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AbstractWe present the �rst compositional proof system for checking processes againstformulas in the modal �-calculus which is capable of handling dynamic processnetworks. The proof system is obtained in a systematic way from the operationalsemantics of the underlying process algebra. A non-trivial proof example is given,and the proof system is shown to be sound in general, and complete for �nite-stateprocesses.
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1 IntroductionIn this paper we address the problem of verifying modal �-calculus properties ofgeneral in�nite-state processes, and we present what we believe to be the �rstgenuinely compositional solution to this problem.The value of compositionality in program logics is well established. Compo-sitionality allows better structuring and decomposition of the veri�cation task, itallows reuse of proofs, and it allows reasoning about partially instantiated pro-grams, thus supporting program synthesis. Even more fundamentally it allows,at least in principle, veri�cation exercises to be undertaken which are beyond thescope of more global approaches because the set of reachable global states growsin an unbounded manner. The problem of how to build compositional proofsystems for concurrent systems, however, has long been recognised as a very dif-�cult one. Many techniques have been suggested in the literature, including theassumption-guarantee paradigm (cf. (Jones, 1983; Pnueli, 1985; Stirling, 1988;Abadi and Lamport, 1993; Grumberg and Long, 1994)), quotienting and reduc-tion (cf. (Larsen and Liu, 1991; Andersen et al, 1994)), techniques exploitingenvironment-relativised transition semantics (cf. (Abrahamson, 1979; Barringeret al, 1984)), and simulation relations (cf. (Jonsson, 1994; Grumberg and Long,1994)). All these techniques, however, give only partial and ad-hoc solutions inthat they work only for particular concurrency primitives, static process networksand, most often, linear time logic.Much recent research in the area has focused on process algebra and the modal�-calculus. The modal (or propositional) �-calculus, L�, due to Kozen (Kozen,1983), is a powerful temporal logic obtained by adding least and greatest solutionsof equations to minimal modal logic. Many important temporal logics such as CTLand CTL� can be represented in L� (c.f. (Emerson and Lei, 1986; Dam, 1994, A)),and a large number of algorithms, tableau systems, and proof systems for verifyingprocesses against modal �-calculus speci�cations by some form of global statespace exploration have been given (c.f. (Brad�eld and Stirling, 1992; Cleaveland etal, 1992; Emerson and Lei, 1986; Larsen, 1992; Stirling and Walker, 1991; Winskel,1991) and many others). Compositional accounts have been developed based onsome form of quotienting, or reduction (cf. (Larsen and Liu, 1991; Andersen et al,1994)). These approaches, however, are only applicable for �nite-state processes,or at least when the holding of a property depends only on a �nite portion of apotentially in�nite-state process.Finite-state processes, however, are inadequate as modelling tools in manypractical situations. Value- or channel passing, for instance, can cause even thesimplest processes to become in�nite state. While some decidability results can beobtained in the absence of process spawning (c.f. (Dam, 1994, B)), in general themodel checking problem becomes undecidable, even in very sparse fragments of,e.g., CCS (Esparza, 1997). Process spawning, however, is needed in many appli-cations: Unbounded bu�ers, dynamic resource or process creation/forking, datatypes and higher order features. In fact it is hard to conceive of useful program3



logics for modern concurrent functional languages such as CML, Facile, Erlang,or PICT that can not deal with process spawning, and indeed the development ofsuch logics is one long-term aim of the research reported here.Because of undecidability, �nitary proof systems for proving temporal prop-erties (like: termination) of general in�nite state processes will necessarily beincomplete. This, however, does not make the problem go away! The currentlyprevailing �nite-state approaches (iterative or local) provide little assistance: Theyare inadequate for even rather simple in�nite state problems such as the \counter"example considered below. Here we explore instead a compositional approach. Ouraim is to obtain a compositional proof system which is (1) sound, (2) practicallyuseful, (3) powerful enough to prove the kinds of in�nite state problems we wouldhope to be able to address, and (4) complete for the �nite state fragment. For (1)and (4) we have positive answers. More work is needed to answer (2) and (3).Compositionality is addressed by taking a more general view of model check-ing. Instead of focusing on closed assertions like j= P : � we look at sequentsof the form x1 : �1; :::; xn : �n j= P (x1; :::; xn) : �. That is, properties of theopen process term P (x1; :::; xn) are relativised to properties of its free variablesx1; :::; xn. This provides a more general proof-theoretical setting which can beexploited to give a structural account of recursive properties. This is a fairly easytask for those connectives like ^, _, or the modal operators, that depend onlyon \local" behaviour. For the �xed point operators the problem is much moredi�cult. Here we o�er an approach based on loop detection. To guide us towardsa general solution we o�er in this paper a formal proof to show that the CCSprocess Counter = up:(Counter j down:0) after any sequence of consecutive uptransitions can only perform a �nite sequence of consecutive down transitions.An important feature of our approach is that, in contrast to other existing com-positional accounts, the sequent style proof system we obtain is constructed fromthe operational semantics in quite a general and systematic manner. The proofsystem contains four separate elements: Structural rules, including a cut-rule, toaccount for sequent structure; logical rules that deal with boolean connectives andrecursive formulas; dynamical rules that deal with the modal operators; and �-nally a single rule of discharge that is responsible for detecting \safe" recurrencesof sequents. Only the dynamical rules are dependent upon the speci�c processalgebra under consideration. Moreover the dynamical rules are constructed in away that one can easily foresee being automated for a range of process algebras.2 CCS and the Modal �-CalculusOur use of CCS follows (Milner, 1989) closely. An action, �, is either the invisibleaction � or a label l. A label is either a (port- or channel-) name a, b, say, or aco-name a, b. Generally a and a are identi�ed. We assume that the set of labels is�nite and ranged over by l0; : : : ; lm. Sets of labels are ranged over by L;K. Agent4



expressions, E; F , are given as follows:E ::= 0 �:E E + E E j E E n L x �xx:Ewhere x (and y) range over agent variables. An agent expression is an agent if itcontains no free agent variables. Agents are ranged over by P;Q, and A is the setof all agents. The CCS renaming operator is omitted since it adds little of interestto the present account. We refer to (Milner, 1989) for the operational semanticsrules.The syntax of the modal �-calculus is augmented by equality and inequalityof actions which are useful (though not required), primarily to give a reasonableaccount of the � -indexed box operator. We consider formulas given in positiveform, generated by the grammar� ::= � = � � 6= � � ^ � � _ � [�]� h�i� X �X:� �X:�where X (Y; Z) ranges over propositional variables. A De-Morganised nega-tion can be de�ned in this language, by clauses like :[�]� = h�i:�, :�X:� =�X::�[:X=X], :�X:� = �X::�[:X=X], and ::X = X. If � is a name a wecan introduce a universal quanti�er over actions by abbreviation:8�:� =^f�[�0=�] j �0 an actiongwhere it is required that � does not have free occurrences of the action a so thataction terms like � are avoided.The semantics of formulas, k�kV � A, where V is a valuation assigning sets ofagents to propositional variables is quite standard:k� = �kV = ( A if � = �; otherwisek� 6= �kV = ( ; if � = �A otherwisek� ^  kV = k�kV \ k kVk� _  kV = k�kV [ k kVk[�]�kV = fP j 8P 0: if P �! P 0 then P 0 2 k�kVgkh�i�kV = fP j 9P 0:P �! P 0; P 0 2 k�kVgkXkV = V(X)k�X:�kV = SfA j A � k�kV[X 7! A]g.k�X:�kV = TfA j k�kV[X 7! A] � Ag.Instead of P 2 k�kV we sometimes write j=V P : �, or j= P : � if � is closed.5



3 SequentsThe basic judgment of the proof system is the sequent.De�nition 3.1 (Sequents, declarations) A sequent is an expression of the form� ` E : � where � is a sequence of declarations of one of the forms x : � or X = �.Sequents are ranged over by s. Declarations of the form X = � are callednamings, and if s contains the naming X = � then X is said to name � in s. Anoccurrence of a variable X to the left of the equality sign in a naming X = �is regarded as binding. Namings are used as constants in (Stirling and Walker,1991), and serve to keep track of the unfoldings of �xed point formula occurrencesin the proof system. We use � as a meta-variable over f�; �g. If X names aformula of the form �Y: in s then X is called a �-variable.Declaration sequences and sequents are subject to an inductively de�ned well-formedness constraint in order to ensure that (proposition and process) variablesare properly declared. This condition states that variables can be declared at mostonce, and that for a sequent � ` E : �, if a variable occurs freely in E or in � thenit is declared in �, and, for a sequent �1; x : �0;�2 ` E : �, if a variable occursfreely in �0 then it is declared in �1. Henceforth attention is restricted to sequentsthat are well-formed. If s = � ` E : � then � is called the conclusion formula ofs, and, if the process variable x is declared in �, the formula � associated to x bythe declaration in � is called the assumption on x.De�nition 3.2 (Sequent semantics)1. The sequent ` P : � is V-true if and only if P 2 k�kV2. The sequent �; x : � ` F :  is V-true if and only if for all agent expressionsE, if � ` E : � is V-true then so is � ` F [E=x] :  .3. The sequent �; X = � ` E :  is V-true if and only if � ` E :  isV[X 7! k�kV]-true.If the sequent s is well-formed then the V-truthhood of s is well-de�ned andindependent of V. Notice that the quanti�cation over agent expressions in def.3.2.3 could equivalently be replaced by a quanti�cation over agents.4 Local RulesWe are now in a position to present the proof system. It consists of two subsys-tems, a local and a global one. We �rst introduce the local subsystem. The localsubsystem is subdivided into three groups of rules: Structural rules governing theuse of declarations, logical rules responsible for the left and right introduction6



of logical operators, and �nally dynamical rules for the modal operators whichdepend on process structure.Structural rules: Declaration ��1; x : �;�2 ` x : �Cut �1;�2 ` E : � �1; x : �;�2 ` F :  �1;�2 ` F [E=x] :  Logical rules:=-Right �� ` E : � = � =-Left ��1; x : � = �;�2 ` E :  (� 6= �)6=-Right �� ` E : � 6= � (� 6= �) 6=-Left ��1; x : � 6= �;�2 ` E :  ^-Right � ` E : � � ` E :  � ` E : � ^  ^-Left �1; x : �;�2 ` E : �1; x : � ^  ;�2 ` E : _-Right � ` E : �� ` E : � _  _-Left �1; x : �;�2 ` E :  �1; x :  ;�2 ` E : �1; x : � _  ;�2 ` E : �-Right �; Y = �X:� ` E : Y� ` E : �X:� �-Left �1; Y = �X:�; x : Y;�2 ` E :  �1; x : �X:�;�2 ` E :  Y -Right �1; Y = �X:�;�2 ` E : �[Y=X]�1; Y = �X:�;�2 ` E : YY -Left �1; Y = �X:�;�2; x : �[Y=X];�3 ` E :  �1; Y = �X:�;�2; x : Y;�3 ` E :  Dynamical rules:0-2 � ` 0 : [�]� �:-3 � ` x :  � ` �:x : h�i �:-2-1 � ` x :  � ` �:x : [�] �:-2-2 �� ` �:E : [�]� (� 6= �)+-3 �1; x : �;�2 ` x :  �1; x : h�i�;�2 ` x+ F : h�i +-2 �1; x : �1;�2;�3 ` x :  �1;�2; y : �2;�3 ` y :  �1; x : [�]�1;�2; y : [�]�2;�3 ` x+ y : [�] j-h�i �1; x : �;�2; y :  ;�3 ` x j y : �1; x : h�i�;�2; y :  ;�3 ` x j y : h�ij-h�i �1; x : �;�2; y :  ;�3 ` x j y : �1; x : hli�;�2; y : hli ;�3 ` x j y : h�i7



j-[�]
�1; x : �1;�2; y :  1;�3 ` x : [�]�2�1; x : �1;�2; y :  1;�3 ` y : [�] 2�1; x : �1;�2; y :  2;�3 ` x j y : �1; x : �2;�2; y :  1;�3 ` x j y : �1; x : �1;�2; y :  1;�3 ` x j y : [�] (� 6= �)

j-[� ]
�1; x : �1;�2; y :  1;�3 ` x : 8�:[�]�2(�)�1; x : �1;�2; y :  1;�3 ` y : 8�:[�] 2(�)�1; x : �2(�);�2; y :  1;�3 ` x j y : �1; x : �1;�2; y :  2(�);�3 ` x j y : �1; x : �2(l0);�2; y :  2(l0);�3 ` x j y : ...�1; x : �2(lm);�2; y :  2(lm);�3 ` x j y : �1; x : �1;�2; y :  1;�3 ` x j y : [� ]n-2-1 �� ` E nK : [�] (� 2 K) n-2-2 �1; x : �;�2 ` x nK :  �1; x : [�]�;�2 ` x nK : [�] n-3 �1; x : �;�2 ` x nK :  �1; x : h�i�;�2 ` x nK : h�i (� 62 K) Fix � ` E[�xx:E=x] : �� ` �xx:E : �The �rst two sets of rules require little comment, coming, as they do, straight fromproof theory. The only noteworthy points are the use of variables to name �xedpoint formulas, and that symmetric versions of the ^-Left and _-Right ruleshave been omitted. Similarly, symmetric versions of the +-3, j-3, and rules de-rived from +-2 and the rules for parallel composition, obtained by systematicallyexchanging the declarations for x and for y, have been omitted.The rationale behind the dynamical rules is best explained through a littleexample. Suppose we wish to prove ` P j Q : h�i�, because we suspect that (1)P �! P 0 and (2) j= P 0 j Q : �. Our task is to1. guess a property �1 of P 0 and a property �2 of Q,2. prove ` P : h�i�1 and ` Q : �2,3. prove x1 : �1; x2 : �2 ` x1 j x2 : �, and �nally,4. put (2) and (3) together using j-h�i and two cuts to conclude ` P j Q : h�i�.Comparing with local model checking systems such as Stirling and Walker's (Stir-ling and Walker, 1991) this account has sacri�ced a subformula property (` P jQ : h�i� is proved in terms of processes having the property �) in favour of asubprocess property (` P j Q : h�i� is proved in terms of properties holding ofthe processes P and Q). We regard this as quite natural and reecting closely thecompositional nature of the proof system. We do not expect that any of the tasks(1){(3) can be automated, although this is possible in special cases, in particularfor the case of �nite state processes considered later.8



5 An Example ProofIn this section we give an example proof to show the local rules at work, and toserve as a setting for discussing termination conditions. The example proves thatthe in�nite state process Counter = �xx:up:(x j down:0) satis�es the property� = �X:(�Y:[down]Y ) ^ [up]X, i.e. after any �nite consecutive sequence of up'sonly a �nite number of consecutive down's are possible. We use a goal-directedapproach. Thus the initial goal is ` Counter : �. We �rst name �, obtaining thesequent U=� ` Counter : U: (1)We then unfold Counter and U , apply ^-Right, and arrive at the two subgoalsU=� ` up:(Counter j down:0) : (�Y:[down]Y ) (2)U=� ` up:(Counter j down:0) : [up]U: (3)Subgoal (2) is easily handled by naming the �-formula, unfolding, and then ap-plying �:-2-2, so we proceed re�ning subgoal (3). First using �:-2-1 we obtainU=� ` Counter j down:0 : U (4)Now the idea is to use two applications of Cut to re�ne 4 to three subgoals of theform U=� ` Counter : �0 (5)U=�; x : �0 ` down:0 :  (6)U=�; x : �0; y :  ` x j y : U: (7)The problem is how to arrive at good choices for �0 and  . This can be quite tricky.The problem is to specify the behaviour of each of two components Counter anddown:0 to such detail that all necessary aspects of their possible interactions canbe analysed. For Counter, keeping (1) in mind, a �rst guess would be to choose�0 = U . For down:0 we choose the formula  = [down][down]� ^ [up]�. Anotherpossible choice would have been  = U . This would have been useful, for instance,for dealing with the related example Counter0 = �xx:up:(x j down:x).Proceeding with the proof, (6) is now eliminated by ^-Right, �:-2-1, �:-2-2, and 0-2. For (5) our intention is to terminate because (5) has previouslybeen expanded as (1), and U is a �-variable so termination is safe. Indeed thetermination conditions will allow this. Thus, (7) is all that remains. Now, byunfolding and ^-Right we obtain the subgoalsU=�; x : U; y :  ` x j y : �Y:[down]Y (8)U=�; x : U; y :  ` x j y : [up]U: (9)We delay consideration of (8) and concentrate on (9). First unfold the left handoccurrence of U to obtainU=�; x : �Y:[down]Y ^ [up]U; y :  ` x j y : [up]U: (10)9



Now the rule j-[�] applies to reduce to the four subgoalsU=�; x : �Y:[down]Y ^ [up]U; y :  ` x : [up]U (11)U=�; x : �Y:[down]Y ^ [up]U; y :  ` y : [up]� (12)U=�; x : U; y :  ` x j y : U (13)U=�; x : �Y:[down]Y ^ [up]U; y : � ` x j y : U (14)Of these, (11) and (12) are easily proved using ^-l and some simple booleanreasoning. (14) is proved using 6=-Left. Finally, (13) is discharged using (7)since U is a �-variable (!). We then need to consider (8). First name the righthand �-formula, letting  = �Y:[down]Y , then unfold the left-hand occurrence ofU , and after an application of ^-Left we obtainU=�; x : ; y :  ; V= ` x j y : V:Now the left hand �-formula is named too:U=�;W=; x : W; y :  ; V= ` x j y : V (15)and V is unfolded:U=�;W=; x : W; y :  ; V= ` x j y : [down]V: (16)Unfolding W to the left givesU=�;W=; x : [down]W; y :  ; V= ` x j y : [down]V: (17)which reduces through j-[�] and some logical reasoning to the two subgoalsU=�;W=; x : W; y :  ; V= ` x j y : V (18)U=�;W=; x : [down]W; y : [down]�; V= ` x j y : V: (19)We now arrive at a key point in the proof where we discharge (18) with referenceto subgoal (15), because even though the �-variable V to the right of the turnstylehas been unfolded from (15) to (18) so has another �-variable, W , to the left ofthe turnstyle. Thus, intuitively, if we assume the left hand side to be true this willensure that in factW , and hence V , will only be unfolded a �nite number of times,and hence termination at the point (18) is safe. Finally the proof is completed,re�ning (19) by �rst unfolding V and then using j-[�] in a way very similar to theway (16) was dealt with. This is left as an exercise for the reader.6 Side-conditions and Global RulesWe proceed to explain the global rules justifying the discharge of hypotheses atsteps (5), (13), and (18) in the previous section.10



A basic proof structure (b.p.s.) B is a �nite proof tree constructed accordingto the local proof rules. Usual tree terminology such as nodes, paths, leavesapplies. Basic proof structures may contain occurrences of hypotheses. The globalsubsystem consists of a single rule of discharge that determines which occurrencesof hypotheses can be discharged, along the lines suggested in section 5. A proof,then, is a basic proof structure for which all occurrences of hypotheses have beendischarged.To arrive at a sound rule of discharge it is necessary to1. consider the ways formulas are \regenerated" along paths through a basicproof structure, and2. count the number of unfoldings of �-variables.The �rst problem is familiar from most accounts of local �xed point unfoldingin the modal �-calculus: Streett and Emerson (Streett and Emerson, 1989) andlater Cleaveland (Cleaveland, 1990) uses a subformula condition to keep trackof �xed point occurrences; Stirling and Walker (Stirling and Walker, 1991) usespropositional constants for the same purpose; and Winskel (Winskel, 1991) useswhat has become known as the \tag-set" approach. For reasons we return to laterwe have chosen to use the constant-based approach. To understand the secondproblem let us anticipate the soundness proof a little. We prove soundness byassuming a proof to be given and a sequent in the proof to be false. Let thesequent concerned be of the form � ` E : X, X a �-variable. We can then �nd asubstitution � validating � and making �(X) false when X is annotated by somesuitable ordinal. By applications of Cut this annotation may cause occurrencesof X to the left of the turnstyle in some \later" sequent �0 ` E 0 : �0 to beannotated too. Unfolding speci�c occurrences of X may cause the annotation ofthat occurrence to be decreased. We need to arrive at a contradiction even when�0 ` E 0 : �0 is the conclusion of a nullary rule, say Declaration. But if theannotation of a X to the left is less than the annotation of X to the right thenthere is no guarantee of a contradiction, and soundness may fail.6.1 Generation and ActivityWe �rst need some machinery to reect the way formula occurrences give rise toother formula occurrences as proofs are constructed.De�nition 6.1 (Generation) Let a basic proof structure B and a sequent s1 in Bbe given. Let � = s1; : : : ; sk be a path downwards (towards the root) from s1 tosome other sequent sk in B. Whenever formula occurrences �1 in s1 and �k in skexists such that either �1 and �k are both conclusion formulas, or �1 and �k areboth assumptions on the same x then �k is said to generate �1 along �.The term \generates" is chosen since we envisage proofs to be constructed in abottom up fashion from goal to subgoals. Since weakening is not allowed the local11



check (that both formulas are either the conclusion or assumptions on the samex) su�ces. Otherwise an analysis of the entire path instead of just the end-pointswould be required. The notion of generation is important since it respects activityof variables in a sense which we go on to explain.De�nition 6.2 (Activity) Let s = � ` E : � be a well-formed sequent and let �be any formula. A variable X is said to be active in � (with respect to s) if eitherX is free in � or else some Y is free in �, Y names some  in s, and X is activein  .Note that well-formedness ensures that the \active-in" relation on variables isa partial order. We impose the following side condition on Cut:Proviso 6.3 Applications of Cut are subject to the condition: For any �-variableX, if X is active in � then X is also active in  .The following property concerning \preservation of activity" is crucial forsoundness:Proposition 6.4 In a b.p.s. B let a path downwards from s to s0 be given. Let �(�0) be an occurrence of a formula in s (s0). If �0 generates �, X is declared in s0,and X is active in � then X is active in �0. 2Proof: Induction in length of path � = s1; : : : ; sk where s1 = s and sk = s0.By inspection of the proof system we realise that there are only three cases whereX could possibly lose activity. First the case where sk is the left antecedent ofsk�1 through a cut is dealt with by our proviso. The other cases apply when X isintroduced at sk through an application of Y -Right or Y -Left. But then X isnot declared in sk�1, a contradiction. 26.2 IndexingWe now turn to the counting of unfoldings. An indexing is a partial assignmentof indices n 2 ! to occurrences of names such that for any sequent � ` E : �, iftwo occurrences of X in the same formula in � or � are given then one is indexedn i� the other one is. Only the rules �-Left, �-Right, Y -Right, Y -Left,Declaration, and Cut are a�ected by indexing. The modi�cations needed arethe following:1. �-Left and �-Right: Y is indexed by 0 in both rules.2. Y -Right and Y -Left: The occurrence of Y in the conclusion is indexedby n and occurrences of Y in the antecedent by n + 1.12



3. Declaration: If X is an n-indexed �-variable in � to the right of theturnstile then the corresponding occurrence of X in � to the left of theturnstile is indexed by some n0 � n.4. Cut: For any �-variable X, if X is active in � then all occurrences of X in� or  are indexed by the same index.As we have explained, indexing is important to ensure that �-variables are notunfolded \faster" to the left of the turnstile than to the right. The followingnotion helps to ensure that loops do not cause this to be violated:De�nition 6.5 (Standard sequents) Let FV(E) = fx1; : : : ; xng and lets = �(x1 : �1; : : : ; xk : �k) ` E : �be a sequent. Then s is said to be standard if for all �-variables X, if X is activein � with index n and if X is active in �i, 1 � i � k, with index n0 then n0 � n.6.3 Regeneration and the Rule of DischargeWe can now state the property of regeneration and the rule of discharge.De�nition 6.6 (Regeneration) In a b.p.s. B let a path � downwards from s tos0 be given. Suppose that1. �0 generates � along �,2. � and �0 are identical up to indexing of variables,3. a variable Y is active in �,4. Y names a �xed point formula �X: at s0,5. �0 generates Y along some strict su�x of � such that Y results from theapplication of one of the rules Y -Right or Y -Left.Then � is �-regenerated along � (through Y ).For the rule of discharge we wish, intuitively, to be able to discharge hypothesess = � ` E : � whenever we below s �nd another sequent s0 which is identical upto the variables free in E (and up to indexing), and such that one of the followingtwo properties hold:1. � is regenerated along the path from s0 to s through a �-variable.2. Some formula in a declaration of one of the free variables in E is regeneratedfrom s0 to s through a �-variable.13



Condition (1) is the discharge condition found in local model checkers such as(Stirling and Walker, 1991) or (Winskel, 1991): It reects the intuition that �-variables express invariant properties that must be refuted by exhibiting progresstowards an inconsistency. Condition (2), on the other hand, reects the factthat �-variables determine eventuality properties, and that the assumption of aneventuality property on some parameter of E provides a progress measure which,due to regeneration, is strictly decreased along the path concerned.While this intuition is good as a �rst approximation the need to take indexinginto account complicates matters considerably, in particular due to the potentialof loop nesting.De�nition 6.7 (Rule of Discharge) Let FV(E) = fx1; : : : ; xkg and lets = �(x1 : �1; : : : ; xk : �k) ` E : �be an occurrence of a hypothesis in a given basic proof structure B. Suppose thats is standard. Then s can be discharged provided that, below s, there is, up toindexing, an occurrence of a standard sequents0 = �0(x1 : �1; : : : ; xk : �k) ` E : �such that one of the following conditions hold:1. � is �-regenerated along the path from s0 to s through some X, say. Then ithas to be the case that for all i : 1 � i � k, if �i is �-regenerated along thepath from s0 to s through some Y which is active in X then Y = X, and ifn (n0) is the index of X in � in s (s0) and if m (m0) is the index of Y in �iin s (s0) then m�m0 � n� n0.2. � is �-regenerated along the path from s0 to s. Then it has to be the casefor some i : 1 � i � k, that �i is �-regenerated along the path from s0 tos too. Moreover, for all i : 1 � i � k, if �i is �-regenerated along the pathfrom s0 to s through some Y then Y is not active in �.7 SoundnessWe prove that if � ` E : � is provable then it is true. The proof uses ordinalapproximations de�ned in a standard fashion:k�0X:�kV = ( A if � = �; otherwisek��+1X:�kV = k�kV[X 7! k��X:�kV]k��X:�kV = ( T�<� k��X:�kV if � = �S�<� k��X:�kV otherwise14



Using the well-known �xed point theorem of Knaster-Tarski we see that if P 2k�X:�kV then P 2 k��X:�kV for some ordinal �, and vice versa, if P 2 k�X:�kVthen P 2 k��X:�kV for all ordinals �.Now, a partial approximation � of a sequent s = � ` E : � is a partial annota-tion of ordinals to names X in s such that if X occurs in � then X is a �-variable.It is important to keep approximation ordinals and indexing apart. The latteris a pure book-keeping device designed to keep track of the number of times �-variables are unfolded as one passes upwards in a proof structure. The semanticsof formulas is extended slightly to take variable declarations and approximationsinto account by the clause kXkV = k�(�)Y:�kVwhich should be understood relative to a sequent with left hand side � where �contains the declaration X = �Y:� and where X is annotated by �.De�nition 7.1 (Truth for substitution and partial approximation) The sequent� ` E : � is true for a substitution � of agent variables to agents, and a partialapproximation � if E� 2 k�k provided for all x which are free in E, if x : �x is thedeclaration of x in � then �(x) 2 k�xk.We now embark on the soundness proof proper. We prove that if there is aproof of s0 = �0 ` E0 : �0 then it is true. Assume that in fact s0 is false. Then we�nd a substitution � such that s0 is false for � and the empty partial approximation�0. We trace an in�nite sequence of the form � = (s0; �0; �0); (s1; �1; �1); : : : suchthat for all i, si is false for �i and �i, and si is (up to indexing) the conclusion ofa proof rule instance for which si+1 is an antecedent. By use of approximationordinals, and using the fact that in�nitely many points along � must correspondto hypotheses that have been discharged we can then arrive at a contradiction.Suppose the construction has arrived at the sequent si = �i ` Ei : �i. Thefollowing properties are maintained invariant:Property 7.2 1. Let any two occurrences of a free variable X in �i be given.If one occurrence is annotated by �i they both are, and then the annotationsare identical. The same holds for any  occurring as part of a declarationx :  in �i.2. We assume for all �-variables X that if X is active in both �i and �i suchthat X is active in a declaration in �i of a variable which is free in Ei, theactive occurrence of X in �i is indexed by n and approximated by �, and theactive occurrence of X in �i is indexed by n0 and approximated by �0, then�0 + n0 � �+ n.To motivate the condition 7.2.2 note that n�n0 counts how many more timesXto the right of the turnstile has been unfolded than the corresponding occurrence15



to the left. In some cases, however, unfolding to the left may outpace unfoldingsto the right temporarily, violating the invariant. We postpone discussion of thiscase until we see it arising.Since �0 is empty the invariant 7.2 holds initially. We show how we can iden-tify (si+1; �i+1; �i+1) such that si+1 is false for �i+1 and �i+1 by considering eachpotential rule in turn.Structural rules. The only circumstance in which Declaration could applyis where some �-variable occurrence to the left of the turnstile is annotated bya smaller approximation ordinal than its corresponding occurrence to the right.However, the invariant condition gives �0 + n0 � �+ n and n0 � n (where �, �0, nand n0 are determined as in 7.2.2), hence �0 � �.Suppose then that si results from an application of the rule Cut. Considerthe instance Cut �1;�2 ` E : � �1; x : �;�2 ` F :  �1;�2 ` F [E=x] :  so that si = �1;�2 ` F [E=x] :  . Assume that(i) �1;�2 ` E : � is true for �i and �0i where �0i annotates variables in �1 or �2as �i, and variables in � as the corresponding variables in  in si.(ii) �1; x : �;�2 ` F :  is true for the substitution �0i and �00i where{ �0i is the substitution for which �0i(y) = �i(y) whenever y 6= x and forwhich �0i(x) = E�i.{ �00i annotates variable occurrences in �1, �2, and  as the correspondingoccurrences in si, it annotates no occurrences of �-variables in �, andit annotates �-variables in � as they are annotated in  by �i.From (i) and (ii) it follows that si must be true for �i and �i, hence one of themmust fail, and we pick as (si+1; �i+1; �i+1) whichever combination that does fail.Note that, due to the side-condition concerning activity for Cut, we ensure thatif all �-variables are annotated in  then the same is true for �. Note also that theinvariants are maintained true by this construction. Note thirdly that it is thisstep in the construction that requires �-variables to be approximated (hence alsoindexed) both to the right and to the left of the turnstile. This situation does notarise for �-variables.Logical rules. Most of the other local rules are quite trivial. The only rules thatadd something of interest to the construction are those that involve substitutionsor approximations. None of the logical rules involve substitutions in a non-trivialway. Approximations are a�ected only by the rules �-Right, �-Left, Y -Right,and Y -Left. For �-Right there are two cases: If � is � then nothing is changed.If � is � then, since si is false, we know that we can �nd some approximation ordinalfor which the antecedent of si is false when the ordinal annotates the introduced16



variable. Thus �i+1 is obtained, and clearly the invariants are maintained. Asimilar argument applies to �-Left except the roles of � and � are now exchanged.We then arrive at the situations where we need in some cases to temporarilybreak the invariant 7.2.2. These concern the rules Y -Right and Y -Left. Inneither case is �i a�ected. Suppose �rst that Y is a �-variable. The rule Y -Rightis trivial since it can not be annotated. For Y -Left, if Y is not annotated, start byannotating Y by the least ordinal possible, and proceed. Now, if (the occurrenceof) Y is annotated by a successor ordinal then the annotation is decreased byone in obtaining �i+1. If Y is annotated by a limit ordinal some strictly smallerordinal is chosen for which the invariant holds, and the construction continues.Suppose then that Y is a �-variable. Consider �rst Y -Right. Again, if Y isnot annotated, start by annotating Y by the least ordinal possible, and proceed.If Y is annotated by a successor ordinal it is decremented, and if Y is a limitordinal some strictly smaller ordinal is chosen, for which the invariant continuesto hold. Finally consider Y -Left. If Y is not annotated �i is left unchanged.So let instead �0 be the annotation of Y . If �0 is a successor ordinal �0 can bedecremented by 1 without a�ecting the invariant. Suppose then that �0 is a limitordinal �. If we can �nd some �00 < �0 such that �00 + n0 + 1 � � + n then wecan choose �00 to annotate Y after the unfolding, preserving the invariant. If onthe other hand no such �00 can be found we have reached the situation wherethe invariant will have to be (temporarily) broken. We choose some �00 < �0 atrandom and continue the construction even though the \invariant" fails to hold,arguing that we eventually will reach a situation where it can be reinstated. Sinceno choice of �00 < �0 preserves the invariant we can conclude that � = � + mso that n0 = m + n, ie. n0 � n. That is, we are in the situation where the lefthand side, due to applications of Y -Left, has overtaken the right hand side mtimes when counting numbers of unfoldings of Y for the particular assumptionconcerned. Assume that the construction of � has reached stage j > i and thatsj is false for the substitution and partial approximation concerned. Assume �rst(�) that sj is either an instance of Declaration, a discharged occurrence of ahypothesis, or a loop sequent|a sequent occurrence which serves as justi�cationfor the discharge of a hypothesis. Observe that if (�) fails to hold the constructionof � can be extended by some sj+1 preserving the property of being false forthe appropriate substitution and partial approximation. We also know that theconstruction of � can not go on forever without one of the three situations (�)arising. For all three we know by the side conditions that at that stage n � n0.Thus, counting the number of unfoldings of Y for the conclusion formula and forthe particular assumption formula concerned, we see that, along the path from sito sj, Y must have been unfoldedm times more for the conclusion formula than forthe assumption formula. Thus we see that, along the path from si to sj, eventuallythe annotation of Y for the conclusion formula must have decreased strictly below� to some �000 < �. This �000 serves as the starting point for backtracking on thechoice of �00: If the invariant turns out not to hold at stage j we now forget about17



� from stage i+1 onwards and redo the construction, this time with �00 := �000+m.We know that if no new choices are made in the construction of �, when we arriveat stage j the invariant will have been reinstated. We also know that no matterwhat path we follow from stage i onwards eventually one of the three conditions(�) will hold. As the number of choices we may have to redo can be boundedwe know that eventually we will reach stage j with the invariant having beenreinstated.Dynamical rules. These cause no real complications and are left to the reader.Global rules. Finally we need to consider the case where si is a dischargedoccurrence of a hypothesis. We then �nd a sequent sj, j � i, which is the loopsequent justifying the discharge of si. si will have the form si = �i(x1 : �i;1; : : : ; xk :�i;k) ` Ei : �i and sj will have the form sj = �j(x1 : �i;1; : : : ; xk : �i;k) ` Ei : �iwhere FV(E) = fx1; : : : ; xkg. We know that the invariant holds for sj (and thatno subsequent backtracking will modify the annotations of sj). In identifying(si+1; �i+1; �i+1) we wish to replace si by sj keeping �i and �i unchanged. We needto check that the invariant is maintained. Let X be any �-variable which is activein �i, indexed nj in sj, ni in si, and annotated by, say, � in si. Further, let Xalso be active in one of the �i;j, indexed n0j in sj, n0i in si, and annotated by �0in si. Since the invariant holds for si we know that �0 + n0i � � + ni. There aretwo cases: Either X is the �-variable through which �i is regenerated, and then�0+n0j � �0+n0i�ni+nj � �+nj as desired. Otherwise �i is regenerated throughsome other �- or �-variable. In this case we know that, since X is active in �i thatni = nj. Moreover by conditions 6.7.2 and 3 we know that, since X is also activein �i;j, that n0i = n0j too. Hence also here �0 + n0j � �+ nj and we have shown theinvariant to be maintained. Now (si+1; �i+1; �i+1) can be derived since one of thelocal rules apply.Completing the proof. Having built the in�nite sequence � we �nd a �-variableX which is in�nitely often regenerated to the right of the turnstile along �. If� = � a contradiction is obtained since the initial annotation ofX is in�nitely oftendecreased along �. If � = � we �nd a �-variable which is in�nitely often unfoldedto the left of the turnstile along � and a similar argument applies, completing thesoundness proof.8 Completeness for Finite-state ProcessesWhile we view soundness for general processes as the main contribution of thepaper, completeness for �nite-state processes is important as a check that noproof power has accidentally been sacri�ced.Theorem 8.1 If P is a well-guarded �nite-state process and j= P : � then ` P : �is provable. 18



Proof: (Outline) Theorem 8.1 can be proved by embedding the tableau basedmodel checker of Stirling and Walker (Stirling and Walker, 1991) into the presentsetting. Consider the proof system obtained by restricting attention to sequents� ` P : � where only namings are allowed in �, and where the dynamical rulesare replaced by the following two global rules:h�i-Right � ` P 0 : �� ` P : h�i� (P �! P )[�]-Right f� ` P 0 : � j P �! P 0g� ` P : [�]�The rule of discharge is modi�ed by allowing a sequent s = � ` P : X to bedischarged whenever X is a �-variable and there is strictly below s another sequentof the form �0 ` P : X. Call the proof system ensuing from these changes theStirling-Walker system, and write � `sw P : � for provability in this system. Bysoundness and completeness (Stirling and Walker, 1991) we know that j= P : �i� `sw P : �. So assume that P is �nite-state and that a proof � of `sw P : �is given. Assume for simplicity that P = P1 j P2. We derive by induction in thesize of � formulas �1 and �2 such that `sw P1 : �1 and `sw P2 : �2 by proofs ofsize not greater than the size of �, and x1 : �1; x2 : �2 ` x1 j x2 : � is provablein the compositional system. Once a similar result has been proved for restriction(which is quite simple), it is an easy induction in the size of proof of `sw P : �to show that ` P : � in the compositional proof system too, establishing theresult. As we traverse � from the root upwards we generate pieces of �1 and �2in a manner which respects the structure of �. The greatest di�culty is to dealwith names. Assume that the rule Y -Right is applied in � to a sequent, say,� `sw P 01 j P 02 : X, and that � `sw X = �Y: , so that the resulting antecedentis � `sw P 01 j P 02 :  [X=Y ]. Pick two fresh variables X1 and X2. X1 will be usedin �1 and X2 in �2. These variables are generated whenever we reach a sequentoccurrence of the form �0 ` P 01 j P 02 : X strictly above the sequent occurrence� ` P 01 j P 02 : X. Let �01; �02 be the formulas generated by the sequent occurrence� ` P 01 j P 02 :  [X=Y ]. Let then �i = �Xi:�0i, i 2 f1; 2g. By one part ofthe induction hypothesis, `sw P 0i : �0i can be established from the assumption` P 0i : Xi. Thus `sw P 0i : �i. From the second part of the induction hypothesiswe have a proof in the compositional system of x1 : �01; x2 : �02 ` x1 j x2 :  [X=Y ]from the assumption x1 : X1; x2 : X2 ` x1 j x2 : X, thus obtaining a proof in thecompositional system of x1 : �1; x2 : �2 ` x1 j x2 : �Y: from no assumptions.This deals with the global part of the construction. For the local part weconsider the case where � `sw P1 j P2 : h�i�. Suppose, e.g., that P1 �! P 01and � `sw P 01 j P2 : �. By induction we �nd �1 and �2 such that `sw P 01 : �1,`sw P2 : �2, and x1 : �1; x2 : �2 ` x1 j x2 : �. But then `sw P1 : h�i�1 andx1 : h�i�1; x2 : �2 ` x1 j x2 : h�i� as required. 2In fact | since model checking in the Stirling-Walker system is decidable for�nite-state processes | the proof of Theorem 8.1 gives an e�ective strategy for19



building proofs. Other strategies can be devised, based on e.g. characteristic for-mulas. Notice also that the proof makes only limited use of the global rules.Termination is needed for greatest �xed points only, and the side-conditions con-cerning activity and indexing can be eliminated altogether in favour of the muchsimpler side-condition for Cut that � is a closed formula.9 ConclusionA precursor of the present work is (Amadio and Dam, 1995) where a proof systemfor a process passing calculus is presented, though recursive speci�cations are notaddressed.The main issues left for future work are analyses of the proof power of thegeneral proof system, and of its practical usefulness. The latter is best evaluatedthrough experimentation. Constructed, as they are, in a systematic way, the localrules may turn out to be quite natural once practice is built up. Moreover, beingcompositional the proof system is well suited to support macros and derived rules.The quite complicated side-conditions, on the other hand, may seem disconcerting.The hope is that in most practical situations the technicalities concerning indexingand activity can in fact be hidden.To handle �xed points we have chosen to work with constants in the styleof (Stirling and Walker, 1991). Other alternatives would be Winskel's tag-setapproach (Winskel, 1991), or subformula conditions in the style of (Streett andEmerson, 1989). In the tag-set approach �xed point formulas are tagged withsu�cient information concerning the proof to determine locally whether dischargeis possible or not. For local model checking it su�ces to record the process termsfor which the �xed point has so far been unfolded, admitting a very appealingsemantical account. For our case of two-sided sequents the proof informationneeded to entirely localise discharge decisions would be both very syntactical andvery substantial indeed, thus losing much of the appeal of the tag-based approach.Concerning subformula conditions the point is less obvious. In such an approachone would drop namings and use a notion of regeneration that requires a �xedpoint formula to both be a subformula of the right formula occurrence throughouta given path, and to be actually unfolded somewhere along that path. The proofsystem would be easily adaptable to such a setting, but a direct adaptation of theside conditions of section 6 would be unsound. For instance one would quite easilybe able to prove the sequentx : �X1:�Y1:[a]X1 ^ [b]Y1; y : �Y2:�X2:[a]X2 ^ [b]Y2 ` x j y : �Z:[a]Z ^ [b]Z (20)where the least �xed point formula corresponding to Y1 would be unfolded alongone path of the proof, and the least �xed point formula corresponding to X2along the other, thus justifying discharge according to section 6. However, theseunfoldings cancel out when the loops begin to be nested, and indeed the sequent20
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