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Abstract

We present the first compositional proof system for checking processes against
formulas in the modal p-calculus which is capable of handling dynamic process
networks. The proof system is obtained in a systematic way from the operational
semantics of the underlying process algebra. A non-trivial proof example is given,
and the proof system is shown to be sound in general, and complete for finite-state
processes.



1 Introduction

In this paper we address the problem of verifying modal p-calculus properties of
general infinite-state processes, and we present what we believe to be the first
genuinely compositional solution to this problem.

The value of compositionality in program logics is well established. Compo-
sitionality allows better structuring and decomposition of the verification task, it
allows reuse of proofs, and it allows reasoning about partially instantiated pro-
grams, thus supporting program synthesis. Even more fundamentally it allows,
at least in principle, verification exercises to be undertaken which are beyond the
scope of more global approaches because the set of reachable global states grows
in an unbounded manner. The problem of how to build compositional proof
systems for concurrent systems, however, has long been recognised as a very dif-
ficult one. Many techniques have been suggested in the literature, including the
assumption-guarantee paradigm (cf. (Jones, 1983; Pnueli, 1985; Stirling, 1988;
Abadi and Lamport, 1993; Grumberg and Long, 1994)), quotienting and reduc-
tion (cf. (Larsen and Liu, 1991; Andersen et al, 1994)), techniques exploiting
environment-relativised transition semantics (cf. (Abrahamson, 1979; Barringer
et al, 1984)), and simulation relations (cf. (Jonsson, 1994; Grumberg and Long,
1994)). All these techniques, however, give only partial and ad-hoc solutions in
that they work only for particular concurrency primitives, static process networks
and, most often, linear time logic.

Much recent research in the area has focused on process algebra and the modal
p-calculus. The modal (or propositional) p-calculus, L,, due to Kozen (Kozen,
1983), is a powerful temporal logic obtained by adding least and greatest solutions
of equations to minimal modal logic. Many important temporal logics such as CTL
and CTL* can be represented in L, (c.f. (Emerson and Lei, 1986; Dam, 1994, A)),
and a large number of algorithms, tableau systems, and proof systems for verifying
processes against modal p-calculus specifications by some form of global state
space exploration have been given (c.f. (Bradfield and Stirling, 1992; Cleaveland et
al, 1992; Emerson and Lei, 1986; Larsen, 1992; Stirling and Walker, 1991; Winskel,
1991) and many others). Compositional accounts have been developed based on
some form of quotienting, or reduction (cf. (Larsen and Liu, 1991; Andersen et al,
1994)). These approaches, however, are only applicable for finite-state processes,
or at least when the holding of a property depends only on a finite portion of a
potentially infinite-state process.

Finite-state processes, however, are inadequate as modelling tools in many
practical situations. Value- or channel passing, for instance, can cause even the
simplest processes to become infinite state. While some decidability results can be
obtained in the absence of process spawning (c.f. (Dam, 1994, B)), in general the
model checking problem becomes undecidable, even in very sparse fragments of,
e.g., CCS (Esparza, 1997). Process spawning, however, is needed in many appli-
cations: Unbounded buffers, dynamic resource or process creation/forking, data
types and higher order features. In fact it is hard to conceive of useful program



logics for modern concurrent functional languages such as CML, Facile, Erlang,
or PICT that can not deal with process spawning, and indeed the development of
such logics is one long-term aim of the research reported here.

Because of undecidability, finitary proof systems for proving temporal prop-
erties (like: termination) of general infinite state processes will necessarily be
incomplete. This, however, does not make the problem go away! The currently
prevailing finite-state approaches (iterative or local) provide little assistance: They
are inadequate for even rather simple infinite state problems such as the “counter”
example considered below. Here we explore instead a compositional approach. Our
aim is to obtain a compositional proof system which is (1) sound, (2) practically
useful, (3) powerful enough to prove the kinds of infinite state problems we would
hope to be able to address, and (4) complete for the finite state fragment. For (1)
and (4) we have positive answers. More work is needed to answer (2) and (3).

Compositionality is addressed by taking a more general view of model check-
ing. Instead of focusing on closed assertions like = P : ¢ we look at sequents
of the form x; : ¢1,....,2z, : ¢, E P(21,...,2,) : ¢. That is, properties of the
open process term P(zy,...,x,) are relativised to properties of its free variables
x1,...,Tn. This provides a more general proof-theoretical setting which can be
exploited to give a structural account of recursive properties. This is a fairly easy
task for those connectives like A, V, or the modal operators, that depend only
on “local” behaviour. For the fixed point operators the problem is much more
difficult. Here we offer an approach based on loop detection. To guide us towards
a general solution we offer in this paper a formal proof to show that the CCS
process Counter = up.(Counter | down.0) after any sequence of consecutive up
transitions can only perform a finite sequence of consecutive down transitions.

An important feature of our approach is that, in contrast to other existing com-
positional accounts, the sequent style proof system we obtain is constructed from
the operational semantics in quite a general and systematic manner. The proof
system contains four separate elements: Structural rules, including a cut-rule, to
account for sequent structure; logical rules that deal with boolean connectives and
recursive formulas; dynamical rules that deal with the modal operators; and fi-
nally a single rule of discharge that is responsible for detecting “safe” recurrences
of sequents. Only the dynamical rules are dependent upon the specific process
algebra under consideration. Moreover the dynamical rules are constructed in a
way that one can easily foresee being automated for a range of process algebras.

2 CCS and the Modal pu-Calculus

Our use of CCS follows (Milner, 1989) closely. An action, «, is either the invisible
action 7 or a label [. A label is either a (port- or channel-) name a, b, say, or a
co-name @, b. Generally @ and a are identified. We assume that the set of labels is
finite and ranged over by [y, ..., [,. Sets of labels are ranged over by L, K. Agent



expressions, E, F', are given as follows:
E:=0|a.E|E+E|E|E|E\L|z|fixz.E

where z (and y) range over agent variables. An agent expression is an agent if it
contains no free agent variables. Agents are ranged over by P, Q, and A is the set
of all agents. The CCS renaming operator is omitted since it adds little of interest
to the present account. We refer to (Milner, 1989) for the operational semantics
rules.

The syntax of the modal p-calculus is augmented by equality and inequality
of actions which are useful (though not required), primarily to give a reasonable
account of the 7-indexed box operator. We consider formulas given in positive
form, generated by the grammar

pr=a=0latBlond|oVe|lde|(a)e|X|vX.¢|uX.¢

where X (Y, Z) ranges over propositional variables. A De-Morganised nega-
tion can be defined in this language, by clauses like —[a]¢p = (o), - vX.¢ =
pX.—p[-X/X], “uX.¢p = vX.m¢[-X/X], and -——X = X. If « is a name a we
can introduce a universal quantifier over actions by abbreviation:

Va.gp = N{¢[cd//a] | o an action}

where it is required that ¢ does not have free occurrences of the action @ so that
action terms like 7 are avoided.

The semantics of formulas, ||¢||]V C A, where V is a valuation assigning sets of
agents to propositional variables is quite standard:

_ | A ifa=p
o= B||V = { () otherwise
(0 ifa=48
lo- 7 BV = { A otherwise

o AV = llolV ]y

lo v l[v =gy ullely

I[a]d||V = {P | VP if P P' then P' € ||¢||V}
{a)gllV = {P |3P".P = P', P € ||4]V}
XV =V(X)

VX0V =U{A | AC [|9[VIX — A]}.
[1X.0[|V = N{A | [[6[[VIX — A] € A}.

Instead of P € ||¢||V we sometimes write =y P : ¢, or = P : ¢ if ¢ is closed.
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3 Sequents
The basic judgment of the proof system is the sequent.

Definition 3.1 (Sequents, declarations) A sequent is an expression of the form
I' = E : ¢ where T is a sequence of declarations of one of the forms z : ¢ or X = ¢.

Sequents are ranged over by s. Declarations of the form X = ¢ are called
namings, and if s contains the naming X = ¢ then X is said to name ¢ in s. An
occurrence of a variable X to the left of the equality sign in a naming X = ¢
is regarded as binding. Namings are used as constants in (Stirling and Walker,
1991), and serve to keep track of the unfoldings of fixed point formula occurrences
in the proof system. We use o as a meta-variable over {v,u}. If X names a
formula of the form oY.) in s then X is called a o-variable.

Declaration sequences and sequents are subject to an inductively defined well-
formedness constraint in order to ensure that (proposition and process) variables
are properly declared. This condition states that variables can be declared at most
once, and that for a sequent I' = F : ¢, if a variable occurs freely in F or in ¢ then
it is declared in I', and, for a sequent I'1,z : ¢/, Iy = E : ¢, if a variable occurs
freely in ¢’ then it is declared in I'y. Henceforth attention is restricted to sequents
that are well-formed. If s =T F E : ¢ then ¢ is called the conclusion formula of
s, and, if the process variable z is declared in T', the formula ¢ associated to x by
the declaration in I' is called the assumption on x.

Definition 3.2 (Sequent semantics)
1. The sequent - P : ¢ is V-true if and only if P € ||¢[|V

2. The sequent I',x : ¢ - F : ¢ is V-true if and only if for all agent expressions
E,ifT+ E: ¢is V-true then sois ' - F[E/z] : 1.

3. The sequent I'' X = ¢ F E : ¢ is V-true if and only if ' - E : ¢ is
V[X — ||¢]|V]-true.

If the sequent s is well-formed then the V-truthhood of s is well-defined and
independent of V. Notice that the quantification over agent expressions in def.
3.2.3 could equivalently be replaced by a quantification over agents.

4 Local Rules

We are now in a position to present the proof system. It consists of two subsys-
tems, a local and a global one. We first introduce the local subsystem. The local
subsystem is subdivided into three groups of rules: Structural rules governing the
use of declarations, logical rules responsible for the left and right introduction



of logical operators, and finally dynamical rules for the modal operators which
depend on process structure.

Structural rules:

DECLARATION

F1,$:¢,F2|_LEZ¢

T.Ib-E:¢ Ti,2:4Tok Figp

Cur T, 0o - FIE/z] 1 ¢
Logical rules:
=-RIGHT FI—E;aza =-LerT F1,$1a=bar2|_Eii/) (#0)
#-RIGHT FkE;a;«éﬂ (a # B) #-LEFT Fl,g::a;éc;z,l“z%E:@/J
A-RiGHT I}‘Ek % ; ;;5 Y A-LEFT Fll;-‘;;’ x¢ f’z/EQFZ fEﬁy v
PRV I3 SV NPV (IS, 11 S S B0 AL
o-RIGHT L Y;_?;i;i 2l o-LEFT St };:;);)f";, :l“f’l—ri?l_! 5 -

I,Y =0X.¢.Ty - E: ¢[Y/X]
[,Y =0XpI,FE:Y

I',Y =0X.¢,T9,z: ¢[V/X],T5+ E: ¢
TLY =0X.¢,T0,2:Y, T3 E: 9

Y-RIGHT

Y-LEFT

Dynamical rules:

Tha:
-0 0 [as @ T oz ()
Tha: :
a-0-1 C'koax: oy o-0-2 'k a.E:[plé (7 )
Fl,w:gb,rgl—{l}:@b
+-© I,z:{(a)p,ToFx+ F: {a)y
e Iz, Do, Tsbxid Ty Doy sy

T,z [a]gr, Do,y [alpe, Ts Fx+y: [a]y

F1,$:¢,F2,y:1[),f‘3l—$|y:7
F17$:<a>¢ar27y:war3 oz | y<a>7

‘_<7_> F17$:¢7F23y:_¢ar3l_x|y:7
Flaw : <l>¢7 F?ay : <l>war3 Fx ‘ y: (7—)7




Ti,z:¢1, Doy, T3t [a)pe
T,z 01,09,y 0901, F oy [ahs
Ti,z:¢1,To,y:9pe,Tsba|y:y
Ty,z:¢9, 09,y 9p,Tsbx|y:y
I,z 01,00,y 1, Ts kx| y: o]y

(a#7)
Li,z:¢1, 02,y 01, T3 F o Va.[o]pe(a)
T,z 01,090,y 91,03 by VB.[Bl2(0)
Lz da(r),To,y g, Taba|y:y
i,z :¢1,T9,y: 1[12(7)_,F3 Fxly:y
Ty,z: ¢2(lo), T2,y : o(lo),Ta kx| y:y

Flax : ¢2(lm)7r2ay : wQ(m)ari’) Fx | Yy
Tiz:¢,To,y: ¢, Taba|y:[r]y

-[7]
Tyz:¢ Dok z\K: ¢
',z [a]g,Tobz\ K : o]

Ty,z:pToFz\K: 1 '+ Elfixz.E/z] : ¢
Iy,z:{(a)p,ToFax\ K:{a) I+ fixe.E: ¢
The first two sets of rules require little comment, coming, as they do, straight from
proof theory. The only noteworthy points are the use of variables to name fixed
point formulas, and that symmetric versions of the A-LEFT and V-RIGHT rules
have been omitted. Similarly, symmetric versions of the +-<C, [-O, and rules de-
rived from +-0 and the rules for parallel composition, obtained by systematically
exchanging the declarations for x and for y, have been omitted.

The rationale behind the dynamical rules is best explained through a little

example. Suppose we wish to prove = P | @ : (a)¢, because we suspect that (1)
P35 Pland (2) EP'|Q: ¢. Our task is to

\-O0-1 a € K) \-0-2

FFE\k:M¢ (

\-0

(a g K) Fix

1. guess a property ¢; of P’ and a property ¢, of @,

2. prove F P: ()¢ and F Q : o,
3. prove xy : ¢y, o ¢ b a1 | 291 ¢, and finally,
4. put (2) and (3) together using |-(«) and two cuts to conclude - P | Q : ().

Comparing with local model checking systems such as Stirling and Walker’s (Stir-
ling and Walker, 1991) this account has sacrificed a subformula property (- P |
Q@ : (a)¢ is proved in terms of processes having the property ¢) in favour of a
subprocess property (F P | @ : («)¢ is proved in terms of properties holding of
the processes P and @)). We regard this as quite natural and reflecting closely the
compositional nature of the proof system. We do not expect that any of the tasks
(1)-(3) can be automated, although this is possible in special cases, in particular
for the case of finite state processes considered later.
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5 An Example Proof

In this section we give an example proof to show the local rules at work, and to
serve as a setting for discussing termination conditions. The example proves that
the infinite state process Counter = fixx.up.(x | down.0) satisfies the property
¢ = vX.(uY.[down]Y) A [up] X, i.e. after any finite consecutive sequence of up’s
only a finite number of consecutive down’s are possible. We use a goal-directed
approach. Thus the initial goal is - Counter : ¢. We first name ¢, obtaining the
sequent

U=¢ - Counter : U. (1)

We then unfold Counter and U, apply A-RIGHT, and arrive at the two subgoals
U=¢ b up.(Counter | down.0) : (uY.[down]Y") (2)

U=¢ F up.(Counter | down.0) : [up]U. (3)

Subgoal (2) is easily handled by naming the p-formula, unfolding, and then ap-
plying «.-0-2, so we proceed refining subgoal (3). First using «.-0-1 we obtain

U=¢ F Counter | down.0 : U (4)

Now the idea is to use two applications of CUT to refine 4 to three subgoals of the
form

U=¢ F Counter : ¢' (5)
U=¢,z: ¢+ down.O : 9 (6)
U=¢,z:¢",y:ptaly:U (7)

The problem is how to arrive at good choices for ¢’ and ). This can be quite tricky.
The problem is to specify the behaviour of each of two components Counter and
down.0 to such detail that all necessary aspects of their possible interactions can
be analysed. For Counter, keeping (1) in mind, a first guess would be to choose
¢ = U. For down.0 we choose the formula ¢ = [down|[down]ff A [up]ff. Another
possible choice would have been 1p = U. This would have been useful, for instance,
for dealing with the related example Counter' = fixz.up.(x | down.x).

Proceeding with the proof, (6) is now eliminated by A-RIGHT, a.-O-1, a.-
0-2, and 0-0. For (5) our intention is to terminate because (5) has previously
been expanded as (1), and U is a v-variable so termination is safe. Indeed the
termination conditions will allow this. Thus, (7) is all that remains. Now, by
unfolding and A-RIGHT we obtain the subgoals

U=¢,z:U,y: Y Fa|y: uY.]down]Y (8)
U=¢,z: Uy taly:[upll. (9)

We delay consideration of (8) and concentrate on (9). First unfold the left hand
occurrence of U to obtain

U=¢,z : pY.[down]Y AuplU,y: v F x|y [up)U. (10)
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Now the rule |-[a] applies to reduce to the four subgoals

U=¢,x : uY.[down]Y A [up|lU,y : ¢+ x: [up]lU (11)

U=¢,x: uY.[down]Y A [up|lU,y : ¢ =y [up|ff (12)
U=¢,z:Uyy:vbta|y:U (13)

U=¢,x: uY.[down]Y Aup|lUyy: ffbx|y:U (14)

Of these, (11) and (12) are easily proved using A-L and some simple boolean
reasoning. (14) is proved using #-LEFT. Finally, (13) is discharged using (7)
since U is a v-variable (!). We then need to consider (8). First name the right

hand p-formula, letting v = pY.[down]Y, then unfold the left-hand occurrence of
U, and after an application of A-LEFT we obtain

U=¢,x:v,y: ,V=ytuz|y:V
Now the left hand p-formula is named too:
U=p, W=y, x - W,y:p,V=okFa|y:V (15)
and V is unfolded:
U=p,W=y,z: W,y:¢,V=yFz|y: [down]V. (16)
Unfolding W to the left gives
U=¢p, W=y, : [down]W,y : p,V=yF x| y: [down]V. (17)
which reduces through |-[a] and some logical reasoning to the two subgoals

U=¢p, W=y, W,y: ¢, V=oba|y:V (18)
U=¢, W=y, x : [down]W,y : [down]|ff, V=yFx|y:V. (19)

We now arrive at a key point in the proof where we discharge (18) with reference
to subgoal (15), because even though the u-variable V' to the right of the turnstyle
has been unfolded from (15) to (18) so has another u-variable, W, to the left of
the turnstyle. Thus, intuitively, if we assume the left hand side to be true this will
ensure that in fact W, and hence V', will only be unfolded a finite number of times,
and hence termination at the point (18) is safe. Finally the proof is completed,
refining (19) by first unfolding V" and then using |-[«] in a way very similar to the
way (16) was dealt with. This is left as an exercise for the reader.

6 Side-conditions and Global Rules

We proceed to explain the global rules justifying the discharge of hypotheses at
steps (5), (13), and (18) in the previous section.
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A basic proof structure (b.p.s.) B is a finite proof tree constructed according
to the local proof rules. Usual tree terminology such as nodes, paths, leaves
applies. Basic proof structures may contain occurrences of hypotheses. The global
subsystem consists of a single rule of discharge that determines which occurrences
of hypotheses can be discharged, along the lines suggested in section 5. A proof,
then, is a basic proof structure for which all occurrences of hypotheses have been
discharged.

To arrive at a sound rule of discharge it is necessary to

1. consider the ways formulas are “regenerated” along paths through a basic
proof structure, and

2. count the number of unfoldings of v-variables.

The first problem is familiar from most accounts of local fixed point unfolding
in the modal p-calculus: Streett and Emerson (Streett and Emerson, 1989) and
later Cleaveland (Cleaveland, 1990) uses a subformula condition to keep track
of fixed point occurrences; Stirling and Walker (Stirling and Walker, 1991) uses
propositional constants for the same purpose; and Winskel (Winskel, 1991) uses
what has become known as the “tag-set” approach. For reasons we return to later
we have chosen to use the constant-based approach. To understand the second
problem let us anticipate the soundness proof a little. We prove soundness by
assuming a proof to be given and a sequent in the proof to be false. Let the
sequent concerned be of the form I' - E : X, X a v-variable. We can then find a
substitution o validating I' and making o(X) false when X is annotated by some
suitable ordinal. By applications of CUT this annotation may cause occurrences
of X to the left of the turnstyle in some “later” sequent I + E’ : ¢' to be
annotated too. Unfolding specific occurrences of X may cause the annotation of
that occurrence to be decreased. We need to arrive at a contradiction even when
[+ E' : ¢ is the conclusion of a nullary rule, say DECLARATION. But if the
annotation of a X to the left is less than the annotation of X to the right then
there is no guarantee of a contradiction, and soundness may fail.

6.1 Generation and Activity

We first need some machinery to reflect the way formula occurrences give rise to
other formula occurrences as proofs are constructed.

Definition 6.1 (Generation) Let a basic proof structure B and a sequent s; in B
be given. Let IT = sy,..., s, be a path downwards (towards the root) from s; to
some other sequent s, in B. Whenever formula occurrences ¢, in s; and ¢, in s,
exists such that either ¢; and ¢, are both conclusion formulas, or ¢; and ¢ are
both assumptions on the same x then ¢, is said to generate ¢y along II.

The term “generates” is chosen since we envisage proofs to be constructed in a
bottom up fashion from goal to subgoals. Since weakening is not allowed the local
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check (that both formulas are either the conclusion or assumptions on the same
x) suffices. Otherwise an analysis of the entire path instead of just the end-points
would be required. The notion of generation is important since it respects activity
of variables in a sense which we go on to explain.

Definition 6.2 (Activity) Let s = '+ E : ¢ be a well-formed sequent and let ¢
be any formula. A variable X is said to be active in ¢ (with respect to s) if either
X is free in ¢ or else some Y is free in ¢, ¥ names some v in s, and X is active

in .

Note that well-formedness ensures that the “active-in” relation on variables is
a partial order. We impose the following side condition on CUT:

Proviso 6.3 Applications of CUT are subject to the condition: For any v-variable
X, if X is active in ¢ then X is also active in .

The following property concerning “preservation of activity” is crucial for
soundness:

Proposition 6.4 In a b.p.s. B let a path downwards from s to s' be given. Let ¢
(¢') be an occurrence of a formula in s (s'). If ¢' generates ¢, X is declared in ',
and X is active in ¢ then X is active in ¢'. O

PROOF: Induction in length of path IT = sy,...,s, where s; = s and s, = .
By inspection of the proof system we realise that there are only three cases where
X could possibly lose activity. First the case where s is the left antecedent of
si_1 through a cut is dealt with by our proviso. The other cases apply when X is
introduced at s; through an application of Y-RIGHT or Y-LEFT. But then X is
not declared in s, 1, a contradiction. O

6.2 Indexing

We now turn to the counting of unfoldings. An indexing is a partial assignment
of indices n € w to occurrences of names such that for any sequent I' - E : ¢, if
two occurrences of X in the same formula in ' or ¢ are given then one is indexed
n iff the other one is. Only the rules o-LEFT, o-RIGHT, Y-RIGHT, Y-LEFT,
DECLARATION, and CUT are affected by indexing. The modifications needed are
the following:

1. o-LEFT and o-RIGHT: Y is indexed by 0 in both rules.

2. Y-RIGHT and Y-LEFT: The occurrence of Y in the conclusion is indexed
by n and occurrences of Y in the antecedent by n + 1.
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3. DECLARATION: If X is an n-indexed v-variable in ¢ to the right of the
turnstile then the corresponding occurrence of X in ¢ to the left of the
turnstile is indexed by some n' < n.

4. Cut: For any v-variable X, if X is active in ¢ then all occurrences of X in
¢ or ¢ are indexed by the same index.

As we have explained, indexing is important to ensure that v-variables are not
unfolded “faster” to the left of the turnstile than to the right. The following
notion helps to ensure that loops do not cause this to be violated:

Definition 6.5 (Standard sequents) Let FV(E) = {zy,...,z,} and let
s=0(xy 11, .., xp ) FE: ¢
be a sequent. Then s is said to be standard if for all v-variables X, if X is active

in ¢ with index n and if X is active in ¢;, 1 < ¢ < k, with index n’ then n’ < n.

6.3 Regeneration and the Rule of Discharge

We can now state the property of regeneration and the rule of discharge.

Definition 6.6 (Regeneration) In a b.p.s. B let a path II downwards from s to
s’ be given. Suppose that

1. ¢' generates ¢ along TI,

2. ¢ and ¢’ are identical up to indexing of variables,
3. a variable Y is active in ¢,

4. Y names a fixed point formula o X.¢) at s,

5. ¢' generates Y along some strict suffix of IT such that Y results from the
application of one of the rules Y-RIGHT or Y-LEFT.

Then ¢ is o-regenerated along 11 (through Y).

For the rule of discharge we wish, intuitively, to be able to discharge hypotheses
s =TI'HF E : ¢ whenever we below s find another sequent s’ which is identical up
to the variables free in E' (and up to indexing), and such that one of the following
two properties hold:

1. ¢ is regenerated along the path from s’ to s through a v-variable.

2. Some formula in a declaration of one of the free variables in F is regenerated
from s’ to s through a u-variable.
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Condition (1) is the discharge condition found in local model checkers such as
(Stirling and Walker, 1991) or (Winskel, 1991): It reflects the intuition that -
variables express invariant properties that must be refuted by exhibiting progress
towards an inconsistency. Condition (2), on the other hand, reflects the fact
that u-variables determine eventuality properties, and that the assumption of an
eventuality property on some parameter of E provides a progress measure which,
due to regeneration, is strictly decreased along the path concerned.

While this intuition is good as a first approximation the need to take indexing
into account complicates matters considerably, in particular due to the potential
of loop nesting.

Definition 6.7 (Rule of Discharge) Let FV(E) = {x1,...,z;} and let

s=T(x1:d1,..., 2 : ) F E: ¢

be an occurrence of a hypothesis in a given basic proof structure B. Suppose that
s is standard. Then s can be discharged provided that, below s, there is, up to
indexing, an occurrence of a standard sequent

s'=T"(x1:¢1,...,2p: ) E: ¢
such that one of the following conditions hold:

1. ¢ is v-regenerated along the path from s’ to s through some X, say. Then it
has to be the case that for all 7 : 1 < i < k, if ¢; is v-regenerated along the
path from s’ to s through some Y which is active in X then Y = X, and if
n (n') is the index of X in ¢ in s (s') and if m (m') is the index of YV in ¢;
in s (s') then m —m' <n—n'.

2. ¢ is u-regenerated along the path from s’ to s. Then it has to be the case
for some 7 : 1 < i < k, that ¢, is u-regenerated along the path from s’ to
s too. Moreover, for all 7 : 1 <1 < k, if ¢; is v-regenerated along the path
from s’ to s through some Y then Y is not active in ¢.

7 Soundness

We prove that if ' = E : ¢ is provable then it is true. The proof uses ordinal
approximations defined in a standard fashion:

A ifo=v
0 _
0" X.9||V = { 0  otherwise

"1 X[V = [[$[IVIX = [lo"X.¢[[V]

A _ ﬂ,{</\ ||O'KX¢||V ifo=v
HU XIQSHV B { Uk<a ||UKX-¢||V otherwise
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Using the well-known fixed point theorem of Knaster-Tarski we see that if P €
|uX.0||V then P € [|[v"X.¢||V for some ordinal x, and vice versa, if P € ||[vX.¢||V
then P € ||v"X.¢||V for all ordinals &.

Now, a partial approximation ¢ of a sequent s =I' - F : ¢ is a partial annota-
tion of ordinals to names X in s such that if X occurs in ¢ then X is a v-variable.
It is important to keep approximation ordinals and indexing apart. The latter
is a pure book-keeping device designed to keep track of the number of times v-
variables are unfolded as one passes upwards in a proof structure. The semantics
of formulas is extended slightly to take variable declarations and approximations
into account by the clause

IX|IV = llo®Y.g||V

which should be understood relative to a sequent with left hand side I where T’
contains the declaration X = oY.¢ and where X is annotated by k.

Definition 7.1 (Truth for substitution and partial approximation) The sequent
' F E: ¢ is true for a substitution o of agent variables to agents, and a partial
approzimation . if Eo € ||¢|| provided for all x which are free in E, if x : ¢, is the
declaration of z in ' then o(z) € ||d.]|-

We now embark on the soundness proof proper. We prove that if there is a
proof of sg = 'y = Ej : ¢ then it is true. Assume that in fact sq is false. Then we
find a substitution o such that sg is false for o and the empty partial approximation
to. We trace an infinite sequence of the form IT = (sg, 00, t0), ($1,01, 1), ... such
that for all i, s; is false for o; and ¢;, and s; is (up to indexing) the conclusion of
a proof rule instance for which s;;; is an antecedent. By use of approximation
ordinals, and using the fact that infinitely many points along IT must correspond
to hypotheses that have been discharged we can then arrive at a contradiction.

Suppose the construction has arrived at the sequent s; = I'; = E; : ¢;. The
following properties are maintained invariant:

Property 7.2 1. Let any two occurrences of a free variable X in ¢; be given.
If one occurrence is annotated by 1; they both are, and then the annotations

are identical. The same holds for any 1 occurring as part of a declaration
x vy an L.

2. We assume for all v-variables X that if X is active in both ¢; and T'; such
that X 1is active in a declaration in I'; of a variable which is free in E;, the
active occurrence of X in ¢; is indexed by n and approximated by k, and the
active occurrence of X in T'; is indexed by n' and approzimated by k', then
k' +n >k +n.

To motivate the condition 7.2.2 note that n—n’ counts how many more times X
to the right of the turnstile has been unfolded than the corresponding occurrence
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to the left. In some cases, however, unfolding to the left may outpace unfoldings
to the right temporarily, violating the invariant. We postpone discussion of this
case until we see it arising.

Since 1o is empty the invariant 7.2 holds initially. We show how we can iden-
tify (Si11,0i41,ti+1) such that s;,; is false for 0,41 and ;41 by considering each
potential rule in turn.

Structural rules. The only circumstance in which DECLARATION could apply
is where some v-variable occurrence to the left of the turnstile is annotated by
a smaller approximation ordinal than its corresponding occurrence to the right.
However, the invariant condition gives k' +n’ > k 4+ n and n’ < n (where k, &', n
and n' are determined as in 7.2.2), hence &' > k.

Suppose then that s; results from an application of the rule Cut. Consider

the instance
Fl,FQI—E:qﬁ Fl,l‘ld),Fgl_F:’g/}

Fl,FQ F F[E/ZE] . ZD
so that s; =",y = F[E/z] : 7). Assume that

Cut

(i) I'1,To = E : ¢ is true for o; and ¢, where ¢, annotates variables in T'; or T’y
as t;, and variables in ¢ as the corresponding variables in v in s;.

(ii) T,z : ¢, Ty F : 4 is true for the substitution o} and ¢ where

— o} is the substitution for which ¢}(y) = o0;(y) whenever y # x and for
which ol(z) = Eo;.

— « annotates variable occurrences in I'y, Iy, and ¢ as the corresponding
occurrences in s;, it annotates no occurrences of p-variables in ¢, and
it annotates v-variables in ¢ as they are annotated in v by ¢;.

From (i) and (ii) it follows that s; must be true for o; and «;, hence one of them
must fail, and we pick as (S;y1,0i11, tix1) whichever combination that does fail.
Note that, due to the side-condition concerning activity for CUT, we ensure that
if all v-variables are annotated in ) then the same is true for ¢. Note also that the
invariants are maintained true by this construction. Note thirdly that it is this
step in the construction that requires v-variables to be approximated (hence also
indexed) both to the right and to the left of the turnstile. This situation does not
arise for p-variables.

Logical rules. Most of the other local rules are quite trivial. The only rules that
add something of interest to the construction are those that involve substitutions
or approximations. None of the logical rules involve substitutions in a non-trivial
way. Approximations are affected only by the rules o-RIGHT, o-LEFT, Y-RIGHT,
and Y-LEFT. For o-RIGHT there are two cases: If o is p then nothing is changed.
If o is v then, since s; is false, we know that we can find some approximation ordinal
for which the antecedent of s; is false when the ordinal annotates the introduced
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variable. Thus ¢;;1 is obtained, and clearly the invariants are maintained. A
similar argument applies to o- LEFT except the roles of u and v are now exchanged.

We then arrive at the situations where we need in some cases to temporarily
break the invariant 7.2.2. These concern the rules Y-RIGHT and Y-LEFT. In
neither case is o; affected. Suppose first that Y is a py-variable. The rule Y-RIGHT
is trivial since it can not be annotated. For Y-LEFT, if Y is not annotated, start by
annotating Y by the least ordinal possible, and proceed. Now, if (the occurrence
of) Y is annotated by a successor ordinal then the annotation is decreased by
one in obtaining ¢;,1. If Y is annotated by a limit ordinal some strictly smaller
ordinal is chosen for which the invariant holds, and the construction continues.
Suppose then that Y is a v-variable. Consider first Y-RIGHT. Again, if YV is
not annotated, start by annotating Y by the least ordinal possible, and proceed.
If Y is annotated by a successor ordinal it is decremented, and if Y is a limit
ordinal some strictly smaller ordinal is chosen, for which the invariant continues
to hold. Finally consider Y-LEFT. If Y is not annotated ¢; is left unchanged.
So let instead k' be the annotation of Y. If k' is a successor ordinal k' can be
decremented by 1 without affecting the invariant. Suppose then that £’ is a limit
ordinal . If we can find some k" < k' such that k" +n' +1 > k + n then we
can choose " to annotate Y after the unfolding, preserving the invariant. If on
the other hand no such x” can be found we have reached the situation where
the invariant will have to be (temporarily) broken. We choose some k" < k' at
random and continue the construction even though the “invariant” fails to hold,
arguing that we eventually will reach a situation where it can be reinstated. Since
no choice of k" < k' preserves the invariant we can conclude that Kk = X +m
so that n' = m + n, ie. n’ > n. That is, we are in the situation where the left
hand side, due to applications of Y-LEFT, has overtaken the right hand side m
times when counting numbers of unfoldings of Y for the particular assumption
concerned. Assume that the construction of II has reached stage j > ¢ and that
s; is false for the substitution and partial approximation concerned. Assume first
(%) that s; is either an instance of DECLARATION, a discharged occurrence of a
hypothesis, or a loop sequent—a sequent occurrence which serves as justification
for the discharge of a hypothesis. Observe that if (x) fails to hold the construction
of I can be extended by some s;;; preserving the property of being false for
the appropriate substitution and partial approximation. We also know that the
construction of II can not go on forever without one of the three situations (x)
arising. For all three we know by the side conditions that at that stage n > n'.
Thus, counting the number of unfoldings of Y for the conclusion formula and for
the particular assumption formula concerned, we see that, along the path from s;
to s;, Y must have been unfolded m times more for the conclusion formula than for
the assumption formula. Thus we see that, along the path from s; to s;, eventually
the annotation of Y for the conclusion formula must have decreased strictly below
A to some k" < A. This k" serves as the starting point for backtracking on the
choice of «": If the invariant turns out not to hold at stage j we now forget about
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IT from stage i+ 1 onwards and redo the construction, this time with " := " +m.

We know that if no new choices are made in the construction of II, when we arrive
at stage j the invariant will have been reinstated. We also know that no matter
what path we follow from stage ¢ onwards eventually one of the three conditions
() will hold. As the number of choices we may have to redo can be bounded
we know that eventually we will reach stage j with the invariant having been
reinstated.

Dynamical rules. These cause no real complications and are left to the reader.

Global rules. Finally we need to consider the case where s; is a discharged
occurrence of a hypothesis. We then find a sequent s;, j < 4, which is the loop
sequent justifying the discharge of s;. s; will have the form s; = T;(z1 : ¢iq, ..., 2k :
bix) F Ei + ¢; and s; will have the form s; = T'j(@y : ¢iq, ..., 25 @ dig) & Ei = ¢y
where FV(E) = {zy,...,2x}. We know that the invariant holds for s; (and that
no subsequent backtracking will modify the annotations of s;). In identifying
(Sit1,0i41, Liv1) we wish to replace s; by s; keeping o; and +; unchanged. We need
to check that the invariant is maintained. Let X be any v-variable which is active
in ¢;, indexed n; in s;, n; in s;, and annotated by, say, x in s;. Further, let X
also be active in one of the ¢;;, indexed n} in s;, n; in s;, and annotated by &'
in s;. Since the invariant holds for s; we know that x' + n} > k + n;. There are
two cases: Either X is the v-variable through which ¢; is regenerated, and then
K'+nj > K +nf—n;+n; > k+n; as desired. Otherwise ¢; is regenerated through
some other v- or y-variable. In this case we know that, since X is active in ¢; that
n; = nj. Moreover by conditions 6.7.2 and 3 we know that, since X is also active
in ¢;;, that n; = n’ too. Hence also here &' +n’; > x + n; and we have shown the
invariant to be maintained. Now (s;11, 041, ;41) can be derived since one of the
local rules apply.

Completing the proof. Having built the infinite sequence Il we find a o-variable
X which is infinitely often regenerated to the right of the turnstile along II. If
o = v a contradiction is obtained since the initial annotation of X is infinitely often
decreased along II. If 0 = p we find a p-variable which is infinitely often unfolded
to the left of the turnstile along Il and a similar argument applies, completing the
soundness proof.

8 Completeness for Finite-state Processes

While we view soundness for general processes as the main contribution of the
paper, completeness for finite-state processes is important as a check that no
proof power has accidentally been sacrificed.

Theorem 8.1 If P is a well-guarded finite-state process and = P : ¢ thent P : ¢
18 provable.

18



PROOF: (Outline) Theorem 8.1 can be proved by embedding the tableau based
model checker of Stirling and Walker (Stirling and Walker, 1991) into the present
setting. Consider the proof system obtained by restricting attention to sequents
I' = P : ¢ where only namings are allowed in I', and where the dynamical rules
are replaced by the following two global rules:

P a
(a)-RIGHT P <Oj§d) (P — P)
o] RicHT {TFP:¢| PSP}

'EP:la]d

The rule of discharge is modified by allowing a sequent s = ' = P : X to be
discharged whenever X is a v-variable and there is strictly below s another sequent
of the form I'" = P : X. Call the proof system ensuing from these changes the
Stirling- Walker system, and write I' i, P : ¢ for provability in this system. By
soundness and completeness (Stirling and Walker, 1991) we know that = P : ¢
iff ks, P : ¢. So assume that P is finite-state and that a proof 7w of -y, P : ¢
is given. Assume for simplicity that P = P; | P,. We derive by induction in the
size of m formulas ¢, and ¢, such that Fy, P, : ¢1 and g, P> : ¢ by proofs of
size not greater than the size of 7, and x1 : ¢1,29 : o F 21 | 25 : ¢ is provable
in the compositional system. Once a similar result has been proved for restriction
(which is quite simple), it is an easy induction in the size of proof of g, P : ¢
to show that = P : ¢ in the compositional proof system too, establishing the
result. As we traverse 7 from the root upwards we generate pieces of ¢; and ¢o
in a manner which respects the structure of m. The greatest difficulty is to deal
with names. Assume that the rule Y-RIGHT is applied in 7 to a sequent, say,
['Fgw Pl | Py X, and that T' kg, X = Y., so that the resulting antecedent
is T by P| | Py:9[X/Y]. Pick two fresh variables X; and X5. X; will be used
in ¢; and X, in ¢5. These variables are generated whenever we reach a sequent
occurrence of the form IV = P{ | P; : X strictly above the sequent occurrence
'+ P/ | Py: X. Let ¢/, ¢, be the formulas generated by the sequent occurrence
I' = P | P, ¢[X/Y]. Let then ¢ = vX,.¢}, i € {1,2}. By one part of
the induction hypothesis, g, P/ : ¢; can be established from the assumption
- P! X;. Thus kg, P/ : ¢;. From the second part of the induction hypothesis
we have a proof in the compositional system of x; : @}, 29 : ¢h F 2y | o : Y[ X/Y]
from the assumption x; : Xi,29 : Xo F 21 | 25 : X, thus obtaining a proof in the
compositional system of x; : ¢y, 29 : ¢ - 21 | 5 : Y1) from no assumptions.
This deals with the global part of the construction. For the local part we
consider the case where I' -, P | P, : (a)¢. Suppose, e.g., that P, = P|
and ' by, P| | P, : ¢. By induction we find ¢; and ¢y such that g, P| : ¢,
Fsw Pa o, and 1 1 ¢y,29 @ 9 1 | 29 ¢ ¢. But then kg, P : (a)¢; and
x1{(Q)p1, T2 po 1y | 29 1 (@) as required. O

In fact — since model checking in the Stirling-Walker system is decidable for
finite-state processes — the proof of Theorem 8.1 gives an effective strategy for
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building proofs. Other strategies can be devised, based on e.g. characteristic for-
mulas. Notice also that the proof makes only limited use of the global rules.
Termination is needed for greatest fixed points only, and the side-conditions con-
cerning activity and indexing can be eliminated altogether in favour of the much
simpler side-condition for CUT that ¢ is a closed formula.

9 Conclusion

A precursor of the present work is (Amadio and Dam, 1995) where a proof system
for a process passing calculus is presented, though recursive specifications are not
addressed.

The main issues left for future work are analyses of the proof power of the
general proof system, and of its practical usefulness. The latter is best evaluated
through experimentation. Constructed, as they are, in a systematic way, the local
rules may turn out to be quite natural once practice is built up. Moreover, being
compositional the proof system is well suited to support macros and derived rules.
The quite complicated side-conditions, on the other hand, may seem disconcerting.
The hope is that in most practical situations the technicalities concerning indexing
and activity can in fact be hidden.

To handle fixed points we have chosen to work with constants in the style
of (Stirling and Walker, 1991). Other alternatives would be Winskel’s tag-set
approach (Winskel, 1991), or subformula conditions in the style of (Streett and
Emerson, 1989). In the tag-set approach fixed point formulas are tagged with
sufficient information concerning the proof to determine locally whether discharge
is possible or not. For local model checking it suffices to record the process terms
for which the fixed point has so far been unfolded, admitting a very appealing
semantical account. For our case of two-sided sequents the proof information
needed to entirely localise discharge decisions would be both very syntactical and
very substantial indeed, thus losing much of the appeal of the tag-based approach.
Concerning subformula conditions the point is less obvious. In such an approach
one would drop namings and use a notion of regeneration that requires a fixed
point formula to both be a subformula of the right formula occurrence throughout
a given path, and to be actually unfolded somewhere along that path. The proof
system would be easily adaptable to such a setting, but a direct adaptation of the
side conditions of section 6 would be unsound. For instance one would quite easily
be able to prove the sequent

v X pY o] Xy A b)Y,y vYo.uXoJal Xo A DYoo F x|y pZ.]alZ A [B]Z (20)

where the least fixed point formula corresponding to Y; would be unfolded along
one path of the proof, and the least fixed point formula corresponding to X,
along the other, thus justifying discharge according to section 6. However, these
unfoldings cancel out when the loops begin to be nested, and indeed the sequent
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(20) is easily seen to be false. The problem can be remedied, though, by global side-
conditions constraining the way fixed point unfoldings can be allowed to interfere.

The only completeness criterion we have considered here is weak completeness
for finite-state processes. Stronger completeness results are needed, maybe along
the lines of the so-called well-described formulas explored in (Amadio and Dam,
1995). In this case rules which are not needed for weak completeness such as A-V
distribution (z : ¢ A (¥ Vy) F z: (¢ A) V (¢ Ay)) and monotonicity under
the modal operators (e.g. x : ¢ F x : ¢ implies z : ()¢ = z : {(a)1) must
be added. For unguarded recursive process terms our proof system is in most
cases ineffective. It should be possible to remedy this by adding further reasoning
principles along the lines of Hungar’s “box recurrences” (Hungar, 1994).

Another issue is to investigate the power of our approach for general, say, GSOS
definable languages (cf. Simpson’s recent work on Hennessy-Milner logic (Simpson,
1995)). For instance it is quite easy based on the present ideas to develop a sound
proof system for context-free processes. Is this proof system completel’
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