Process-Algebraic Interpretations of Positive
Linear and Relevant Logics

Mads Dam*
Dept. of Computer Science
University of Edinburgh, U.K.

Abstract

We investigate the use of positive linear and relevant logics to provide logical ac-
counts of static process structure, and combinations of relevance and modality
to account also for dynamic behaviour. A general notion of model is introduced,
based on which three examples are given, using Milner’s synchronous process cal-
culus SCCS. The structure of models is enriched by prefixing operators to cover
also dynamic behaviour. Logically dynamic behaviour is captured by adding past
and future modal operators. The resulting logic is given sound and complete
axiomatisations and shown to conservatively extend the positive fragment of lin-
ear logic. Finally the induced interpretations of formulas on process terms are
characterised, and axiomatisations are given which are sound and complete with
respect to validity in the process-based interpretations. The completeness proofs
are based on rewriting and provide procedures for deciding validity and consistency
of formulas with respect to the process-based interpretations.

1 Introduction

In this paper we study interpretations of positive, propositional fragments of linear
and relevant logics in terms of process algebras. The basic idea is similar in spirit to
Urquhart’s semilattice interpretation of relevant logics [28]: Parallel composition
furnishes a binary operation x and relative to an element & the implication is
interpreted as the operation that transforms properties by left multiplication with
x. That is,

¢ —iff for all y, if y E ¢ then @ x y E ¥ (1)

*Supported by Danish Technical Research Council, grant 16-3809.E, and SERC grant GR/F
32219. New address: Swedish Institute of Computer Science, Box 1263, S-164 28 Kista, Sweden

Thus — expresses a relativisation of properties to properties of parallel contexts.
As parallel composition is usually assumed to be commutative the restriction to
left-multiplication is harmless. With this definition the implication can be used as
a general handle to address the difficult problem of deriving compositional theories
for concurrency. One rule for parallel composition is sufficient, namely:

tEo—=Y yEo
T Xy

The problem of compositionality has thus been transformed into the problem of
verifying implicative properties. As a property-transformer this implication has
numerous well-known relatives in Computer Science. The classical example is the
weakest preconditions of Dijstra [9]. In concurrency close relatives are the weakest
inner environments of Larsen [17] and the doubly relativised turnstiles of Stirling
[27].

The relation to relevant and linear logics arise in the following way: Parallel
composition is usually assumed to be associative as well as commutative, and to
possess an identity 1. For instance in CCS (Milner [20]) the identity is NIL; in
SCCS (Milner [19]) it is 1; and in theoretical CSP (Brookes et al [6]) it is RUN
for x the operator || and STOP for x the operator |||. With this structure the
implication of (1) corresponds naturally to the consequence relation ¢4, ..., ¢, = ¢
that holds whenever z1 = ¢1,...,2, | ¢, implies 21 X -+ X z, E ¢ where the
empty product is 1. Letting ®, ¥ range over finite strings of formulas observe
then that the following structural rules are validated:

Reflexivity: ¢ | ¢

Permutation: % (¥ a permutation of @)
(I)|:¢ \Ill7¢7\112 |:77Z)
\Illv (I)v qj? |: 77Z)

Moreover with the intended interpretation of x as parallel composition the fol-
lowing structural rules will in general fail:

0. 6,0 =9
0. 0=

®Ev
. 0=

so the consequence relation is indeed linear in the sense of Girard [13].

Related observations have been made in the context of Petri nets by a number
of authors (Brown [7], Gehlot and Gunter [12], Marti-Oliet and Meseguer [18],
Winskel and Engberg [11]). Abadi and Plotkin [1] uses an implication related to
ours to account for the assumption-guarantee principle for safety properties (c.f.

Cut:

Contraction:

Weakening:

Pnueli [25]). Other ways of relating linear logic to concurrency have also been
tried: Abramsky and Vickers [3] uses quantales, a topological variant of linear
logic, to account for notions of process testing; and Abramsky and Jagadeesan [2]
uses dataflow networks to interpret proofs in linear logic.

1.1 Outline of Paper

With the interpretation (1) the intensional (or multiplicative, in Girard’s termi-
nology [13]) fragment expresses purely structural properties of processes and is
thus by itself of little interest. Other connectives are needed to capture also the
dynamic properties of processes. Our aim in the present paper is to explore ways
in which such extensions can be made while both

1. obtaining close connections to linear and relevant logics, and

2. giving concrete computational justifications for the choice of models and
connectives.

The computational setting which we take as basic is that of process calculi such
as CCS and SCCS [20, 19]. Processes are terms given computational meaning
by an operational semantics in the style of Plotkin [24]. Formulas, as in e.g.
Hennessy-Milner logic [15], denote sets of processes expressing their computational
capabilities. Thus formulas can suitably be viewed as process specifications, and
typical process verification problems include:

a. Given specification ¢, does there exist a process satistying ¢?
b. Given specification ¢ and process p, does p satisfy ¢?7

This interpretation of processes and properties is, however, far too concrete and
syntactic to support a really tight connection to linear and relevant logics. A more
liberal approach is to consider instead models based on algebras with a structure
akin to that of processes up to a suitable notion of semantical equivalence. This is
the approach taken in the first part of this paper. We take as our point of departure
a notion of model for positive linear and relevant logics whose underlying frame is
a semilattice-ordered monoid. The intention is to relate the monoid operation to
parallel composition and the semilattice operation to some form of choice operator.
Logically this notion of model is a generalisation of Urquhart’s semilattice model
for relevant logics capable of capturing a wide range of positive linear and relevant
logics in a uniform way. We give three examples of frames based on fragments of
the synchronous calculus SCCS, two appropriate to positive linear logic, and one
appropriate to the positive fragment of the relevant system R. The semantical
equivalences used are simulation and bisimulation equivalence (c.f. Hennessy,
Milner [15]), and the testing equivalence of De Nicola and Hennessy [21].

Building frames based on process calculi shows soundness of the axiom systems
concerned. The first part of the paper addresses two main questions:

1. How can the general notion of frame be extended to cover also dynamic
behaviour, and how can the logic be extended to reflect this?

2. In particular, can 1. be answered in such a manner that completeness is
obtainable too?

The answers we propose are based on extensions of frames by unary operators,
akin to the prefixing operators of CCS and SCCS, and a constant 0 for deadlock
or divergence. Two equational classes of frames are considered, one for which
potentiality for deadlock/divergence is ignored, and one where it is viewed as
catastrophic. The first case is appropriate to safety properties, and the second to
liveness properties. Computationally, these classes are motivated by containing
as initial members two of the frames considered earlier based on SCCS with a
corresponding version of testing equivalence. Or in other words: The equations
determining the class of frames concerned gives a sound and complete axioma-
tisation of processes up to a form of testing equivalence. Logically this added
frame structure is reflected by forwards and backwards modalities |a> and <a].
We give an axiomatisation of these modalities which is shown to be sound and
complete with respect to both classes of frames, and which is moreover shown to
be conservative over linear logic.

Of particular computational interest, however, are the interpretations induced
on process terms proper. That is, the interpretations on terms p induced by
p E ¢ iff [p]~ E ¢ where ~ is the semantical equivalence concerned. These
interpretations form the topic of the second main part of the paper. It is impor-
tant to obtain a characterisation of the process-based interpretations in purely
operational /syntactical terms, since it is this characterisation which gives direct
computational meaning to formulas, analogous, for instance, to the way transition
systems give computational meaning to formulas in Hennessy-Milner logic. We
obtain such a characterisation and show the usual logical characterisation result
that

p == ¢ iff for all formulas ¢, p E ¢ iff ¢ | ¢. (2)

The completeness results for arbitrary frames obtained in the first part of the
paper do not apply to the process-based models. Thus they are insufficient for
answering problems such as a. and b. above which motivated our work from
the outset. One reason for the failure of completeness is the extraordinary ex-
pressive power of formulas when only the concrete process-based interpretations
are considered. Using the modal operators an extensional falsehood constant L
denoting the empty set is definable. Then ¢ — L denotes the inconsistency of ¢
(p E ¢ — L iff no ¢ exists for which ¢ = ¢), and similarly (¢ — L) — L denotes
the consistency of ¢ (p | (¢ — L) — L iff for some ¢, ¢ = ¢). The problems this
expressive power gives rise to do not appear particular to the modalities considered
in the present paper: It is hard to think of a process specification language which
is closed under extensional conjunction and does not have the power of expressing
an unsatisfiable property. One problem is that the Henkin-style approach used

in the earlier completeness proofs becomes difficult to use. In effect a syntactical
characterisation of consistent and inconsistent formulas seems to be called for, and
an attractive alternative approach is therefore to use rewriting techniques. Sets
of new axiom schemas are given by which formulas can be rewritten into normal
forms. As consistent normal forms can easily be given models completeness fol-
lows. Moreover, since the rewriting procedure is effective, and properties of normal
form are easily determined, byproducts of the completeness proofs are procedures
to decide for instance consistency and inconsistency of formulas.

1.2 Fusion or Implication

The main thrust of our work, in the tradition of relevance logic, is to take the im-
plication and its interaction with extensional and modal connectives as the issues
of primary interest. An alternative, more algebraically oriented approach is to
emphasize instead the operator of fusion, or intensional conjunction, o, associated
to the implication by the adjunction

F¢—= (Y —=9)iff Food—1. (3)

Here I denotes provability in the axiom system under consideration. One reason
for adopting this approach is that when arbitrary infinite disjunctions are available
then — is derivable by

o=t =\{ylFyop— v} (4)

This is the view taken, for instance, in quantale-based models (c.f. Abramsky
and Vickers [3]). The use of infinite disjunctions in (4) is, however, essential,
and does not apply in the present setting of finitary unquantified propositional
logic. The addition of infinite disjunctions or other higher-order mechanisms are
extensions that may well prove valuable (c.f. Engberg and Winskel [11] for an
example where propositional fixed point operators are considered briefly), but the
increase in expressive power would be very substantial indeed, and such extensions
are therefore left for future consideration.

One example of a process logic which uses the fusion operator is the composi-
tional model checker of Winskel [29]. There o (® in [29]) is introduced with the
interpretation p = ¢y 0 @9 iff dpq, p2 such that p = p; X pa, p1 E ¢1 and py E és.
With this interpretation o is restricted to occurring only in antecedents of ground
implications, as otherwise the language would be able to distinguish processes
according to their static structure only, something which most process equiva-
lences do not allow. This restriction can be lifted by quotienting with respect to
a suitable semantical equivalence ~ so that

p = ¢1 0 ¢y iff there are py, ps such that p ~ py X pa, p1 = ¢1 and pay = ¢a. (5)

This reference to ~~ is, however, in some respects unfortunate: First it requires
models to be explicitly parametrised by ~. However, one would, and indeed

should, expect that ~ is determined by the logic in the sense of (2). Secondly, and
more seriously, with the interpretation (5) o lacks a direct computational inter-
pretation in contrast to the other connectives we consider. Nonetheless the more
algebraic perspective that the fusion lends itself to is valuable in several respects,
to justify our notions of model and satisfaction, to justify our choice of connec-
tives by using adjunctions as in (3), and to throw light on the axiomatisations
considered.

The paper is structured as follows: In section 2 we introduce our general model
for positive linear and relevant logics, obtain soundness and completeness results
for the positive fragments of linear logic as well as the relevant system R, and
justify our notion of model in terms of quantales. Examples of models based on
processes are given in sections 3 and 4. In section 5 synchronous algebras, extend-
ing general frames by action operators, are introduced. Representation theorems
for their initial algebras are proved, and it is shown how these representations
provide processes with a fully abstract denotational semantics. In section 6 linear
logic is extended by operators to reflect the additional structure of synchronous al-
gebras. Soundness, completeness and conservative extension results are obtained,
and the relations to corresponding extensions of quantales by operators are dis-
cussed. From section 7 onwards attention is focused on the process-based models.
In section 7 the interpretations induced on process terms are characterised, and it
is shown how using these characterisations the logics induce the expected semanti-
cal equivalences on terms. The remaining part addresses the problem of completely
axiomatising validity of formulas with respect to the process-based interpretations
only. In section 8 the axiomatisations are introduced, and their soundness proved,
and sections 9 and 10 contain the proofs of completeness and decidability. Finally,
in section 11 possible extensions and future work is discussed.

2 Models for Positive Relevant Logics

In this section we develop a notion of model for positive fragments of linear logic
with a structure resembling the static structure of process calculi such as CCS
and SCCS. Syntactically, the language of positive formulas is generated by the
abstract syntax

gu=Xt|o—=9[god|dNd|oV o

where X ranges over atomic propositions. The intensional connectives are the
(intensional) truthhood constant t, the implication —, and the operation o known
variously as fusion, intensional conjunction, tensor, or times. The extensional
connectives are A and V. We generally assume — to have least binding power.
In linear logic terminology, t corresponds to the constant 1, o to ®, — to linear
implication, and A and V to the additive “with” (&) and “plus” (§) respectively.

2.1 Semantics

For the semantics it is well known (c.f. Urquhart [28], Dunn [10]) that the standard
set-theoretic interpretation of A as intersection and V as union is problematic in the
context of relevant logics. The semantics of (Routley and Meyer [26]) remedies
this by introducing a ternary relation R on elements of models, replacing the
interpretation (1) of section 1 by

x| ¢ — iff for all y,z, if y E ¢ and R(z,y,2) then z = ¢ (6)

The ternary relation can be understood by reading R(x,y, z) as “the combination
of the pieces of information @ and y (- -) is a piece of information in z” [10]. Thus
both ideas of intensional combination of information and of information content
are involved. We propose separating these notions, using the monoid structure to
account for the first, and a semilattice structure to account for the second. This
allows us to easily capture also logics such as linear logic for which distributivity of
A over V fails, something for which the ternary relation model is not well equipped.
In terms of processes our intention is to relate the monoid operation to parallel
composition and the semilattice operation to process-algebraic choice operators.

Definition 2.1 (Frame, Model). A frame is a structure F' = (5,1, x, 1) where
. 1¢es,
2. (5,M) is a semilattice,
3. (9, x,1) is a commutative monoid,
4. x distributes over M. That is, 2 X (yMz) = (& xy)MN(ax x z) for all x,y,z € S.

A set B C Sisa filter, if for all x,y € S, v,y € Biff e My € B. A model (based
on F)is a pair M = (F,V) where F' is a frame and V is a valuation which for
each propositional letter X gives a filter V(X).

The partial ordering < on models is derived in the usual way: = < y iff
x My = x. Our usage of the term filter is slightly nonstandard in that filters are
usually assumed to be neither empty nor improper. Note that B is a filter iff

1. z € Band ¢ <y impliesy € B, and
2. z,y € Bimpliesx My € B.

The filter property of valuations is quite natural if [is understood as expressing
intersection of information contents: More information entails more atomic prop-
erties should hold, and for any two elements their common information is sufficient
to establish their common atomic properties. The distributivity of x over I can
be understood in similar terms.

Definition 2.2 (Satisfaction). The relation of satisfaction, x [=a ¢, is defined in
the following way:

1. 2y X iff 2 € V(X),

2. a Ey tiff 1 <,

w

cabEmd—Yiffforally € S,y Ea ¢ only if @ Xy 2.

4. x Ep ¢ ot iff there are xq, x5 € S such that a1 X 29 < 2, 1 FEum ¢ and
) |:M @/’

rEpn o NV Il x Epy ¢ and @ a0,

. B oV ifl @ Eym ¢ or @ a9 or there are xq,29 € S such that
r1May <a, 29 Ep ¢ and g Epp 2.

> o

Let M be a class of models. A formula ¢ is M-valid, if 1 =5 ¢ for all M € M.
It M is the class of all models, ¢ is said to be uniwersally valid.

We usually omit indexing of = by M when M is understood from the context.
The filter property for atomic propositions extends to the full language. This
property is used extensively in the proof of soundness below.

Proposition 2.3 (The Filter Property) For all ¢, {x € Sy | @ |E=ar 0} is a filter.

PROOF: An easy structural induction. For —, suppose first that @ = ¢ — > and
z <y. To check y E ¢ — ¢ let z = ¢. Then = x z =1 so by monotonicity of x
and the induction hypothesis also y x z E ¥. Soy |E ¢ — . Conversely if .,y E
¢ — 1 and z = ¢ then @ X z,y X z | so also (@ x 2)M(y x z) = (xMNy) X z | .
Thus My | ¢ — 1 as desired.

For o, if E ¢ o and < y then y = ¢ o+ is immediate. Conversely
let @,y | ¢ o. Then we find 1, 22,91,y2 such that 1,11 E ¢, 22,y2 = ¥,
1 X 23 < @ and y; X y2 < y. By the induction hypothesis, 1 My; E ¢ and
29 My2 = ¢, Moreover (21 Myq) X (22 My2) < @My whence My = ¢ o .

For V suppose first that z = ¢V and z < y. If 2 = por z = ¢ then y = oVe)
by the induction hypothesis, and if there are a1, x5 such that xy May <z, 21 E ¢
and x5 =1 then a1 May <y soy | oV . Conversely suppose that z,y | ¢ V.
If 2,y |E ¢ or x,y E 1 then 2y |E ¢V by the induction hypothesis. If « = ¢
and y | 1, say, then immediately a My E o V. HaE¢and y1,y2 <y, y1 E ¢
and y, = ¢ then 2 My; = ¢ by the induction hypothesis, so indeed x My = ¢V 1.
The other cases are similar.

The remaining cases are easy exercises. O

2.2 Axiomatisation

The appropriate logic for axiomatising universal validity is the positive fragment
of linear logic axiomatised by the following Hilbert-type system (Avron [5]):

Axioms 1 o)
B (& =) = (6= $) = (6= 7))
C (0= (¥ —=7) =@ —=(¢—17)
A-Intro (¢ =Y)Ao —=7) = (¢ =Y AY)
A-Elim1 dNY — @
A-Elim?2 dNY — P
V-Introl o — oV
V-Intro2 v — oV
V-Elim () A (- 7) = (6V -)
t1 t
2 pr—
o1 6= (1 = ($01))
02 (6= (6 =) = ((601) =)
Rules Detachment A i qi;)—> 4
Adjunction Z/\Zi

Iis known also as reflexivity, B as transitivity, and C as permutation. Let Fyp+ ¢
if ¢ is provable in this system.

Theorem 2.4 (Soundness and Completeness, LLY) byp+ & iff ¢ is universally
valid.

PROOF: Soundness is proved as usual by showing the axioms valid and the rules
validity preserving. Completeness is proved by a modification of the Henkin-style
construction standard in relevance logic (c.f. Dunn [10]). Let an LL*-theory be
any set 1" of formulas for which

1. ¢ €T and Fpp+ ¢ — @ implies ¢ € T, and

2. ¢,1 € T implies o Ap € T.

We then define a canonical model M(LL") by letting S be the set of all LL*-
theories, MM intersection, 1 the set of all LL*-theorems, and defining the multipli-
cation x and the valuation V' by

Ty xTy = {¢]3¢pcThe— e}
V(X) = {T|T an LL*-theory and X € T’}

9

Clearly M, 1 and V are well-defined. For x suppose that ¢» € T7 x T, and that
Frp+ ¥ — 7. Then there is some ¢ € T such that ¢ — ¢ € T;. By B, C and
detachment, ¢ — v € T} too so v € Ty x Ty. Secondly if ¢q,19 € T7 x Ty then
there are ¢1, ¢y € Ty such that ¢; — 1,09 — 1y € Ty. Then ¢1 A ¢y € T,. By
A-Elim (1 and 2), B and detachment, we obtain ¢ A ¢g — b1, ¢1 A g — 12 € T4,
so by A-Intro, ¢ A @3 — ¥y A by € T too, so Py Ahy € Ty x Ty as desired. Note
that in terms of o,

TyxTy={y|3¢eTi,p €Ty Fyp+ pop — v}

To check the monoid properties we first prove commutativity. For this it suffices
to show Fyp+ ¢ — ((¢ —) — @), so that if ¢ € T then (¢ —) — ¢ € T too.
But Frp+ (¢ — ¥) — (¢ —) so the result follows by C and detachment. For
the identity of 1 assume first that ¢» € 1 x T'. Then there is a ¢ € T such that
¢ — ¢ € 1. But then Fyp+ ¢ — ¥ so ¥ € T as desired. Conversely if ¢ € T'
then by I also ¢ € 1 x T'. For associativity of x assume that v € Ty x (T x T3).
Then there is a ¥ € Ty x T5 such that ©» — v € T}, and thus a ¢ € T5 such that
o — Ty ByB,(¢ =) — (¢ — 7)€ Tiso¢—~e&T xTy, and thus
v € (Ty x Ty) x Ts.

[t remains to show x distributive. The containment Ty x (T5M7T5) C (11 x T3)M
(T} x T5) is clear. For the converse containment let ¢ € Ty x Ty and ¢ € Ty x T5.
Then there are ¢y € Ty and ¢35 € T3 such that ¢ — o, 93 — b € T. By V-Intro,
G2 V @3 € Ty M T3, and by V-Elim, ¢3 V ¢3 — ¢ € T, giving the result.

We have thus shown the canonical model indeed to be a model. The proof is
then completed by showing that ¢ € T iff T |:M(LL+) ¢ using induction in the
structure of ¢. For atomic propositions and A the result is immediate. For t, if
t €T and ¢ € 1,1i.e. Fyp+ ¢ then Fyp+ t — ¢ by t2, C and detachment, so
¢ €T. Thus T = t. Conversely if 1 C T then t € T by tl.

For V assume that ¢ Vb € T'. Let Ty = {7 |Fyp+ ¢ — v} and Ty = {7 |Fyp+
Yp — v} Then T' N Ty = {v |Fpp+ ¢ Vo — ~v}. Hence Ty M1, < T. But then
T E ¢V as by the induction hypothesis T} = ¢ and T, | . Conversely assume
that T E o V. T | ¢ or T |E ¢ we are done by the induction hypothesis, so
let instead Ty M Ty < T, Ty = ¢ and Ty = ¢. By the induction hypothesis ¢ € T}
and € Ty, s0 ¢ Vb € Ty Ty whence ¢ Vb € T too.

For — let ¢ — ¢ € T and T} E ¢ and we must show T x T} = 1. By the
induction hypothesis, ¢ € T}, so b € T' x T} and the result follows by the induction
hypothesis. For the converse direction let T' = ¢ — 1. Let Ty = {7 |Fyp+ ¢ — 7}
Then T; = ¢ by the induction hypothesis, so T' x T} | ¢. Thus » € T x T} by
the induction hypothesis, and it follows that there is some ~ € T such that
v — ¢ €1. But then Fyp+ ¢ — v s0 ¢ — ¢ € T too as desired.

Finally for o suppose first that ¢ o9 € T. Let Ty = {y |Fy1+ ¢ — 7} and
Ty = {v |Fyp+ © — ~}. Then Ty x Ty, < T. For if v € T} x T; then there is
some v’ such that Fyp+ ¢ — 4 and Fyp+ ¢ — (7' — 7). But then by B and
C, Fyp+ ¢ — (¥ — 7) such that Fyp+ (¢ 0p) — 4 by 02, and then v € 1" as

10

desired. By the induction hypothesis, T} = ¢ and T, |= ¢, so we obtain T' = ¢ o).
Conversely if T' = ¢ o1 we find Ty, Ty such that T = ¢, Ty |E ¢, and Ty x Ty < T.
By the induction hypothesis, ¢ € Ty and ¢ € Ts. By o1, ¢ — (¢ o)) € Ty. Thus
poth €Ty x T, and we are done. a

It is not hard to verity that Theorem 2.4 applies equally to the o-free fragment
of LLT. Moreover, as LL-theories include the empty theory it follows from the
proof of Theorem 2.4 that LL" is sound and complete with respect to models
that contain an element 0 which is zero for both M and x. Other well-known rele-
vance logics, both stronger and weaker than LLT, are obtained by corresponding
variations on frame-conditions and axiomatisations (c.f. Dam [8]). An important
example is the positive fragment, R*, of the standard relevant system R (c.f.
Dunn [10]). This system is axiomatised by adding to the axioms for LL* the two
axioms:

S (0= (b —=7) = (=)= (¢—7))
Distribution (¢ V) Ay — (¢ Ay) V(¥ A5)

For the semantics an R*-frame is a frame F' with the following two properties:
1. Forall x € Sp, 2 x & < z,

2. Whenever 2 My < z, ¢ £ z and y £ z then there are ' > = and y’ > y such
that ' My' = 2.

Condition 1 is referred to as semi-idempotency. Condition 2 is very close to the
standard notion of distributivity in semilattices: Whenever x My < z then there
are v’ > x and y' > y such that 2’My’ = z, regardless of whether x < zory < z or
not. For unital semilattices (semilattices with a unit T for M), or more generally
for semilattices in which each pair of elements has an upper bound (that is, for
all , y there is some z such that @ < z and y < z), the definitions coincide. An
Rt -model is a model which is based on an R*-frame.

Theorem 2.5 (Soundness and Completeness, RY) Fr+ ¢ iff ¢ is M-valid where
M is the class of all RT-models.

PrROOF: The soundness of S and Distribution is proved as usual. For complete-
ness all that is needed is to check that the canonical model M(R*) constructed
as in the proof of Theorem 2.4 validates the two extra model conditions.

For semi-idempotency let 7' be an R*-theory and +» € T x T. Then there
is some ¢ € T such that ¢ — » € T too. The following derivation shows that
Fr+ (¢ —) A ¢ — 1 which is sufficient to establish the result:

Lo (¢—=Y)N¢— (¢ —) A-Elim1
2. (=Y)Ao —=¢) = (6 =Y)Ao —) 1,byS
3. (=Y)Ao — 0 2, by A-Elim2

11

For distributivity let Ty M7y, < T, Ty L T and Ty £ T. Let T/ = {~r | I €
T:,¢" € T such that Fr+ ¥ A" — ~}, i € {1,2}. Clearly T! is a R*-theory;
it is the least R*-theory containing T; U T. We must show that 7] M Ty = T.
The verification of T' C T] M Ty is entirely straightforward. For T{ M Ty C T let
¢ € T/ T;. Then there are ¢; € T] and ¢y € Ty such that Fr+ &1 V ¢ — ¢.
Let ¢; € T!, ¢ € {1,2}. We then find some 1, € T; and ¢! € T such that
FR+ 1 Abl — ¢ Let o' = o Avph. Tt follows that Fra (5 A')V (1hy A1p') — ¢
But then by Distribution also Fr+ (¢1 V ¢b2) A)" — ¢. But both 4 V 1py and ¢
are in 1" so ¢ € T too. O

2.3 Quantales, and Algebraic Models

The presentation of section 2.2 takes implication as primitive and derive fusion
by axioms ol and 02. Alternatively fusion can be taken as primary. This is the
approach taken in the algebraic models of Dunn (c.f. [10]) or in those based on
quantales (c.f. [3]). Here the algebraic models serve mainly to justify our notion
of model and the relation of satisfaction. In an algebraic setting an equational

presentation is more appropriate than the Hilbert-type presentation of section
2.2.

Definition 2.6 (Quantale). A quantale is a structure (@), o4, t,) for which
1. @ is a complete lattice,
2. (Q,04,1,) is a commutative monoid, and
3. o, distributes over arbitrary joins, i.e. u o, (V;v;) = V;(u o, v;).
In quantales the implication can be defined by
u—yv=\{w|wo,u<v} (7)

where the partial ordering < is derived in the usual way by u < v iff u Av =wu. If
only finite joins are available — is not generally definable and) is then required
to possess a right adjoint —, for o,, i.e. an operation —, satistying

u<v—,wiff uo,v <w. (8)

This property is important in that it provides a characterisation of the implication
in terms of fusion, and vice versa. In the terminology of Dunn [10] it amounts to
() being residuated.

By means of the quantale structure together with (7) quantales provide alge-
braic models for linear and relevant logics in the obvious way: In any quantale @),
an interpretation [X] € @ of the propositional letters X is extended uniquely to
an interpretation [¢] € @ of arbitrary formulas, such that [¢] respects formula
structure.

12

This interpretation is sound and complete with respect to the axiomatisation
of section 2.2 in the sense that Fpy+ ¢ iff ¢ is valid, t, < [¢], in all interpretations
in all quantales). This can be seen either directly, or by exploiting the tight
connection between quantales and the models of section 2.1. Given a frame F
the filter completion of F' is the quantale qu(F') consisting of all filters in /' with
V{B:tier = {2z | Ja1,..., 2, € H{Bitier- ;1 -+~ N, < 2}, Byo, By = {z |
de € By,y € By. e xy <z}, and t, = {z | 1 < z}. A straightforward inductive
argument verifies that the relation @ € B satisfies all the conditions 2.2.2-6. Indeed
this property can be taken to justify Definition 2.2 itself. The construction of the
filter completion fr(Q) of a quantale), on the other hand, is essentially that given
in the completeness part of Theorem 2.4. The frame fr(Q)) consists of all filters T" of
Qwith=nN, Ty xTy={w|JueT,veETruo,v<w} and 1 ={u|t, <u}.
Note that filters in quantales correspond to theories as defined in the proof of
Theorem 2.4. Furthermore T' |= v according to 2.2.2-6 iff u € T'. Soundness and
completeness of the quantale based interpretation then follows simply by observing
thatbpp+ ¢ iff bpp+ t = o iff t, = 1Tt = [t] < 176 = [¢] where T = {y | 2 < y}
is the upper closure of x.

Quantale-based models are easily adapted to RT by assuming that () is dis-
tributive as a lattice and satisfies @ < -2 (c.f. [10]).

3 Synchronous processes as models, I

In this section we give two examples of models based on a fragment of Milner’s
SCCS [19] under simulation and bisimulation equivalence (c.f. Hennessy and Mil-
ner [15]). The fragment involved contains synchronous parallel composition (x)
together with choice (4), prefixing (a.L) and a unit process (1). Terms p € P*
in this fragment are given by the following abstract syntax:

pu=1lap|p+p|pxp

where a ranges over a set L of labels with a binary operation - of label multiplication
defined on it. Various assumptions may be made on the properties of the label
structure (L,-). Here we assume it to form a commutative monoid with unit e;
later, as in [19], we assume also inverses such that it forms an abelian group.
The operational semantics of process terms is given by the transition relation
determined by the following axioms and rules:

151 ap>p

a a a b
p—p q—7p p—p q—d
pra=p pta—=p pxq¢Spxq

Models are constructed from terms by quotienting under suitable behavioral con-
gruence relations.

13

Definition 3.1 (Simulation, Bisimulation) A binary relation R on process terms
is a simulation ', if pRq implies

1. whenever ¢ % ¢/ then p % p’ and p'Rq’ for some term p'.
If whenever pRq then (1) holds and in addition its converse
2. whenever p = p’ then ¢ = ¢’ and p’Rq’ for some term ¢/,

then R is a bisimulation. If there is a simulation (bisimulation) R such that pRq
then p simulates ¢, p T, ¢ (p and ¢ are bisimulation equivalent, p ~; q). If p C; ¢
and ¢ =, p then p and ¢ are simulation equivalent, p ~; q.

It is well known that bisimulation equivalence is strictly finer than simulation
equivalence [15]. It is not difficult to verify that T, is a precongruence and ~, a
congruence with respect to the operations on terms. For ~ one of ~,, ~; we can
then form the quotient structure P/ ~ in the obvious way by letting

Pl=Mgl~ = [p+dql=
[p]: X [Q]: = [p X Q]:
I = [1]:

Theorem 3.2 1. Pt/ ~; is a frame.
2. Pt/ ~, is an RY-frame when label multiplication is idempotent.

PrROOF: Most of the checks involved are standard. The only exceptions are
semi-idempotency and distributivity for Pt/ ~. For semi-idempotency it suffices
to show that {(p x p,p) | p € PT} is a simulation: If p = p' then p x p = p’ x p/
by idempotency of label multiplication.

For distributivity note first that C, coincides with the induced semilattice
ordering, for p + ¢ T, p holds always, and p &, p+ ¢ iff p C; ¢. Let then
init(p) = {a | Ip'.p = p'} and p/a = {p' | p = p'}. Assume that p+ ¢ C, r,
pZsr and g L r. Then

L. either init(r) Z init(p) or init(r) C init(p) and there is some a € init(r) and
r" € r/a such that for all p’ € p/a, p’' L, ', and

2. the same for ¢.

Then init(r) N init(p) # 0 and init(r) N init(q) # O, for init(r) # @ and if for
instance init(r) Ninit(p) = @ then ¢ C; r. By the semilattice properties of 4+ we
can use the }_-notation for finite, nonempty sums. Let now for a € init(p)Ninit(r)

pa = Y {a.r’| 7' € r/a and for some p" € p/a, p" T, r'}

In fact, according to [15] a reverse simulation.

14

and then p’ = Zaeiﬂit(p)ﬁiﬂit(r)pa' Define ¢’ similarly. Clearly the sums involved
are finite. Furthermore assume that for all a € init(p) Ninit(r) and for all ' € r/a
there is no p” € p/a such that p” C; r/. Then, as p 4+ ¢ T, r, init(p) N init(r) C
init(¢) and for all ' € r/a there is some ¢’ € ¢/a s.t. ¢ T, r'. Moreover, whenever
a € init(r) \ init(p), ¢ € init(¢) and the same holds, as p + ¢ T, r. But then
g C, r—a contradiction. Hence the sums are also nonempty, and p’, ¢’ are well-
defined. Clearly p C, p’ and ¢ C, ¢'. Also p'4¢' ~, r, forif r 5 ¢’ then p'+¢" = ¢/
and if p' + ¢’ % v’ then r 5 /. O

In the context of process algebra the assumption of idempotency of label mul-
tiplication of Theorem 3.2.2 is often realistic: It is appropriate for instance for
multiway synchronisation.

The frame structures of P*/ ~, and Pt/ ~; gives rise to natural interpreta-
tions of positive formulas as in section 2. Given a valuation V into any of those
frames these interpretations induce corresponding interpretations directly on the
process terms themselves, by

pEoiff[plx = ¢ (9)

where ~ is either ~;, or ~,. An important issue is if modalities can be added to
account for dynamic behaviour in the style of Hennessy-Milner logic [15]. Basic
as it is to our semantical framework it is essential that any such extension does
not violate the filter property. For the case of simulation we can add modalities
[a]é with the interpretation:

p | [a]¢ iff for all p’ such that p 5 p', p' | 4.

In order to use (9) to extend satisfaction to the quotient structure P/ ~, we
must first of all make sure that if p ~; ¢ and p = ¢ then ¢ = ¢ too, where ¢ may
involve modalities [a]. In fact it turns out to be easier to check the filter property
directly. That is, if p ~, p + ¢ (or, equivalently, p C, ¢) and p = ¢ then ¢ | ¢
too, and if p,q | ¢ then p+ ¢ = ¢.

For bisimulation we can with a little care add also the dual operator <a> with
the interpretation

p | <a>¢ iff for some p’, p = p and p' | ¢.

Let a restricted formula be any formula ¢ with the property that all occurrences of
<a> in ¢ is within the scope of some [a'] in ¢. Here the filter property is checked
in two steps: First we show for unrestricted ¢ that if p ~, ¢ and p |= ¢ then ¢ E ¢
too. Secondly we show the filter property for restricted ¢ only: If p ~, p 4+ ¢ and
p E ¢ then also ¢ E ¢, and if p,q E ¢ then p+ ¢ = ¢. The detailed checks for

both simulation and bisimulation are straightforward and left to the reader.

15

4 Synchronous processes as models, 11

The connection to linear and relevant logics established by results such as Theorem
3.2 is a very weak one: They only establish soundness of the induced interpreta-
tions. In this section we introduce an example for which completeness can be
established too. Thus this gives a technically precise sense in which linear logic is
exactly the logic of static process structure.

The operational setting is a variation on that of the previous section. Instead
of the sum-operator + we allow the formation of a finite set P of process terms
as a process term itself. The intended meaning of set formation is as an internal,
or uncontrollable choice operator in contrast to the controllable choice involved in
+, and we derive the deadlock constant 0 by 0 2 § and the binary internal choice
operator @ by p @ ¢ 2 {p,q} (c.f. Hennessy [14]). Concerning the label structure
we adopt from this point onwards the assumption of SCCS that (L,-) forms an
abelian group with unit ¢ and ¢™! the inverse of a. The set of process terms thus
obtained is denoted by P?. A structured operational semantics in the style of
CCS and SCCS can be given (c.f. Dam [8]). Here, however, we prefer a style akin
to that of Hennessy and Plotkin [16]. The relations p may A and p must A where
A is a finite and nonempty set of labels, and the successor operations p after a,
are defined inductively as follows:

may:
e €A a €
1 may A a.p may A
pmay A peP p may Ay ¢ may As
P may A pxqgmay {a-b|a€A,be A}
must:
e €A a €A
1 must A a.p must A
pr must Ay -+ p, must A, p must Aq ¢ must Ay

{p1,-..,ps} must AyU---UA, pxgmust {a-b|a€A,beE Ay}

after:

{1} ifa=ce

0 otherwise

_ Ay ita=b
a.p after b= { 0 otherwise

1 after ¢ = {

P after a = (J,ep p after a

p x q after @ = U(a, ap)iar-a,=a 10" X ¢ | P € p after a1, ¢’ € q after a,}

16

For notational convenience we derive the relation “can” by p can a iff p may {a}
and the predicate “live” by p live iff p must A for some (nonempty) set A. The
following properties of the basic operational notions are easily established.

Proposition 4.1 1. p may A iff p can a for some a € A,

2. pcan a iff p after a £ 0,
3. p must A iff p live and {a | p can a} C A.

4. 1If (p after a) live for some a € L then p live

PrOOF: By structural induction. a

Two behavioral preorders on processes are considered. The first, T, is a
safety preorder, and the second, C,, is a liveness preorder. The essential difference
between the two is the way they treat the deadlock constant 0. The safety preorder
is inverse language containment. It ignores the potentiality for deadlock thus
identifying the process terms p and p & 0. The liveness preorder, on the other
hand, views deadlock as catastrophic, identifying 0 and p & 0.

Definition 4.2 (Behavioral Preorders C; and Cs)

1. The preorder C; on process terms is the largest (under containment) for
which p & ¢ implies

a. for all labels a, if ¢ can a then p can a and ¢ after a T4 p after a.
2. The preorder Cs is the largest for which p C, ¢ implies

a. for all A, if p must A then ¢ must A, and

b. for all a, if p live and ¢ can @ then p can a and p after a C; ¢ after a.
3. Fori e {1,2}, p~; qiff pC, ¢ and ¢ C; p.

Both preorders can be characterised as testing preorders along the lines of De
Nicola and Hennessy [21]. Interpret 0 as the divergent process, usually denoted €2,
and & as the CCS internal choice operator derived by p&® ¢ = 7.p+ 7.q. With this
interpretation, C; can be seen to coincide with the inverse of the “may”-preorder
of [21] and T4 with the “must”-preorder (Dam [8]). Relating to the equivalences
and preorders of Section 3 it is well known that in general ~ is strictly finer
than both ~; and ~,, while C; is strictly finer than =, and ~, and ~, are
incomparable (c.f. [21]). An alternative interpretation is to view & as a general
choice operator such as the CCS +, and the preorders C; as trace preorders. Note
that for the present restricted language conditions 4.2.2.a and b can be replaced
by the single condition

c. if p live then

17

i. ¢ live, and

ii. for all a, if ¢ can @ then p can a and p after a Ty ¢ after a.
This follows from Proposition 4.1.3. It is not hard to verify that both C; and
C, are precongruences with respect to the operations on terms, and the quotient

structures P®/ ~; are then formed as in section 3 by associating to M the internal
choice operator @.

Theorem 4.3 Fori € {1,2}, P%/ ~; is a frame.

PRrROOF: A consequence of the Algebraic Characterisation Theorem 5.6 below.
O

5 Synchronous algebras

In this section we extend the notion of frame to account more fully for the static
and dynamic behaviour of processes, and arrive at the following equational pre-
sentation of processes:

Definition 5.1 (Synchronous Algebras) A synchronous algebra (over a given label
group L) is a structure A = (5,11,0, X, 1,%) where

1. “is a group homomorphism which to each @ € L associates a unary operator
a.l on S,

2. (9,1, x,1) is a frame, and
3. the following equations hold for all =,y € S and labels a,b € L:

a. e x0=0
b. @.(zNy) = (a.x)N(a.y)

c. (@.x) x (by)=(a-b).(x x y)
d.el=1

If in addition 0 is greatest with respect to the induced semilattice ordering < then
A is a safety, or type 1 synchronous algebra, and if 0 is least with respect to <
then A is a liveness, or type 2 synchronous algebra.

Thus safety and liveness algebras are only distinguished on the way they treat
0. The homomorphism property of ~ ensures that the operators a are equipped
with an abelian group structure reflecting that of L: using the same notation for
the operations in both groups, a-b = a band a=! = a~'. For our purpose it is
harmless to identify the label @ with the operator a, thus generally writing a.x in
place of a.x.

18

5.1 The Initial Safety and Liveness Algebras

It is not hard to verify that P®/ ~; forms a type i synchronous algebra for both
¢t =1 and ¢ = 2. We go on to show that safety algebras characterise processes
under T, and that liveness algebras similarly characterise processes under C,.
First representation theorems for the initial algebras are proved. These are used
in section 5.2 to provide fully abstract semantics for processes. In view of the
uncontrollable nature of & it is natural to expect members of the initial algebras
to be represented as appropriately closed sets of strings of labels.

Definition 5.2 (Paths, Normal Paths) Assume that L and {0,1} are disjoint.

1. A path o is a member of L*-{0,1}. A path o is normalif el is not a suffix
of 0.

2. f o =aj,a € L* and j € {0,1}, then pre(c) = a and suf(o) = j.
3. Normal paths are ordered by o1 < oy iff either

a. 01 = 02,
b. suf(oq) = suf(o2) = 0 and pre(oy) is a prefix of pre(oy), or

c. suf(oy) =0, suf(oy) = 1, and pre(oy) is a prefix of pre(oz)(e™) for some
n > 0.

A set of paths ¥ is normal if all 0 € ¥ are normal. Below ¥ is assumed to
range over normal sets. For the initial safety algebra elements are represented
by downwards closed normal sets, and for the initial liveness algebra by upwards
closed normal sets. A set Y is downwards or 1-closed if whenever o € ¥ and ¢/ < &
then ¢’ € X, Dually ¥ is upwards or 2-closed if whenever o € ¥ and o < ¢’ then
o' € ¥. For ¢ € {1,2} the i-closure of a set ¥ is denoted cl;(¥). If ¥ = cl;(¥') for
some finite set ¥ then X is ¢-finitely generated (i-f.g.). If ¥ is i-f.g. then there is
a least set ¥/ generating Y. The representations of the initial algebras are built
using nonempty, closed, and f.g. sets X.

Next the operations on paths and normal sets are defined. Path prefixing is
defined by a.0c = ao whenever either @ # e or o # 1, and e.1 = 1. Multiplication
x of paths is defined inductively by letting 0 be zero and 1 be unit for x, and
then ay01 X as09 = (a1 - ag).(01 X 02). The constants and operations on sets are
given by

0, = {0}, 0, = {o | & a normal path}
1, = {1} U{e"0 | n € w), 1, = {1}

a.(X); = {a.o | o € 2YU {0}, a(X)y = {a.0 |0 € X}
S B D, =X, U,

19

21><22:{0'1><0'2|0'1€21,0'2622}

Let then D;, i € {1,2}, be the algebra obtained by taking the set of all i-f.g.,
t-closed and nonempty normal sets ¥ together with the constants and operations
as just defined. Note that the induced semilattice ordering is O for both ¢ = 1
and 2 = 2. In the safety case this corresponds to the converse of the well-known
Hoare-ordering: ¥, D Y, iff for all o5 € ¥y there is a 0y € Y1 such that oy < oy;
and in the liveness case to the Smyth-ordering: ¥; O ¥, iff for all oy € X5 there
1s a o € ¥ such that o; < o9.

Theorem 5.3 (Representation of Initial Algebras) For ¢ € {1,2}, D; is (up to
isomorphism) the initial type © synchronous algebra.

PrROOF: It is very easy to verify for both ¢« = 1 and 7 = 2 that indeed D; is
a type ¢ synchronous algebra. To prove the result we then need for every type 2
synchronous algebra A to establish a unique homomorphism f: D; — A.

First, let gen,; denote the operator that given each i-closed set X gives its least
generating set. The following equations hold:

L. a.(X); = cli{a.o0 | o € gen,(X)}
2. X1 B, Y = cli(gen; (1) U gen,(X2))
3. 21 X 22 = Cli{O'l X 09 | o1 € geni(Zl),ag € geﬂi(ZQ)}

Note that any map f : D; — A determines a map f from finite, nonempty
sets of normal paths to A, defined by

fidor,...,o0)) = flcli{or, ... o))
= f(cd{or} @i @i cli{on})
for n > 1. Further, f is a homomorphism iff f1 satisfies
i fHon,...,00} = o1} ®Ba- Da fH{on}, n>1,
ii. f1{0} = 04,
i, fH{1} =14,
iv. fHao} =a.(fH{o})a,

and any such f! determines f. The only-if direction is straightforward, and clearly
conditions i.-iv. defines f1, soif f is a homomorphism it is also unique. It remains
to check existence. Note that fT has the properties

a. fT{a.a} = Cl.(fT{O'})A,
b. fi{X} =2 4{fH{o} | 0 € X}, for ¥ finite,

20

C. fT{O'l cog) = fT{O'l} X A fT{O-Q}.

In b. » denotes the finite internal sum operator. There is now little difficulty
in verifying the homomorphism properties of f. First f(0;) = f1{0} = 04, and
F(1;) = f1{1} = 14. Next
fla.(X):) = fHgen,(a.(X):))
= fH{a.oc| o €gen,(X)} (by 1.)
=P a{fHa.c} | o €geni(X)} (byb.)
= » afa.(fH{o})a|o € geny(¥)} (by a.)
= a.(3 4{f{o} | o €gen;(X)})a (by equational reasoning)
= a.(fM(geni(X)))a (by b.)
= a.(f(¥))a
For the internal sum operator:
F(5 @i B2) = [Tgen;(Z1 @ 5,))
= fT(gen;(X1) Ugen; (X)) (by 2.)
= fT(gen;(¥1)) @a fT(gen,(X2)) (by b.)
= J(X1) Da f(X2)
Finally for parallel composition:
f(B1 %< 82) = fgen;(Z1 x X))
= fH(gen;(¥1) x gen;(X2)) (by 3.)
=p a{fMo1 o2} | o1 € gen(T1), 02 € geny(E2)} (by b.)
=2 a{/Ho} xa [Hoz} | o1 € geny(E1), 02 € geny(B2)} (by c)
= (fT(gen;(X1))) x4 (fT(gen;(X2))) (by equational reasoning)
= J(%1) x4 f(X2).

The check that f is monotone is straightforward. We have thus established the
homomorphism property of f, and the proof is complete. a

5.2 The Algebraic Characterisation Theorem

As P?® up to the use of sets in term formation, is a term algebra there are unique
homomorphisms [-]; from P% to D; for ¢ € {1,2}. These homomorphisms are used
to produce isomorphisms between P%/ ~; and D; thus establishing the Algebraic
Characterisation Theorem below. For this purpose it suffices to show that [-]; is
fully abstract, meaning that p =; ¢ iff [p]; 2 [¢]i. To prove full abstraction the
operational structure of processes is mimicked using the representations D;. For
a set X define

21

1. ¥ may A iff 0 = a.0’ for some o € X, a € A, and path o,
2. ¥ must A iff for all ¢ € ¥ there is some ¢ € A and path ¢’ such that o = a.0”,
3. o aftera = {0’ | Jo € X. 0 = a.0'}.

This operational structure can be characterised in purely algebraic terms. In an
arbitrary synchronous algebra the operation “after” can be taken to satisfy

(x < a.(x after a) and (z after a) < y) iff 2 < a.y. (10)
In algebras with arbitrary infima the “after”-operation can be defined by
z after a =Y {z |z <a.z}. (11)

It is not hard to verify that (10) is satisfied with “after” defined in this way. The
relation “may” can then be characterised by the condition

x may A iff @ < a.(x after a) for some a € A, (12)

and “must” can be characterised by
x must A iff Y {a.(x after a) | a € A} < 2. (13)

It is an easy exercise to verify that the relations “may”, “must”, and “after”
as defined by 1.-3. indeed satisfies (10)—(13). The following lemma relates the
operational structure of terms and that of their representations.

Lemma 5.4 . p may A iff [p]; may A
2. If p can a then [p after a; = [p]; after a
3. p must A iff [p]z must A

4. If p live and p can a then [[p after a]; = [p]. after a

Proor: All four statements are proved by an essentially straightforward struc-
tural induction. For instance for 4 assume that p can « and that p live. Thus
p # 1. For the remaining cases we calculate:

[l after a], = [1]. as p can a iff a = 1
= [1]. after a

[b.p after a], = [p]2 as bpcan a iff a = b
= [b.p]. after a

[(p after a) U (¢ after)]
= [p after a]> U [q¢ after a],

[p @& q after a],

22

[p after af,
= [Yaras)ar-as=a 1Pl % Ph | P € p1 after ay, ph € py after as}]s

Ular,a0)ia1-a2=a LLPL X Phl2 | Py € pr1 after ay, py € py after ay}y

Ulas,a0):ar-as=a { [P1]2 X [P3]2 [Py € 1 after aq, py € po after az}y

Ular,a0)ia1-a2=a L [P1 after aq]2 X [py after as]ls}

U(ar,a2):a1-as=a {[P1]2 after a; x [ps]; after as}

[p]2 after a

a

It thus remains to prove that the behavioral preorders C; on terms induce the
appropriate ordering C on the representations. This is done in two steps, using
the “may”, “must”, and “after” relations on D; to induce orderings C; on D; as
in Definition 4.2.

Lemma 5.5 (Full Abstraction) For ¢ € {1,2}, p C,; ¢ iff [p]: 2 [¢];,

ProOF: Note first that p C; ¢ iff [p]; C; [¢]; by Lemma 5.4. It thus remains to
show that ¥; C; ¥, iff ¥ D ¥, where X4, Y5 are i-closed. The proofs for + = 1 and
1 = 2 are very similar and we prove here only the case for : = 2. So suppose ¥; £,
Y, and that oy € X5, If 03 = 0 then ¥, is not live so neither is ¥; whence o9 € X5.
Suppose o3 = 1. If 1 & ¥ then either ¥; can e fails or else there is a maximal
n such that (X; after ¢”) can e. Here the “after”-operation is extended to finite
strings in the obvious way by ¥ after (a1 ---a,) = ((--- (¥ after ay)---) after a,).
The first case (X1 can e fails) leads to a contradiction whether ¥; live or not. For
the second case, if for some m < n, ¥y after ¢ is not live then 1 € ¥ as ¥,
is 2-closed. Otherwise ¥; after e"t! Cy ¥y after e"t! but (¥, after e"t!) can e
which fails for ¥y, a contradiction. Suppose finally that o3 = ac). If 3 is not live
then o9 € ¥q. If ¥ is live, as ¥y can a then ¥y can @ and o} € ¥ after a by the
induction hypothesis. But then oy € ¥ as desired. The converse implication is a
straightforward check that the conditions of Def. 4.2.2 are satisfied. O

Corollary 5.6 (Algebraic Characterisation Theorem) For i € {1,2}, P®/ ~; is
(up to isomorphism) the initial type ¢ synchronous algebra with C; |/ ~; the induced
ordering.

ProoOF: By the Full Abstraction Lemma. a

6 A modal linear logic of processes

In this section the language of positive formulas is extended by indexed future
modalities |a> and past modalities <a|. The interpretations of these connectives
are associated to the prefixing operators in a way mirroring the way the inter-
pretations of implication and fusion are associated to parallel composition. Our
choice of connectives allows a simple and elegant logical account of the structure

23

of synchronous algebras, in particular the interplay between the static operations
of multiplication and internal choice, and prefixing, expressing the dynamic capa-
bilities of processes.

6.1 Semantics

A synchronous algebra A is extended to a model M = (A, V) by, as in Definition
2.1, adjoining a valuation V for which V(X)) is a filter in A for each propositional
letter X. The relation of satisfaction is then defined by adding to the conditions
of section 2 the following two conditions for the modal operators:

x E=p la>¢ iff thereis a y € Sy such that a.y < x and y Em ¢, (14)
rEp <ale iff a.x Em . (15)

Intuitively, |a> and <a| can be thought of as specialised forwards, respectively
backwards nexttime modalities. The reverse modality can alternatively be char-
acterised by the satisfaction condition

x =y <aloiff there is ay € Sy such that y can a, y aftera <z, andy = ¢ (16)

reflecting (10) of section 5, and the forwards modality can be characterised as a left
adjoint for the reverse. More concrete characterisations for the forwards modality
with respect to just the initial algebra interpretations are given in section 7 below.
These characterisations are important as they provide more concrete intuitions
as to the meaning of the forwards modalities than are warranted by just the
general algebraically based interpretation of (14). Note that the filter property
extends to the full language. This property is needed to establish (16). For the
future modalities, x,y | |a>¢ iff there are 2’,y such that a.2’ < z, a.y’ <y and
',y | ¢ iff there are 2', ' such that a.2'MNa.y’ = a.(2'Ny’) < 2Ny and 2'MyY" = ¢
(by the induction hypothesis) iff « My |= |a>¢. The past modalities are similar.

6.2 Axiomatisation

To axiomatise validity with respect to the class of all safety and liveness models
respectively LLT is extended by the following axioms and rules concerning the
modal operators.

Axioms la>-V la>(d V) — [a>¢ V [a>)
<al-A <alp A <alp — <a|(d A)
—-<al-la> ¢ — <alla>¢
la>-<al-— la><algp — ¢

a-b-synchronisation <a|(|b>¢ — ¢) < (¢ — <a - b|))

¢

Rules |e>-necessitation =~ ———
|e>¢

24

¢

<el|-necessitation

<elo
|a>-monotonicity |G>Z : TZ;>¢
<al-monotonicity <Cl|f; : ﬁaw

Write Fpy, ¢ if ¢ is provable in this extension of LLT. Of the new axioms and
rules most are entirely straightforward. The axiom |a>-V expresses the existential
nature of the future modality and similarly the axiom <a|-A expresses the universal
nature of the past modality. The rules express the expected necessitation and
monotonicity properties; thus the distributivity of |a> over V and <al| over A is
derivable. The axioms —-<a|-la> and |a>-<a|-— are less obvious; they express
a degree of duality between the future and past modalities. Finally the axiom
a-b-synchronisation is the axiom that captures the dynamic properties of parallel
composition. We note a few theorems of PL for future reference.

Proposition 6.1 (Theorems of PL)
1. bpy a>(¢ V) & [a>¢ V |a>e)
2. Fpr <al|(¢ A1) & <alo A <aly
3. bpL a7 - b>(¢ —) — (Ja>¢ — [b>1)

PROOF: For 1 and 2 use |a>-V and <a|-A for one direction, and for the other the

monotonicity rules together with the axioms for A and V. The following derivation
establishes 3.

L — <b||b> by —-<b|-|b>
. (=) — (¢ — <bl|b>v) 1, by transitivity, detachment
3 (6 <HlE>) — <a=t - B(Ja>6 — [b>¢)
by @' - b-a-synchronisation
4. (¢ =) — <a b b|(Ja>g — [b>v) 2.3, by transitivity, detachment
5. Ja™t - b>(¢ =) = a7t - b><a™h - bl(la>¢ — |b>1))
4, by |a™! - b>-monotonicity
6. Ja=t - b>(¢ —) — (Jla>¢ — [b>) 5, by |a™t - b>-<a™! - b|-—,
transitivity, detachment

a

As the satisfaction conditions do not refer to the constant 0 and as in the
absence of 0, safety and liveness algebras are each others duals, it is not surprising
that soundness for safety algebras entails soundness for liveness algebras as well.
For completeness this is slightly more subtle as in this case an interpretation for
0 must be provided.

25

Theorem 6.2 (Soundness and Completeness, PL) The following statements are
equivalent:

1. Fpr ¢,
2. ¢ is M-valid where M s the class of all models based on safety algebras,

3. ¢ is M-valid where M s the class of all models based on liveness algebras.

PROOF: The proof extends the corresponding proof for LL*. Soundness is
proved as usual. For instance for |a>-V assume that = = |a>(¢ V ¢»). Then
there is an 2’ such that 2’ = ¢ V¢ and a.2’ < z. If 2’ = ¢ or 2/ = ¢ then we
are done. Otherwise let 2] Mab < 2/, 2] E ¢ and 2}, = ¢». Then a.2)] | |a>¢
and a.zy = |a> so (a.x]) M (a.2y) = |a>¢ V |a> and then ¢ = [a>¢ V |a>)
by the filter property, as (a.x}) M (a.2}) = a.(2) Na}) < a2’ < 2. As another
example consider a-b-synchronisation. Suppose = | <a|(|b>¢ — ¢). Then a.x |
|b>¢ — . Let y = ¢ and we must show = x y | <a-bJth. Now by = |[b>¢ so
(a.x) X (b.y) = (a-b).(x xy) E . Thus X y = <a - by as desired. Soundness
of the converse implication, and of the remaining axioms and rules is established
in a similar manner.

Completeness, safety algebras. A canonical model construction is given, based on
the completeness proof for positive linear logic, Theorem 2.4. Similar to LL*-
theories, PL-theories are sets of formulas closed under implications provable in
PL, and adjunction. Moreover, in the case of safety algebras, PL-theories are
required to be nonempty. The valuation V and operations [T and x are unchanged.
The constant 0 is the set of all PL formulas, and 1 is the set of all PL theorems.
Finally prefixing is defined by a.T" = {¢ | <a|¢ € T'}. It is not hard to check
that the constants and operations are well-defined. Clearly 1 and 0 are nonempty
PL-theories, and by the proof of Theorem 2.4 ' and x map PL-theories to PL-
theories. To see they also preserve nonemptiness suppose ¢ € T} and ¢ € Ts.
Then ¢ V¢ € Ty M T,. For x note that

Frpr ¢ = (0 = (0= (¥ = 7)) = 7))

so that ¥ — ((¢ — (¢ — 7)) — v) € T1 whence (¢ — (¥ — 7)) = v € Ty x Ts.
To verify the well-definedness of prefixing suppose Fpy, ¢ — ¢ and ¢ € a.T'. Then
<a|p € T so by <al-monotonicity, <al) € T too. Hence @0 € a.T as desired.
Also if ¢, € a.T then <al|¢, <a|p € T so <a|p A <a|p € T, and then by <al-A,
<al(¢Ap) € T as well. Hence ¢ A1) € a.T. For nonemptiness suppose that ¢ € T
Then by —-<al-|la> also <alla>¢ € T, so |[a>¢ € a.T, and we have completed
the well-definedness check.

To check that the canonical structure forms a safety algebra we know from the
completeness proof for LLT that it forms a frame. In addition equations (i)-(iv),
Definition 5.1 must be checked. Trivially 0 x 7" C 0. For the other direction
let ¢ be an arbitrary formula. As T is nonempty (!) we can find some ¢» € T.

26

Then ¢ — ¢ € 0 so that ¢ € 0 x T'. So it only remains to check the properties
relating to prefixing. For equation (ii) we obtain ¢ € a.(Ty N T3) iff |a>¢ € Ty
and |a>¢ € Ty (by the above observation) iff ¢ € (a.Ty) M (a.Tz). For equation
(iii) assume first that ¢ € (a.Ty) x (b.13). Then for some ¢ € b.Ty, ¢ — ¢ €
a.Ty. Then |a>(¢ —) € Tyo. By |b>-<b|-— transitivity and detachment we
obtain Fpr, (¢ — ¥) — (|b><bl¢ —), so |b><bl¢ — ¥ € a.T, and then
<al|(|b><bl¢ —) € Ty. Then by a-b-synchronisation, <a|¢ — <a - bltp € T} as
well, thus <a - blyp € Ty x Ty. But then ¢ € (a - b).(Ty x T3) as desired. For the
converse inclusion, assume that this holds, thus <a - b|¢p € Ty x Ty. Then for some
¢ € Ty does ¢ — <a-blyp € Ty, and then by a-b-synchronisation, <al|(|b>¢ —
) € Ty as well, so that |b>¢ — ¢ € a.T1. Also |b>¢ € b.T, as we saw above and
thus ¢ € (a.T1) x (b.7T3) as needed. Equation (iv) is left as an easy exercise.

Finally we need to check that ¢ € T iff T |= ¢. This part of the proof is
common to both the safety and the liveness case. The proof is by induction in the
structure of ¢, and for all connectives except the modal ones the proof is identical
to the corresponding part in the proof of completeness for LLT, Theorem 2.4. For
the modal connectives:
¢ = |a>¢’. I T = ¢ then there is some nonempty PL-theory 7" s.t. 7" |= ¢’ and
a.T" C T. By the induction hypothesis ¢’ € T" thus |a>¢’ € a.T' by the above
observation and then |a>¢" € T. Conversely, if |a>¢" € T then a.th{¢'} C T
where th{¢’} is the least PL-theory containing the set {¢'}. By the induction
hypothesis, th{¢'} E ¢' so T | |a>¢'.
6 = <al¢’. U T |E ¢ then «.T |E ¢' and by the induction hypothesis, ¢’ € a.T
whence <a|¢’" € T. Conversely, if <a|¢’ € T then ¢’ € a.T and by the induction
hypothesis a.T = ¢'—ie. T |E <ald'.

The proof for the safety case is then complete, for if /py, ¢ then ¢ & 1, thus
1} 6.
Completeness, liveness algebras. This part of proof is a simple adaptation of the
completeness proof for safety algebras. Here we can take 0 = () and proceed as
above. It suffices to note that the required properties of 0 holds in this case. 0O

We can now show PL to be a conservative extension of LL* by embedding
general models as in section 2 into models based on liveness algebras in a way that
preserves satisfaction.

Theorem 6.3 PL is a conservative extension of LL™T.

Proor: If I/;1+ ¢ for some positive formula ¢ then we find a general model M
such that 1y = @, by 2.4. Moreover, as we noted, M may be assumed to contain
an element 0 which is zero for both M and x. We can turn M into a model M’
based on a liveness algebra by defining a.x = = for all @ € L. . Then it is a simple
induction to verify that for all elements x, x |y ¢ iff @ |Epr ¢ for all positive
formulas ¢. But then 15 & ¢ so /p1, ¢ by Theorem 6.2, and we are done. O

27

6.3 Synchronous Quantales

In analogy to the quantale-based interpretation of LL™ of section 2.3 in this section
we develop synchronous quantales as algebraic correlates of PL.

Definition 6.4 (Synchronous quantale). A synchronous quantale is a structure
(Qv qutqv |'>q) where

1. |->4 is a group homomorphism which to each ¢ € L associates a unary
operator |a>, on @,

2. (Q,04,t,) is a quantale,

3. |a>, distributes over arbitrary joins, i.e. |a>,(V,;u;) = V{|a>,u;},
L Ja b0y 0) = (Jagu) oy (Jb40),

b. |ex,ty =ty

Reflecting the adjunction of fusion and implication in quantales, in synchronous
quantales the reverse modality <a|q can be characterised as a right adjoint for |a>,.
That is, in analogy with 8, <a|q is a right adjoint for |a>:

u < <al viff la>,u <o, (17)
and using infinite joins <a|q can be defined by
<al,u= VA{v | |a>v < ul. (18)

The notions of interpretation and validity with respect to synchronous quantales
follow those of section 2.3 entirely. For a synchronous algebra A the filter comple-
tion of Ais the synchronous quantale qu(A) with \/, o, and t, defined as in section
2.3, and |a>,B = {x | Jy € B. a.y < x}. The verification that qu(A) is indeed a
synchronous quantale, and that the relation = € B satisfies conditions 2.2.2-6 as
well as (14) and (15) is left to the reader. Conversely, following the proof of the
completeness theorem 6.2, the filter completion fr(Q)) of a synchronous quantale)
comes in two variants, according to whether a safety or a liveness algebra is being
constructed. Thus for the safety case fri(Q) consists of all nonempty filters 7" of Q)
with 0 = @ and a.T = {u | <a| u € T} = {u| v € T. a.u < v}. For the liveness
case fry(Q)) consist of all filters of @ with 0 =) and a.L as in fr{(Q). In both cases
it is easy to check that fri(Q) and fry(Q)) are both well-defined, and that T' |= u
iff u € T'. Soundness and completeness with respect to the synchronous quantale
interpretation then follows as in section 2.3.

28

7 The process-based interpretations

While the semantics of formulas of section 6 is given in terms of general syn-
chronous algebras, as in section 3 it is the induced interpretations on the process
terms themselves defined by

p =i ¢ iff [pls,

= ¢

that are ultimately of real computational interest. In this section we begin investi-
gating these interpretations further. It is shown, in particular, that these induced
interpretations characterise the corresponding behavioral preorders on processes in
the sense that p C; ¢ iff for all ¢, if p |=; ¢ then ¢ |=; ¢. For this to make sense we
must require that only closed formulas, formulas without occurrences of atomic
propositions, are considered. This is similar to the situation in e.g. Hennessy-
Milner logic. To regain sufficient expressive power we then have to extend the
language of positive modal formulas by adding a constant 0 whose interpretation
is tied to the process constant 0 just as the interpretation of t is tied to the process
constant 1. That is, for general models, = =3 0 iff 0 < 2. Note that for safety
algebras 0 denotes the singleton set {0}, and for liveness algebras 0 is the exten-
sional truthhood constant. For a discussion of the problems involved in extending
the soundness and completeness results of the preceding section to the extended
language see Dam [8].

We first consider the interpretation of extended closed formulas in terms of
the initial safety and liveness algebras. Note that the satisfaction conditions for
conjunction, linear implication, and past modalities are given in purely structural
terms, i.e. they do not refer to the ordering < corresponding for the initial algebras
to the behavioral preorders on terms. Hence no characterisation of the initial
algebra interpretations is needed in these cases.

Proposition 7.1 (Initial Safety Algebra Interpretation) Let ¥ € D;.
1. Y Et iff & may A implies e € A, and X may {e} implies ¥ after ¢ Et,

2. ¥ | ¢op iff there are ¥1,%5 € Dy such that ¥4 E ¢, ¥y E o and for all
o € Y there are o1 € X1 and 09 € Xy such that o = 01 X 09,

3. Y EOVYiff foraloe X, chio} E ¢ or ch{o} E ¥,
4. B la>¢ iff

a. ¥'E ¢ for some ¥ € Dy,
b. X may A implies a € A, and ¥ may {a} implies ¥ after a |= ¢,

5. ¥ E 0 iff there is no A for which ¥ may A.

29

Proor: 1. ¥t iff ¥ C cly(1) iff for all o € ¥, 0 < 1, iff ¥ may A implies
e € A and ¥ may {e} implies ¥ after e = ¥ = t.

2. Immediate by the definitions.

3. Assume ¥ = ¢ V¢ and let 0 € X. Then ¥ D cly{c}, so by the filter property
also cli{o} E ¢ V1. Either cli{o} | ¢ or cli{c} | ¢ in which case we are done,
or there are ¥1,%,; € Dy such that ¥ E ¢, ¥y | ¢ and 37 U X, O ci{o}. But
cli{o} is coprime with respect to C, that is, whenever ¥; M Y, C cli{o} then
either 31 C cli{o} or ¥y C cl;{o}. Hence by the filter property also in this case
either cli{o} = ¢ or cli{c} |E ¢. For the converse direction assume that for all
o € X, either cli{o} = ¢ or cli{o} |E . As ¥ is generated by a finite set ¥/, ¥
can be written as a finite union U{cly(c) | o € ¥'}. As each cli{o} | ¢ V ¢ by
the filter property also ¥ = ¢V 9.

4. Similar to 1.

5. ¥ =0 iff cly(0) O ¥ iff ¥ = {0} iff for no A, ¥ may A. 0

Note that 7.1.2 is somewhat unsatisfactory in that references to < are hidden
in the use of path equality. We return to this issue below. The elements of the
form cl;{c}, i € {1,2}, are exactly those elements of D; that are coprime with
respect to C. The statement of Proposition 7.1.3 can consequently be read as

Y = ¢ Vo iff for all coprime ¥/ C X, ¥ E ¢ or ¥/ | 9.

Thus the interpretation of disjunction with respect to the initial safety algebra is
seen to be related to the interpretation of disjunction in Beth models for proposi-
tional intuitionistic logic, and to that of Allwein and Dunn’s recent Kripke models
for linear logic [4]. Similar comments applies to the initial liveness algebra inter-
pretation:

Proposition 7.2 (Initial Liveness Algebra Interpretation) Let ¥ € Ds.
1. X Et iff & must {e} and ¥ after e E t,
2. ¥ | ¢ o iff there are ¥1,%5 € Dy such that ¥4 E ¢, ¥y E % and for all
o € Y there are o1 € X1 and 09 € Xy such that o = 01 X 09,
3. Y EOVYiff foralo e X, chio} E ¢ or chio} E ¥,
4. Y Ela>¢ iff ¥ must {a} and ¥ after a |= ¢,
5. Y E0 (adways).
PrOOF: Similar to the proof of Proposition 7.1. O

Using Lemma 5.4 it is straightforward to derive from these two propositions
equivalent, operationally determined satisfaction conditions directly on process
terms. In addition to the relations may, must, and after, a syntactic characterisa-
tion of the coprime elements is needed. The appropriate notion is that of a trace:
a process term built using only 0, 1, prefixing and x. The set traces(p) of traces
of p is defined in the obvious way by

30

p1 P p2) = traces(py) U traces(ps),

traces(pr X p2) = {q1 X ¢2 | ¢1 € traces(p1), ¢z € traces(pz)}.

The satisfaction conditions on terms derived from Propositions 7.1.2 and 3 and
7.2.2 and 3 are then the following:

plEidop il there are py,py such that py |=; ¢, p2 |, ¥, and for

all traces ¢ of p there are traces ¢; of p; and ¢ of p,

such that ¢ ~; ¢; X qq, (19)
pEioVy iff for all traces ¢ of p, ¢ ;i ¢ or ¢ = 1. (20)

Note that in contrast to the case for the other connectives, for fusion (19) has
not yet succeeded in eliminating references to the behavioral equivalence relations
~, entirely. This is certainly possible, but only, it appears, by replacing these
references by normal forms, or the semantical mappings [-];. This inelegance is one
reason why we prefer the implication to the fusion when operational interpretations
of the PL (and indeed LL') connectives are concerned.

We then show that the initial algebra interpretations induce the appropriate
orderings. Each member ¥ € D;, ¢ € {1,2}, is generated by a least, finite set X'.
The characteristic formula, cf(¥), of ¥ is then determined as the disjunction of
the representation cf(o) of each member o of ¥ where 0 is represented as 0, 1 as
t, and prefixing as the future modality.

Lemma 7.3 Fori € {1,2} and 31,35 € D; the following statements are equiva-
lent:

1. 22 |: cf(Zl)
2. 31 2 Y.
3. For all extended, closed ¢, if ¥4 = ¢ then Xy | ¢.

ProoOF: 1iff 2. Assume that ¥y |= cf(¥). By an argument similar to that of the
proof of Proposition 7.1.3 this holds iff cl;{o2} |= cf(¥1) whenever o4 is a member
of the least generating subset of ¥5. This is the case iff cl;{os} | cf{o1} for some
member oy of the least generating subset of ¥;. We then just need to show that
cli{oy} E cf{o1} iff o3 < oy for the case i = 1, and cl;{o2} | cf{oy} iff o1 < oy
for ¢ = 2. This is shown by easy induction in the length of 7.

2 implies 3. By the filter property.

3 implies 2. By the implication 2 to 1 it follows that ¥; = cf(¥1). Assuming 3 we
obtain ¥, |= cf(X1), so ¥; O ¥ by the implication 1 to 2. O

The Logical Characterisation Theorem now follows as an easy corollary.

31

Corollary 7.4 (Logical Characterisation Theorem) For i € {1,2}, p C; ¢ iff for
all extended, closed &, if p =i ¢ then q =, ¢.

ProoF: By Lemma 7.3, Lemma 5.5, and Propositions 7.1 and 7.2. O

& Axiomatisation

In the remaining part of the paper we give procedures for deciding validity of
formulas with respect to the process-based interpretations. That is, procedures
that, given an extended closed formula ¢, decides it ¢ is z-valid, meaning that the
unit process satisfies ¢ under the D; interpretation, for ¢ € {1,2}. The procedures
use a rewriting-based approach. We add a number of new axiom schemas which are
used to rewrite arbitrary extended closed formulas into a normal form. Thus sound
and complete axiomatisations are obtained as byproducts using this approach. For
the initial safety algebra, in particular, soundness depends on the underlying label
group being infinite. In the present section these axiomatisations are presented
and their soundness proved.

We consider only the o-free fragment here. The primary reason is that the
double induction used in the proof of completeness below means that the length
of the proof increases with the square of the number of logical connectives. We
see no essential problems, however, in extending the results to cover o as well.

Note first that with respect to the initial algebra interpretations the extensional
falsehood constant 1, and consequently also an “intuitionistic” negation — and the

extensional truthhood constant T, can be derived: Let L 2 <al||b>0 for some fixed

a,b € L such that a # b, =¢ 2 ¢— L,and T 2 — 1. To see that this is reasonable
note that in both Dy and D,, if a.3; < 6.3, then a = b. Hence for neither of
the two interpretations can there be a ¥ for which ¥ = <al|b>¢ when a # b.
Thus for the initial algebra interpretations L expresses the empty set. This has
extremely curious consequences for the expressive power of the derived negation.
For instance —¢ expresses the nonexistence of a ¥ € D; for which ¥ | ¢. When
this is the case we say that ¢ is 2-unsatisfiable. As a consequence =—¢ expresses ¢-
satisfiability, or consistency: ¥ = ¢ for some ¥ € D;. Given this expressive power
the Henkin-style approach used earlier appears untenable: Theories must have
the global property that ¢ € T for some theory T if and only if ==¢ € T for all
theories T”. This motivates our rewriting-based approach in which the satisfiable
and unsatisfiable can be given direct syntactical characterisations.

The extensional truth- and falsehood constants are governed by the expected
axioms:

L-Elim 1L -9
T-Intro ¢ — T

32

Let PL™ be PL minus the axioms ol and o2 governing o, and let PLT _ be PL™
augmented with the axioms |-Elim and T-Intro. The following Proposition
summarises some theorems and derived rules of PL{_:

Proposition 8.1 (Theorems of PLT _)
L Fprz (0=) = (¥ — =9)
2. '_PL;V_ ¢ — 20
3. I—PL;_ g — g
b Fprs 6= (6= 9)

FpL- T —¢ Fpr-_ (6AY) =7

5.
I_PL;V_ Y=

PrOOF: 1: An instance of C. 2: Use 1 and 1. 3: Use 1, 2 and B. 4: Use L-Elim,
B and C. 5: By the A-axioms and transitivity we obtain '_PL; B (T AY) — v, and

then by the A-axioms, transitivity and T-Intro, '_PL; R E? O
The extended logics PL™(D;) and PL™(D,) are determined by adding the

following axioms to the axioms and rules of PL{_. We shall make no attempt
to justify each of these axioms intuitively. Each axiom reflects some property
which holds in the initial algebra interpretation concerned but which fails to hold
in general. A simple example is the Distribution axiom below which is a direct
consequence of Propositions 7.1 and 7.2. The axioms common to both PL™(D;)

and PL™(D,) are the following:
Distribution ¢ A (V) = (6 AY)V (A7)

la>-A la>¢ A ja>1p — Ja>(o A)

<al-V <al(¢ V) — <alo V <aly

<al-la>-— <alla>¢ — ¢

—a> —¢ < —la>o

—-V (la>6 — Viea [6>08) — Viealla>¢ — [b>1h)

where in —-V A ranges over finite, nonempty subsets of L. The additional axioms

for PL™ (D) are the following six:

sl =0

52 (m=¢) = (0 — ¢)

s3 la>¢ A [b>1 — 0 (provided a # b)

s4 (== A==b A(la>¢ — [b>9)) — a7 - b>(6 — o)
5 (T = Vaea la>¢a) < (O A (Viear 77¢0a))

s6 (m=é A(la>¢ —0)) =0

33

For PL™ (D) the following four axioms are added instead:

11 T—=0

12 (A]a>T) — |la><alg

13 (m=¢ A (la>¢ — [b>1)) — |a™h - b>(6 —)
14 (T = Vaen la>¢a)

We note a number of theorems of PL™(Dy) and PL™(D,) for later use.

Proposition 8.2 (Theorems of PL™(D;) and PL™(Ds))
Let '_PL qb if '_PL qb for both 1 =1 and 1 = 2.

1. Fpr-(p) la>(o A %/)) < ([a>0) A (la>)
2. bpr-(py <al(o V) & (<a|¢) V (<aly)
3. Fpr-y ¢ = <alla>¢

4. FPL_(D) t — <elt

5. '_PL —|q$ — —<ald

6. Fpr-(p,) (779) < (0 — ¢)

7. Fpr-(p,y ~<al0

8. Fpr-(py "<allb>¢, provided a # b

9. Fpr-(p,) ~(la>¢ A [b>1)), provided a # b

PROOF: 1: « by |a>-A, — by the A-axioms, transitivity and |a>-monotonicity.
2: Similar. 3: By —-<al-la> and <al|-la>-—. 4: By <e|-necessitation and t1,
FpL-(p) <elt, so FpL—(py t — <elt by t2. By similar reasoning FpL-(p) t — le>t.
Then by <e|-monotonicity, transitivity and <e|-|e>-—, FpL-(p) <eft — t. b
By |a>-<a|-—, transitivity and permutation, FpL-(p) (m¢) — (—|a><alg), so
by —]a> and transitivity the result obtains. 6: — by s2. « by transitivity,
permutation and sl. 7: Let b # a. An outline of the proof follows:

L. =[b>0 — =<b|[b>0 by 5

2. —=<h||b>0 — —=[b>0 by standard reasoning

3. (0 — <b||b>0) — (0 — |6>0) by 7

4. 00— |b>0 by —-<bl|-|b>

5. —<al0 by <a|-monotonicity and def. —

8: Let a # b. For PL™(Dy) first, by s3, <a|-monotonicity and distribution of <al|
over A, Fpr—(p,y <alla>T A <a[[b>¢ — <al0. Then by —-<al-la>, <al-[a>-—
and standard reasoning, Fpy,-(p,) <al[b>¢ — <a[0. But by 7 it then follows that
FpL-(ny) —<allb>¢. 9: The proof is outlined as follows:

34

L. |a>¢ A o> — |a>¢ A[b>Y A a>T by standard reasoning

2. la>¢ A|b> — |a><al(la>¢ A [b>) by 12

3. Ja>¢ A|b>y — |a>(<alla>¢ A <al|b>1)by distribution of <a| over A
4. |a>o AN |b> — |a>(<alla>d A L) by 6, assuming a # b

5. la>¢ A Jb>yp — Ja>L by standard reasoning

6. —(la>¢ A [b>) by —|a>

a

Theorem 8.3 (Soundness of PL™(D;) and PL™(D3)) For all extended, closed
Jormulas ¢, if Fpy-(p,) ¢ then 1, E ¢.

PrOOF: The proof is largely routine, and relies on Propositions 7.1 and 7.2. A
representative collection of cases is proved below.

la>-A. If ¥ | |a>¢ and ¥ |= |a>1 then either ¢ = 1 and ¥ = 04, in which case
Y Ja>(d Av), or else ¥ = a.X and ¥ after a = ¢ At by 7.1.3 and 7.2.3.

—-V. Suppose X |= |a>¢ — Vyep [b>10y. First if there is no ¥/ such that ¥ = |a>¢
then we are done, so assume not. Let A’ = {c | Jo.c.o € ¥}. If A’ = () then in
case t =1 ¥ =0q, and ¥ | [a>¢ — [b>1, for all b € A. In case ¢ = 2 we obtain
a contradiction. So A’ # . For each ¢ € A" let ¥, = cl;{oc € ¥ | Jo'.0 = c.0’'}.
Then ¥ = [J.epr 2e. It suffices to show that for each ¢ € A’ there is a b € A such
that . = [a>¢ — |b>¢y. Fix ¢ € A0 Then X, = |a>¢ — Vyep [b>10 by the
filter property. Let ¥ | |a>¢. We can assume that ¥ has the form «.X]. Hence
Ye X X1 E Vien |0>p, s0 ¢-a € A and X, X ¥y | |e- a>t.,. But the chosen
disjunct was independent of ¥, so we have verified that ¥. | |[a>¢ — |c- a>t..,.

s4. Suppose ¢ and v are both satisfiable in Dy and that ¥ | |a>¢ — [b>1. If
¥ = 0y the proof is easily completed, so suppose not. If ¥ = (¢! - 5).%’ for some
Y/ then there is some o in the least generating set of ¥ such that ¢ = ¢.o’ for some
o’ and ¢ # a='-b. Then cly{c} [£ |b>, a contradiction. So indeed ¥ = (a™*-5).%’
and whenever ¥y = ¢ then ¥/ x ¥y =4, that is, ¥ | |a™! - b>(¢ —).

sh. Suppose ¥ = T — V,ea |a>¢, and suppose for a contradiction that ¥ # 0.
Then for some b and o, b.o € ¥. Pick any ¢ ¢ A. As L is infinite such a
¢ exists. Now (b7' - ¢).0; E T so ¥ x (b7' - ¢).0; E Vieale>¢,. But then
cli{b.c} x ci{(b7" - ¢).0} = cly{c.0} = |a>¢, by 7.1.2, but this is a contradiction
by 7.1.3. For the second conjunct observe that 01 = V,cp |[a>¢, so 01 = |a>0,
for some a € A by 7.1.2 and then ¢, is 1-satisfiable by 7.1.3. For the converse
implication, if ¢, is 1-satisfiable then for any ¥, 0 x ¥ = 01 &= V4ea la>¢, by
7.1.2and 3,80 01 | T — Vaea la> .

12. If ¥ = ¢ and ¥ |= |[a>T then ¥ = a.¥ for some ¥'. But then ¥ | |a><alo¢.
4. Y =T — Vaea la>¢, then ¥ X 02 = V,en la>0,, a contradiction. O

For finite label groups soundness of PL™(D;), axiom sb in particular, fails in
general. The problem is the implication (T — V,cp |a>¢,) — 0. For if indeed L

35

is finite then {a.0 | @« € L} U{0} =T — V,¢r |e>T while {a.0 | a € L} U{0} }~ 0.
The problem of devising a sound and complete axiomatisation for the case of finite
label groups appears a difficult one and remains open.

9 Completeness and decidability

In this section the completeness of PL™ (D) and PL™(D,) is proved, and it is
shown how the proof determines decision procedures for the properties of i-validity
and ¢-satisfiability. The proof has three ingredients. First a suitable notion of
normal form is introduced. Secondly the z-valid and z-satisfiable normal forms are
characterised in syntactic terms. Thirdly, and finally, we show that each formula
is provably equivalent to a formula in normal form.

Definition 9.1 (Normal Form, Satisfiable Normal Form) The set satNF of satis-
fiable normal forms is defined inductively by

1.1, T, 0 € satNF,
2. if for each a € A, ¢, € satNF then \/,, [a>¢, € satNF.

The set NF of normal formsis NF = satNF U { L}.

Proposition 9.2 Let i € {1,2}. The following statements are equivalent.

1. ¢ € satNF

3. ¥ E ¢ for some ¥ € D,

Proor: 1iff 2. By soundness ’7/PL—(Di) ==L so we need just check '_PL—(Di) i)
whenever ¢ € satNF. An easy structural induction suffices to establish this. For
t and T use [or T-Intro, t1 and 8.1.2. For 0 and ¢ = 1 use [and 8.2.6, and for
i =2 use 11. For V,cp |a>¢, € satNF use the induction hypothesis and —|a>.

3 implies 1. If ¥ |= ¢ then ¢ € satNF.
2 implies 3. If '_PL—(Di) —=¢ then 1; = —=—¢ by soundness. a

Next the valid normal forms are characterised. In order to be able to define
valNF uniformly we assume here that 0 in the case ¢ = 2 is defined by 0 27,

Definition 9.3 (Valid Normal Forms) The set vaINF of valid normal forms is
defined inductively by

1. t, T € valNF,

2. if V,ep la>¢, € satNF, e € A, and ¢, € valNF then \/ ., |[a>¢, € valNF.

36

Proposition 9.4 Let: € {1,2} and ¢ € NF. The following statements are equiv-
alent.

1. ¢ € valNF
2. Fpr—(p,) ¢
3. 1L, Eo¢

ProoOF: 1 iff 2. An easy structural induction in ¢. Note ’7/PL—(Di) 1, ’7/PL_(D1
0 for ¢« =1, Fpp- () b and Fpy-p (o 1. Let & = Vaenla>0, € satNF and
'_PL qb Then 1; |— ¢ by soundness, so e € A and Fpp - (Dy) ¢.. By the
mductlon hypothesis ¢. € valNF so ¢ € ValNF as well. If Conversely ¢ € valNF

and '_PL qb then '_PL qb by the induction hypothesis, |e>-necessitation
and V- Intro

2 implies 3. By soundness.

3 implies 1. An easy structural induction in ¢. a

The largest single step of the completeness proof is the normalisation theorem
below. At first glance it might seem surprising that as sparse a vocabulary as
the constants plus V and |a> suffices to express the whole language. On the
other hand we have already seen that in both D; and D, all occurrences of x are
eliminable in favour of operators 0, 1, & and prefixing only.

Theorem 9.5 (Normalisation) Let ¢ € {1,2}. There is an effective procedure
which given any extended closed ¢ produces a ¢ ENF such that '_PL qb — ¢

PRrROOF: See section 10. O

Corollary 9.6 (Completeness of PL™(D;)) Let i € {1,2} and 1; = ¢ for ¢ an
extended closed formula. Then '_PL—(Di) 0.

PrOOF: By soundness, the Normalisation Theorem and Proposition 9.4. O

In a similar fashion the decidability of the properties of i-validity and i-
satisfiability is easily seen.

10 Proof of the Normalisation Theorem

The proof proceeds by cases and induction in the modal depth of formulas. Abbre-
viate '_PL gb — ¢' by ¢ =; ¢, or just = when ¢ is understood from the context.
We prove the shghtly more general statement that for each extended closed ¢ there

is an effectively computable ¢’ € NF of a modal depth not exceeding that of ¢
such that ¢ =; ¢'.

37

10.1

The safety case

Let first ¢ = ¢1 — &2, and assume that ¢1, ¢, € NF. We proceed cases on ¢y and
when necessary also ¢,.

a. ¢y = L. Then ¢ = T.

b. ¢1 = T. We proceed by cases on ¢s.

1
1
11
v

A%

. ¢ = L. Then ¢ = L.

ii. ¢ =T. Then ¢ = T.
i. ¢ =0. Here ¢ = 0.

. 93 =t. Then ¢ =0 by sb.
. 02 = Vaen la>¢,. Here ¢ = 0, again by sb.

c. o1 = 0. If 9o = L then ¢ = L. Otherwise ¢, € satNF so |_PL_(D1) ¢ by
Proposition 9.2, so ¢ = T by T-Intro and Propositions 8.2.6 and 8.1.4.

d. ¢ =t. Here ¢ = t.

e. 01 = Vaep, |a>10,. We proceed again by cases on ¢,.

1

11

iil.

v

. ¢ = L. Then ¢ = L.

ii. ¢ = T. Here 9 = T.

¢2 = 0. Note first that |_PL_(D1) 0 — ¢. For |_PL_(D1) &1 — =0,
giving the result by s2 and permutation. For the converse implication
'_PL_(Dl) ¢ — Agen, (la>1p, — 0) by standard reasoning. Secondly
'_PL_(Dl) ——tp, for all @ € Ay by Proposition 9.2 so by s6 and Proposi-
tion 8.1.5 '_PL_(Dl) /\aeAl(|a>¢a — 0) — 0 and we’re done.

. ¢ = t. By standard reasoning we first obtain ¢ = A,cp, (|a>0, —
le>t). As Fpp-(p,) 7ola>t, for each @ € Ay and bpp-(p) —le>t
then by s4 ¢ = Ayep, la7'>(ths — t). By the induction hypothesis
we find for each @ € Ay a v, € NF such that v, — t = ~, and thus
¢ = Naea, la7'>7,. If some 7, is L then ¢ = L by =|a™'>. Otherwise
'_PL_(Dl) 0 — Auea, la™'>7. by Proposition 9.2, 8.2.6 and A-Intro, so
if Ay has size greater than 1 then by s3, ¢ = 0. Otherwise let Ay = {a}
and we obtain ¢ = |a™!>~,.

. &2 = Vien, |6>7. By standard reasoning, ¢ = A,ca, Vien,(la>0, —
|b6>73), and as in case (iv) we obtain ¢ = Asea, Viea, @™ - 0>(¢, —
7). So by the induction hypothesis we find for each pair a,ba 6, € NF
such that 6,5 = thy — 75, and then ¢ = A,ea, Vien, |@7 - 0>64,. Using
Distribution

o= Vf:A1—>A2/\aeA1 |a_1) f(a)>5a,f(a)v

38

and by —|a> we can assume that 6,; # L for all a,b. Fix f: Ay — A,.
Suppose there is some a1, ay € Ay such that a7’ - f(a1) # a3' - f(az).
Then Ayen, |@™" - f(@)>64, () = 0 by s3 and 9.2. If on the other hand
ar - fla1) = a3' - f(ay) = ay, say, for all ay,az € A then

Aaenyla™ - f(a)>bu s(0) = las>Naen, Sa.sa)-

We now apply the induction hypothesis and find some 6,, such that
Nuen, Ca.f(a) = ba;- It is now a simple matter to complete the rewriting
using the tools already introduced.

This completes the case for ¢ = ¢1 — ¢3. Assume next that ¢ = ¢ A @9,
¢1,¢2 € NF. The only interesting case here is when ¢ = V, e, |a>¢, and ¢, =
Vien, |6>1s. The other case are either already covered or in the case of t easily

reducible to the present case. To rewrite into normal form first use distribution to

obtain the form ¢ =V, ; [a>dq A[b>%)y, and then 9.2 and s3 to obtain either ¢ = 0
if A1 N A5 is empty, or if not, ¢ = V,ep,na, [6>(0a Atdy). The induction hypothesis
is then used in a routine way to rewrite V,cx,na, |a>(0a A 0,) into normal form.
The remaining cases are straightforward and left to the reader, as is the check
that the size of ¢ does not increase under normalisation.

10.2 The liveness case

Let again ¢ = ¢ — ¢, ¢1, 02 € NF. The case for one of ¢; or ¢, equal to 0 need
not be considered. The case for one of ¢ or ¢, equal to L is trivial.

a. ¢1 = T. Procees by case on ¢,.

i. 9o =T. Then ¢ = T.
ii. ¢ =t. Then ¢ = L by 14, as t = |e>t.
i, @2 = Viep, |0>1s. Here ¢ = L by 4.

b. ¢1 =t. Here ¢ = ¢s.
c. o1 = Vgep, |[a>¢q. Proceed by cases on ¢,.

i. oo = T. Then ¢ = T by 8.1.4.

. ¢ = t. We first obtain ¢ = A,ep, (Ja>¢, — |e>t). By 9.2, |a>¢, is
2-satisfiable, so by 13 and 6.1.3 ¢ = A,cp, a7 >(¢, — t). By 8.2.9 we
obtain ¢ = L whenever A; contains more than one element. Otherwise
let Ay = {a}, and it is now a simple matter to apply the induction
hypothesis to ¢, — t and obtain the desired normal form.

i, @2 = Vipep, |6>%s. As in the proof for the safety case we obtain ¢ =
Via =, Aaen, la7h - f(@)>6, 5(a) Where each &, f(q) is 2-satisfiable and
in normal form. Fix f: Ay — A,. If there is some aq, a3 € A such that

39

ay " f(ar) # ay'f(az) then Ay, la™" - f(a)>6, ¢(a) = L. Otherwise let
Ay = {ay} and then A,en, [a7" - f(a)>041(a) = 5> Auep, Oa,f(a), and
the rewriting into normal form can then be completed by the induction
hypothesis and standard reasoning.

Assume next that ¢ = ¢1 A @2, &1, 92 € NF. The case for one ¢ and ¢5 equal to
T is trivial. For the rest:

a. ¢ = t. If ¢ =t then ¢ = t so assume instead that ¢y = Vycn, |[6>0s.
Then ¢ = Viyen, (le>t A |b>1y, so if € € Ay then ¢ = L by 8.2.9. Otherwise
¢ = |e>(tAtpy) which is easily rewritten into normal form using the induction
hypothesis.

b. ¢1 = V,ea, |a>¢.. The proof proceeds as in case (a).

The remaining cases and the check that normalisation does not increase size is left
to the reader.

11 Conclusion, and Future Work

Our aim has been to investigate the use of linear and relevant logics as logical
handles on the static structure of processes, and in this framework explore the
use of modal operators to account for dynamic behaviour. We have given three
examples, one of which was studied in detail, and a number of completeness and
characterisation results have been obtained concerning axiomatisations and the
relationship to linear logic proper as well as to the computational interpretations
of (term) models. Computationally the main example is rather weak in that it
lacks a suitable notion of controllable choice. It is an important issue for future
work to extend our approach in this direction. In Dam [8] one such extension is
pursued, sacrificing, however, the algebraic interpretation of formulas and the tight
relationship to linear logic. Another important issue is to consider asynchronous
parallel composition as in CCS. One option is to try and reduce asynchrony to
synchrony by introducing special idling actions as in e.g. [30].

It is important to note the strength of the completeness and decidability re-
sults obtained in the last part of the paper. Clearly they solve the problems of
satisfiability and model checking posed in the introduction; the latter indeed in a
compositional manner. Moreover a large range of entirely new correctness prop-
erties can now be decided which express structural properties of processes such as
the following:

Given process ¢, and specifications ¢ and 1), does there exist a process
p such that p | ¢ and p x ¢ E ¢7

Process p can be mechanically derived from the normal form of the formula ==(¢A
(cf(q) —)) where cf is the representation of processes as formulas of section 7.

40

There are clear potential applications of such procedures for instance in the area
of program derivation. Note the relationship to the work on equation solving
of e.g. Parrow [23]. Of course, part of the strength derives from the relative
expressive weakness of the process and specification languages considered, and
it is not clear how far the results of the present paper generalises, for instance
to temporal properties. Indeed it may be that the completeness results achieved
here are too strong, and that instead completeness should be sought only in much
weaker forms, for instance for ground implications (formulas of the form ¢ — ¢
where neither ¢ nor ¢ contain occurences of —).

Basic to our approach is a concept of processes as a semilattice-ordered struc-
ture with the semilattice operation a choice operator required to be preserved by
parallel composition. We have explored the close relations to algebraic models
(such as quantales) of relevant and linear logics (c.f. Dunn [10], Abramsky and
Vickers [3]). Moreover there are intimate relations to the models for BCK-logics
of Ono and Komori [22], and for A/V distributive logics to the ternary relation
model for relevant logics of Routley and Meyer [26] (see Dam [8] for a detailed
exposition). While preservation of choice by parallel composition is natural in the
synchronous case, if asynchronous parallel composition is to be modelled directly
this is likely to be too strong, and only monotonicity with respect to the induced
semilattice ordering should be expected.

It may be of interest to consider process-based interpretations of connectives
other than the ones we have considered above, notably the De Morgan negation ~,
the intensional sum-operator 4, and the linear modalities ! and 7. Given just the
monoid structure of models, by distinguishing a constant formula 1 the double
negation construction of Girard [13] (the phase semantics) applies, and full propo-
sitional linear logic can be interpreted. Relating to the intended interpretation
of the monoid operation as parallel composition this interpretation is however of
dubious practical value. Our general models can be extended to cover De Morgan
negation by an approach similar to that of Ono and Komori: A subset of prime el-
ements and an involution (-)* is presupposed and then ~ is interpreted by @ | ~¢
iff for all prime y > z, y* £ ¢. For the linear 7 a possibility is to add a binary
relation R which is reflexive and for which

1. if 1Rz then 1 < z,
2. if (# M y)Rz then there are x1,y; such that x Rxq, yRy; and 21 My; < z,

3. if x X yRz then there are x1,y; such that xRy, yRy; and 21 x y; < z,

and then satisfaction is extended by « E7¢ iff there is some y such that 1 <y < z,
y idempotent (i.e. y x y = y) and for all z, if y Rz then z |= ¢.

Acknowledgements

Many thanks to Colin Stirling for innumerable useful discussions on the topics
discussed in the present paper. Thanks are due also to the referees for their useful

41

advice and for pointing out various errors.

References

[1] M. Abadi and G. Plotkin. A logical view of composition and refinement. In
Proc. Fighteenth Ann. ACM Symp. Principles of Programming Languages,
pages 323-332, 1991.

[2] S. Abramsky and R. Jagadeesan. New foundations for the geometry of inter-
action. Manuscript, 1991.

[3] S. Abramsky and S. Vickers. Quantales, observational logic, and process

semantics. Technical Report DOC 90/1, Imperial College, 1990.

[4] G. Allwein and J. M. Dunn. Kripke models for linear logic. Manuscript,
Indiana University, 1992.

[5] A. Avron. The semantics and proof theory of linear logic. Theoretical Com-

puter Science, 57:161-184, (North-Holland, 1988).

[6] S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequential

processes. Journal ACM, 31:560-599, 1984.

[7] C. Brown. Relating Petri nets to formulae of linear logic. Technical Report

ECS-LFCS-89-87, University of Edinburgh, 1989.

[8] M. Dam. Relevance Logic and Concurrent Composition. PhD thesis, Dept.
of Computer Science, University of Edinburgh, 1990. CST-66-90. Also pub-
lished as ECS-LFCS-90-119.

[9] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[10] J. M. Dunn. Relevance logic and entailment. In D. Gabbay, F. Guenthner
(eds.), Handbook of Philosophical Logic, vol. III, D. Reidel, pages 117-224,
1986.

[11] U. Engberg and G. Winskel. Petri nets as models of linear logic. In Proc. 15th
Coll. Trees in Algebra and Programming (CAAP), Lecture Notes in Computer
Science, 431, 1990.

[12] V. Gehlot and C. Gunter. A proof-theoretic operational semantics for true
concurrency. In Proc. International Conference on Applications and Theory

of Petri Nets, 1989.
[13] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-101, 1987.

[14] M. Hennessy. Synchroous and asynchronous experiments on processes. [n-

formation and Control, 59:36-83, 1983.

42

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-

rency. Journal of the ACM, 32:137-162, 1985.

M. Hennessy and G. Plotkin. Finite conjunctive nondeterminism. In K.
Voss, H. J. Genrich, and G. Rozenberg (eds.), Concurrency and Nets, pages
233244, 1987.

K. G. Larsen. A context dependent equivalence between processes. Theoretical

Computer Science, 49:185-216, 1987.

N. Marti-Oliet and J. Meseguer. From petri nets to linear logic. In Proc.
Category Theory and Computer Science, 1989.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

R. Milner. Communication and Concurrency. Prentice Hall International,

1989.

R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83-133, 1984.

H. Ono and Y. Komori. Logics without the contraction rule. Journal of

Symbolic Logic, 50:169-201, 1985.

J. Parrow. Submodule construction as equation solving in CCS. In Proc.
Foundations of Software Technology and Theoretical Computer Science, Lec-
ture Notes in Computer Science, 287:103-123, 1987.

G. D. Plotkin. A structural approach to operational semantics. Aarhus Uni-

versity report DAIMI FN-19, 1981.

A. Pnueli. In transition from global to modular temporal reasoning about
programs. In Logics and Models for Concurrent Systems K. R. Apt (ed.),
NATO ASI series, pages 123144, 1984.

R. Routley and R. K. Meyer. The semantics of entailment, i. In H. Leblanc
(ed.) Truth, Syntax and Modality, North-Holland, pages 199-243, 1973.

C. Stirling. Modal logics for communicating systems. Theoretical Computer

Science, 49:311-347, 1987.

A. Urquhart. Semantics for relevant logics. Journal of Symbolic Logic, 37:159—
169, 1972.

G. Winskel. A complete proof system for SCCS with modal assertions. Lecture
Notes in Computer Science, 206:392-410, 1985.

43

[30] G. Winskel. A category of labelled Petri nets and compositional proof system.
In Proc. 3rd Annual Symposium on Logic in Computer Science, pages 142—
154, 1988.

44

