and similarly (�!?)!? denotesthe consistency of � (p j= (�! ?)! ? i� for some q, q j= �). The problems thisexpressive power gives rise to do not appear particular to the modalities consideredin the present paper: It is hard to think of a process speci�cation language whichis closed under extensional conjunction and does not have the power of expressingan unsatis�able property. One problem is that the Henkin-style approach used4



in the earlier completeness proofs becomes di�cult to use. In e�ect a syntacticalcharacterisation of consistent and inconsistent formulas seems to be called for, andan attractive alternative approach is therefore to use rewriting techniques. Setsof new axiom schemas are given by which formulas can be rewritten into normalforms. As consistent normal forms can easily be given models completeness fol-lows. Moreover, since the rewriting procedure is e�ective, and properties of normalform are easily determined, byproducts of the completeness proofs are proceduresto decide for instance consistency and inconsistency of formulas.1.2 Fusion or ImplicationThe main thrust of our work, in the tradition of relevance logic, is to take the im-plication and its interaction with extensional and modal connectives as the issuesof primary interest. An alternative, more algebraically oriented approach is toemphasize instead the operator of fusion, or intensional conjunction, �, associatedto the implication by the adjunction` �! ( ! ) i� ` � �  ! : (3)Here ` denotes provability in the axiom system under consideration. One reasonfor adopting this approach is that when arbitrary in�nite disjunctions are availablethen ! is derivable by �!  = _f j`  � �!  g: (4)This is the view taken, for instance, in quantale-based models (c.f. Abramskyand Vickers [3]). The use of in�nite disjunctions in (4) is, however, essential,and does not apply in the present setting of �nitary unquanti�ed propositionallogic. The addition of in�nite disjunctions or other higher-order mechanisms areextensions that may well prove valuable (c.f. Engberg and Winskel [11] for anexample where propositional �xed point operators are considered briey), but theincrease in expressive power would be very substantial indeed, and such extensionsare therefore left for future consideration.One example of a process logic which uses the fusion operator is the composi-tional model checker of Winskel [29]. There � (
 in [29]) is introduced with theinterpretation p j= �1 � �2 i� 9p1; p2 such that p = p1 � p2, p1 j= �1 and p2 j= �2.With this interpretation � is restricted to occurring only in antecedents of groundimplications, as otherwise the language would be able to distinguish processesaccording to their static structure only, something which most process equiva-lences do not allow. This restriction can be lifted by quotienting with respect toa suitable semantical equivalence ' so thatp j= �1 � �2 i� there are p1; p2 such that p ' p1 � p2; p1 j= �1 and p2 j= �2: (5)This reference to ' is, however, in some respects unfortunate: First it requiresmodels to be explicitly parametrised by '. However, one would, and indeed5



should, expect that ' is determined by the logic in the sense of (2). Secondly, andmore seriously, with the interpretation (5) � lacks a direct computational inter-pretation in contrast to the other connectives we consider. Nonetheless the morealgebraic perspective that the fusion lends itself to is valuable in several respects,to justify our notions of model and satisfaction, to justify our choice of connec-tives by using adjunctions as in (3), and to throw light on the axiomatisationsconsidered.The paper is structured as follows: In section 2 we introduce our general modelfor positive linear and relevant logics, obtain soundness and completeness resultsfor the positive fragments of linear logic as well as the relevant system R, andjustify our notion of model in terms of quantales. Examples of models based onprocesses are given in sections 3 and 4. In section 5 synchronous algebras, extend-ing general frames by action operators, are introduced. Representation theoremsfor their initial algebras are proved, and it is shown how these representationsprovide processes with a fully abstract denotational semantics. In section 6 linearlogic is extended by operators to reect the additional structure of synchronous al-gebras. Soundness, completeness and conservative extension results are obtained,and the relations to corresponding extensions of quantales by operators are dis-cussed. From section 7 onwards attention is focused on the process-based models.In section 7 the interpretations induced on process terms are characterised, and itis shown how using these characterisations the logics induce the expected semanti-cal equivalences on terms. The remaining part addresses the problem of completelyaxiomatising validity of formulas with respect to the process-based interpretationsonly. In section 8 the axiomatisations are introduced, and their soundness proved,and sections 9 and 10 contain the proofs of completeness and decidability. Finally,in section 11 possible extensions and future work is discussed.2 Models for Positive Relevant LogicsIn this section we develop a notion of model for positive fragments of linear logicwith a structure resembling the static structure of process calculi such as CCSand SCCS. Syntactically, the language of positive formulas is generated by theabstract syntax � ::=X j t j �! � j � � � j � ^ � j � _ �where X ranges over atomic propositions. The intensional connectives are the(intensional) truthhood constant t, the implication!, and the operation � knownvariously as fusion, intensional conjunction, tensor, or times. The extensionalconnectives are ^ and _. We generally assume ! to have least binding power.In linear logic terminology, t corresponds to the constant 1, � to 
, ! to linearimplication, and ^ and _ to the additive \with" (&) and \plus" (�) respectively.6



2.1 SemanticsFor the semantics it is well known (c.f. Urquhart [28], Dunn [10]) that the standardset-theoretic interpretation of ^ as intersection and _ as union is problematic in thecontext of relevant logics. The semantics of (Routley and Meyer [26]) remediesthis by introducing a ternary relation R on elements of models, replacing theinterpretation (1) of section 1 byx j= �!  i� for all y; z; if y j= � and R(x; y; z) then z j=  (6)The ternary relation can be understood by reading R(x; y; z) as \the combinationof the pieces of information x and y (� � �) is a piece of information in z" [10]. Thusboth ideas of intensional combination of information and of information contentare involved. We propose separating these notions, using the monoid structure toaccount for the �rst, and a semilattice structure to account for the second. Thisallows us to easily capture also logics such as linear logic for which distributivity of^ over _ fails, something for which the ternary relation model is not well equipped.In terms of processes our intention is to relate the monoid operation to parallelcomposition and the semilattice operation to process-algebraic choice operators.De�nition 2.1 (Frame, Model). A frame is a structure F = (S;u;�; 1) where1. 1 2 S,2. (S;u) is a semilattice,3. (S;�; 1) is a commutative monoid,4. � distributes over u. That is, x�(yuz) = (x�y)u(x�z) for all x; y; z 2 S.A set B � S is a �lter, if for all x; y 2 S, x; y 2 B i� x u y 2 B. A model (basedon F ) is a pair M = (F; V ) where F is a frame and V is a valuation which foreach propositional letter X gives a �lter V (X).The partial ordering � on models is derived in the usual way: x � y i�x u y = x. Our usage of the term �lter is slightly nonstandard in that �lters areusually assumed to be neither empty nor improper. Note that B is a �lter i�1. x 2 B and x � y implies y 2 B, and2. x; y 2 B implies x u y 2 B.The �lter property of valuations is quite natural if u is understood as expressingintersection of information contents: More information entails more atomic prop-erties should hold, and for any two elements their common information is su�cientto establish their common atomic properties. The distributivity of � over u canbe understood in similar terms. 7



De�nition 2.2 (Satisfaction). The relation of satisfaction, x j=M �, is de�ned inthe following way:1. x j=M X i� x 2 V (X),2. x j=M t i� 1 � x,3. x j=M �!  i� for all y 2 S, y j=M � only if x� y j=M  .4. x j=M � �  i� there are x1; x2 2 S such that x1 � x2 � x, x1 j=M � andx2 j=M  .5. x j=M � ^  i� x j=M � and x j=M  ,6. x j=M � _  i� x j=M � or x j=M  or there are x1; x2 2 S such thatx1 u x2 � x, x1 j=M � and x2 j=M  .LetM be a class of models. A formula � isM-valid, if 1 j=M � for all M 2 M.IfM is the class of all models, � is said to be universally valid.We usually omit indexing of j= byM when M is understood from the context.The �lter property for atomic propositions extends to the full language. Thisproperty is used extensively in the proof of soundness below.Proposition 2.3 (The Filter Property) For all �, fx 2 SM j x j=M �g is a �lter.Proof: An easy structural induction. For!, suppose �rst that x j= �!  andx � y. To check y j= �!  let z j= �. Then x� z j=  so by monotonicity of �and the induction hypothesis also y� z j=  . So y j= �!  . Conversely if x; y j=�!  and z j= � then x� z; y� z j=  so also (x� z)u (y� z) = (xuy)� z j=  .Thus x u y j= �!  as desired.For �, if x j= � �  and x � y then y j= � �  is immediate. Converselylet x; y j= � �  . Then we �nd x1; x2; y1; y2 such that x1; y1 j= �, x2; y2 j=  ,x1 � x2 � x and y1 � y2 � y. By the induction hypothesis, x1 u y1 j= � andx2 u y2 j=  . Moreover (x1 u y1)� (x2 u y2) � x u y whence x u y j= � �  .For _ suppose �rst that x j= �_ and x � y. If x j= � or x j=  then y j= �_ by the induction hypothesis, and if there are x1; x2 such that x1 u x2 � x, x1 j= �and x2 j=  then x1 ux2 � y so y j= �_ . Conversely suppose that x; y j= �_ .If x; y j= � or x; y j=  then x u y j= � _  by the induction hypothesis. If x j= �and y j=  , say, then immediately x u y j= � _  . If x j= � and y1; y2 � y, y1 j= �and y2 j=  then xu y1 j= � by the induction hypothesis, so indeed xu y j= �_ .The other cases are similar.The remaining cases are easy exercises. 28



2.2 AxiomatisationThe appropriate logic for axiomatising universal validity is the positive fragmentof linear logic axiomatised by the following Hilbert-type system (Avron [5]):Axioms I �! �B ( ! )! ((�!  )! (�! ))C (�! ( ! ))! ( ! (�! ))^-Intro (�!  ) ^ (�! )! (�!  ^ )^-Elim1 � ^  ! �^-Elim2 � ^  !  _-Intro1 �! � _  _-Intro2  ! � _  _-Elim (�! ) ^ ( ! )! (� _  ! )t1 tt2 t! (�! �)�1 �! ( ! (� �  ))�2 (�! ( ! ))! ((� �  )! )Rules Detachment � �!   Adjunction �  � ^  I is known also as reexivity,B as transitivity, and C as permutation. Let `LL+ �if � is provable in this system.Theorem 2.4 (Soundness and Completeness, LL+) `LL+ � i� � is universallyvalid.Proof: Soundness is proved as usual by showing the axioms valid and the rulesvalidity preserving. Completeness is proved by a modi�cation of the Henkin-styleconstruction standard in relevance logic (c.f. Dunn [10]). Let an LL+-theory beany set T of formulas for which1. � 2 T and `LL+ �!  implies  2 T , and2. �; 2 T implies � ^  2 T .We then de�ne a canonical model M(LL+) by letting S be the set of all LL+-theories, u intersection, 1 the set of all LL+-theorems, and de�ning the multipli-cation � and the valuation V byT1 � T2 = f j 9� 2 T2:�!  2 T1gV (X) = fT j T an LL+-theory and X 2 Tg9



Clearly u, 1 and V are well-de�ned. For � suppose that  2 T1 � T2 and that`LL+  ! . Then there is some � 2 T2 such that � !  2 T1. By B, C anddetachment, � !  2 T1 too so  2 T1 � T2. Secondly if  1;  2 2 T1 � T2 thenthere are �1; �2 2 T2 such that �1 !  1; �2 !  2 2 T1. Then �1 ^ �2 2 T2. By^-Elim (1 and 2), B and detachment, we obtain �1 ^�2 !  1; �1 ^�2 !  2 2 T1,so by ^-Intro, �1 ^ �2!  1 ^  2 2 T1 too, so  1 ^  2 2 T1 � T2 as desired. Notethat in terms of �,T1 � T2 = f j 9� 2 T1;  2 T2: `LL+ � �  ! g:To check the monoid properties we �rst prove commutativity. For this it su�cesto show `LL+ �! ((�!  )!  ), so that if � 2 T then (�!  )!  2 T too.But `LL+ (� !  ) ! (� !  ) so the result follows by C and detachment. Forthe identity of 1 assume �rst that  2 1 � T . Then there is a � 2 T such that� !  2 1. But then `LL+ � !  so  2 T as desired. Conversely if � 2 Tthen by I also � 2 1 � T . For associativity of � assume that  2 T1 � (T2 � T3).Then there is a  2 T2 � T3 such that  !  2 T1, and thus a � 2 T3 such that� !  2 T2. By B, (� !  ) ! (� ! ) 2 T1 so � !  2 T1 � T2, and thus 2 (T1 � T2)� T3.It remains to show � distributive. The containment T1�(T2uT3) � (T1�T2)u(T1� T3) is clear. For the converse containment let  2 T1� T2 and  2 T1 � T3.Then there are �2 2 T2 and �3 2 T3 such that �2 !  ; �3!  2 T1. By _-Intro,�2 _ �3 2 T2 u T3, and by _-Elim, �2 _ �3!  2 T1, giving the result.We have thus shown the canonical model indeed to be a model. The proof isthen completed by showing that � 2 T i� T j=M(LL+) � using induction in thestructure of �. For atomic propositions and ^ the result is immediate. For t, ift 2 T and � 2 1, i.e. `LL+ � then `LL+ t ! � by t2, C and detachment, so� 2 T . Thus T j= t. Conversely if 1 � T then t 2 T by t1.For _ assume that � _  2 T . Let T1 = f j`LL+ �! g and T2 = f j`LL+ ! g. Then T1 u T2 = f j`LL+ � _  ! g. Hence T1 u T2 � T . But thenT j= �_ as by the induction hypothesis T1 j= � and T2 j=  . Conversely assumethat T j= � _  . If T j= � or T j=  we are done by the induction hypothesis, solet instead T1 u T2 � T , T1 j= � and T2 j=  . By the induction hypothesis � 2 T1and  2 T2, so � _  2 T1 u T2 whence � _  2 T too.For ! let � !  2 T and T1 j= � and we must show T � T1 j=  . By theinduction hypothesis, � 2 T1, so  2 T�T1 and the result follows by the inductionhypothesis. For the converse direction let T j= �!  . Let T1 = f j`LL+ �! g.Then T1 j= � by the induction hypothesis, so T � T1 j=  . Thus  2 T � T1 bythe induction hypothesis, and it follows that there is some  2 T1 such that !  2 T . But then `LL+ �!  so �!  2 T too as desired.Finally for � suppose �rst that � �  2 T . Let T1 = f j`LL+ � ! g andT2 = f j`LL+  ! g. Then T1 � T2 � T . For if  2 T1 � T2 then there issome  0 such that `LL+  !  0 and `LL+ � ! ( 0 ! ). But then by B andC, `LL+ � ! ( ! ) such that `LL+ (� �  ) !  by �2, and then  2 T as10



desired. By the induction hypothesis, T1 j= � and T2 j=  , so we obtain T j= �� .Conversely if T j= �� we �nd T1; T2 such that T1 j= �, T2 j=  , and T1�T2 � T .By the induction hypothesis, � 2 T1 and  2 T2. By �1,  ! (� �  ) 2 T1. Thus� �  2 T1 � T2 and we are done. 2It is not hard to verify that Theorem 2.4 applies equally to the �-free fragmentof LL+. Moreover, as LL+-theories include the empty theory it follows from theproof of Theorem 2.4 that LL+ is sound and complete with respect to modelsthat contain an element 0 which is zero for both u and �. Other well-known rele-vance logics, both stronger and weaker than LL+, are obtained by correspondingvariations on frame-conditions and axiomatisations (c.f. Dam [8]). An importantexample is the positive fragment, R+, of the standard relevant system R (c.f.Dunn [10]). This system is axiomatised by adding to the axioms for LL+ the twoaxioms: S (�! ( ! ))! ((�!  )! (�! ))Distribution (� _  ) ^  ! (� ^ ) _ ( ^ )For the semantics an R+-frame is a frame F with the following two properties:1. For all x 2 SF , x� x � x,2. Whenever xu y � z, x 6� z and y 6� z then there are x0 � x and y0 � y suchthat x0 u y0 = z.Condition 1 is referred to as semi-idempotency. Condition 2 is very close to thestandard notion of distributivity in semilattices: Whenever x u y � z then thereare x0 � x and y0 � y such that x0uy0 = z, regardless of whether x � z or y � z ornot. For unital semilattices (semilattices with a unit > for u), or more generallyfor semilattices in which each pair of elements has an upper bound (that is, forall x, y there is some z such that x � z and y � z), the de�nitions coincide. AnR+-model is a model which is based on an R+-frame.Theorem 2.5 (Soundness and Completeness, R+) `R+ � i� � isM-valid whereM is the class of all R+-models.Proof: The soundness of S and Distribution is proved as usual. For complete-ness all that is needed is to check that the canonical model M(R+) constructedas in the proof of Theorem 2.4 validates the two extra model conditions.For semi-idempotency let T be an R+-theory and  2 T � T . Then thereis some � 2 T such that � !  2 T too. The following derivation shows that`R+ (�!  ) ^ �!  which is su�cient to establish the result:1. (�!  ) ^ �! (�!  ) ^-Elim12. ((�!  ) ^ �! �)! ((�!  ) ^ �!  ) 1, by S3. (�!  ) ^ �!  2, by ^-Elim211



For distributivity let T1 u T2 � T , T1 6� T and T2 6� T . Let T 0i = f j 9 2Ti;  0 2 T such that `R+  ^  0 ! g, i 2 f1; 2g. Clearly T 0i is a R+-theory;it is the least R+-theory containing Ti [ T . We must show that T 01 u T2 = T .The veri�cation of T � T 01 u T2 is entirely straightforward. For T 01 u T2 � T let� 2 T 01 u T 02. Then there are �1 2 T 01 and �2 2 T 02 such that `R+ �1 _ �2 ! �.Let �i 2 T 0i , i 2 f1; 2g. We then �nd some  i 2 Ti and  0i 2 T such that`R+  i^ 0i ! �i. Let  0 =  01^ 02. It follows that `R+ ( 1^ 0)_ ( 2^ 0)! �.But then by Distribution also `R+ ( 1 _  2) ^  0 ! �. But both  1 _  2 and  0are in T so � 2 T too. 22.3 Quantales, and Algebraic ModelsThe presentation of section 2.2 takes implication as primitive and derive fusionby axioms �1 and �2. Alternatively fusion can be taken as primary. This is theapproach taken in the algebraic models of Dunn (c.f. [10]) or in those based onquantales (c.f. [3]). Here the algebraic models serve mainly to justify our notionof model and the relation of satisfaction. In an algebraic setting an equationalpresentation is more appropriate than the Hilbert-type presentation of section2.2.De�nition 2.6 (Quantale). A quantale is a structure (Q; �q; tq) for which1. Q is a complete lattice,2. (Q; �q; tq) is a commutative monoid, and3. �q distributes over arbitrary joins, i.e. u �q (Wi vi) = Wi(u �q vi).In quantales the implication can be de�ned byu!q v = _fw j w �q u � vg (7)where the partial ordering � is derived in the usual way by u � v i� u^ v = u. Ifonly �nite joins are available ! is not generally de�nable and Q is then requiredto possess a right adjoint !q for �q, i.e. an operation !q satisfyingu � v!q w i� u �q v � w: (8)This property is important in that it provides a characterisation of the implicationin terms of fusion, and vice versa. In the terminology of Dunn [10] it amounts toQ being residuated.By means of the quantale structure together with (7) quantales provide alge-braic models for linear and relevant logics in the obvious way: In any quantale Q,an interpretation [[X]] 2 Q of the propositional letters X is extended uniquely toan interpretation [[�]] 2 Q of arbitrary formulas, such that [[�]] respects formulastructure. 12



This interpretation is sound and complete with respect to the axiomatisationof section 2.2 in the sense that `LL+ � i� � is valid, tq � [[�]], in all interpretationsin all quantales Q. This can be seen either directly, or by exploiting the tightconnection between quantales and the models of section 2.1. Given a frame Fthe �lter completion of F is the quantale qu(F ) consisting of all �lters in F withWfBigi2I = fx j 9x1; : : : ; xn 2 SfBigi2I : x1 u � � � u xn � xg, B1 �q B2 = fz j9x 2 B1; y 2 B2: x � y � zg, and tq = fx j 1 � xg. A straightforward inductiveargument veri�es that the relation x 2 B satis�es all the conditions 2.2.2{6. Indeedthis property can be taken to justify De�nition 2.2 itself. The construction of the�lter completion fr(Q) of a quantale Q, on the other hand, is essentially that givenin the completeness part of Theorem 2.4. The frame fr(Q) consists of all �lters T ofQ with u = \, T1 � T2 = fw j 9u 2 T1; v 2 T2: u �q v � wg, and 1 = fu j tq � ug.Note that �lters in quantales correspond to theories as de�ned in the proof ofTheorem 2.4. Furthermore T j= u according to 2.2.2{6 i� u 2 T . Soundness andcompleteness of the quantale based interpretation then follows simply by observingthat`LL+ � i� `LL+ t! � i� tq = ""t = [[t]] � ""� = [[�]] where "x = fy j x � ygis the upper closure of x.Quantale-based models are easily adapted to R+ by assuming that Q is dis-tributive as a lattice and satis�es x � x � x (c.f. [10]).3 Synchronous processes as models, IIn this section we give two examples of models based on a fragment of Milner'sSCCS [19] under simulation and bisimulation equivalence (c.f. Hennessy and Mil-ner [15]). The fragment involved contains synchronous parallel composition (�)together with choice (+), pre�xing (a:�) and a unit process (1). Terms p 2 P+in this fragment are given by the following abstract syntax:p ::= 1 j a:p j p + p j p� pwhere a ranges over a set L of labels with a binary operation � of label multiplicationde�ned on it. Various assumptions may be made on the properties of the labelstructure (L; �). Here we assume it to form a commutative monoid with unit e;later, as in [19], we assume also inverses such that it forms an abelian group.The operational semantics of process terms is given by the transition relation a!determined by the following axioms and rules:1 e! 1 a:p a! pp a! p0p + q a! p0 q a! p0p + q a! p0 p a! p0 q b! q0p � q a�b! p0 � q0Models are constructed from terms by quotienting under suitable behavioral con-gruence relations. 13



De�nition 3.1 (Simulation, Bisimulation) A binary relation R on process termsis a simulation 1, if pRq implies1. whenever q a! q0 then p a! p0 and p0Rq0 for some term p0.If whenever pRq then (1) holds and in addition its converse2. whenever p a! p0 then q a! q0 and p0Rq0 for some term q0,then R is a bisimulation. If there is a simulation (bisimulation) R such that pRqthen p simulates q, p vs q (p and q are bisimulation equivalent, p 'b q). If p vs qand q vs p then p and q are simulation equivalent, p 's q.It is well known that bisimulation equivalence is strictly �ner than simulationequivalence [15]. It is not di�cult to verify that vs is a precongruence and 'b acongruence with respect to the operations on terms. For ' one of 's, 'b we canthen form the quotient structure P+= ' in the obvious way by letting[p]' u [q]' = [p+ q]'[p]' � [q]' = [p� q]'1 = [1]'Theorem 3.2 1. P+= 'b is a frame.2. P+= 's is an R+-frame when label multiplication is idempotent.Proof: Most of the checks involved are standard. The only exceptions aresemi-idempotency and distributivity for P+= 's. For semi-idempotency it su�cesto show that f(p � p; p) j p 2 P+g is a simulation: If p a! p0 then p � p a! p0 � p0by idempotency of label multiplication.For distributivity note �rst that vs coincides with the induced semilatticeordering, for p + q vs p holds always, and p vs p + q i� p vs q. Let theninit(p) = fa j 9p0:p a! p0g and p=a = fp0 j p a! p0g. Assume that p + q vs r,p 6vs r and q 6vs r. Then1. either init(r) 6� init(p) or init(r) � init(p) and there is some a 2 init(r) andr0 2 r=a such that for all p0 2 p=a, p0 6vs r0, and2. the same for q.Then init(r) \ init(p) 6= ; and init(r) \ init(q) 6= ;, for init(r) 6= ; and if forinstance init(r) \ init(p) = ; then q vs r. By the semilattice properties of + wecan use theP-notation for �nite, nonempty sums. Let now for a 2 init(p)\ init(r)pa =Xfa:r0 j r0 2 r=a and for some p00 2 p=a; p00 vs r0g1In fact, according to [15] a reverse simulation.14



and then p0 = Pa2init(p)\init(r)pa. De�ne q0 similarly. Clearly the sums involvedare �nite. Furthermore assume that for all a 2 init(p)\ init(r) and for all r0 2 r=athere is no p00 2 p=a such that p00 vs r0. Then, as p + q vs r, init(p) \ init(r) �init(q) and for all r0 2 r=a there is some q0 2 q=a s.t. q0 vs r0. Moreover, whenevera 2 init(r) n init(p), a 2 init(q) and the same holds, as p + q vs r. But thenq vs r|a contradiction. Hence the sums are also nonempty, and p0; q0 are well-de�ned. Clearly p vs p0 and q vs q0. Also p0+q0 's r, for if r a! r0 then p0+q0 a! r0and if p0 + q0 a! r0 then r a! r0. 2In the context of process algebra the assumption of idempotency of label mul-tiplication of Theorem 3.2.2 is often realistic: It is appropriate for instance formultiway synchronisation.The frame structures of P+= 'b and P+= 's gives rise to natural interpreta-tions of positive formulas as in section 2. Given a valuation V into any of thoseframes these interpretations induce corresponding interpretations directly on theprocess terms themselves, by p j= � i� [p]' j= � (9)where ' is either 'b or 's. An important issue is if modalities can be added toaccount for dynamic behaviour in the style of Hennessy-Milner logic [15]. Basicas it is to our semantical framework it is essential that any such extension doesnot violate the �lter property. For the case of simulation we can add modalities[a]� with the interpretation:p j= [a]� i� for all p0 such that p a! p0; p0 j= �:In order to use (9) to extend satisfaction to the quotient structure P+= 's wemust �rst of all make sure that if p 's q and p j= � then q j= � too, where � mayinvolve modalities [a]. In fact it turns out to be easier to check the �lter propertydirectly. That is, if p 's p + q (or, equivalently, p vs q) and p j= � then q j= �too, and if p; q j= � then p+ q j= �.For bisimulation we can with a little care add also the dual operator <a> withthe interpretationp j= <a>� i� for some p0; p a! p0 and p0 j= �:Let a restricted formula be any formula � with the property that all occurrences of<a> in � is within the scope of some [a0] in �. Here the �lter property is checkedin two steps: First we show for unrestricted � that if p 'b q and p j= � then q j= �too. Secondly we show the �lter property for restricted � only: If p 'b p + q andp j= � then also q j= �, and if p; q j= � then p + q j= �. The detailed checks forboth simulation and bisimulation are straightforward and left to the reader.15



4 Synchronous processes as models, IIThe connection to linear and relevant logics established by results such as Theorem3.2 is a very weak one: They only establish soundness of the induced interpreta-tions. In this section we introduce an example for which completeness can beestablished too. Thus this gives a technically precise sense in which linear logic isexactly the logic of static process structure.The operational setting is a variation on that of the previous section. Insteadof the sum-operator + we allow the formation of a �nite set P of process termsas a process term itself. The intended meaning of set formation is as an internal,or uncontrollable choice operator in contrast to the controllable choice involved in+, and we derive the deadlock constant 0 by 0 �= ; and the binary internal choiceoperator � by p � q �= fp; qg (c.f. Hennessy [14]). Concerning the label structurewe adopt from this point onwards the assumption of SCCS that (L; �) forms anabelian group with unit e and a�1 the inverse of a. The set of process terms thusobtained is denoted by P�. A structured operational semantics in the style ofCCS and SCCS can be given (c.f. Dam [8]). Here, however, we prefer a style akinto that of Hennessy and Plotkin [16]. The relations p may � and p must � where� is a �nite and nonempty set of labels, and the successor operations p after a,are de�ned inductively as follows:may: e 2 �1 may � a 2 �a:p may �p may � p 2 PP may � p may �1 q may �2p � q may fa � b j a 2 �1; b 2 �2gmust: e 2 �1 must � a 2 �a:p must �p1 must �1 � � � pn must �nfp1; : : : ; png must �1 [ � � � [ �n p must �1 q must �2p� q must fa � b j a 2 �1; b 2 �2gafter: 1 after a = ( f1g if a = e; otherwisea:p after b = ( fpg if a = b; otherwiseP after a = Sp2P p after ap� q after a = S(a1;a2):a1�a2=afp0 � q0 j p0 2 p after a1; q0 2 q after a2g16



For notational convenience we derive the relation \can" by p can a i� p may fagand the predicate \live" by p live i� p must � for some (nonempty) set �. Thefollowing properties of the basic operational notions are easily established.Proposition 4.1 1. p may � i� p can a for some a 2 �,2. p can a i� p after a 6= ;,3. p must � i� p live and fa j p can ag � �.4. If (p after a) live for some a 2 L then p liveProof: By structural induction. 2Two behavioral preorders on processes are considered. The �rst, v1, is asafety preorder, and the second, v2, is a liveness preorder. The essential di�erencebetween the two is the way they treat the deadlock constant 0. The safety preorderis inverse language containment. It ignores the potentiality for deadlock thusidentifying the process terms p and p � 0. The liveness preorder, on the otherhand, views deadlock as catastrophic, identifying 0 and p � 0.De�nition 4.2 (Behavioral Preorders v1 and v2)1. The preorder v1 on process terms is the largest (under containment) forwhich p v1 q impliesa. for all labels a, if q can a then p can a and q after a v1 p after a.2. The preorder v2 is the largest for which p v2 q impliesa. for all �, if p must � then q must �, andb. for all a, if p live and q can a then p can a and p after a v2 q after a.3. For i 2 f1; 2g, p 'i q i� p vi q and q vi p.Both preorders can be characterised as testing preorders along the lines of DeNicola and Hennessy [21]. Interpret 0 as the divergent process, usually denoted 
,and � as the CCS internal choice operator derived by p� q = �:p+ �:q. With thisinterpretation, v1 can be seen to coincide with the inverse of the \may"-preorderof [21] and v2 with the \must"-preorder (Dam [8]). Relating to the equivalencesand preorders of Section 3 it is well known that in general 'b is strictly �nerthan both '1 and '2, while vs is strictly �ner than v1, and '2 and 's areincomparable (c.f. [21]). An alternative interpretation is to view � as a generalchoice operator such as the CCS +, and the preorders vi as trace preorders. Notethat for the present restricted language conditions 4.2.2.a and b can be replacedby the single conditionc. if p live then 17



i. q live, andii. for all a, if q can a then p can a and p after a v2 q after a.This follows from Proposition 4.1.3. It is not hard to verify that both v1 andv2 are precongruences with respect to the operations on terms, and the quotientstructures P�= 'i are then formed as in section 3 by associating to u the internalchoice operator �.Theorem 4.3 For i 2 f1; 2g, P�= 'i is a frame.Proof: A consequence of the Algebraic Characterisation Theorem 5.6 below.25 Synchronous algebrasIn this section we extend the notion of frame to account more fully for the staticand dynamic behaviour of processes, and arrive at the following equational pre-sentation of processes:De�nition 5.1 (Synchronous Algebras) A synchronous algebra (over a given labelgroup L) is a structure A = (S;u; 0;�; 1;e�) where1. e� is a group homomorphism which to each a 2 L associates a unary operatorea:� on S,2. (S;u;�; 1) is a frame, and3. the following equations hold for all x; y 2 S and labels a; b 2 L:a. x� 0 = 0b. ea:(x u y) = (ea:x) u (ea:y)c. (ea:x)� (eb:y) = (ga � b):(x� y)d. ee:1 = 1If in addition 0 is greatest with respect to the induced semilattice ordering � thenA is a safety, or type 1 synchronous algebra, and if 0 is least with respect to �then A is a liveness, or type 2 synchronous algebra.Thus safety and liveness algebras are only distinguished on the way they treat0. The homomorphism property of e� ensures that the operators ea are equippedwith an abelian group structure reecting that of L: using the same notation forthe operations in both groups, ga � b = ea � eb and ga�1 = ea�1. For our purpose it isharmless to identify the label a with the operator ea, thus generally writing a:x inplace of ea:x. 18



5.1 The Initial Safety and Liveness AlgebrasIt is not hard to verify that P�= 'i forms a type i synchronous algebra for bothi = 1 and i = 2. We go on to show that safety algebras characterise processesunder v1, and that liveness algebras similarly characterise processes under v2.First representation theorems for the initial algebras are proved. These are usedin section 5.2 to provide fully abstract semantics for processes. In view of theuncontrollable nature of � it is natural to expect members of the initial algebrasto be represented as appropriately closed sets of strings of labels.De�nition 5.2 (Paths, Normal Paths) Assume that L and f0; 1g are disjoint.1. A path � is a member of L� � f0; 1g. A path � is normal if e1 is not a su�xof �.2. If � = �j, � 2 L� and j 2 f0; 1g, then pre(�) = � and suf(�) = j.3. Normal paths are ordered by �1 � �2 i� eithera. �1 = �2,b. suf(�1) = suf(�2) = 0 and pre(�1) is a pre�x of pre(�2), orc. suf(�1) = 0, suf(�2) = 1, and pre(�1) is a pre�x of pre(�2)(en) for somen � 0.A set of paths � is normal if all � 2 � are normal. Below � is assumed torange over normal sets. For the initial safety algebra elements are representedby downwards closed normal sets, and for the initial liveness algebra by upwardsclosed normal sets. A set � is downwards or 1-closed if whenever � 2 � and �0 � �then �0 2 �. Dually � is upwards or 2-closed if whenever � 2 � and � � �0 then�0 2 �. For i 2 f1; 2g the i-closure of a set � is denoted cli(�). If � = cli(�0) forsome �nite set �0 then � is i-�nitely generated (i-f.g.). If � is i-f.g. then there isa least set �0 generating �. The representations of the initial algebras are builtusing nonempty, closed, and f.g. sets �.Next the operations on paths and normal sets are de�ned. Path pre�xing isde�ned by a:� = a� whenever either a 6= e or � 6= 1, and e:1 = 1. Multiplication� of paths is de�ned inductively by letting 0 be zero and 1 be unit for �, andthen a1�1 � a2�2 = (a1 � a2):(�1 � �2). The constants and operations on sets aregiven by01 = f0g, 02 = f� j � a normal pathg11 = f1g [ fen0 j n 2 !g, 12 = f1ga:(�)1 = fa:� j � 2 �g [ f0g, a:(�)2 = fa:� j � 2 �g�1 �i �2 = �1 [ �2 19



�1 � �2 = f�1 � �2 j �1 2 �1; �2 2 �2gLet then Di, i 2 f1; 2g, be the algebra obtained by taking the set of all i-f.g.,i-closed and nonempty normal sets � together with the constants and operationsas just de�ned. Note that the induced semilattice ordering is � for both i = 1and i = 2. In the safety case this corresponds to the converse of the well-knownHoare-ordering: �1 � �2 i� for all �2 2 �2 there is a �1 2 �1 such that �2 � �1;and in the liveness case to the Smyth-ordering: �1 � �2 i� for all �2 2 �2 thereis a �1 2 �1 such that �1 � �2.Theorem 5.3 (Representation of Initial Algebras) For i 2 f1; 2g, Di is (up toisomorphism) the initial type i synchronous algebra.Proof: It is very easy to verify for both i = 1 and i = 2 that indeed Di isa type i synchronous algebra. To prove the result we then need for every type isynchronous algebra A to establish a unique homomorphism f : Di ! A.First, let geni denote the operator that given each i-closed set � gives its leastgenerating set. The following equations hold:1. a:(�)i = clifa:� j � 2 geni(�)g2. �1 �i �2 = cli(geni(�1) [ geni(�2))3. �1 � �2 = clif�1 � �2 j �1 2 geni(�1); �2 2 geni(�2)gNote that any map f : Di ! A determines a map fy from �nite, nonemptysets of normal paths to A, de�ned byfy(f�1; : : : ; �ng) = f(clif�1; : : : ; �ng)= f(clif�1g �i � � � �i clif�ng)for n � 1. Further, f is a homomorphism i� fy satis�esi. fyf�1; : : : ; �ng = fyf�1g �A � � � �A fyf�ng, n � 1,ii. fyf0g = 0A,iii. fyf1g = 1A,iv. fyfa�g = a:(fyf�g)A,and any such fy determines f . The only-if direction is straightforward, and clearlyconditions i.{iv. de�nes fy, so if f is a homomorphism it is also unique. It remainsto check existence. Note that fy has the propertiesa. fyfa:�g = a:(fyf�g)A,b. fyf�g = P� Affyf�g j � 2 �g, for � �nite,20



c. fyf�1 � �2g = fyf�1g �A fyf�2g.In b. P� denotes the �nite internal sum operator. There is now little di�cultyin verifying the homomorphism properties of f . First f(0i) = fyf0g = 0A, andf(1i) = fyf1g = 1A. Nextf(a:(�)i) = fy(geni(a:(�)i))= fyfa:� j � 2 geni(�)g (by 1.)= P� Affyfa:�g j � 2 geni(�)g (by b.)= P� Afa:(fyf�g)A j � 2 geni(�)g (by a.)= a:(P� Affyf�g j � 2 geni(�)g)A (by equational reasoning)= a:(fy(geni(�)))A (by b.)= a:(f(�))AFor the internal sum operator:f(�1 �i �2) = fy(geni(�1 �i �2))= fy(geni(�1) [ geni(�2)) (by 2.)= fy(geni(�1))�A fy(geni(�2)) (by b.)= f(�1)�A f(�2)Finally for parallel composition:f(�1 � �2) = fy(geni(�1 ��2))= fy(geni(�1) � geni(�2)) (by 3.)= P� Affyf�1 � �2g j �1 2 geni(�1); �2 2 geni(�2)g (by b.)= P� Affyf�1g �A fyf�2g j �1 2 geni(�1); �2 2 geni(�2)g (by c.)= (fy(geni(�1)))�A (fy(geni(�2))) (by equational reasoning)= f(�1)�A f(�2):The check that f is monotone is straightforward. We have thus established thehomomorphism property of f , and the proof is complete. 25.2 The Algebraic Characterisation TheoremAs P�, up to the use of sets in term formation, is a term algebra there are uniquehomomorphisms [[�]]i from P� to Di for i 2 f1; 2g. These homomorphisms are usedto produce isomorphisms between P�= 'i and Di thus establishing the AlgebraicCharacterisation Theorem below. For this purpose it su�ces to show that [[�]]i isfully abstract, meaning that p vi q i� [[p]]i � [[q]]i. To prove full abstraction theoperational structure of processes is mimicked using the representations Di. Fora set � de�ne 21



1. � may � i� � = a:�0 for some � 2 �, a 2 �, and path �0,2. � must � i� for all � 2 � there is some a 2 � and path �0 such that � = a:�0,3. � after a = f�0 j 9� 2 �: � = a:�0g.This operational structure can be characterised in purely algebraic terms. In anarbitrary synchronous algebra the operation \after" can be taken to satisfy(x � a:(x after a) and (x after a) � y) i� x � a:y: (10)In algebras with arbitrary in�ma the \after"-operation can be de�ned byx after a =X� fz j x � a:zg: (11)It is not hard to verify that (10) is satis�ed with \after" de�ned in this way. Therelation \may" can then be characterised by the conditionx may � i� x � a:(x after a) for some a 2 �; (12)and \must" can be characterised byx must � i� X� fa:(x after a) j a 2 �g � x: (13)It is an easy exercise to verify that the relations \may", \must", and \after"as de�ned by 1.{3. indeed satis�es (10){(13). The following lemma relates theoperational structure of terms and that of their representations.Lemma 5.4 1. p may � i� [[p]]1 may �2. If p can a then [[p after a]]1 = [[p]]1 after a3. p must � i� [[p]]2 must �4. If p live and p can a then [[p after a]]2 = [[p]]2 after aProof: All four statements are proved by an essentially straightforward struc-tural induction. For instance for 4 assume that p can a and that p live. Thusp 6= 1. For the remaining cases we calculate:[[1 after a]]2 = [[1]]2 as p can a i� a = 1= [[1]]2 after a[[b:p after a]]2 = [[p]]2 as b:p can a i� a = b= [[b:p]]2 after a[[p� q after a]]2 = [[(p after a) [ (q after a)]]2= [[p after a]]2 [ [[q after a]]222



[[p after a]]2= [[[(a1;a2):a1�a2=afp01 � p02 j p01 2 p1 after a1; p02 2 p2 after a2g]]2= [(a1;a2):a1�a2=af[[p01 � p02]]2 j p01 2 p1 after a1; p02 2 p2 after a2g2= [(a1;a2):a1�a2=af[[p01]]2 � [[p02]]2 j p01 2 p1 after a1; p02 2 p2 after a2g2= [(a1;a2):a1�a2=af[[p1 after a1]]2� [[p2 after a2]]2g= [(a1;a2):a1�a2=af[[p1]]2 after a1 � [[p2]]2 after a2g= [[p]]2 after a 2It thus remains to prove that the behavioral preorders vi on terms induce theappropriate ordering � on the representations. This is done in two steps, usingthe \may", \must", and \after" relations on Di to induce orderings vi on Di asin De�nition 4.2.Lemma 5.5 (Full Abstraction) For i 2 f1; 2g, p vi q i� [[p]]i � [[q]]i,Proof: Note �rst that p vi q i� [[p]]i vi [[q]]i by Lemma 5.4. It thus remains toshow that �1 vi �2 i� �1 � �2 where �1;�2 are i-closed. The proofs for i = 1 andi = 2 are very similar and we prove here only the case for i = 2. So suppose �1 v2�2 and that �2 2 �2. If �2 = 0 then �2 is not live so neither is �1 whence �2 2 �1.Suppose �2 = 1. If 1 62 �1 then either �1 can e fails or else there is a maximaln such that (�1 after en) can e. Here the \after"-operation is extended to �nitestrings in the obvious way by � after (a1 � � � an) = ((� � � (� after a1) � � �) after an).The �rst case (�1 can e fails) leads to a contradiction whether �1 live or not. Forthe second case, if for some m � n, �1 after em is not live then 1 2 �1 as �1is 2-closed. Otherwise �1 after en+1 v2 �2 after en+1 but (�2 after en+1) can ewhich fails for �1, a contradiction. Suppose �nally that �2 = a�02. If �1 is not livethen �2 2 �1. If �1 is live, as �2 can a then �1 can a and �02 2 �1 after a by theinduction hypothesis. But then �2 2 �1 as desired. The converse implication is astraightforward check that the conditions of Def. 4.2.2 are satis�ed. 2Corollary 5.6 (Algebraic Characterisation Theorem) For i 2 f1; 2g, P�= 'i is(up to isomorphism) the initial type i synchronous algebra with vi = 'i the inducedordering.Proof: By the Full Abstraction Lemma. 26 A modal linear logic of processesIn this section the language of positive formulas is extended by indexed futuremodalities ja> and past modalities <aj. The interpretations of these connectivesare associated to the pre�xing operators in a way mirroring the way the inter-pretations of implication and fusion are associated to parallel composition. Ourchoice of connectives allows a simple and elegant logical account of the structure23



of synchronous algebras, in particular the interplay between the static operationsof multiplication and internal choice, and pre�xing, expressing the dynamic capa-bilities of processes.6.1 SemanticsA synchronous algebra A is extended to a model M = (A;V ) by, as in De�nition2.1, adjoining a valuation V for which V (X) is a �lter in A for each propositionalletter X. The relation of satisfaction is then de�ned by adding to the conditionsof section 2 the following two conditions for the modal operators:x j=M ja>� i� there is a y 2 SM such that a:y � x and y j=M �; (14)x j=M <aj� i� a:x j=M �: (15)Intuitively, ja> and <aj can be thought of as specialised forwards, respectivelybackwards nexttime modalities. The reverse modality can alternatively be char-acterised by the satisfaction conditionx j=M <aj� i� there is a y 2 SM such that y can a; y after a � x; and y j= � (16)reecting (10) of section 5, and the forwards modality can be characterised as a leftadjoint for the reverse. More concrete characterisations for the forwards modalitywith respect to just the initial algebra interpretations are given in section 7 below.These characterisations are important as they provide more concrete intuitionsas to the meaning of the forwards modalities than are warranted by just thegeneral algebraically based interpretation of (14). Note that the �lter propertyextends to the full language. This property is needed to establish (16). For thefuture modalities, x; y j= ja>� i� there are x0; y0 such that a:x0 � x, a:y0 � y andx0; y0 j= � i� there are x0; y0 such that a:x0ua:y0 = a:(x0uy0) � xuy and x0uy0 j= �(by the induction hypothesis) i� x u y j= ja>�. The past modalities are similar.6.2 AxiomatisationTo axiomatise validity with respect to the class of all safety and liveness modelsrespectively LL+ is extended by the following axioms and rules concerning themodal operators.Axioms ja>-_ ja>(� _  )! ja>� _ ja> <aj-^ <aj� ^<aj ! <aj(� ^  )!-<aj-ja> �! <ajja>�ja>-<aj-! ja><aj�! �a-b-synchronisation <aj(jb>�!  )$ (�! <a � bj )Rules je>-necessitation �je>�24



<ej-necessitation �<ej�ja>-monotonicity �!  ja>�! ja> <aj-monotonicity �!  <aj�! <aj Write `PL � if � is provable in this extension of LL+. Of the new axioms andrules most are entirely straightforward. The axiom ja>-_ expresses the existentialnature of the future modality and similarly the axiom<aj-^ expresses the universalnature of the past modality. The rules express the expected necessitation andmonotonicity properties; thus the distributivity of ja> over _ and <aj over ^ isderivable. The axioms !-<aj-ja> and ja>-<aj-! are less obvious; they expressa degree of duality between the future and past modalities. Finally the axioma-b-synchronisation is the axiom that captures the dynamic properties of parallelcomposition. We note a few theorems of PL for future reference.Proposition 6.1 (Theorems of PL)1. `PL ja>(� _  )$ ja>� _ ja> 2. `PL <aj(� ^  )$ <aj� ^<aj 3. `PL ja�1 � b>(�!  )! (ja>�! jb> )Proof: For 1 and 2 use ja>-_ and <aj-^ for one direction, and for the other themonotonicity rules together with the axioms for ^ and _. The following derivationestablishes 3.1.  ! <bjjb> by !-<bj-jb>2. (�!  )! (�! <bjjb> ) 1, by transitivity, detachment3. (�! <bjjb> )! <a�1 � bj(ja>�! jb> )by a�1 � b-a-synchronisation4. (�!  )! <a�1 � bj(ja>�! jb> ) 2,3, by transitivity, detachment5. ja�1 � b>(�!  )! ja�1 � b><a�1 � bj(ja>�! jb> )4, by ja�1 � b>-monotonicity6. ja�1 � b>(�!  )! (ja>�! jb> ) 5, by ja�1 � b>-<a�1 � bj-!,transitivity, detachment 2As the satisfaction conditions do not refer to the constant 0 and as in theabsence of 0, safety and liveness algebras are each others duals, it is not surprisingthat soundness for safety algebras entails soundness for liveness algebras as well.For completeness this is slightly more subtle as in this case an interpretation for0 must be provided. 25



Theorem 6.2 (Soundness and Completeness, PL) The following statements areequivalent:1. `PL �,2. � isM-valid whereM is the class of all models based on safety algebras,3. � isM-valid whereM is the class of all models based on liveness algebras.Proof: The proof extends the corresponding proof for LL+. Soundness isproved as usual. For instance for ja>-_ assume that x j= ja>(� _  ). Thenthere is an x0 such that x0 j= � _  and a:x0 � x. If x0 j= � or x0 j=  then weare done. Otherwise let x01 u x02 � x0, x01 j= � and x02 j=  . Then a:x01 j= ja>�and a:x02 j= ja> so (a:x01) u (a:x02) j= ja>� _ ja> and then x j= ja>� _ ja> by the �lter property, as (a:x01) u (a:x02) = a:(x01 u x02) � a:x0 � x. As anotherexample consider a-b-synchronisation. Suppose x j= <aj(jb>�!  ). Then a:x j=jb>� !  . Let y j= � and we must show x � y j= <a � bj . Now b:y j= jb>� so(a:x)� (b:y) = (a � b):(x� y) j=  . Thus x � y j= <a � bj as desired. Soundnessof the converse implication, and of the remaining axioms and rules is establishedin a similar manner.Completeness, safety algebras. A canonical model construction is given, based onthe completeness proof for positive linear logic, Theorem 2.4. Similar to LL+-theories, PL-theories are sets of formulas closed under implications provable inPL, and adjunction. Moreover, in the case of safety algebras, PL-theories arerequired to be nonempty. The valuation V and operations u and � are unchanged.The constant 0 is the set of all PL formulas, and 1 is the set of all PL theorems.Finally pre�xing is de�ned by a:T = f� j <aj� 2 Tg. It is not hard to checkthat the constants and operations are well-de�ned. Clearly 1 and 0 are nonemptyPL-theories, and by the proof of Theorem 2.4 u and � map PL-theories to PL-theories. To see they also preserve nonemptiness suppose � 2 T1 and  2 T2.Then � _  2 T1 u T2. For � note that`LL+ �! ( ! ((�! ( ! ))! ))so that  ! ((�! ( ! )) ! ) 2 T1 whence (� ! ( ! )) !  2 T1 � T2.To verify the well-de�nedness of pre�xing suppose `PL �!  and � 2 a:T . Then<aj� 2 T so by <aj-monotonicity, <aj 2 T too. Hence  2 a:T as desired.Also if �; 2 a:T then <aj�;<aj 2 T so <aj� ^ <aj 2 T , and then by <aj-^,<aj(�^ ) 2 T as well. Hence �^ 2 a:T . For nonemptiness suppose that � 2 T .Then by !-<aj-ja> also <ajja>� 2 T , so ja>� 2 a:T , and we have completedthe well-de�nedness check.To check that the canonical structure forms a safety algebra we know from thecompleteness proof for LL+ that it forms a frame. In addition equations (i){(iv),De�nition 5.1 must be checked. Trivially 0 � T � 0. For the other directionlet � be an arbitrary formula. As T is nonempty (!) we can �nd some  2 T .26



Then  ! � 2 0 so that � 2 0 � T . So it only remains to check the propertiesrelating to pre�xing. For equation (ii) we obtain � 2 a:(T1 u T2) i� ja>� 2 T1and ja>� 2 T2 (by the above observation) i� � 2 (a:T1) u (a:T2). For equation(iii) assume �rst that  2 (a:T1) � (b:T2). Then for some � 2 b:T2, � !  2a:T1. Then ja>(� !  ) 2 T2. By jb>-<bj-! transitivity and detachment weobtain `PL (� !  ) ! (jb><bj� !  ), so jb><bj� !  2 a:T1, and then<aj(jb><bj� !  ) 2 T1. Then by a-b-synchronisation, <aj� ! <a � bj 2 T1 aswell, thus <a � bj 2 T1 � T2. But then  2 (a � b):(T1 � T2) as desired. For theconverse inclusion, assume that this holds, thus <a � bj 2 T1�T2. Then for some� 2 T2 does � ! <a � bj 2 T1, and then by a-b-synchronisation, <aj(jb>� ! ) 2 T1 as well, so that jb>�!  2 a:T1. Also jb>� 2 b:T2 as we saw above andthus  2 (a:T1)� (b:T2) as needed. Equation (iv) is left as an easy exercise.Finally we need to check that � 2 T i� T j= �. This part of the proof iscommon to both the safety and the liveness case. The proof is by induction in thestructure of �, and for all connectives except the modal ones the proof is identicalto the corresponding part in the proof of completeness for LL+, Theorem 2.4. Forthe modal connectives:� = ja>�0. If T j= � then there is some nonempty PL-theory T 0 s.t. T 0 j= �0 anda:T 0 � T . By the induction hypothesis �0 2 T 0 thus ja>�0 2 a:T 0 by the aboveobservation and then ja>�0 2 T . Conversely, if ja>�0 2 T then a:thf�0g � Twhere thf�0g is the least PL-theory containing the set f�0g. By the inductionhypothesis, thf�0g j= �0 so T j= ja>�0.� = <aj�0. If T j= � then a:T j= �0 and by the induction hypothesis, �0 2 a:Twhence <aj�0 2 T . Conversely, if <aj�0 2 T then �0 2 a:T and by the inductionhypothesis a:T j= �0|i.e. T j= <aj�0.The proof for the safety case is then complete, for if 6`PL � then � 62 1, thus1 6j= �.Completeness, liveness algebras. This part of proof is a simple adaptation of thecompleteness proof for safety algebras. Here we can take 0 = ; and proceed asabove. It su�ces to note that the required properties of 0 holds in this case. 2We can now show PL to be a conservative extension of LL+ by embeddinggeneral models as in section 2 into models based on liveness algebras in a way thatpreserves satisfaction.Theorem 6.3 PL is a conservative extension of LL+.Proof: If 6`LL+ � for some positive formula � then we �nd a general model Msuch that 1M 6j= �, by 2.4. Moreover, as we noted, M may be assumed to containan element 0 which is zero for both u and �. We can turn M into a model M 0based on a liveness algebra by de�ning a:x = x for all a 2 L . Then it is a simpleinduction to verify that for all elements x, x j=M � i� x j=M 0 � for all positiveformulas �. But then 1M 0 6j= � so 6`PL � by Theorem 6.2, and we are done. 227



6.3 Synchronous QuantalesIn analogy to the quantale-based interpretation of LL+ of section 2.3 in this sectionwe develop synchronous quantales as algebraic correlates of PL.De�nition 6.4 (Synchronous quantale). A synchronous quantale is a structure(Q; �q; tq; j�>q) where1. j�>q is a group homomorphism which to each a 2 L associates a unaryoperator ja>q on Q,2. (Q; �q; tq) is a quantale,3. ja>q distributes over arbitrary joins, i.e. ja>q(Wi ui) = Wifja>quig,4. ja � b>q(u �q v) = (ja>qu) �q (jb>qv),5. je>qtq = tq.Reecting the adjunction of fusion and implication in quantales, in synchronousquantales the reverse modality<ajq can be characterised as a right adjoint for ja>q.That is, in analogy with 8, <ajq is a right adjoint for ja>q:u � <ajqv i� ja>qu � v; (17)and using in�nite joins <ajq can be de�ned by<ajqu = _fv j ja>qv � ug: (18)The notions of interpretation and validity with respect to synchronous quantalesfollow those of section 2.3 entirely. For a synchronous algebra A the �lter comple-tion of A is the synchronous quantale qu(A) with W, �q and tq de�ned as in section2.3, and ja>qB = fx j 9y 2 B: a:y � xg. The veri�cation that qu(A) is indeed asynchronous quantale, and that the relation x 2 B satis�es conditions 2.2.2{6 aswell as (14) and (15) is left to the reader. Conversely, following the proof of thecompleteness theorem 6.2, the �lter completion fr(Q) of a synchronous quantale Qcomes in two variants, according to whether a safety or a liveness algebra is beingconstructed. Thus for the safety case fr1(Q) consists of all nonempty �lters T of Qwith 0 = Q and a:T = fu j <ajqu 2 Tg = fu j 9v 2 T: a:u � vg. For the livenesscase fr2(Q) consist of all �lters of Q with 0 = ; and a:� as in fr1(Q). In both casesit is easy to check that fr1(Q) and fr2(Q) are both well-de�ned, and that T j= ui� u 2 T . Soundness and completeness with respect to the synchronous quantaleinterpretation then follows as in section 2.3.28



7 The process-based interpretationsWhile the semantics of formulas of section 6 is given in terms of general syn-chronous algebras, as in section 3 it is the induced interpretations on the processterms themselves de�ned by p j=i � i� [p]'i j= �that are ultimately of real computational interest. In this section we begin investi-gating these interpretations further. It is shown, in particular, that these inducedinterpretations characterise the corresponding behavioral preorders on processes inthe sense that p vi q i� for all �, if p j=i � then q j=i �. For this to make sense wemust require that only closed formulas, formulas without occurrences of atomicpropositions, are considered. This is similar to the situation in e.g. Hennessy-Milner logic. To regain su�cient expressive power we then have to extend thelanguage of positive modal formulas by adding a constant 0 whose interpretationis tied to the process constant 0 just as the interpretation of t is tied to the processconstant 1. That is, for general models, x j=M 0 i� 0 � x. Note that for safetyalgebras 0 denotes the singleton set f0g, and for liveness algebras 0 is the exten-sional truthhood constant. For a discussion of the problems involved in extendingthe soundness and completeness results of the preceding section to the extendedlanguage see Dam [8].We �rst consider the interpretation of extended closed formulas in terms ofthe initial safety and liveness algebras. Note that the satisfaction conditions forconjunction, linear implication, and past modalities are given in purely structuralterms, i.e. they do not refer to the ordering � corresponding for the initial algebrasto the behavioral preorders on terms. Hence no characterisation of the initialalgebra interpretations is needed in these cases.Proposition 7.1 (Initial Safety Algebra Interpretation) Let � 2 D1.1. � j= t i� � may � implies e 2 �, and � may feg implies � after e j= t,2. � j= � �  i� there are �1;�2 2 D1 such that �1 j= �, �2 j=  and for all� 2 � there are �1 2 �1 and �2 2 �2 such that � = �1 � �2,3. � j= � _  i� for all � 2 �, cl1f�g j= � or cl1f�g j=  ,4. � j= ja>� i�a. �0 j= � for some �0 2 D1,b. � may � implies a 2 �, and � may fag implies � after a j= �,5. � j= 0 i� there is no � for which � may �.29



Proof: 1. � j= t i� � � cl1(1) i� for all � 2 �, � � 1, i� � may � impliese 2 � and � may feg implies � after e = � j= t.2. Immediate by the de�nitions.3. Assume � j= � _  and let � 2 �. Then � � cl1f�g, so by the �lter propertyalso cl1f�g j= � _  . Either cl1f�g j= � or cl1f�g j=  in which case we are done,or there are �1;�2 2 D1 such that �1 j= �, �2 j=  and �1 [ �2 � cl1f�g. Butcl1f�g is coprime with respect to �, that is, whenever �1 u �2 � cl1f�g theneither �1 � cl1f�g or �2 � cl1f�g. Hence by the �lter property also in this caseeither cl1f�g j= � or cl1f�g j=  . For the converse direction assume that for all� 2 �, either cl1f�g j= � or cl1f�g j=  . As � is generated by a �nite set �0, �can be written as a �nite union [fcl1(�) j � 2 �0g. As each cl1f�g j= � _  bythe �lter property also � j= � _  .4. Similar to 1.5. � j= 0 i� cl1(0) � � i� � = f0g i� for no �, � may �. 2Note that 7.1.2 is somewhat unsatisfactory in that references to � are hiddenin the use of path equality. We return to this issue below. The elements of theform clif�g, i 2 f1; 2g, are exactly those elements of Di that are coprime withrespect to �. The statement of Proposition 7.1.3 can consequently be read as� j= � _  i� for all coprime �0 � �; �0 j= � or �0 j=  :Thus the interpretation of disjunction with respect to the initial safety algebra isseen to be related to the interpretation of disjunction in Beth models for proposi-tional intuitionistic logic, and to that of Allwein and Dunn's recent Kripke modelsfor linear logic [4]. Similar comments applies to the initial liveness algebra inter-pretation:Proposition 7.2 (Initial Liveness Algebra Interpretation) Let � 2 D2.1. � j= t i� � must feg and � after e j= t,2. � j= � �  i� there are �1;�2 2 D2 such that �1 j= �, �2 j=  and for all� 2 � there are �1 2 �1 and �2 2 �2 such that � = �1 � �2,3. � j= � _  i� for all � 2 �, cl2f�g j= � or cl2f�g j=  ,4. � j= ja>� i� � must fag and � after a j= �,5. � j= 0 (always).Proof: Similar to the proof of Proposition 7.1. 2Using Lemma 5.4 it is straightforward to derive from these two propositionsequivalent, operationally determined satisfaction conditions directly on processterms. In addition to the relations may, must, and after, a syntactic characterisa-tion of the coprime elements is needed. The appropriate notion is that of a trace:a process term built using only 0, 1, pre�xing and �. The set traces(p) of tracesof p is de�ned in the obvious way by 30



traces(0) = f0g,traces(1) = f1g,traces(a:p) = fa:q j q 2 traces(p)g,traces(p1 � p2) = traces(p1) [ traces(p2),traces(p1 � p2) = fq1 � q2 j q1 2 traces(p1); q2 2 traces(p2)g.The satisfaction conditions on terms derived from Propositions 7.1.2 and 3 and7.2.2 and 3 are then the following:p j=i � �  i� there are p1; p2 such that p1 j=i �; p2 j=i  ; and forall traces q of p there are traces q1 of p1 and q2 of p2such that q 'i q1 � q2; (19)p j=i � _  i� for all traces q of p; q j=i � or q j=i  : (20)Note that in contrast to the case for the other connectives, for fusion (19) hasnot yet succeeded in eliminating references to the behavioral equivalence relations'i entirely. This is certainly possible, but only, it appears, by replacing thesereferences by normal forms, or the semantical mappings [[�]]i. This inelegance is onereason why we prefer the implication to the fusion when operational interpretationsof the PL (and indeed LL+) connectives are concerned.We then show that the initial algebra interpretations induce the appropriateorderings. Each member � 2 Di, i 2 f1; 2g, is generated by a least, �nite set �0.The characteristic formula, cf(�), of � is then determined as the disjunction ofthe representation cf(�) of each member � of � where 0 is represented as 0, 1 ast, and pre�xing as the future modality.Lemma 7.3 For i 2 f1; 2g and �1;�2 2 Di the following statements are equiva-lent:1. �2 j= cf(�1).2. �1 � �2.3. For all extended, closed �, if �1 j= � then �2 j= �.Proof: 1 i� 2. Assume that �2 j= cf(�1). By an argument similar to that of theproof of Proposition 7.1.3 this holds i� clif�2g j= cf(�1) whenever �2 is a memberof the least generating subset of �2. This is the case i� clif�2g j= cff�1g for somemember �1 of the least generating subset of �1. We then just need to show thatclif�2g j= cff�1g i� �2 � �1 for the case i = 1, and clif�2g j= cff�1g i� �1 � �2for i = 2. This is shown by easy induction in the length of �1.2 implies 3. By the �lter property.3 implies 2. By the implication 2 to 1 it follows that �1 j= cf(�1). Assuming 3 weobtain �2 j= cf(�1), so �1 � �2 by the implication 1 to 2. 2The Logical Characterisation Theorem now follows as an easy corollary.31



Corollary 7.4 (Logical Characterisation Theorem) For i 2 f1; 2g, p vi q i� forall extended, closed �, if p j=i � then q j=i �.Proof: By Lemma 7.3, Lemma 5.5, and Propositions 7.1 and 7.2. 28 AxiomatisationIn the remaining part of the paper we give procedures for deciding validity offormulas with respect to the process-based interpretations. That is, proceduresthat, given an extended closed formula �, decides if � is i-valid, meaning that theunit process satis�es � under the Di interpretation, for i 2 f1; 2g. The proceduresuse a rewriting-based approach. We add a number of new axiom schemas which areused to rewrite arbitrary extended closed formulas into a normal form. Thus soundand complete axiomatisations are obtained as byproducts using this approach. Forthe initial safety algebra, in particular, soundness depends on the underlying labelgroup being in�nite. In the present section these axiomatisations are presentedand their soundness proved.We consider only the �-free fragment here. The primary reason is that thedouble induction used in the proof of completeness below means that the lengthof the proof increases with the square of the number of logical connectives. Wesee no essential problems, however, in extending the results to cover � as well.Note �rst that with respect to the initial algebra interpretations the extensionalfalsehood constant ?, and consequently also an \intuitionistic" negation : and theextensional truthhood constant >, can be derived: Let ? �= <ajjb>0 for some �xeda; b 2 L such that a 6= b, :� �= �! ?, and > �= :?. To see that this is reasonablenote that in both D1 and D2, if a:�1 � b:�2 then a = b. Hence for neither ofthe two interpretations can there be a � for which � j= <ajjb>� when a 6= b.Thus for the initial algebra interpretations ? expresses the empty set. This hasextremely curious consequences for the expressive power of the derived negation.For instance :� expresses the nonexistence of a � 2 Di for which � j= �. Whenthis is the case we say that � is i-unsatis�able. As a consequence ::� expresses i-satis�ability, or consistency: � j= � for some � 2 Di. Given this expressive powerthe Henkin-style approach used earlier appears untenable: Theories must havethe global property that � 2 T for some theory T if and only if ::� 2 T 0 for alltheories T 0. This motivates our rewriting-based approach in which the satis�ableand unsatis�able can be given direct syntactical characterisations.The extensional truth- and falsehood constants are governed by the expectedaxioms:?-Elim ? ! �>-Intro �!> 32



Let PL� be PL minus the axioms �1 and �2 governing �, and let PL�>;? be PL�augmented with the axioms ?-Elim and >-Intro. The following Propositionsummarises some theorems and derived rules of PL�>;?:Proposition 8.1 (Theorems of PL�>;?)1. `PL�>;? (�! : )! ( ! :�)2. `PL�>;? �! ::�3. `PL�>;? :::�! :�4. `PL�>;? :�! ( ! :�)5. `PL�>;? > ! � `PL�>;? (� ^  )! `PL�>;?  ! Proof: 1: An instance of C. 2: Use 1 and I. 3: Use 1, 2 and B. 4: Use ?-Elim,B and C. 5: By the ^-axioms and transitivity we obtain `PL�>;? (>^ )! , andthen by the ^-axioms, transitivity and >-Intro, `PL�>;?  ! . 2The extended logics PL�(D1) and PL�(D2) are determined by adding thefollowing axioms to the axioms and rules of PL�>;?. We shall make no attemptto justify each of these axioms intuitively. Each axiom reects some propertywhich holds in the initial algebra interpretation concerned but which fails to holdin general. A simple example is the Distribution axiom below which is a directconsequence of Propositions 7.1 and 7.2. The axioms common to both PL�(D1)and PL�(D2) are the following:Distribution � ^ ( _ )! (� ^  ) _ (� ^ )ja>-^ ja>� ^ ja> ! ja>(� ^  )<aj-_ <aj(� _  )! <aj� _<aj <aj-ja>-! <ajja>�! �:ja> :�$ :ja>�!-_ (ja>�! Wb2� jb> b)! Wb2�(ja>�! jb> b)where in!-_ � ranges over �nite, nonempty subsets of L. The additional axiomsfor PL�(D1) are the following six:s1 ::0s2 (::�)! (0! �)s3 ja>� ^ jb> ! 0 (provided a 6= b)s4 (::� ^ :: ^ (ja>�! jb> ))! ja�1 � b>(�!  )s5 (> ! Wa2� ja>�a)$ (0 ^ (Wa2� ::�a))s6 (::� ^ (ja>�! 0))! 033



For PL�(D2) the following four axioms are added instead:l1 > ! 0l2 (� ^ ja>>)! ja><aj�l3 (::� ^ (ja>�! jb> ))! ja�1 � b>(�!  )l4 :(> ! Wa2� ja>�a)We note a number of theorems of PL�(D1) and PL�(D2) for later use.Proposition 8.2 (Theorems of PL�(D1) and PL�(D2))Let `PL�(D) � if `PL�(Di) � for both i = 1 and i = 2.1. `PL�(D) ja>(� ^  )$ (ja>�) ^ (ja> )2. `PL�(D) <aj(� _  )$ (<aj�) _ (<aj )3. `PL�(D) �$ <ajja>�4. `PL�(D) t$ <ejt5. `PL�(D) :�! :<aj�6. `PL�(D1) (::�)$ (0! �)7. `PL�(D1) :<aj08. `PL�(D) :<ajjb>�, provided a 6= b9. `PL�(D2) :(ja>� ^ jb> ), provided a 6= bProof: 1:  by ja>-^,! by the ^-axioms, transitivity and ja>-monotonicity.2: Similar. 3: By !-<aj-ja> and <aj-ja>-!. 4: By <ej-necessitation and t1,`PL�(D) <ejt, so `PL�(D) t! <ejt by t2. By similar reasoning `PL�(D) t! je>t.Then by <ej-monotonicity, transitivity and <ej-je>-!, `PL�(D) <ejt ! t. 5:By ja>-<aj-!, transitivity and permutation, `PL�(D) (:�) ! (:ja><aj�), soby :ja> and transitivity the result obtains. 6: ! by s2.  by transitivity,permutation and s1. 7: Let b 6= a. An outline of the proof follows:1. :jb>0! :<bjjb>0 by 52. ::<bjjb>0! ::jb>0 by standard reasoning3. (0! <bjjb>0)! (0! jb>0) by 74. 0! jb>0 by !-<bj-jb>5. :<aj0 by <aj-monotonicity and def. :8: Let a 6= b. For PL�(D1) �rst, by s3, <aj-monotonicity and distribution of <ajover ^, `PL�(D1) <ajja>> ^ <ajjb>� ! <aj0. Then by !-<aj-ja>, <aj-ja>-!and standard reasoning, `PL�(D1) <ajjb>�! <aj0. But by 7 it then follows that`PL�(D1) :<ajjb>�. 9: The proof is outlined as follows:34



1. ja>� ^ jb> ! ja>� ^ jb> ^ ja>> by standard reasoning2. ja>� ^ jb> ! ja><aj(ja>� ^ jb> ) by l23. ja>� ^ jb> ! ja>(<ajja>� ^<ajjb> )by distribution of <aj over ^4. ja>� ^ jb> ! ja>(<ajja>� ^ ?) by 6, assuming a 6= b5. ja>� ^ jb> ! ja>? by standard reasoning6. :(ja>� ^ jb> ) by :ja> 2Theorem 8.3 (Soundness of PL�(D1) and PL�(D2)) For all extended, closedformulas �, if `PL�(Di) � then 1i j= �.Proof: The proof is largely routine, and relies on Propositions 7.1 and 7.2. Arepresentative collection of cases is proved below.ja>-^. If � j= ja>� and � j= ja> then either i = 1 and � = 01, in which case� j= ja>(� ^  ), or else � = a:�0 and � after a j= � ^  by 7.1.3 and 7.2.3.!-_. Suppose � j= ja>�! Wb2� jb> b. First if there is no �0 such that � j= ja>�then we are done, so assume not. Let �0 = fc j 9�:c:� 2 �g. If �0 = ; then incase i = 1 � = 01, and � j= ja>�! jb> b for all b 2 �. In case i = 2 we obtaina contradiction. So �0 6= ;. For each c 2 �0 let �c = clif� 2 � j 9�0:� = c:�0g.Then � = Sc2�0 �c. It su�ces to show that for each c 2 �0 there is a b 2 � suchthat �c j= ja>� ! jb> b. Fix c 2 �0. Then �c j= ja>� ! Wb2� jb> b by the�lter property. Let �1 j= ja>�. We can assume that �1 has the form a:�01. Hence�c � �1 j= Wb2� jb> b, so c � a 2 � and �c � �1 j= jc � a> c�a. But the chosendisjunct was independent of �1, so we have veri�ed that �c j= ja>�! jc � a> c�a.s4. Suppose � and  are both satis�able in D1 and that � j= ja>� ! jb> . If� = 01 the proof is easily completed, so suppose not. If � 6= (a�1 � b):�0 for some�0 then there is some � in the least generating set of � such that � = c:�0 for some�0 and c 6= a�1 �b. Then cl1f�g 6j= jb> , a contradiction. So indeed � = (a�1 �b):�0and whenever �1 j= � then �0 � �1 j=  , that is, � j= ja�1 � b>(�!  ).s5. Suppose � j= > ! Wa2� ja>�a and suppose for a contradiction that � 6= 01.Then for some b and �, b:� 2 �. Pick any c 62 �. As L is in�nite such ac exists. Now (b�1 � c):01 j= > so � � (b�1 � c):01 j= Wa2� ja>�a. But thencl1fb:�g � cl1f(b�1 � c):0g = cl1fc:0g j= ja>�a by 7.1.2, but this is a contradictionby 7.1.3. For the second conjunct observe that 01 j= Wa2� ja>�a so 01 j= ja>�afor some a 2 � by 7.1.2 and then �a is 1-satis�able by 7.1.3. For the converseimplication, if �a is 1-satis�able then for any �, 01 � � = 01 j= Wa2� ja>�a by7.1.2 and 3, so 01 j= >! Wa2� ja>�a.l2. If � j= � and � j= ja>> then � = a:�0 for some �0. But then � j= ja><aj�.l4. If � j= > ! Wa2� ja>�a then �� 02 j= Wa2� ja>�a, a contradiction. 2For �nite label groups soundness of PL�(D1), axiom s5 in particular, fails ingeneral. The problem is the implication (> ! Wa2� ja>�a)! 0. For if indeed L35



is �nite then fa:0 j a 2 Lg[f0g j= >! Wa2L ja>> while fa:0 j a 2 Lg[f0g 6j= 0.The problem of devising a sound and complete axiomatisation for the case of �nitelabel groups appears a di�cult one and remains open.9 Completeness and decidabilityIn this section the completeness of PL�(D1) and PL�(D2) is proved, and it isshown how the proof determines decision procedures for the properties of i-validityand i-satis�ability. The proof has three ingredients. First a suitable notion ofnormal form is introduced. Secondly the i-valid and i-satis�able normal forms arecharacterised in syntactic terms. Thirdly, and �nally, we show that each formulais provably equivalent to a formula in normal form.De�nition 9.1 (Normal Form, Satis�able Normal Form) The set satNF of satis-�able normal forms is de�ned inductively by1. t, >, 0 2 satNF,2. if for each a 2 �, �a 2 satNF then Wa2� ja>�a 2 satNF.The set NF of normal forms is NF = satNF [ f?g.Proposition 9.2 Let i 2 f1; 2g. The following statements are equivalent.1. � 2 satNF2. `PL�(Di) ::�3. � j= � for some � 2 DiProof: 1 i� 2. By soundness 6`PL�(Di) ::? so we need just check `PL�(Di) ::�whenever � 2 satNF. An easy structural induction su�ces to establish this. Fort and > use I or >-Intro, t1 and 8.1.2. For 0 and i = 1 use I and 8.2.6, and fori = 2 use l1. For Wa2� ja>�a 2 satNF use the induction hypothesis and :ja>.3 implies 1. If � j= � then � 2 satNF.2 implies 3. If `PL�(Di) ::� then 1i j= ::� by soundness. 2Next the valid normal forms are characterised. In order to be able to de�nevalNF uniformly we assume here that 0 in the case i = 2 is de�ned by 0 �= >.De�nition 9.3 (Valid Normal Forms) The set valNF of valid normal forms isde�ned inductively by1. t;> 2 valNF,2. if Wa2� ja>�a 2 satNF, e 2 �, and �e 2 valNF then Wa2� ja>�a 2 valNF.36



Proposition 9.4 Let i 2 f1; 2g and � 2 NF. The following statements are equiv-alent.1. � 2 valNF2. `PL�(Di) �3. 1i j= �Proof: 1 i� 2. An easy structural induction in �. Note 6`PL�(Di) ?, 6`PL�(Di)0 for i = 1, `PL�(Di) t, and `PL�(Di) >. Let � = Wa2� ja>�a 2 satNF and`PL�(Di) �. Then 1i j= � by soundness, so e 2 � and `PL�(Di) �e. By theinduction hypothesis �e 2 valNF so � 2 valNF as well. If conversely � 2 valNFand `PL�(Di) �e then `PL�(Di) � by the induction hypothesis, je>-necessitationand _-Intro.2 implies 3. By soundness.3 implies 1. An easy structural induction in �. 2The largest single step of the completeness proof is the normalisation theorembelow. At �rst glance it might seem surprising that as sparse a vocabulary asthe constants plus _ and ja> su�ces to express the whole language. On theother hand we have already seen that in both D1 and D2 all occurrences of � areeliminable in favour of operators 0, 1, � and pre�xing only.Theorem 9.5 (Normalisation) Let i 2 f1; 2g. There is an e�ective procedurewhich given any extended closed � produces a �0 2NF such that `PL�(Di) �$ �0.Proof: See section 10. 2Corollary 9.6 (Completeness of PL�(Di)) Let i 2 f1; 2g and 1i j= � for � anextended closed formula. Then `PL�(Di) �.Proof: By soundness, the Normalisation Theorem and Proposition 9.4. 2In a similar fashion the decidability of the properties of i-validity and i-satis�ability is easily seen.10 Proof of the Normalisation TheoremThe proof proceeds by cases and induction in the modal depth of formulas. Abbre-viate `PL�(Di) �$ �0 by � �i  , or just � when i is understood from the context.We prove the slightly more general statement that for each extended closed � thereis an e�ectively computable �0 2 NF of a modal depth not exceeding that of �such that � �i �0. 37



10.1 The safety caseLet �rst � = �1 ! �2, and assume that �1; �2 2 NF. We proceed cases on �1 andwhen necessary also �2.a. �1 = ?. Then � � >.b. �1 = >. We proceed by cases on �2.i. �2 = ?. Then � � ?.ii. �2 = >. Then � � >.iii. �2 = 0. Here � � 0.iv. �2 = t. Then � � 0 by s5.v. �2 = Wa2� ja>�a. Here � � 0, again by s5.c. �1 = 0. If �2 = ? then � � ?. Otherwise �2 2 satNF so `PL�(D1) � byProposition 9.2, so � � > by >-Intro and Propositions 8.2.6 and 8.1.4.d. �1 = t. Here � � t.e. �1 = Wa2�1 ja> a. We proceed again by cases on �2.i. �2 = ?. Then � � ?.ii. �2 = >. Here � � >.iii. �2 = 0. Note �rst that `PL�(D1) 0 ! �. For `PL�(D1) �1 ! ::0,giving the result by s2 and permutation. For the converse implication`PL�(D1) � ! Va2�1(ja> a ! 0) by standard reasoning. Secondly`PL�(D1) :: a for all a 2 �1 by Proposition 9.2 so by s6 and Proposi-tion 8.1.5 `PL�(D1) Va2�1(ja> a! 0)! 0 and we're done.iv. �2 = t. By standard reasoning we �rst obtain � � Va2�1(ja> a !je>t). As `PL�(D1) ::ja> a for each a 2 �1 and `PL�(D1) ::je>tthen by s4 � � Va2�1 ja�1>( a ! t). By the induction hypothesiswe �nd for each a 2 �1 a a 2 NF such that  a ! t � a and thus� � Va2�1 ja�1>a. If some a is ? then � � ? by :ja�1>. Otherwise`PL�(D1) 0 ! Va2�1 ja�1>a by Proposition 9.2, 8.2.6 and ^-Intro, soif �1 has size greater than 1 then by s3, � � 0. Otherwise let �1 = fagand we obtain � � ja�1>a.v. �2 = Wb2�2 jb>b. By standard reasoning, � � Va2�1 Wb2�2(ja> a !jb>b), and as in case (iv) we obtain � � Va2�1 Wb2�2 ja�1 � b>( a !b). So by the induction hypothesis we �nd for each pair a; b a �a;b 2 NFsuch that �a;b �  a ! b, and then � � Va2�1 Wb2�2 ja�1 � b>�a;b. UsingDistribution � � Wf :�1!�2Va2�1ja�1 � f(a)>�a;f(a);38



and by :ja> we can assume that �a;b 6= ? for all a; b. Fix f : �1 ! �2.Suppose there is some a1; a2 2 �1 such that a�11 � f(a1) 6= a�12 � f(a2).Then Va2�1 ja�1 � f(a)>�a;f(a) � 0 by s3 and 9.2. If on the other handa1 � f(a1) = a�12 � f(a2) = af , say, for all a1; a2 2 � thenVa2�1ja�1 � f(a)>�a;f(a) � jaf>Va2�1�a:f(a):We now apply the induction hypothesis and �nd some �af such thatVa2�1 �a:f(a) � �af . It is now a simple matter to complete the rewritingusing the tools already introduced.This completes the case for � = �1 ! �2. Assume next that � = �1 ^ �2,�1; �2 2 NF. The only interesting case here is when �1 = Wa2�1 ja>�a and �2 =Wb2�2 jb> b. The other case are either already covered or in the case of t easilyreducible to the present case. To rewrite into normal form �rst use distribution toobtain the form � � Wa;b ja>�a^jb> b, and then 9.2 and s3 to obtain either � � 0if �1\�2 is empty, or if not, � � Wa2�1\�2 ja>(�a^ a). The induction hypothesisis then used in a routine way to rewrite Wa2�1\�2 ja>(�a ^  a) into normal form.The remaining cases are straightforward and left to the reader, as is the checkthat the size of � does not increase under normalisation.10.2 The liveness caseLet again � = �1 ! �2, �1; �2 2 NF. The case for one of �1 or �2 equal to 0 neednot be considered. The case for one of �1 or �2 equal to ? is trivial.a. �1 = >. Procees by case on �2.i. �2 = >. Then � � >.ii. �2 = t. Then � � ? by l4, as t � je>t.iii. �2 = Wb2�2 jb> b. Here � � ? by l4.b. �1 = t. Here � � �2.c. �1 = Wa2�1 ja>�a. Proceed by cases on �2.i. �2 = >. Then � � > by 8.1.4.ii. �2 = t. We �rst obtain � � Va2�1(ja>�a ! je>t). By 9.2, ja>�a is2-satis�able, so by l3 and 6.1.3 � � Va2�1 ja�1>(�a ! t). By 8.2.9 weobtain � � ? whenever �1 contains more than one element. Otherwiselet �1 = fag, and it is now a simple matter to apply the inductionhypothesis to �a ! t and obtain the desired normal form.iii. �2 = Wb2�2 jb> b. As in the proof for the safety case we obtain � �Wf :�1!�2 Va2�1 ja�1 � f(a)>�a;f(a) where each �a;f(a) is 2-satis�able andin normal form. Fix f : �1! �2. If there is some a1; a2 2 �1 such that39



a�11 �f(a1) 6= a�12 �f(a2) then Va2�1 ja�1 � f(a)>�a;f(a) � ?. Otherwise let�1 = fafg and then Va2�1 ja�1 � f(a)>�a;f(a) � jaf>Va2�1 �a;f(a), andthe rewriting into normal form can then be completed by the inductionhypothesis and standard reasoning.Assume next that � = �1 ^ �2, �1; �2 2 NF. The case for one �1 and �2 equal to> is trivial. For the rest:a. �1 = t. If �2 = t then � � t so assume instead that �2 = Wb2�2 jb> b.Then � � Wb2�2(je>t ^ jb> b, so if e 62 �2 then � � ? by 8.2.9. Otherwise� � je>(t^ b) which is easily rewritten into normal form using the inductionhypothesis.b. �1 = Wa2�1 ja>�a. The proof proceeds as in case (a).The remaining cases and the check that normalisation does not increase size is leftto the reader.11 Conclusion, and Future WorkOur aim has been to investigate the use of linear and relevant logics as logicalhandles on the static structure of processes, and in this framework explore theuse of modal operators to account for dynamic behaviour. We have given threeexamples, one of which was studied in detail, and a number of completeness andcharacterisation results have been obtained concerning axiomatisations and therelationship to linear logic proper as well as to the computational interpretationsof (term) models. Computationally the main example is rather weak in that itlacks a suitable notion of controllable choice. It is an important issue for futurework to extend our approach in this direction. In Dam [8] one such extension ispursued, sacri�cing, however, the algebraic interpretation of formulas and the tightrelationship to linear logic. Another important issue is to consider asynchronousparallel composition as in CCS. One option is to try and reduce asynchrony tosynchrony by introducing special idling actions as in e.g. [30].It is important to note the strength of the completeness and decidability re-sults obtained in the last part of the paper. Clearly they solve the problems ofsatis�ability and model checking posed in the introduction; the latter indeed in acompositional manner. Moreover a large range of entirely new correctness prop-erties can now be decided which express structural properties of processes such asthe following:Given process q, and speci�cations � and  , does there exist a processp such that p j= � and p � q j=  ?Process p can be mechanically derived from the normal form of the formula ::(�^(cf(q)!  )) where cf is the representation of processes as formulas of section 7.40



There are clear potential applications of such procedures for instance in the areaof program derivation. Note the relationship to the work on equation solvingof e.g. Parrow [23]. Of course, part of the strength derives from the relativeexpressive weakness of the process and speci�cation languages considered, andit is not clear how far the results of the present paper generalises, for instanceto temporal properties. Indeed it may be that the completeness results achievedhere are too strong, and that instead completeness should be sought only in muchweaker forms, for instance for ground implications (formulas of the form � !  where neither � nor  contain occurences of !).Basic to our approach is a concept of processes as a semilattice-ordered struc-ture with the semilattice operation a choice operator required to be preserved byparallel composition. We have explored the close relations to algebraic models(such as quantales) of relevant and linear logics (c.f. Dunn [10], Abramsky andVickers [3]). Moreover there are intimate relations to the models for BCK-logicsof Ono and Komori [22], and for ^/_ distributive logics to the ternary relationmodel for relevant logics of Routley and Meyer [26] (see Dam [8] for a detailedexposition). While preservation of choice by parallel composition is natural in thesynchronous case, if asynchronous parallel composition is to be modelled directlythis is likely to be too strong, and only monotonicity with respect to the inducedsemilattice ordering should be expected.It may be of interest to consider process-based interpretations of connectivesother than the ones we have considered above, notably the De Morgan negation �,the intensional sum-operator +, and the linear modalities ! and ?. Given just themonoid structure of models, by distinguishing a constant formula ? the doublenegation construction of Girard [13] (the phase semantics) applies, and full propo-sitional linear logic can be interpreted. Relating to the intended interpretationof the monoid operation as parallel composition this interpretation is however ofdubious practical value. Our general models can be extended to cover De Morgannegation by an approach similar to that of Ono and Komori: A subset of prime el-ements and an involution (�)� is presupposed and then � is interpreted by x j= ��i� for all prime y � x, y� 6j= �. For the linear ? a possibility is to add a binaryrelation R which is reexive and for which1. if 1Rx then 1 � x,2. if (x u y)Rz then there are x1; y1 such that xRx1, yRy1 and x1 u y1 � z,3. if x� yRz then there are x1; y1 such that xRx1, yRy1 and x1 � y1 � z,and then satisfaction is extended by x j=?� i� there is some y such that 1 � y � x,y idempotent (i.e. y � y = y) and for all z, if yRz then z j= �.AcknowledgementsMany thanks to Colin Stirling for innumerable useful discussions on the topicsdiscussed in the present paper. Thanks are due also to the referees for their useful41
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