
Decidability and Proof Systems for Language-Based
Noninterference Relations ∗

Mads Dam
Dept. of Microelectronics and Information Technology, KTH, Electrum 229, SE-164 40 Kista, Sweden.

mfd@kth.se

Abstract
Noninterference is the basic semantical condition used to account
for confidentiality and integrity-related properties in programming
languages. There appears to be an at least implicit belief inthe
programming languages community that partial approaches based
on type systems or other static analysis techniques are necessary
for noninterference analyses to be tractable. In this paperwe show
that this belief is not necessarily true. We focus on the notion
of strong low bisimulation proposed by Sabelfeld and Sands.We
show that, relative to a decidable expression theory, strong low
bisimulation is decidable for a simple parallel while-language, and
we give a sound and relatively complete proof system for deriving
noninterference assertions. The completeness proof provides an
effective proof search strategy. Moreover, we show that common
alternative noninterference relations based on traces or input-output
relations are undecidable. The first part of the paper is castin terms
of multi-level security. In the second part of the paper we generalize
the setting to accommodate a form of intransitive interference. We
discuss the model and show how the decidability and proof system
results generalize to this richer setting.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—semantics; F.3.1 [Log-
ics and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—mechanical verification; K.6.5 [Man-
agement of Computing and Information Systems]: Security and
Protection

General Terms Security, Theory, Verification.

Keywords Multi-Level Security, Information Flow, Noninterfer-
ence, Language-Based Security, Intransitive Noninterference.

1. Introduction
Noninterference is the basic semantical condition used to account
for confidentiality and integrity-related properties in programming
languages. Most often the concept is studied in the setting of multi-
level security [4, 11] with data assigned levels in a security lattice,
such that levels higher in the lattice correspond to data of higher

∗ Work supported by the Swedish Research Council

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM [to be supplied]. . . $5.00.

sensitivity. The question which noninterference aims to answer is
one ofinformation flow: A flow of information from a higher level
in the security lattice to a lower one could breach confidentiality,
and a flow from a lower level to a higher one might indicate a
breach of integrity. In the area of language-based security, nonin-
terference is of basic importance, since it provides the keysemantic
criterion by which the soundness of analysis methods must beeval-
uated.

A number of noninterference conditions have been proposed in
the literature (cf. [28] for a survey). A common trait is thatnon-
interference should capture the idea that variability of data at lev-
els higher in the security lattice should not cause variability of be-
haviour which is noticeable at lower levels in the lattice. Alarge
number of attempts have been made to capture this idea, depend-
ing on parameters such as the system/execution model, observers
power of observation, and the richness of the security model. For
instance:

• The trace-based model, starting with Goguen-Meseguer nonin-
terference [18]), see also [21], requires that the set of system
traces is closed under permutation of higher level actions with
lower level ones.

• Various relational models, with Volpano, Smith, and Irvines
type-based reconstruction of Denning and Denning’s classical
information flow analysis [36, 12] as the canonical example,
characterizes information flow in terms of equivalence rela-
tions: If a programP is started with different initial storesσ1

andσ2, and ifσ1 andσ2 contain the same low-level visible data,
σ1 ≈L σ2, then the final statesσ′

1, σ′
2 after execution ofP must

also be low-level equivalentσ′
1 ≈L σ′

2.

• A natural generalization of the relational model in the context
of concurrency is to introduce a relation of low-level equivalent
behaviour on intermediate states, and characterize absence of
information flow as preservation of this relation under execu-
tion, in the style of bisimulation equivalence. This idea isused
in a large number of recent papers (cf. [31, 30, 5, 17, 13, 14,
23]), and it is related to the use of so-called unwinding condi-
tions in the context of Goguen-Meseguer-style noninterference.

Our focus is on the decidability and axiomatizability properties of
these noninterference relations. Specifically we show that, for a
simple parallel while-language, relative to a decidable first-order
theory of expressions, the Sabelfeld-Sands notion of strong low
noninterference [31] is decidable. This result is of interest since
there has been an at least implicitly stated belief in the program-
ming languages community that partial approaches based on type
systems or other static analysis techniques are necessary for non-
interference to be tractable. Our results show that this is not neces-
sarily so. We also give a sound and relatively complete proofsys-
tem for proving noninterference assertions, and we show as part

of the relative completeness proof that proof search is decidable.
Complementing this result we also show that other noninterference
relations are undecidable. Specifically we show this for Boudol
and Castellani’s noninterference relation, but the argument applies
equally to other flow-sensitive noninterference relationssuch as
Volpano-Smith-Irvine (VSI) noninterference.

The notion of strong low bisimulation is very fine-grained.
The idea is that two control statesP1 andP2 can be regarded as
behaving identically to a low-level observer, if wheneverσ1 ≈L σ2

andP1 in stateσ1 can perform a single computation step to the
configuration(P ′

1, σ
′
1) thenP2 should be able to mimick this step

from σ2 to a configuration, say,(P ′
2, σ

′
2) such thatP ′

1 and P ′
2

continues to behave identically to a low level observer, andso
that σ′

1 andσ′
2 have the same low-level content,σ′

1 ≈L σ′
2 (and

vice versa). This stepwise quantification over low-level equivalent
stores means that programs become distinguishable even if there
are no sequential traces that motivate this, i.e. the definition is flow-
insensitive. An example is the program

l := 0; if l = 1 then l := h else noop

which in a sequential setting is perfectly secure, since thepositive
arm of the conditional will never be taken. In a concurrent setting,
however, the program is insecure, since an attacking threadmight
interfere with the assignment tol.

Besides decidability, this security condition has a numberof
attractive properties. As shown in [30] the relation is composi-
tional with respect to a range of simple program constructs,in-
cluding parallel composition. This does not apply in the case of
most other noninterference relations, such as that of Boudol and
Castellani. Moreover, strong links have recently been established
to more systems-oriented models of noninterference. Specifically it
has been shown that strong low bisimulation and a timing-sensitive
version of the relation P-BNDC of Focardi and Rossi [14] coincides
[15].

We add to the language a mechanism for dynamically chang-
ing the security level of identifiers. Such mechanisms are crucial
for noninterference to be useful in many practical situations, as
has been pointed out in a number of recent papers (cf. [32, 7, 9,
37, 20, 22, 23, 26]). The main challenges posed by dynamically
changing levels are first to capture precisely the conditions under
which a specific level changing operation should be allowed to go
through, and secondly to determine the end-to-end securityprop-
erties which a given level-changing policy delivers. In a recent pa-
per [32] Sabelfeld and Sands have classified mechanisms for dy-
namic information regrading along several dimensions: “What” in-
formation is regraded, “who” is authorized to perform the regrad-
ing, “where” (in terms of program points and actions) the regrading
is allowed to take place, and “when” information is allowed to be
regraded. In this paper we concentrate on the “where” dimension.
The aim is to ensure that information regrading actions are con-
fined to program points and operations for which those actions are
specifically allowed. To illustrate the range of concerns involved
we give some examples:

• Explicit downgrading actions such as the downgrading assign-
ment [l := h] of Mantel and Sands [23]. In this case the
intention is that the assignment represents an explicitly per-
mitted flow from a higher level to a lower level in the secu-
rity lattice. This is an example of anintransitiveflow: It may
that dom(x1) ≤ dom(x2) ≤ dom(x3) in the security lattice,
also thatdom(x2) dom(x1) (direct flows fromdom(x2)
to dom(x1) are permitted) anddom(x3) dom(x2), but not
dom(x3) dom(x1).

• Explicit level changing operations such as operations to down-
grade an identifier from high to low, or to upgrade an identifier

from low to high. This type of operation is useful when secu-
rity of the level change operation is supported by some external
mechanism such as an access control system, a reference mon-
itor, or a trusted downgrading agent. As an example it might be
safe to upgrade parts of an APDU (Application Protocol Data
Unit) received by a smart card during the personalization phase
by relying on an external access control mechanism to guaran-
tee that the smart card is attached to an authorized card reader.

• Operations that allow the security lattice to change under exe-
cution, by dynamically introducing new security levels andre-
moving them again.

The approach we propose in this paper is designed to handle the
former two of these three types of dynamic regrading. Dynamically
changing the security lattice is outside the scope of this work. The
latter problem has been examined recently by Boudol and Matos
[6].

The paper is organized as follows: We start by introducing ob-
ject automata and use these to give semantics to a simple parallel
while language. In section 3 and 4 we recall the notion of strong
low bisimilarity from [31], and in section 5 we prove decidability.
In section 6 we prove undecidability of the noninterferencenotion
of Boudol and Castellani (here called “flat bisimulation” due to its
non-lifted quantification over stores). In sections 7 and 8 the proof
system is introduced, and soundness and relative completeness is
proved. Then in section 9 we turn to dynamically changing security
levels, and present our generalization of strong low bisimulation.
This generalization is closely related, though subtly different from
the corresponding notion by Mantel and Sands [23]. In section 10
the decidability, proof system, soundness, and relative complete-
ness results of sections 5, 7 and 8 are extended to strong dynamic
low bisimulation. Finally, in section 11 we conclude, discuss re-
lated work, and give pointers to future work.

2. Object Automata
We use a standard state-based model of program execution based
on transition systems with a mutable store.

Identifiers, Values, Control States, and StoresThe following
denumerable sets are primitive:Identifiersx, y, z ∈ Ide, values
v ∈ Val, and control states, s ∈ S. A store is an assignment
σ : Ide → Val of values to identifiers;σ[x 7→ v] is the result
of updatingσ by assigningv to x.

States and Transitions An object automatonA consists of a set
of statesof the form(s, σ), a transition relation→, and aninitial
state (s0, σ0). As usual we write(s, σ) → (s′, σ′) whenever
((s, σ), (s′, σ′)) ∈ →; in that case(s, σ) is the pre-state, and
(s′, σ′) is the post-state. If the set S is finite we say that the
corresponding object automaton isfinite control.

Parallel While Programs Standard examples of object automata
are based on parallel while programsP ∈ P using the syntax

α ::= x := E

P ::= α | stop | P1; P2 | if E then P1 else P2

| while E do P | P ‖ P .

ExpressionsE range over some fixed first-order theoryE , andα is a
primitive command. At this point the only primitive commands are
assignments. Later we add primitive commands that dynamically
control the level assignment. We usenoop as abbreviation of the
assignmentx := x for some fixed, arbitraryx. This is justified
since the transition semantics assumed below makes assignments
atomic. The setIde(E) is the finite set of identifiers occurring in
E. For a storeσ, σ(E) is the value ofE in σ, andE1 ≈ E2 is

(CONG)
P ≡ P ′ (P ′, σ) → (Q′, σ′) Q′ ≡ Q

(P, σ) → (Q, σ′)

(ASSIGN)
−

(x := E, σ) → (stop, σ[σ(E)/x])

(SEQ-1)
(P, σ) → (P ′, σ′)

(P ; Q, σ) → (P ′; Q, σ′)

(COND-1)
σ(E) 6= 0

(if E then P else Q,σ) → (P, σ)

(COND-2)
σ(E) = 0

(if E then P else Q, σ) → (Q, σ)

(WHILE -1)
σ(E) 6= 0

(while E do P, σ) → (P ; while E do P, σ)

(WHILE -2)
σ(E) = 0

(while E do P, σ) → (stop, σ)

(PAR-1)
(P, σ) → (P ′, σ′)

(P ‖ Q,σ) → (P ′ ‖ Q, σ′)

(PAR-2)
(Q,σ) → (Q′, σ′)

(P ‖ Q,σ) → (P ‖ Q′, σ′)

Figure 1. Transition semantics for parallel while language

expression equality, i.e.E1 ≈ E2 iff for all σ, σ(E1) = σ(E2). Let
L ⊆ Ideand letL ∩ Ide(E) = {x1, . . . , xn}. Define the property

dep(E,L) =

∃x1, . . . , xn, y1, . . . , yn.E[y1/x1, . . . , yn/xn] 6≈ E .

The intention is thatdep(E, L) iff there is flow of information from
the identifiers inL to E.

Transition Semantics The transition semantics, shown in Figure
1, uses a structural congruence relation≡ for ease of presentation.
A congruenceis any equivalence relation which is preserved by
the constructs ofP . The specific relation≡ is the least congruence
such that

stop; P ≡ P ; stop ≡ stop ‖ P ≡ P ‖ stop ≡ P .

3. Strong Λ-Security
We assume that identifiers are partitioned into classeshighandlow,
corresponding to their confidentiality levels. The resultsare easily
generalized to richer security lattices. The letterΛ ⊆ Iderepresents
the set of low identifiers. For now the partitioning into highand
low identifiers is assumed to be fixed, but later it will be allowed to
change. Two stores,σ1 andσ2, areΛ-equivalent,σ1 ≈Λ σ2, if for
all x ∈ Λ, σ1(x) = σ2(x).

Noninterference is a reflection of the idea that to be secure in
a multi-level setting, there should be no way that variability at the
level of high data can influence behaviour at the low level. There
are a number of ways in which this idea can be formalized in a
language-based setting. In this paper our starting point isSabelfeld
and Sands notion of strong low bisimulation [31, 30].

DEFINITION 1 (StrongΛ-Bisimulation). A relation R on control
states is astrongΛ-bisimulationif R is symmetric, and whenever
s1Rs2 then for all σ1 ≈Λ σ2, if (s1, σ1) → (s′1, σ

′
1) then there

are s′2, σ
′
2 such that(s2, σ2) → (s′2, σ

′
2), s′1Rs′2, andσ′

1 ≈Λ σ′
2.

The relation∼=Λ of strongΛ-bisimulation equivalenceis the largest
strongΛ-bisimulation relation.

We leave the check that∼=Λ exists and is identical to
[

{R | R is a strongΛ-bisimulation}

to the reader. Below we often refer to∼=Λ as justΛ-bisimilarity,
for short, or strong low bisimilarity, depending on context. The
standard property of bisimulation-like security definitions, that∼=Λ

is a partial equivalence relation (a “per”, a binary relation which
is symmetric and transitive, but not necessarily reflexive), is easily
verified (cf. [31]).

The usual self-bisimilarity condition is applied on the reflexive
elements, by defining:

DEFINITION 2 (StrongΛ-Security).The states is strongly Λ-
secure, if s ∼=Λ s.

This security condition is very strong. Ifs1
∼=Λ s2 then no variation

in the high parts of a store can cause a low observer to distinguish
s1 from s2, even when running in an arbitrary, possibly hostile,
concurrent environment which:

• can read and write arbitrary low identifiers,

• has knowledge of the code under execution, and

• can count execution steps.

Thus, for instance,

l = 0 ; if l = 1 then l := h else l := l

will be insecure, due to the quantification over stores in def. (1),
even if in a sequential setting only the harmlesselse branch will be
executed. In a concurrent context, however, this quantification over
intermediate stores is in fact quite reasonable, since execution of
other threads may cause arbitrary low interference.

The version of strongΛ-security studied in [30, 27] strengthens
def. 1 by also requiring preservation of the the number of active
threads. This is motivated by an attack model where the attacker
has the additional capability of controlling the scheduler. The re-
sulting notion of strongΛ-bisimulation is shown in [27] to be the
most inclusive indistinguishability-based noninterference relation
which is scheduler-independent and preserved under parallel com-
position. Below we concentrate on the weaker definition 1 above,
and point out how the constructions can be adapted to accomodate
the stronger definition of [27].

4. Examples
In this section we give a series of small program examples to illus-
trate the relationship between strongΛ-security and other nonin-
terference relations in the literature, and to demonstratethe added
scope of a semantical analysis of noninterference in relation to a
type-based one.

EXAMPLE 1. We give a few examples of while-programs that are
secure, respectively insecure, according to def. 2.

1. if h = 0 then l := 0 else l := 1
This program is insecure. We may haveσ1 ≈Λ σ2 even if
σ1(h) = 0 6= σ2(h). But the post-states of the transitions will
then be incomparable with respect to≈Λ.

2. while h > 0 do h := h − 1
The program is insecure since the number of transitions exe-
cutable depends on the initial value ofh.

3. l := h; l := 0
This program is insecure, since storesσ1 ≈Λ σ2 can be found
such thatσ1[σ1(h)/l] 6≈Λ σ2[σ2(h)/l].

4. if h = 0 then (l; h) else (l; h′)
In this example and elsewhere we usel, l′, li (h, h′, hi) etc. as
generic examples of low (high) assignments of the form, e.g.
l := l′ (h := h′). The program is secure, sincel; h ∼=Λ l; h′ for
all high assignmentsh, h′.

5. (if h = 0 then h1 := 1 else stop); loop stop
In this example we useloop P as an abbreviation of the com-

mandwhile x = x do P . The program is secure since both
branches of the conditional are followed by an infinite sequence
of transitions that do not affect the low part of the store.

6. (if h = 0 then h1 else stop) ‖ loop h2

The program is secure, essentially sinceh1 ‖ loop h2
∼=Λ

loop h2.
7. (if h = 0 then (h1; l) else (l; h3)) ‖

(if h 6= 0 then (l; h4) else (h5; l))
The program is secure. Consider two initial storesσ1 andσ2. If
σ1 andσ2 agree on the assignment toh then the bisimulation
check is trivial. If not, the positive arm of the first conditional
is matched to the negative arm of the second conditional, and
vice versa.

The examples highlight some important distinctions both between
different approches to noninterference in the literature,and be-
tween secure typable and secure untypable programs.

Examples 1.1 and 2 are standard examples of indirect informa-
tion leaks.

Example 1.3 illustrates the flow insensitivity of strongΛ-
security, contrasting to the flow-sensitivity of the more standard,
sequential accounts such as VSI noninterference.

Example 1.4 is secure but untypable in the type system of VSI
since the latter prohibits low commands in the context of high
branching. It is, however, typable in the type system of Agat[1].
There, an external check is used to ensure that the two branches
of the conditional areΛ-bisimilar in the context of high branching.
This renders the high branching harmless with respect to lowob-
servers. In an example based on RSA, Agat has demonstrated how
his approach allows timing leaks to be effectively prevented [1].
One consequence of the results reported in this paper, is thede-
cidability of Agat’s type system for the while-language considered
in this paper (which, up to minor details, is an extension of Agat’s
language).

Finally, 1.5-7 are examples of programs that are secure by the
global nature of theΛ-security condition, but which will be rejected
by most local analyses, including type-based ones. Observethat
the stronger security definition of [27] rejects the equivalenceh1 ‖
loop h2

∼=Λ loop h2 since the latter definition is sensitive to the
number of threads.

If we extend the language by jumps it is easy to come up with
examples of unstructured programs that will in general require
semantical methods to proveΛ-secure. One somewhat artificial
example is the following variation of example 1.4:

if h = 0 then goto PC2 else
loop (l := 0; h := 1; PC2 : l := 0; h := 2)

5. Decidability
In this section we show decidability of strongΛ-bisimilarity, first
for general object automata, and then for parallel while-programs.

DEFINITION 3 (Effective Separability).An object automatonA is
effectively separable, if given control statess1, s

′
1, s2, s

′
2 ∈ S and

setΛ ⊆ Ide it is decidable if there are storesσ1, σ
′
1, σ2 such that

1. (s1, σ1) → (s′1, σ
′
1)

2. σ1 ≈Λ σ2

3. whenever(s2, σ2) → (s′2, σ
′
2) thenσ′

1 6≈Λ σ′
2.

THEOREM 1. For finite-control, effectively separable object au-
tomata, strongΛ-bisimilarity is decidable.

PROOF We construct an effective, strictly decreasing, maximal
sequence of relationsR0 ⊇ R1 ⊇ · · · ⊇ Rn from R0 = S × S
such that

1. Rn is a strongΛ-bisimulation.

2. If R is any other strongΛ-bisimulation, thenR ⊆ Rn.

Sincen is bounded by|R0| = |S|2, this is sufficient to etablish the
theorem. Suppose we have constructedRi. Suppose we can find
s1, s2 ∈ S such thats1Ris2, and such that the following condition
holds:

(*) There iss′1 ∈ S and storesσ1, σ
′
1, σ2 such that

(s1, σ1) → (s′1, σ
′
1),

σ2 ≈Λ σ1, and

for all s′2, σ′
2, if (s2, σ2) → (s′2, σ

′
2) then eitherσ′

2 6≈Λ σ′
1

or ¬(s′1Ris
′
2).

We then let

Ri+1 = Ri \ {(s1, s2), (s2, s1)} .

If no such pair(s1, s2) can be found then the sequence is complete.
We need to verify that condition (*) is decidable. Note first

that, by finite control, it suffices to check (*) for each choice of
control statess1, s

′
1, s2, s

′
2. But then the condition¬(s′1Ris

′
2) is

independent of the choice ofσ′
2 in (*) so effective separability can

be applied. We then need to verify conditions 1. and 2. above.

CLAIM 1. Rn is a strongΛ-bisimulation

PROOF (of claim) Suppose thats1Rns2, σ1 ≈Λ σ2, and that
(s1, σ1) → (s2, σ2). By condition (*) it must be the case that
s′2, σ

′
2 can be found such that(s2, σ2) → (s′2, σ

′
2), s′1Rns′2 and

σ′
1 ≈Λ σ′

2, sincen is maximal. �

CLAIM 2. If R ⊆ S×S is a strongΛ-bisimulation, thenR ⊆ Rn.

PROOF (of claim) Supposes1Rs2. We proveR ⊆ Ri for all
i : 0 ≤ i ≤ n. The base case is trivial. For the induction step,
if ¬(s1Ri+1s2) then we finds′1 ∈ S and σ1, σ

′
1, σ2 such that

(s1, σ1) → (s′1, σ
′
1) and σ2 ≈Λ σ1, but whenever(s2, σ2) →

(s′2, σ
′
2) then eitherσ′

2 6≈Λ σ′
1 or ¬(s′1Ris

′
2). SinceR is a strong

bisimulation, we know that somes′2 andσ′
2 can be found such that

(s2, σ2) → (s′2, σ
′
2), σ1 ≈Λ σ′

2, ands′1Rs′2. But this contradicts
the induction hypothesis. �

This concludes the proof of theorem 1. �

To prove decidability for parallel while-programs, define the re-
lation∼Λ on assignments as the symmetric closure of the follow-
ing clauses (whereE1 ≈Λ E2 abbreviates the condition: for all
σ1 ≈Λ σ2, σ1(E1) = σ2(E2)):

1. If α1 is the assignmentx := E1, α2 is the assignmentx := E2,
andE1 ≈Λ E2 thenα1 ∼Λ α2

2. If α1 is the assignmentx1 := E1, α2 is the assignmentx2 :=
E2, x1 ∈ Λ, x2 6∈ Λ, andE1 ≈ x1 thenα1 ∼Λ α2

3. If α1 is the assignmentx1 := E1 and α2 is the assignment
x2 := E2, x1, x2 6∈ Λ, thenα1 ∼Λ α2.

Notice that∼Λ is an effective relation when the expression theory
E is decidable, since the relation≈Λ is expressible inE .

LEMMA 1. α1
∼=Λ α2 iff α1 ∼Λ α2.

PROOFObserve first that if either of the three conditions hold, then
α1

∼=Λ α2. Conversely letα1 = x1 := E1 be given, and assume
thatx1 ∈ Λ. If α2 = x2 := E2 andx2 ∈ Λ, if E1 6≈Λ E2 then
α1 6∼=Λ α2. If x2 6∈ Λ andE1 6≈ x1 then we find a storeσ such
thatσ(E1) 6= σ(x1), but thenσ[σ(E1)/x1] 6≈Λ σ[σ(E2)/x2], so
α1 6∼=Λ α2. This covers the cases and the proof. �

THEOREM2. For parallel while-programs, ifE is decidable then
so is strongΛ-bisimilarity.

PROOF We need to show that object automata for parallel while
programs are finite control, and that they are effectively separable.
For finite control first, letP B P ′ iff there areσ, σ′, α such that
(P, σ) → (P ′, σ′). It suffices to show that the set{P ′ | P B∗ P ′}
is finite up to structural congruence≡, and that we can effectively
find a set of canonical representatives of each congruence class. To
see that it is finite, define the measure|P | on P in the following
way:

• |x := E| = 2

• |stop| = 1

• |P ; Q| = |P | + |Q|

• |if E then P else Q| = |P | + |Q| + 1

• |while E do P | = |P | + 2

• |P ‖ Q| = |P | · |Q|

If [P]≡ is the congruence class ofP under≡ it is sufficient to show
that

|{[Q]≡ | P B∗ Q}| ≤ |P | . (1)
The proof of (1) is by induction on the structure ofP . For instance,
to show (1) for the caseP = while E do P1 it is sufficient to
observe thatP B∗ Q iff Q has the form eitherstop, or P , or P ′

1; P
whereP1 B

∗ P ′
1.

For effective separability note first that each pairP, P ′ such that
P B P ′ determines exactly one of the rules ASSIGN, COND-1,
COND-2, WHILE -1, or WHILE -2 which is used in the derivation
of a transition(P, σ) → (P ′, σ′), for anyσ, σ′. This is easily seen
by induction on the structure ofP . In case the rule is ASSIGN, let
label(P, P ′) be the reduced assignmentx := E. In the other four
cases letlabel(P, P ′) be x := x for some arbitraryx. Assume
then given the program termsP1, P

′
1, P2, P

′
2 such thatP1 B P ′

1

and P2 B P ′
2, and letΛ ⊆ Ide. Let α1 = label(P1, P

′
1) and

α2 = label(P2, P
′
2). The result then follows by Lemma 1. �

Observe that the proofs of theorems 1 and 2 are quite generic and
could be adapted without much trouble, e.g. to bytecode languages.
They are also easy to adapt to the security condition of [27] by re-
quiring preservation of the number of threads. For time complexity,
if n is the cost of checking condition (*) for givens1, s

′
1, s2, s

′
2, and

m is the number of control states, the overall time complexityfor
checking strongλ-bisimilarity isO(m4n). For the case of parallel
while-programs,m is exponential in the size of the input program,
due to state space explosion, andn will normally be at least single
exponential, cf. the case of boolean expressions.

6. Flat Bisimulation
It is instructive to compare strongΛ-bisimulation to the notion
of (Γ,L)-bisimulation introduced by Boudol and Castellani [5].
The difference between strongΛ-bisimulation and Boudol and
Castellani’s bisimulation is that the unwinding conditionin the
latter is cast in terms of configurations whereas the former is lifted
to control states. For this reason we also in this paper referto
Boudol-Castellani bisimulation as “flat” bisimulation.

DEFINITION 4 (Flat Bisimulation).The relationR on configura-
tions is astrong flatΛ-bisimulationif R is symmetric, and when-
ever(s1, σ1)R(s2, σ2) then

1. σ1 ≈Λ σ2

2. if (s1, σ1) → (s′1, σ
′
1) then (s2, σ2) → (s′2, σ

′
2) for some

s′2, σ
′
2 such that(s′1, σ

′
1) R(s′2, σ

′
2).

The relation'Λ, strong flatΛ-bisimulation equivalence, is the
largest strong flatΛ-bisimulation relation. The relation'Λ is lifted
to control states bys1 'Λ s2 iff for all σ1, σ2, if σ1 ≈Λ σ2 then
(s1, σ1) 'Λ (s2, σ2).

Again it is easy to see that'Λ exists. We first note that strongΛ-
equivalence is strictly finer than strong flat equivalence.

PROPOSITION1. ∼=Λ('Λ

PROOF⊆: We show that ifR is a strongΛ-bisimulation then the
relation

R′((s1, σ1), (s2, σ2)) iff s1Rs2 andσ1 ≈Λ σ2

is a strong flat bisimulation. To show this let(s1, σ1) → (s′1, σ
′
1).

We obtain directly that(s2, σ2) → (s′2, σ
′
2) such thats′1Rs′2 and

σ′
1 ≈Λ σ′

2, hence(s′1, σ
′
1)R

′(s′2, σ
′
2) which is what needs to be

shown.
(: Lets1 be the programx := y; y := x ands2 the “residual”y :=
x. Let Λ = {y} and let(s, σ1)R

′ (s′, σ2) iff s = s′ ∈ {s1, s2}
and σ1 ≈Λ σ2. The relationR′ is a strong flat bisimulation,
since if (s, σ1) → (s′, σ′

1) then (s, σ2) → (s′, σ′
2) such that

s′, σ′
1)R

′ (s′, σ′
2). Thus,s 'Λ s. On the other hand,s 6∼=Λ s.

To see this, assume thats1 R s1 and thatR is a Λ-bisimulation.
Then we would need to obtain thats2R s2 as well. But this is
impossible. To see this, letσ1(y) = σ2(y) andσ1(x) 6= σ2(x).
Then σ1 ≈Λ σ2. If (s2, σ1) → (s′2, σ

′
1) then σ′

1(y) = σ1(x).
But whenever(s2, σ2) → (s′′2 , σ′

2) thenσ′
2(y) = σ2(x) 6= σ′

1(y).
Hences2R s2 is impossible, and so issR s. �

The problem with flat bisimulation, as pointed out in [5], andin
contrast to strongΛ-bisimulation, is that flat bisimulation is not
preserved under parallel composition. This is due to the possibility
of interference (in the classical concurrent programming sense). An
example is the program(x := y; y := x) ‖ x := z. Each of
the component processesx := y; y := x and x := z are flat
bisimulation secure forΛ = {y}, but their parallel composition is
not, as is easily checked. This phenomenon does not arise, however,
in the case of strongΛ-bisimulation, due to the lifted unwinding
condition. Another major distinction between the two bisimulation
notions is the decidability properties.

THEOREM3. Strong flatΛ-bisimulation equivalence on parallel
while programs is undecidable.

PROOF(Sketch) LetP be an arbitrary while program, letx, y, z ∈
Idebe variables not mentioned inP , and letΛ = {z}. We construct
the programP ′ = P1 ‖ P2 ‖ P3 such thatP1 = x :=
1; (while x 6= 0 do stop); z := y, P2 = while 0 = 0 do stop,
P3 = P ; x := 0. We claim thatP ′ 'Λ P ′ iff P does not terminate
on any initial assignment (which is an undecidable problem). To
see this, ifP does not terminate on any initial assignment then the
relation

{(Q, σ), (Q′, σ′) ∈ R(P ′) | σ ≈Λ σ′}

is a strong flat bisimulation where

R(P) = {(Q, σ) | ∃σ′.(P, σ′) →∗ (Q,σ)} .

Conversely ifP does terminate on some initial assignment then a
strong flatΛ-bisimulation relation will have to match the assign-
mentz := y of P1 for arbitrary initial assignments toy which is
impossible. �

The same construction can be used to show undecidability of other
noninterference conditions, including various variants of Volpano-
Smith style noninterference [36, 33], in both strong and weak
versions, using the terminology of Milner [25].

7. Proof System
In this section we give a sound and relatively complete proofsys-
tem for strongΛ-bisimilarity for parallel while programs. Existing
information flow type systems (c.f. [36, 19, 31, 30, 5, 33, 35,1])

use type assertions of the shapeP : Λ whereP is a single pro-
gram term andΛ represents the level, here the set of low identi-
fiers. This formulation has well-known shortcomings in the case of
high branching. As an example it is not possible to reduce type cor-
rectness for a conditional such asif h = 0 then P else Q to type
correctness ofP andQ, since low assignments inP or Q, even if
P andQ are type correct by themselves, can be used to leak the
branch conditionh = 0. The normal, quite restrictive, approach
is to completely prohibit low observable actions in the scope of a
high branch (cf. [36]). Various proposals have been made to allow
more programs to be typed, including Agat’s suggestion to require
bisimilarity of both arms of the conditional [1].

Judgments Our proposal is to replace type assertions of the form
P : Λ with more general judgments of the formΓ : Λ whereΓ
is a finite set of program terms. The intuition is thatΓ is the set
of control states that are possible at some given point of execution,
given the initial uncertainty in the values of high identifiers. We use
standard sequent-type notation for judgments and so write,e.g.,
Γ, P : Λ for Γ ∪ {P} : Λ. If a judgmentΓ : Λ is valid, it
should not be possible for a low observer to tell any two (possibly
identical) members ofΓ apart, since that might indicate unlicensed
information flow. Thus, a judgmentΓ : Λ will be valid, |= Γ : Λ,
if P ∼=Λ Q wheneverP, Q ∈ Λ. In particular, if |= Γ : Λ
and P ∈ Γ then P is stronglyΛ-secure. This representation of
goal states using sets allows us to reduce a judgment such as
if h = 0 then P else Q : Λ (whereh 6∈ Λ) to the judgment
P, Q : Λ.

Approach The proof system we present is essentially a tableau
system with a coinductive termination condition. Each proof goal
Γ : Λ is reduced, using the tableau rules or the structural congru-
ence relation, until it is in a specialprefix form, where each member
of Γ has the form(α; P) or Q. If the proof goal is valid, such a re-
duction should be possible in such a way that all the prefixesα are
well-behaved with respect to the level assignmentα, in the sense
that either all theα’s are assignments to high identifiers, or else they
are allidenticalassignments of a low expression to a low identifier.
If either of these two cases hold the transition can be taken for each
member ofΓ, and the tableau elaboration process continues. For
termination, the tableau system is, besides the local reduction rules
which reduce a tableau nodeΓ : Λ to a (small, finite) set of sub-
sidiary tableau nodes, equipped with a rule of discharge. This rule
of discharge is a simple loop detection condition: If a leaf node
is seen to have been already elaborated at an earlier node of the
tableau construction process, the leaf node is closed by introducing
a back arc.

A first issue is how to allow nodes to be reduced to prefix form.
Most cases, except parallel composition, are straightforward. For
parallel composition, the issue is how to reduce a proof goalof
the formΓ, P ‖ Q : Λ. A partial solution would be to exploit
the congruential properties of∼=Λ under parallel composition to at
least allow the reduction of{P ‖ Q} : Λ to subgoals{P} : Λ and
{Q} : Λ. First, however, this approach is not easily generalized to
sequentsΓ : Λ where|Γ| > 1, and secondly the approach would
be essentially incomplete, as shown e.g. by example 1.6 which does
not lend itself as easily to a compositional analysis.

Our solution uses a construct
�

(left merge) in addition to
nondeterministic choice (or) to incrementally eliminate‖, in a way
which is reminiscent of the interleaving law of CCS. The transition
rules for these constructs are shown in figure 2. The advantage of
the left merge operator in this context is that it allows the reduction
to prefix form to proceed more easily, since for program termsof
the form P

�
Q, P is forced to perform the first transition. It

also allows an easy reduction of the general parallel composition,

OR-1
(P, σ) → (P ′, σ′)

(P or Q, σ) → (P ′, σ′)

OR-2
(Q,σ) → (Q′, σ′)

(P or Q,σ) → (Q′, σ′)

LM ERGE
(P, σ) → (P ′, σ′)

(P
�

Q, σ) → (P ′ ‖ Q,σ′)

Figure 2. Transition rules for choice and left merge

E1 ≈ E2

x := E1 ≡ x := E2

−
x1 := x1 ≡ x2 := x2

−
P1; (P2; P3) ≡ (P1; P2); P3

−
P1 or (P2 or P3) ≡ (P1 or P2) or P3

−
P1 or P2 ≡ P2 or P1

−
P or P ≡ P

−
stop or P ≡ P

−
stop

�
P ≡ stop

−
P
�

stop ≡ P

Figure 3. Extended structural congruence rules

by validating the reduction ofΓ, P ‖ Q : Λ to the subgoal
Γ, (P

�
Q) or (Q

�
P) : Λ.

Reduction Contexts and Structural CongruenceThe full tableau
system is somewhat complicated by the need to nest sequential
composition and left merge. This problem is addressed by first re-
fining the structural congruence relation, and, secondly, by adding
the concept of a reduction context, to allow the tableau rules to
consider program terms placed in the “active position” of arbitrary
sequential or left merge compositions.

For the structural congruence relation we extend≡ by the rules
shown in fig. 3. This extension is mainly a convenience to allow a
more compact presentation of the tableau system below. The rules
in figure 3 are safe in the sense that ifP ≡ Q thenP ∼=Λ Q, for
any setΛ, where∼=Λ is defined using the original rules of section
2. We state the following easy decidability result without proof.

PROPOSITION2. Structural congruence onP is decidable. �

A reduction contextis an expression of the form

C[·] ::= [·] | (C[·]; P)
�

Q .

An extended reduction context, C+[·], allows choice at the outer-
most level:

C+[·] ::= C[·] or Q .

For eachP ∈ P defineC‖[P] inductively by:

[P]‖ = P

((C[P ′]; P)
�

Q)‖ = (C‖[P ′]; P) ‖ Q

The important property of reduction contexts is the following:

LEMMA 2. If (C[P], σ) → (Q,σ′) andP 6≡ stop then there is a
P ′ such that(P, σ) → (P ′, σ′) andQ = C‖[P ′].

PROOFInduction on the structure ofC[·]. �

HIGHASSNC C
‖
1 [stop], . . . , C

‖
n[stop] : Λ Q1, . . . , Qn : Λ

C1[x1 := E1] or Q1, . . . , Cn[xn := En] or Qn : Λ
({x1, . . . , xn} ∩ Λ = ∅)

LOWASSNC C
‖
1 [stop], . . . , C

‖
n[stop] : Λ Q1, . . . , Qn : Λ

C1[x := E] or Q1, . . . , Cn[x := E] or Qn : Λ
(x ∈ Λ and¬dep(E, Λ))

CONGC
Γ, Q : Λ
Γ, P : Λ

(P ≡ Q) STOPC
−

stop : Λ
HIGHCONDC

Γ, C+[noop; P1], C
+[noop; P2] : Λ

Γ, C+[if E then P1 else P2] : Λ

LOWCONDC
Γ, C+[noop; P1] : Λ Γ, C+[noop; P2] : Λ

Γ, C+[if E then P1 else P2] : Λ
(¬dep(E, Λ))

TRUECONDC
Γ, C+[noop; P1] : Λ

Γ, C+[if E then P1 else P2] : Λ
(E 6≈ 0) FALSECONDC

Γ, C+[noop; P2] : Λ
Γ, C+[if E then P1 else P2] : Λ

(E ≈ 0)

HIGHWHILEC
Γ, C+[noop; P ; while E do P], C+[noop] : Λ

Γ, C+[while E do P] : Λ

LOWWHILEC
Γ, C+[noop; P ; while E do P] : Λ Γ, C+[noop] : Λ

Γ, C+[while E do P] : Λ
(¬dep(E,Λ))

TRUEWHILEC
Γ, C+[noop; P ; while E do P] : Λ

Γ, C+[while E do P] : Λ
(E 6≈ 0) FALSEWHILEC

Γ, C+[noop] : Λ
Γ, C+[while E do P] : Λ

(E ≈ 0)

PARC
Γ, C+[P1

�
P2] or C+[P2

�
P1] : Λ

Γ, C+[P1 ‖ P2] : Λ
(P1, P2 6≡ stop) ORC

Γ, C+[P1] or C+[P2] : Λ
Γ, C+[P1 or P2] : Λ

(P1, P2 6≡ stop)

Figure 4. Tableau system for strongΛ-bisimilarity: Local rules

Tableau System The local tableau rules are shown on figure 4.
Other rules such as those for sequential composition are derivable:

SEQ1C
Γ, P1; P2

�
stop : Λ

Γ, P1; P2 : Λ

SEQ2C
Γ, C[P1; (P2; P)

�
Q] : Λ

Γ, C[(P1; P2); P
�

Q] : Λ

LEMMA 3 (Local Soundness).If Γ : Λ is provable using the rules
in figure 4 then|= Γ : Λ.

PROOFWe show that each of the rules of figure 4 preserve validity.
CONGC: Since≡⊆∼=Λ.
HIGHASSNC: Suppose{x1, . . . , xn} ∩ Λ = ∅, and assume
C

‖
i [stop] ∼=Λ C

‖
j [stop] andQi

∼=Λ Qj wheneveri, j ∈ [1, . . . , n].
We show thatCi[xi := Ei] or Qi

∼=Λ Cj [xj := Ej] or Qj . So
assume thatσi ≈Λ σj , and that(Ci[xi := Ei] or Qi, σi) →
(Q′

i, σ
′
i). By Lemma 2, either(Qi, σi) → (Q′

i, σ
′
i) or Q′

i ≡

C
‖
i [stop] andσ′

i = σi[σi(Ei)/xi]. In either case we findQ′
j andσ′

j

such thatQ′
i
∼=Λ Q′

j , σ′
i ≈Λ σ′

j , and(Cj [xj := Ej] or Qj , σj) →
(Q′

j , σ
′
j).

LOWASSNC: This case is similar to the previous one, except that
here the assumptionsx ∈ Λ and¬dep(E, Λ) are used to ensure
thatσi[σi(E)/x] ≈Λ σj [σj(E)/x].
HIGHCONDC: It suffices to show that ifP ∼=Λ C+[noop; P1] and
P ∼=λ C+[noop; P2] thenP ∼=Λ C+[if E then P1 else P2]. The
argument is straightforward.
PARC: It is sufficient to show thatC+[P1

�
P2] or C+[P2

�

P1] ∼=Λ C+[P1 ‖ P2] wheneverP1 6≡ stop andP2 6≡ stop. This
is straigthforward.
The remaining cases are instances of cases already treated.�

Rule of Discharge The proof system is completed by adding a
single coinductive rule of discharge, for loop detection. The rule
of discharge works as follows. Let∆ be a multiset of judgments
Γ′ : Λ′ each labelling an undischarged noden′ in a proof tree with

root noden, labelledΓ : Λ. The assumption occurrenceΓ′ : Λ′ is
dischargeablefor such a proof tree, ifΓ′ = Γ, Λ′ = Λ, and the
path fromn to n′ in the proof tree passes the left branch of one of
the proof rules HIGHASSNC or LOWASSNC. If this is the case we
say thatn′ is adischarged leaf, andn its companion. We write this
rule in standard natural deduction style as

DISCH

[Γ′ : Λ′]
...

Γ : Λ
Γ : Λ

(Γ′ : Λ′ is dischargeable)

The complete tableau system thus consists of the local rulesin
figure 4 together with the rule DISCH, and∆ ` Γ : Λ denotes
the existence of a proof ofΓ : Λ from the set of undischarged
assumption occurrences∆ in this system. In particular,̀ Γ : ∆
denotes derivability where all assumptions are discharged.

EXAMPLE 2. For the sake of the example letif abbreviate the
conditional if h = 0 then h1 else stop. We give a proof of the
judgment

if ‖ loop h2 : Λ . (2)

First, (2) is reduced usingPARC andCONGC to

(if
�

loop h2) or (loop h2

�
if) : Λ, (3)

and then usingTRUEWHILEC, HIGHCONDC (andCONGC) to

((noop; h1)
�

loop h2) or ((noop; h2; loop h2)
�

if),

(noop
�

loop h2) or ((noop; h2; loop h2)
�

if) : Λ . (4)

By HIGHASSNC, (4) is reduced to the following two subgoals:

h1 ‖ loop h2, stop ‖ loop h2 : Λ (5)

(noop; h2; loop h2)
�

if, (noop; h2; loop h2)
�

if : Λ (6)

Subgoal (5) is further reduced byPARC, TRUEWHILEC, CONGC,
andHIGHASSNC to the two subgoals:

loop h2, h2; loop h2 : Λ (7)

(h2; loop h2) ‖ h1, h2; loop h2 : Λ (8)

We proceed to reduce (8) as before obtaining two further subgoals:

stop ‖ (h2; loop h2), loop h2 : Λ (9)

loop h2 ‖ h1, loop h2 : Λ (10)

Note that even if (9) is equal to (7) up toCONGC, (9) cannot (yet)
be discharged, since the two nodes are not connected by a path
in the tableau. However, (10) can be rewritten usingCONGC such
that it becomes dischargable against (5), since the two nodes are
connected by a path which traverses the left branch ofHIGHAS-
SNC (in the derivation of (10) from (8)). Proofs of the remaining
(easy) proof goals are omitted.

8. Soundness and Relative Completeness
THEOREM 4 (Soundness).If ` Γ : Λ then|= Γ : Λ.

PROOF(Sketch) Define the relationR by PRQ just in caseP, Q ∈
Γ such thatΓ : Λ labels some noden in a proof of some judgment
Γ0 : Λ0. Since all paths from a companion node to a leaf node must
pass the left hand branch of a node labelled LOWASSNC or HIGH-
ASSNC, it may be assumed that the same also applies to all paths
from n to a discharged leaf. We show thatR is aΛ-bisimulation. To
this end suppose thatσ1 ≈Λ σ2 and that(P, σ1) → (P ′, σ′

1). We
show that(Q, σ2) → (Q′, σ′

2) for someQ′, σ′
2 such thatP ′RQ′.

Suppose now thatn is obtained by an application of LOWASSNC.
ThenP has the formCi[x := E] or Pi andQ has the formCj [x :=

E] or Qi. By lemma 2, eitherP ′ = C
‖
i [stop] or (Pi, σ1) →

(P ′, σ′
1). In the first case we obtain that(Q, σ2) → (C

‖
j [stop], σ′

2).

Moreover,C‖
i [stop] R C

‖
j [stop] by construction, andσ′

1 ≈Λ σ′
2.

The second case is concluded by the induction hypothesis. The case
for HIGHASSNC is similar. The remaining cases (DISCH included)
are straightforward. One example is sufficient to typify theargu-
ment. If n is obtained by an application of HIGHCONDC so that
P = Ci[if E then Pi,1 else Pi,2] or Pi andσ1(E) 6= 0, either
(noop; Pi,1, σ1) → (P ′, σ′

1) or (Pi, σ1) → (P ′
i , σ

′
1). Q is either

in Γ, or Q = P . In the former case we are immediately done by
the induction hypothesis. The latter case is resolved depending on
whetherσ2(E) = 0 or not. The details are left to the reader. �

THEOREM 5 (Relative Completeness).For decidable expression
theoriesE , if |= Γ : Λ then` Γ : Λ

PROOF (Sketch) Assume given an arbitrary valid judgmentΓ : Λ.
We first show how to construct aproof segmentfor Γ : Λ, a
(non-recursive) proof tree with rootn labelled byΓ : Λ, possibly
involving a set of unproved leaf nodes. Each such leaf noden′ has
the property that the path fromn ton′ traverses the left hand branch
of one the rules LOWASSNC or HIGHASSNC. Write Γ ⇒ Γ′ if
such a path exists.

For the construction note first that, using CONGC together with
the rules for conditionals, while, parallel, and choice, all members
of Γ can be assumed to have the formC1[P1] or · · · or Cn[Pn]
such that thePi are eitherα, stop, Pi,1; Pi,2, or Pi,1

�
Pi,2.

The case forPi = stop andCi[] not the identity context is elim-
inated using≡, specifically the congruencesstop; P ≡ P ; stop
and stop; stop ≡ stop, and stop

�
P ≡ stop. The case for

sequential composition is eliminated by;-associativity, and the
case of left merge is eliminated by rewritingPi,1

�
Pi,2 ≡

Pi,1; stop
�

Pi,2. Thus, all members ofΓ can be assumed to
have the form eitherC1[α1] or · · · or Cn[αn] or stop. Note

now that these two cases are incompatible, sinceΓ : Λ is valid
and all transformations using≡ preserve validity. Thus, either
Γ = {stop} or stop 6∈ Γ. In the former case the proof construction
is completed using STOPC. In the latter case letΓ have the form
Q1, . . . , Qm. SinceΓ : Λ is valid, using the semilattice proper-
ties of or and stop under≡, eachQi can be written in the form
Ci,1[αi,1] or · · · or Ci,n[αi,n] wheren is fixed, such that for all
j : 1 ≤ j ≤ n, C

‖
1,j [stop], . . . , C

‖
m,j [stop] : Λ is valid. Reflecting

this, the case is completed byn sequential applications of either
LOWASSNC or HIGHASSNC. This step uses a case analysis simi-
lar to the one in the proof of Theorem 2, using the property that if
¬dep(E, Λ) andE ≈Λ E′ thenE ≈ E′.

FACT 1. The segment construction procedure terminates and pro-
duces a proof segment. �

The complete proof search procedure iterates the segment construc-
tion procedure, and terminates each branch as soon as the rule of
discharge becomes applicable. To prove termination we use aclo-
sure construction. Define

cl(Γ) =
[

n∈ω

cln(Γ) ,

and letcln be determined by the following conditions:

1. stop ∈ cl0(Γ)

2. C[α] ∈ cln(Γ) impliesC‖[stop] ∈ cln+1(Γ)

3. C[if E then P1 else P2] ∈ cln(Γ) implies
C[noop; P1], C[noop; P2] ∈ cln+1(Γ)

4. C[while E do P] ∈ cln(Γ) implies
C[noop], C[noop; P ; while E do P] ∈ cln+1(Γ)

5. C[P1 ‖ P2] ∈ cln(Γ) implies C[P1

�
P2], C[P2

�

P1], C[P1], C[P2] ∈ cln+1(Γ)

6. C[P1 or P2] ∈ cln(Γ) impliesC[P1], C[P2] ∈ cln+1(Γ)

7. C[P
�

Q] ∈ cln(Γ), P 6= P1; P2 for anyP1, P2 ∈ P implies
C[P ; stop

�
Q] ∈ cln+1(Γ)

8. C[stop; P
�

Q] ∈ cln(Γ) impliesC[P
�

Q] ∈ cln+1(Γ)

9. C[(P1; P2); P3] ∈ cln(Γ) impliesC[P1; (P2; P3)] ∈ cln+1(Γ)

Say thatΓ = P1, . . . , Pn is A-generated, if eachPi, 1 ≤ i ≤ n,
can be writtenPi,1 or · · · or Pi,mi

such thatPi,j ∈ A for all
j : 1 ≤ j ≤ mi, and say that the setA ⊆ P is closed, if
A = cl(A).

LEMMA 4. If Γ is A-generated for some closed setA andΓ ⇒ Γ′

thenΓ′ is A-generated.

PROOFBy inspecting the segment construction procedure. �

It is thus sufficient to prove thatcl(A) is finite whenA is. To this
end we define a measure|P |B whereB is a set of terms inP such
that |P |B = 0 if P ∈ B, and ifP 6∈ B then:

|P ‖ Q|B = (|P |B + 1) · (|Q|B + 1)

|P
�

Q|B = |P ‖ Q|B

|if E then P1 else P2|B = |P1|B + |P2|B + 2

|while E do P |B = |P |B + 2

|α|B = 1

|stop|B = 0

|P1; P2|B = |P1|B + |P2|B

|P1 or P2|B = |P1|B + |P2|B + 1

Clearly, all closure conditions are non-increasing, in thesense that
if P ∈ cln+1(Γ) \ cln(Γ) then |P |B∪{Q} ≤ |Q|B for some

Q ∈ cln(Γ). Moreover, the only non-decreasing conditions are
conditions 2, 7, 8 and 9. It is, however, easy to see that thesefour
conditions can only be applied consecutively a finite numberof
times before one of the other, strictly decreasing, conditions must
be applied. This is sufficient to complete the termination argument,
and thus the proof of theorem 5. �

Complexity The tableau construction algorithm gives an alterna-
tive to the decision procedure of theorem 1. The setcl({P}) is
single exponential in the sizen of P in the worst case. This gives
a double exponential bound on the size of judgments and hencea
triple exponential bound on the size of the tableau. This is worse
than the single exponential bound for the decision procedure of
section 5. However, the tableau construction algorithm is likely
to explore only a small part of the potential state space in prac-
tice. Moreover there is potential for savings. By restricting attention
to sequential programs one exponential is cut from the worstcase
complexity. A more intelligent handling of sharing may cut another
exponential. In practice it is thus far from clear that the direct al-
gorithm of section 5 will always outperform the proof searchbased
algorithm of this section, in spite of its asymptotic superiority.

9. Dynamic Security Levels
StrongΛ-bisimulation, along with other notions of noninterference
we have been able to identify in the literature, assumes a static as-
signment of security levels to identifiers. In many situations such
a static level assignment is either not available, or it is not mean-
ingful, because some form of dynamic upgrading or downgrading
needs to be explicitly supported. In this section we lift theassump-
tion of a static level assignment, and adapt the security definition
accordingly. The main challenge in doing so is to identify a suitable
mechanism that allows the setΛ of low identifiers in the definition
of strongΛ-bisimilarity to change while preserving the desired end-
to-end information flow properties.

Localized Level Change PoliciesThere is a wide spectrum of
possible approaches (cf. [32] for a recent survey). Here, the aim
is to model information release policies in the style of intransitive
noninterference [23, 6, 26, 22] where declassification is required
to be localized to specific program points and operations, but no
constraints are imposed on the nature of information actually re-
leased (the “where”-dimension of [32]). In other words, thedeci-
sion whether a downgrading ofx from high level to low at some
given program execution point should be permitted or not should
not depend on the information actually held byx at that point, but
only on whether the operation or principal invoked to perform the
downgrading is actually authorized for this. This type of policy is
in constrast to more fine-grained information release policies in the
style of admissible interference [17], the declassification types of
[7] or [20], or the delimited release model of Sabelfeld and Myers
[29].

Approach To accomodate level changing operations we augment
the syntax ofP with primitive operationsa such that now

α ::= x := E | a |

Three examples are considered in this paper:

• down(x) and up(x) are used for identifier downgrading and
upgrading, respectively.

• [x := y] is a regrading assignment [23] which acts as a normal
assignment, but is always authorized to go through, regardless
of the current levels ofx andy.

Other examples can easily be conceived, such as a “panic” op-
eration that upgrades all identifiers to high, a “publicize”opera-
tion which downgrades all high identifiers to low, or a conditional

downgrade operation which lets the level ofx be governed by the
value of another identifier, saylowx. Another variant would be a
timed downgrade operation that automatically downgrades an iden-
tifier once a certain time interval has lapsed, or once some (e.g.
cryptographic) operation has been performed a sufficient number
of times. In the conclusion we comment on our frameworks ability
to handle these types of operation.

To each level operationa is associated the pre-post rela-
tion ‖a‖(σ, σ′). Specifically, fora = down(x) or a = up(x),
‖a‖(σ, σ′) iff σ = σ′, and‖[x := y]‖(σ, σ′) = ‖x := y‖(σ, σ′).
The transition rule is then the obvious one:

(LVL)
‖a‖(σ, σ′)

(a, σ)
a

−→ (stop, σ′)

For uniformity of notation we write(P, σ)
x:=E
−→ (P ′, σ′) if

(P, σ) → (P ′, σ′) by elaborating either the assignmentx := E,
or a conditional or while command, and thenx := E = noop.

In order to capture the effect of level operations on the level
assignment we associate to each primitive operationα and each set
Λ the following two (effective) operations:

• post(Λ, α), thepost-set, is the set of low identifiers in the post-
state which should depend only on the value of low identifiers
in the pre-state.

• upd(Λ, α), the level updater, is the set of low identifiers in the
post-state after “administrative” level changes (upgradings or
downgradings) have been completed.

The distinction between thepost and upd operations is a little
subtle. The post-set is needed to provide a way for high-level data
to become available at low level in connection with a permitted
downgrade operation. For instance, for the regrading assignment
[x := y], even if σ1 ≈Λ σ2, whenx is low andy is high the
stores resulting from the regrading assignment,σ1[x := σ1(y)] and
σ2[x := σ2(y)], areΛ-equivalent only whenσ1(y) = σ2(y). Thus,
to allow the regrading assignment to go through, a suitably adapted
version ofΛ-bisimulation must, in the post-state, amend the setΛ
by removing from it the targetx of the regrading assignment. In
this case we thus define:

post(Λ, [x := y]) =

Λ \ {x} if x ∈ Λ, y 6∈ Λ,
Λ otherwise

On the other hand, after executing the regrading assignmentthe
security levels should remain unchanged, whence

upd(Λ, [x := y]) = Λ .

The identifier regrading operationsup(x) and down(x) are sim-
pler. These cases do not involve interferent information flow, only
update of the level assignment in the poststate, so that:

post(Λ, up(x)) = Λ

upd(Λ, up(x)) = Λ \ {x}

post(Λ, down(x)) = Λ

upd(Λ, down(x)) = Λ ∪ {x}

Finally, whenα is an ordinary assignmentx := E, post(Λ, x :=
E) = upd(Λ, x := E) = Λ. That is, an assignmentx := E is not
allowed to directly copy information from high level to low level
(post(Λ, x := E) = Λ), and after executing the assignmentx :=
E the level assignment remains unchanged (upd(Λ, x := E) = Λ).

Strong DynamicΛ-Bisimulation We next generalize strongΛ-
bisimulation to dynamic security levels. Since the primitive transi-
tion labels now have observable effects in terms of level changes
it now becomes necessary to reflect this in the generalized defini-
tion. For this purpose say that the labelsα andα′ areΛ-compatible,

α ≡Λ α′, if the level changing effects ofα andα′ are the same for
Λ, i.e.post(Λ, α) = post(Λ, α′) andupd(Λ, α) = upd(Λ, α′).

DEFINITION 5 (Strong DynamicΛ-Bisimulation). Let an indexed
family R = {RΛ}Λ⊆Ide of binary relations on control states be
given. The familyR is a strong dynamicΛ-bisimulation, if each
relation RΛ is symmetric, and whenevers1 RΛ s2 then for all
σ1 ≈Λ σ2, if (s1, σ1)

α1−→ (s′1, σ
′
1) then there ares′2, σ

′
2

such that(s2, σ2)
α2−→ (s′2, σ

′
2), α1 ≡Λ α2, σ′

1 ≈post(Λ,α) σ′
2,

and s′1 Rupd(Λ,T1) s′2. The control statess1 and s2 are strongly
dynamicΛ-bisimilar, s1

∼=d,Λ s2, if there is a strong dynamicΛ-
bisimulationRΛ such thats1 RΛ s2 , and say that the states is
strongly dynamicΛ-secure, if s ∼=d,Λ s.

Again we normally refer to strong dynamicΛ-bisimulation as just
dynamicΛ-bisimulation. As before we easily see that∼=d,Λ is itself
a dynamicΛ-bisimulation, and that it is a per. Since the definition
now is a bit more complex, we prove the latter statement.

PROPOSITION3. For each setΛ, the relation∼=d,Λ is a per.

PROOFIf RΛ is a dynamicΛ-bisimulation then trivially so isR−1
Λ .

Assume thatR1 and R2 are both dynamicΛ-bisimulations. We
show that the family{RΛ | RΛ = R1,Λ ◦ R2,Λ} is also a dy-
namic Λ-bisimulation (where◦ is relational composition). Sup-
poses1RΛs3, (s1, σ1)

α1−→ (s′1, σ
′
1) andσ1 ≈Λ σ2. By the def-

inition of R we find s2 such thats1R1,Λs2R2,Λs3. SinceR1 is
a dynamicΛ- bisimulation we find(s2, σ2)

α2−→ (s′2, σ
′
2) such

that α1 ≡Λ α2, σ′
1 ≈post(Λ,α1) σ′

2 ands′1 Rupd(Λ,α1) s′2. Then,
sinceR2 is a dynamicΛ-bisimulation, and sinceσ2 ≈Λ σ2 we
find (s3, σ2)

α3−→ (s′3, σ
′
3) such thatα3 ≡Λ α2, σ′

2 ≈post(Λ,α2)

σ′
3 and s′2 Rupd(Λ,α2) s′3. By the requirements forpost and upd

we obtain thatpost(Λ, α1) = post(Λ, α2) and upd(Λ, α1) =
upd(Λ, α2), from where we can conclude thatσ′

1 ≈post(Λ,α) σ′
3

ands′1 Rupd(Λ,α1) s′3 as desired. �

Trivially we also obtain that dynamicΛ-bisimilarity is a general-
ization of Λ-bisimilarity, for the special case whereΛ is constant
(the conservativity property of [32]).

EXAMPLE 3.

1. [l1 := h]; l2 := l1
The program is secure. The assignment tol1 is harmless since
l1 is removed from the setΛ when evaluating the post-set, and
it is reinstated by the level updater.

2. [l1 := h]; l2 := h
This program is insecure since the second assignment copies
directly intoΛ.

3. down(h); l := h
The program is secure since, after downgrading,h becomes
low.

4. if h = 0 then h1 := 1 else up(l)
The program is insecure since we find aΛ such thath1 :=
1 6≡Λ up(1).

5. up(l1); l2 := l1
The program is insecure sincel1 is high after upgrading (even
if, in a purely sequential environment, the value ofl1 immedi-
ately after the upgrade is known).

6. if h = 0 then [l := h1] else [l := h2]:
This program is secure since the actions[l := h1] and[l := h2]
are Λ-compatible for allΛ, and wheneverσ1 ≈Λ σ2 then
σ1[σ1(h)/l] ≈Λ\{l} σ2[σ2(h)/l].

Example 3.6 shows the key point where our definition differs from
that of Mantel and Sands [23]. They argue that the program of ex.
3.6 should be rejected since it leaks not only the value ofh1 or h2 at
the prescribed control points, but also information abouth; in this

sense the declassifications in ex. 3.6 are not localized. Ouraccount
is weaker: At the point of declassification,h1 or h2 may or may not
contain the bith = 0, the policy does not specify which, neither
how that bit was derived. As in Rushby’s account of intransitive
noninterference [26] we make the implicit worst case assumption
that once one high bit is leaked, all bits are, since nothing binds
the leaked high bit to any particular piece of information. By this
intuition, an indirect flow such as that of 3.6 would be as legitimate
as the direct flow inh1 := (h = 0); [l := h1] or h1 := (h = 0) ‖
[l := h1].

Interestingly, the discrepancy with the Mantel and Sands secu-
rity condition is localized to just this feature: Other thanexamples,
none of their results are affected by replacing their security defini-
tion by our notion of dynamicΛ-security (and adapting the other
definitions accordingly).

In this connection it is important, though, to make sure our def-
inition makes sense also when the security lattice is liftedbeyond
the standard two-point lattice. A concern might be the example

if t = 0 then [l := h1] else [l := h2] (11)

wheret belongs to a third security level (top secret) above high.
In this case the security definition would be amended by requiring
dynamicΛ-security not only whereΛ is the set of low identifiers,
but also where it is the set of identifiers that are high or below. Since
in the latter case the post and update functions on downgrading
commands[l := h] would leaveΛ unchanged, the program (11)
would be immediately rejected.

10. Decidability and Relative Completeness
In this section we adapt the decidability and relative completeness
results fromΛ-bisimilarity to dynamicΛ-bisimilarity. Proofs are
adaptations of the corresponding proofs in sections 5 and 8.

DEFINITION 6 (Effective Post-Separability).The object automa-
tonA is effectively post-separable, if givens1, s

′
1, s2, s

′
2 ∈ S and

Λ ⊆ Ide it is decidable if there is a transition labelα1 and stores
σ1, σ

′
1, σ2 such that

1. (s1, σ1)
α1−→ (s′1, σ

′
1)

2. σ1 ≈Λ σ2

3. whenever(s2, σ2)
α2−→ (s′2, σ

′
2) then eitherα1 6≡Λ α2, or

σ′
1 6≈post(Λ,α1) σ′

2.

THEOREM6. Let an object automatonA be given. IfA is finite-
control and effectively post-separable then strong dynamic Λ-
bisimilarity is decidable.

PROOFWe construct a pointwise decreasing chain

R = {Ri,Λ}1≤i≤n,Λ⊆Ide

of families, similar to the chainR0 ⊇ · · · ⊇ Rn in the proof of
theorem 1. Condition (*) in the proof of theorem 1 is now replaced
by the following:

(**) There is s′1 ∈ S, label α1 and control storesσ1, σ
′
1, σ2 such

that (s1, σ1)
α1−→ (s′1, σ

′
1) and σ2 ≈Λ σ1, but whenever

(s2, σ2)
α2−→ (s′2, σ

′
2) then eitherα1 6≈Λ α2, σ′

2 6≈post(Λ,α1) σ′
1

or ¬(s′1Ri,upd(Λ,α1)s
′
2).

The result now follows from effective post-separability asin the
proof of theorem 1. �

To extend the proof of decidability for parallel while-programs
to strong dynamicΛ-bisimilarity we extend the relation∼Λ of
section 5 by the symmetric closure of the following clauses:

4. If α1 andα2 are both signals andα1 ≡Λ α2 thenα1 ∼Λ α2.

5. If α1 is a signal,post(Λ, α1) = upd(Λ, α1) = Λ, α2 is a
regrading assignment[x := y], x 6∈ Λ thenα1 ∼Λ α2.

6. If α1 is a signal,post(Λ, α1) = upd(Λ, α1) = Λ, α2 is an
assignmentx := E, x ∈ Λ, andE ≈ x thenα1 ∼Λ α2.

7. If α1 is a signal,post(Λ, α1) = upd(Λ, α1) = Λ, α2 is an
assignmentx := E, x 6∈ Λ thenα1 ∼Λ α2.

8. If α1, α2 are identical regrading assignments[x := y] then
α1 ∼Λ α2.

9. If α1, α2 are regrading assignments, respectively[x1 := E1]
and[x2 := E2], andx1, x2 6∈ Λ, thenα1 ∼Λ α2.

10. If α1 is a regrading assignment[x := y], x, y ∈ Λ, α2 is an
assignmentx := E andy ≈ E thenα1 ∼Λ α2

11. If α1 is a regrading assignment[x1 := y], x 6∈ Λ, andα2 is an
assignmentx2 := E, x2 6∈ Λ, thenα1 ∼Λ α2.

Observe that∼Λ continues to be effective with these extensions.
The proof of the correctness lemma for∼Λ is a straightforward
case analysis and left out.

LEMMA 5. α1
∼=d,Λ α2 iff α1 ∼Λ α2 with the extended definition

of ∼Λ. �

THEOREM 7. For parallel while-programs, ifE is decidable then
so is strong dynamicΛ-bisimilarity.

PROOF The non-trivial task is to show effective post-separability.
As in the proof of theorem 2, assume given program termsP1,
P ′

1, P2, P ′
2 such thatP1 B P ′

1 and P2 B P ′
2, and setΛ. Let

α1 = label(P1, P
′
1) andα2 = label(P2, P

′
2) and the result follows

by Lemma 5. �

For the tableau system it is sufficient to add the following two rules:

ACTC
Γ, C+[α1] : Λ
Γ, C+[α2] : Λ

α1 ∼Λ α2

CMDC C
‖
1 [stop], . . . , C

‖
n[stop] : upd(Λ, a) Q1, . . . , Qn : Λ

C1[a] or Q1, . . . , Cn[a] or Qn : Λ

Let `d Γ : Λ if Γ : Λ is provable in the extended tableau system,
and let|=d Γ : Λ is Γ : Λ is correspondingly valid. Soundness and
relative completeness is proved by minor adaptations of theproofs
of theorems 4 and 5. We leave out the details.

THEOREM 8 (Soundness and relative completeness).If `d Γ : Λ
then |=d Γ : Λ, and if for decidable expression theoriesE , if
|=d Γ : Λ then` Γ : Λ. �

11. Discussion
We have demonstrated that decidability results and sound and
(relative) complete axiomatizations are possible in the area of
language-based security. We have also specifically provided sup-
port to Sabelfeld and Sands notion of strong low bisimulation as
an interesting and tractable model for noninterference, contrasting
with the undecidability results that apply in the case of other, flow-
sensitive noninterference relations based on execution traces, trees,
or pre-post relations such as [36, 5]. Moreover we have proposed
a generalization of strong low noninterference which can acco-
modate dynamically changing security levels in a spirit similar to
intransitive noninterference [23, 6, 26, 22].

An interesting application of our results is likely to be security
analysis of low-level code. Current work in this area (cf. [3, 24, 16])
is based on the idea of reconstructing a structured control flow in
order to apply a typed-based analysis. Such a reconstruction will
often not be possible, however, and an approach such as ours based
on bisimulation checking is likely to be simpler and more robust.

Our results are constrained by two key assumptions, finite con-
trol, and effective separability. The finite control assumption is tan-
tamount to assuming that the set of global control points is finite up
to structural congruence, and effectively computable. This holds for
the parallel while language considered here, but it does nothold for
languages where the number of spawned processes is not bounded,
or for languages with richer control structures, e.g. lambda calcu-
lus. It is of interest to identify decidable classes that go beyond fi-
nite control, and to identify safe approximations for the case when
decidability is lost. The issue of decidable classes is likely to be
linked to corresponding decidability results for process algebra, e.g.
BPP decidability [8] for the case of unbounded process creation.

The other assumption, effective separability, concerns decid-
ability of the underlying expression theory. This seems very rea-
sonable in practice. In fact, to be meaningful, timing-sensitive se-
curity properties such as strong low security require that primitive
state transitions (which includes expression evaluation steps) are
executable in constant time: Any discrepancy can immediately be
used by an attacker to create a timing channel.

A couple of other recent papers go beyond typability for
checking noninterference. Terauchi and Aiken [34] use the self-
composition approach introduced by Darvas, Hähnle and Sands
[10] to reduce noninterference to a safety problem, potentially
checkable by an automated safety analysis tool. Amtoft et al[2] in-
troduce a separation-like logic to specify flow properties of sequen-
tial pointer programs. They also give an algorithm which under
some conditions compute strongest postconditions in theirlogic,
thus obtaining a completeness result. Both papers address sequen-
tial programs only, under flow-sensitive definitions of information
flow, and it is unclear if and how they scale to threaded programs.

Turning to frameworks for dynamically changing security lev-
els, the paper [32] point out four common semantic requirements
which declassification mechanisms in their opinion should support.
These are:

• Semantic consistency: If two programs are semantically equiv-
alent then they should satisfy the same security properties.

• Conservativity: Security definitions should be weakeningsof
noninterference.

• Monotonicity of release: Adding declassifications should not
make a secure program insecure.

• Occlusion: The presence of declassification should not mask
other information leaks.

Of these properties, monotonicity of release fails for our model
if the term “declassification” is taken to include upgradings as
well, since most secure programs can be made insecure by some-
where upgrading some low identifier. The remaining three require-
ments are all validated by our definition of strong dynamicΛ-
bisimulation.

The model for dynamically changing security levels is not yet
as rich as we would want. For instance it is perfectly possible
to conceive of more general settings in which level changes may
depend on, and affect, the state. In this case thepost and upd
operations will depend on an entire transition, rather thanjust the
transition label. As an example consider a specialized downgrading
command where another identifier, saylowx, is used to determine
the level of the identifierx. We would then get:

post(Λ, (s1, σ1)
(α)
−→ (s2, σ2)) =

8

<

:

Λ \ {x} if σ1(lowx) = 0 andσ2(lowx) = 1,
Λ \ {x} if σ2(lowx) = 0,
Λ otherwise

upd(Λ, (s1, σ1)
(α)
−→ (s2, σ2)) =

Λ ∪ {x} if σ2(lowx) = 1
Λ \ {x} otherwise

If x is high in the prestate (lowx = 0) and low in the post-state,
x should be removed from the post-set to allow high variability to
filter through to the low level. On the other hand, ifx is high in
the post-state,x should also be removed from the post-set, now to
allow high variability to filter through tox as a high identifier.

In the present framework where the integrity oflowx cannot
be protected such an extension appears to be of marginal interest.
Also we have not yet been able to extend our decidability and
completeness results to this richer setting. For practicality, however,
this kind of extension would appear to be important.

Further ahead we plan to use a similar approach as the one
we have used for dynamic levels to support more fine-grained
information flow control in the style of admissible interference
[9, 17].

Acknowledgments
Thanks to Dave Sands for helpful comments.

References
[1] J. Agat. Transforming out timing leaks. InProceedings of the

27th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 40–53, Boston, MA,
January 2000. ACM.

[2] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information
flow analysis of pointer programs. InProc. POPL’06. ACM, 2006.

[3] Gilles Barthe and Tamara Rezk. Non-interference for a jvm-like
language. InProc. ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation (TLDI), pages 103–112.
ACM, 2005.

[4] D.E. Bell and L.J. LaPadula. Secure computer systems: Unified
exposition and MULTICS interpretation. Technical Report MTR-
2997, Mitre Corp., Bedford, Mass., USA, June 1976.

[5] G. Boudol and I. Castellani. Noninterference for concurrent programs
and thread systems.Theor. Comput. Sci., 281(1–2):109–130, 2002.

[6] G. Boudol and A. Matos. on declassification and the non-disclosure
policy. In Proc. Computer Security Foundations Workshop, pages
226–240, 2005.

[7] S. Chong and A. C. Myers. Security policies for downgrading. In
Proc. ACM Conference on Computer and Communications Security,
pages 198–209, 2004.

[8] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisimulation
equivalence is decidable for basic parallel processes. InProc.
CONCUR’93, volume 715 ofLecture Notes in Computer Science,
pages 143–157. Springer, 1993.

[9] M. Dam and P. Giambiagi. Confidentiality for mobile code:The
case of a simple payment protocol. InProc. Computer Security
Foundations Workshop, pages 233–244, 2000.

[10] Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach
to analysis of secure information flow. InProc. Second International
Conference on Security in Pervasive Computing, volume 3450 of
Lecture Notes in Computer Science, pages 193–209. Springer, 2005.

[11] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[12] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, July
1977.

[13] R. Focardi and R. Gorrieri. A classification of securityproperties for
process algebras.Journal of Computer Security, 3(1):5–33, 1995.

[14] R. Focardi and S. Rossi. Information flow security in dynamic
contexts. InProc. 15th Computer Security Foundations Workshop,
pages 307–319, 2002.

[15] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging language-based and
process calculi security. InProc. FoSSaCS, pages 299–315, 2005.

[16] Samir Genaim and Fausto Spoto. Information flow analysis for java
bytecode. InProc. VMCAI’05, volume 3385 ofLecture Notes in
Computer Science, pages 346–362. Springer, 2005.

[17] P. Giambiagi and M. Dam. On the secure implementation ofsecurity
protocols.Sci.Comput. Program., 50(1–3):73–99, 2004.

[18] J.A. Goguen and J. Meseguer. Security policies and security models.
In Proceedings of the 1982 IEEE Symposium on Security and Privacy,
pages 11–20, Oakland, CA, 1982.

[19] N. Heintze and J. G. Riecke. The SLam Calculus: Programming with
secrecy and integrity. InProc. POPL’98, pages 365–377, 1998.

[20] P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. InProc. POPL’05, pages 158–170, 2005.

[21] H. Mantel. Possibilistic definitions of security – an assembly kit –.
In Proc. Computer Security Foundations Workshop, pages 185–199,
2000.

[22] H. Mantel. Information flow control and applications – bridging a
gap. InProc. FME, pages 153–172, 2001.

[23] H. Mantel and D. Sands. Controlled declassification based on
intransitive noninterference. InProc. APLAS, pages 129–145, 2004.

[24] Ricardo Medel, Adriana B. Compagnoni, and Eduardo Bonelli. A
typed assembly language for non-interference. InProc. Italian
Conference on Theoretical Computer Science, volume 3701 of
Lecture Notes in Computer Science, pages 360–374. Springer, 2005.

[25] Robin Milner.Communication and concurrency. Prentice-Hall, 1989.

[26] J. Rushby. Noninterference, transitivity, and channel-control security
policies. Technical Report CSL-92-2, Stanford Research Institute,
1992.

[27] A. Sabelfeld. Confidentiality for multithreaded programs via
bisimulation. InProc. A. Ershov 5th International Conference on
Perspectives of System Informatics, volume 2890 ofLecture Notes in
Computer Science, pages 260–274. Springer, 2003.

[28] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow
Security. IEEE Journal on Selected Areas in Communications,
21(1):1–15, January 2003.

[29] A. Sabelfeld and A. C. Myers. A model for delimited information
release. InProc. International Symposium on Software Security,
volume 3233 ofLecture Notes in Computer Science, pages 174–191.
Springer, 2003.

[30] A. Sabelfeld and D. Sands. Probabilistic noninterference for
multi-threaded programs. InProc. Computer Security Foundations
Workshop, pages 200–214, 2000.

[31] A. Sabelfeld and D. Sands. A PER model of secure information flow
in sequential programs.Higher-Order and Symbolic Computation,
14(1):59–91, 2001.

[32] A. Sabelfeld and D. Sands. Dimensions and principles ofdeclassi-
fication. InProc. 18th Computer Security Foundations Workshop,
pages 255–269, 2005.

[33] G. Smith and D. Volpano. Secure information flow in a multi-threaded
imperative language. InProc. POPL’98, pages 355–364, 1998.

[34] Tachio Terauchi and Alexander Aiken. Secure information flow as a
safety problem. InProc. SAS’05, volume 3672 ofLecture Notes in
Computer Science, pages 352–367. Springer, 2005.

[35] D. Volpano and G. Smith. Probabilistic noninterference in a
concurrent language. InProceedings of 11th IEEE Computer Security
Foundations Workshop, pages 34–43, Rockport, MA, June 1998.

[36] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis.Journal of Computer Security, 4(3):167–187, 1996.

[37] L. Zheng and A. C. Myers. Dynamic security labels and noninterfer-
ence. InProc. 2nd IFIP TC1 WG1.7 Workshop on Formal Aspects in
Security and Trust (FAST), pages 27–40, 2004.

