1

In this paper we consider the problem of proving correctness properties in seman-
tically very rich models of concurrent systems with features for communication
of second- and higher-order objects (eg.: code), and for dynamically generating
and communicating resource names. A long list of recent programming languages

Proving Trust in Systems of Second-Order
Processes: Preliminary Results®

Mads Dam
Swedish Institute of Computer Science

Abstract

We consider the problem of proving correctness properties for concurrent
systems with features such as higher-order communication and dynamic re-
source generation. Operational models of security and authentication proto-
cols based on the higher-order w-calculus are considered as examples. In this
setting key features such as nonces/time stamps, encryption/decryption,
and key generation can be modelled in a simple and abstract fashion us-
ing channel name generation and second-order process communication. A
temporal logic is proposed as an appropriate logic for expressing correct-
ness properties such as secrecy and authenticity. The logic is based on the
modal p-calculus with only greatest fixed points and universal next-state
quantification. Extensions include first-order features to deal with names,
and second-order features including function space constructions to deal
with process input and output. One difficulty is that formulas need re-
cursion in both covariant and contravariant positions. We show how this
problem can be overcome in two different, but equivalent, ways, first using
a standard semantical account based on intervals, and then by an iterative
construction. We propose a predicate of trust in a monotonically increas-
ing set of channels as an example, and establish structural decomposition
principles for this predicate for concurrent composition and local channel
declaration. On this basis a type system for trust inference can be derived
quite easily, and we use this type system to establish trust of a very simple
protocol example.

Introduction

*Work partially supported by Esprit BRA 8130 LOMAPS. Work partly done while visiting

CMI, Université d’Aix Marseille 1

and models, including Java, CML, Facile, Oz, Actors, Erlang, and the 7-calculus,
explore these sorts of features to various extents. Typical of many applications
written in these kinds of languages is that they are open, designed and intended to
operate in environments that are possibly hostile, and at any rate only partially
known at compile time. An important task is therefore to protect information and
resources against intrusion, intended or otherwise. Intruders have at their disposal
the full armoury usually considered in the field of computer security: they can steal
messages, tamper with messages, crack codes, synthesize messages, store and re-
play messages, and much more. In the presence of higher-order communication
they can even generate programs (viruses) that will be activated dynamically by
the receiving agent. The question we address is how, in spite of this, we can prove
that a system nonetheless performs correctly.

Key management protocols Classical key management protocols such as the
Needham-Schroeder protocol provide excellent examples of programs designed to
work reliably in face of hostile intruders. A typical purpose of a key manage-
ment protocol is for participants to agree on a secret session key given some initial
amount of trusted information. In this paper we show how such protocols can
fruitfully be viewed as higher-order communicating processes and show some ini-
tial ideas as to how, on this basis, they can be verified. The idea is best introduced
through a simple example, a modified version of the corrected version of the An-
drew remote RPC protocol as introduced by Needham, Abadi, and Burrows [7].
This protocol is extremely simple, yet it introduces all the features needed to
account for a whole class of key management protocols. Initially the two partici-
pants, A and B, share a private key K,,. The task is to agree on a new session key.
Using standard notation the protocol can be described as the exchange between
A and B of the following three message sequence:

1. A—» B: {Na}Kab
2. B> A:{N,, K}k,

a

3. A= B: {N.}x,

In step (1) A transmits the nonce N, to B, signalling his intent to generate a new
session key. B responds, in step (2), by returning the new session key K,, along
with N, to authenticate the message, both encrypted using the old key K. In
step (3), A returns the nonce N, to B, this time encrypted using the new key K/,
serving as an acknowledgement to B that the previous message was received and
decrypted.

Modelling key management protocols as second-order processes The
protocol involves the following features:

1. Value passing and data type operations: Given a (possibly composite) mes-
sage m it is possible to communicate m from A to B. It is also possible,
given messages m; and msy, to form the pair (my, my).

2. Private key encryption and decryption: Given a message m and a private
key K, we can form {m}x, m encrypted using key K. Also, given {m}y
and given K we can decrypt to extract the message m.

!

3. Key generation. B has the capability of generating a new private key K.
by assumption distinct from any other key known to any other participant
in the exchange, friendly or hostile.

4. Nonce generation. It is possible to generate a fresh, non-composite piece of
information, by assumption distinct from any other such pieces of informa-
tion possessed by other participants.

We propose accounting for these features in the following fashion:

e Nonces are names as in the m-calculus [13]. New names are declared by the
binding ra.A introducing a as a new name with scope initially extending
over A but not further. In va.A, a will by definition be distinct from any
other name occurring freely in A. Furthermore it is possible dynamically to
extend the scope of a by “scope extrusion”, eg. va.b.[a]P which declares a
new name ¢ and immediately passes it to the outside world along the channel
b.

e Keys are names too, introduced using the v-operator. Observe that in the
m-calculus names are channel identifiers. This we can exploit in accounting
for encryption in the following way:

e Encryption is second-order process passing. A message m encrypted using
the private key K is an object that can deliver m to anyone happening to
now K. That is, it is a process with one output port K along which m is
passed to whoever possesses K and is willing to listen.

This suggests using a second-order version of the m-calculus as a semantical frame-
work for modelling key management protocols, and indeed this is what we propose
to do. Of course such models will be highly idealised: For instance the bit lengths
used to represent nonces and keys are bounded, opening up for attacks on the
encryption/decryption algorithms, and information can often be extracted from
encrypted messages with very limited knowledge of the keys, or no knowledge at
all, by analysing their bit representations. Nonetheless we believe that an idealised
modelling of key management aspects alone can be useful, leaving analysis of ac-
tual encryption algorithms to be addressed by other means, even while recognising
that a really water-tight boundary between the two is not a reasonable hope (cf.

3).

Nested encryption and firewalling One complication needs to be attended
to, though. As encryption can be nested we need to consider process terms of the
shape

P = a.[K,.[K5.[m]0].0] P,

modelling a process passing {{m} g, }k, along a and then proceeding to act as P'.
A process receiving such a packet and decrypting to extract m would have the
shape

Q = CL.)\Xl.(Xl | (Kl.)\XQ.XQ ‘ (KQ)\mQ'(m))))

That is, it receives the process X, activates it and tries to receive from it along K
another process which it proceeds to activate, to try and receive from it m along
K,. As it stands, however, the m-calculus has no good way of preventing a third
party from stealing m using K5 once () has decrypted using K. That is, once @)
has reached the configuration (K,.[m]0) | (Ky.Am.Q'(m)), if an external intruder
is present that may know about K, it will have the capability of receiving the m
without necessarily having to know K first. Thus decryption is unsafe, contrary
to most reasonable modelling assumptions (cf. [7]).

A good remedy of this is to use a firewalling, or blocking operator A\a pre-
venting communication along the channel a between A and its environment. This
operator is already well known: It is just the CCS restriction operator, extended

to the m-calculus in the obvious fashion by allowing state transitions P\a LN

just in case A has the shape A’\a, P LN A', and b, the communication channel,
is distinct from a. This operator was also considered in the context of higher
order processes by Thomsen [19]'. Using the blocking operator we can protect m
from theft along K, by putting (K,.[m]0) | (Ks.Am.Q'(m)) inside a K firewall.
Observe that we regard a as free in A\a. Thus communication of a across the a
firewall itself will be perfectly legitimate.

First or second-order m-Calculus? The blocking operator helps to explain
why we insist on using second-order process passing even while we already know
[17] that higher-order processes are reducible to first-order ones in the 7-calculus.
The point is that in the presence of the blocking operator the higher-order reduc-
tion of [17] is no longer applicable. We are currently accumulating strong evidence
to suggest that the reduction from the second-order calculus with blocking to the
first-order m-calculus with or without blocking while feasible in principle is very
complicated and definitely not suitable as a modelling tool.

Specification in second-order temporal logic Our aim is to use a second-
order temporal logic to specify desired correctness properties like secrecy and

!The blocking operator is sometimes known as “dynamic restriction”, as a contrast to the
static binding discipline of the w-calculus restriction. We find this terminology confusing, how-
ever, since in another sense the blocking operator is really the more static one, as name scopes
are not subject to dynamic change.

authenticity. Specifically we suggest using a fragment of the modal p-calculus
extended with first-order features for names and name generation, and two arrows
to account for process input and output. The logic follows quite closely ideas
put forward in [4], using a function arrow ¢ — ¢ for input dependency, and a
second-order arrow (¢ — 1) — ~ for contextual output dependency. The idea
is the following: A process waiting to input a parameter x to continue acting as
P is written as a lambda-abstraction Ax.P. Dually, a process wanting to output
to some receiver the process (J; to continue acting as (), is written as the term
[Q1]Q2, called a process concretion. Sometimes ()7 and Q3 may share a vector of
private channel names @ wishing to maintain these connections after ¢); has been
passed to its receiver. Such a process concretion is written vd.[Q;]Q2. Match-
ing receiver and sender results in the term Az.P | va.[Q]Q2 which is identified
with the term v@.{Q/z}P | @2, alpha-converting the bound names @ as needed
to avoid collision with names free in P. The input arrow expresses the expected
functional dependency: For Ax.P to have the property ¢ — v it must be the case
that @1 has the property ¢ only if {Q;/x}P has the property ¢. The output arrow
expresses dependency upon receiving context: The process concretion va.[Q1]Qo
will have the property (¢ — 1) — 7 just in case Az.P has the property ¢ — o
only if v@.{Q/x}P | Q2 has the property . In [4] we showed how this setting
could be used to achieve an appropriate level of discriminatory power when mea-
sured against a strong version of bisimulation equivalence (cf. [11]), and we began
investigating proof principles for these connectives.

Handling contravariant recursion Attempting to write down a first sugges-
tion for a predicate expressing monotonically increasing trust in a set of channels
faces a basic difficulty in that contravariant recursion seems indispensable. We
have so far found no way around this difficulty. The problem is that the Knaster-
Tarski fixed point theorem usually appealed to for least and greatest fixed point
semantics require monotonicity which fails in the presence of contravariant recur-
sion. We address this issue by giving alternative semantics in two different, but
equivalent ways. First we suggest a semantics based on intervals in which solutions
to recursive equations are computed using standard techniques as pairs of lower
and upper approximations which will in general not meet. One will expect upper
approximations to be the solutions of interest, and to support this we devise an
alternative model using an iterative construction. This iterative model exploits a
continuity property which is very useful in providing induction principles for later
use. These properties only hold, however, for a fragment of the modal p-calculus
which lacks least fixed points and diamonds (existential next-state quantifiers).
This, however, is a limited loss in view of the nature of the properties in which we
have primary interest: Matters like secrecy and authenticity would be expected
to have formulations as invariants and not to use existential computation path
quantification.

Proving trust We then arrive at a suggestion for a process predicate expressing
trust in a monotonically increasing set of channels, using contravariant recursion
and greatest fixed points only, and the rest of the paper is devoted to proof princi-
ples for this trustedness predicate, and the proof of trust for a very simple example
protocol. The most involved proof principles concern, as one should expect, par-
allel composition and name scoping. Several crucial lemmas need to be proved,
of which we highlight two. First we need to show that if P is a process which
respects trust of @, and b does not occur freely in P, then P will respect the trust
of @U {b} (we usually write d@,b as a shorthand). The proof of this is, as one
should expect, a simple inductive argument, using the induction principle hinted
to earlier. However, we also need a corresponding result for functions, that if Ax.P
has the property @ trusted — a trusted, and if b does not occur freely in Ax.P,
then A\z.P will also have the property a@,b trusted — @, b trusted. This property
has a far more intensional character as it has to do with definability of functions,
and the proof is also much more delicate.

Deriving a type system Having proved the crucial lemmas for decomposing
trust for parallel compositions and v declarations we show how we quite simply
can derive a type system for proving assertions of the shape F@ A : gtrusted,
and how, using this type system, we can prove correctness of the Andrew protocol
example discussed above.

A word of caution One should take this correctness proof with a pinch of salt,
though, for the following reason: The trustedness predicate we consider assumes
trusted sets of names to be monotonically increasing. That is, we can accomodate
protocols that add to the set of trusted names, but not protocols that revoke trust.
But this means that all attacks that rely on some earlier piece of trusted informa-
tion, like an old session key, having been compromised, can not be accomodated,
as users of the protocol for our trustedness predicate to be applicable, can not
be allowed to divulge such information. This is the reason for the “preliminary
results” subtitle of the paper, and the reason why our approach should not yet
be considered applicable to security and authentication protocols in general, but
rather be considered as a first attempt to find useful specification and reason-
ing principles for concurrent programs that mix higher-order process passing with
dynamic name generation and communication features as in the 7-calculus.

Related work The present paper can be viewed as part of an ongoing trend
towards operationally based accounts of security and authentication protocol. The
closest predecessor of this work is Abadi and Gordon’s work on the spi calculus
[2]. Even though our work was developed independently, it is the credit of Abadi
and Gordon first to have observed the usefulness of the 7-calculus name scoping
discipline for modelling security protocol features like nonce and key generation.
In the spi calculus extra operators for encryption and decryption are added to the

m-calculus. Properties such as secrecy and authenticity are accounted for in equa-
tional terms, for instance by reflecting insensitivity of environments to changes in
trusted values. By contrast we represent such properties more directly, as a logical
formula. Moreover, due to the explicit treatment of encryption and decryption a
rather non-standard version of testing equivalence [15] has to be appealed to for
the correctness proofs in [2]. This complication does not arise in our approach since
we reduce encryption and decryption to more general computational features.

Recently a number of authors have attempted to use state exploration methods
to analyse security protocols (cf. [12, 10]). In such approaches the main difficulty is
to faithfully represent protocols and intruders as finite state automata. Instead of
leaving intruders undetermined, as in our approach, it becomes necessary to state
explicitly at every possible step whether an action is or is not possible, including
history dependencies. Secondly it becomes difficult to deal with unbounded infor-
mation, such as protocols runs that can cause an in principle unbounded number
of nonces, time stamps, or keys to be generated. For this reason (and for sheer
model size considerations, one suspects) work has so far focused on public key
encryption, and on single session establishment runs.

In another related strand of work a large number of authors have used static
analysis and type systems to analyse security of information flow, cf. [1, 6, 9, 14, 20,
16]. The scope of these analyses is roughly the same as ours: They analyse whether
security levels are respected during program execution, sometimes stratifying the
analysis by eg. distinguishing readers and writers. As in our work revocation of
trust is not supported. Our contribution to this line of work is to show how a
type system for secure information flow can quite easily be derived from the very
general and sound semantical basis that we provide, using the account of programs
as second order m-calculus processes, and types/properties as interpreted second-
order temporal formulas.

A Road Map We start by presenting the version of the second-order w-calculus
used in the present paper and show, as an example, how the Andrew protocol
is represented in this calculus. We then proceed to introduce the syntax and in-
tended semantics of our second-order modal p-calculus. To illustrate our need
for contravariant recursion we suggest, in section 5, a predicate of trust in a fi-
nite set of names. This prompts an investigation of ways to give semantics to
our logic in face of this difficulty. This issue is addressed in sections 6, 7, and
8 where we present two alternative semantics, and show them equivalent. One
of these semantics, the iterative one, is particularly useful in that it identifies an
induction principle which is used throughout the remainder of the paper. Having
established a reasonable semantics we can then proceed to complete the specifi-
cations of secrecy and authenticity, and to prove that these properties actually
hold of our example. Only proof of secrecy is considered in this paper. As the
correctness properties are stated as properties of open systems (senders, receivers,
and unknown intruders) a useful proof strategy is to provide a sequence of lemmas

showing the ways in which the trust predicate composes over the process combina-
tors. The difficult cases are restriction and parallel composition. Proofs are given
in section 10 and in the appendix. Up to some minor details what the structural
lemmas established in section 10 amounts to, is a type system for trust inference.
This type system is exhibited and shown to be sound in section 11. Then, in sec-
tion 12, we show as an example how the type system is used to establish secrecy of
the Andrew protocol. Finally, in section 13, we summarise our results and discuss
some outstanding matters including alternatives for representing cryptographic
primitives, how to measure the correctness of our representations, and the need
for the blocking operator.

2 Processes

In this section we give an informal presentation of the language used to model
protocols., and as much as its operational semantics as is needed to understand
the specification logic and the reasoning of the correctness proofs. A formalised
semantics is given in appendix 1. Roughly, the process language is a merge of the
m-calculus [13] with the second-order process-passing calculus presented in [4]. It
uses the following primitive objects:

e Channel names a, b, along with the special label 7, used for invisible, or
silent transitions.

e Agent variables z, .

e Agent constants D. With each constant is associated a unique defining
equation D = A where A is an agent according to the definition below.

Agents come in three flavours: Processes which perform transitions; abstractions,
responsible for name and agent input; and concretions, responsible for name and
agent output. Process terms are ranged over by P, (), abstractions by F', con-
cretions by C, and agents in general by A and B. To each well-formed agent
term is assigned an arity +w or —w, w € {chan, agent}* indicating, e.g. for an
abstraction, the number and position of channel and agent arguments it requires
to become a process term. The null arity is (), and by convention, +() = () = —().

Processes Processes are agent terms of null arity: They neither require nor
provide parameters to be able to perform (or refuse) transitions. Agent variables
are (open) process terms; 0 is the terminated process; P + @ is the process that
can choose between transitions of P and of); a.A is the prefix process that can
perform an a-transition and evolve into A; P | @ is the parallel composition of
P and @; va.P declares a new name a, local to P (but exportable to the outside
world through subsequent communications); if a = b then P else () is the
conditional, often generalised to arbitrary boolean combinations of name equalities

and inequalities; P\a is blocking; and if D = F and F has shape Ab;.--- Ab,.P
then D(ay,...,a,) is a process term too.

Abstractions We operate with two abstraction constructors, one for free input
and one for bound output, similar to the situation in [5]. The free input abstraction
has the shape Aa.A (Az.A) and has arity —chanw (—agentw) if A is an abstraction
term of arity —w or, if w is empty, A is a process term. The arity of a bound
input abstraction, vAa.A, is calculated similarly.

Concretions Concretions have one of the form [a]A, va.[a]A, or vd[P]A. The
first instance corresponds to the output of the free channel name a. The second
to the output of a local name a, and the third to the output of a process term P
with local names @. If A is a concretion term of arity +w then [a]A and va.[a]A
both have arity +chanw and v@[P]A has arity +agentw. If w is empty A is again
a process term.

The transition semantics A standard mw-calculus style semantics can easily
be given to the above language. We assume a transition relation P = @, and
a family of transition relations P % A. A few examples suffices to highlight the
important points:

e Invisible transitions arise because of communication. For communication to
take place arities of the resulting abstraction/concretion pair must match.
Thus, e.g. if P, % vAb.F and Py % vby.[by]C, F has arity —w, and C
has arity +w, communication can take place. Then, if F' | C = @', the
invisible transition P, | P, = Q = vby.{by/b;}Q" is enabled, where we
assume variables to have been alpha-converted such that confusion does not
arise. Similarly, if P, % Az.F and Py % vby.[P]C we obtain P, | P, 5 Q =
vby {P/2}Q' where Q' = F | C.

e Similarly, for P, | P, it is possible that no communication takes place. Thus,
eg. if PL 5 \o.F and F | P, = Q' then P | P, % Q = \b.Q". Observe again
that a-conversion is used to avoid capture of variables.

e The remaining connectives reflect the intuitions given above. Thus, for in-
stance, va.A declares a local name a in A and does not permit a-transitions

to take place. That is, va.P b A if and only if @ # b and P b A" and
A=vaA.

3 An Example: The Andrew Secure RPC Pro-
tocol

Consider the Andrew secure RPC protocol given in the introduction. We show
how to represent this protocol in the second-order process calculus, using the ideas

Alice = MKy .in7d.xfer!{data,d}x,, .Alice K, + AliceSwitch Ky

AliceSwitch = AKy.
vN,.xfer!{switch,N,}x,, -
xfer?z.x |
(AliceSwitch Ko + (Ku?(t,N',K'}) .
if ¢ = next and N, =N,
then xfer!{ack,Na}Kéb. (Alice K|, + AliceSwitch K,)
else AliceSwitch K,))

Figure 1: Agent Alice

Bob = MK, .xfer?z.x | ((Bob Kgp) + (K,7(t,2).
if t = data then out'z.(Bob K,) else
if ¢t = switch
then
vK], .xfer!{next,x, K}, }., -
xfer?z.x [((Bob Kg) + (K, 72(t,N.).
if t = ack and N =x then (Bob K!,) else (Bob K)))
else (Bob K,p)))

Figure 2: Agent Bob

outlined in the introduction. Thus nonces and encryption keys are represented
as names, and encryption and decryption as second-order communication. As a
first approximation of such a representation consider the agents Alice and Bob
presented in figures 1 and 2. We use some abbreviations. First

NTy,...\T).A 2 c[T]-[T,)A
(Ty,....T.}x & K\T,...,T,).0
where Ty, ..., T, ranges over names and processes. Secondly we let ¢?(vy,...,v,).A

abbreviate the sum of all terms of the shape c.(v)\v;.---.(V)Av,.A where the v
is optional, and requires the lambda to which it is applied to be a free name
abstraction. Observe that this involves a non-deterministic commitment to a
particular choice of input parameter types and thus may introduce deadlocks.
This can be remedied, but as we are only interested in properties to hold for all
possible computations the matter has little importance.

Compared to the “standard” account little has been changed except that the
protocols have been augmented with message tags to handle control flow, and a
data transfer phase, in which input data is received along a channel in, encrypted
and passed from Alice to Bob, and then output along out. As our aim is to

10

specify and analyse properties in terms of external input-output behaviour some
such modification is necessary, and in most parts it is completely uncontroversial.
On three counts, however, some discussion is needed.

Free and bound input Our process language possesses the capability of de-
tecting whether a given argument occurred freely or bound at the sender. On
the face of it this is clearly an unreasonable assumption: What is received are bit
strings and even if some tag of some sort states the nature of the argument how
is this tag to be trusted? On the other hand we need this distinction in order
to know, when a channel parameter is received along a trusted channel, whether
to extend trust to this new channel or not. Our policy is simple: new channels
communicated along trusted channels are themselves to be trusted. The argument
of unreasonable expressiveness is countered by the examples always allowing for
both free and bound input, as is the case above.

Looseness of specification The data transfer phases of Alice and Bob consist
simply of inputting a piece of data, encrypting and then transferring it over the
medium, respectively receiving the encrypted package, decrypting and then out-
putting. In this respect the model is overspecific: it states explicitly, for instance,
that old session keys are not corrupted. But this is too strong an assumption as
many attacks use replays with old and corrupted session keys. Rather one would
want to replace Alice by an open specification of the shape

Alice = MK, .(F K,);AliceSwitch K,
where F'is a free abstraction variable subject to assumptions such as

e F never reveals its first argument to the outside world,

e [never reveals secrets received along in, except when encrypted by K.

Distinguishing name and process parameters One more remark needs to
be made concerning the representation. In the systems we are modelling, data is
shifted in terms of bit strings or voltages on a wire. Thus there is no way to tell
whether a piece of datum is really a nonce or a piece of encrypted information.
This does not hold in the representation, as name and process passing are treated
distinctly. Observe, however, that the safety of our conclusions are not affected
by this. Rather intruders are given slightly more discriminating power in the
representation than in the modelled system. Our conjecture is that in practice
this issue is negligible.

4 Process Properties

Our chief interest is in the properties of secrecy and authenticity. Our intention
is to formulate these as functional and temporal properties expressing constraints

11

on the input-output behaviour of the system under consideration. In our example
the system consists of the agents Alice and Bob running in an unknown (and
potentially hostile) environment Z. Z should be assumed to have access only to
channels and data open to outside intruders. Evidently this includes the channel
xfer (but also the tags data, switch etc.). However, the initial value of K,
should be regarded as trusted, as should the channels in and out. Supposing now
that ¢ expresses an correctness property such as secrecy. The overall proof goal
can then be formulated as a sequent of the shape

Z ’I,/) F (I/Kab.Alice Kab ‘ Bob Kab) ‘ Z d)

where 1 are the assumptions made on Z (roughly: that Z does not know in and
out).

Since the intruder Z is already considered “part of” the global system which
is considered, the correctness property ¢ does not need to speak about process
passing: If eg. secrecy is violated there will be a way for Z to reveal a secret along
a name which is not out, resorting to encryption or other second-order communi-
cation only internally. More general properties which do talk about second-order
communication will be needed once we arrive at the proofs, however.

Thus a suitable functional + temporal logic for our purpose will need to talk
about names and their identities, properties of names and processes which are
output, dependencies on names and properties of processes being received, in ad-
dition to usual safety properties. Observe, however, that to express the correctness
properties we have in mind there is no use for liveness properties or existential
path quantification. This fact will be quite useful once we come to consider the
semantics. The logic will have the following primitives:

ea=0#0b 0Ny, ¢V, Ya.p, Ja.¢. This is just first-order logic with
equality. We also need basic operations on finite sets @: set membership and
quantification over finite sets.

e d fresh, new d.¢. The first primitive expresses that no element of the set a
occurs freely in the agent being predicated. The second primitive expresses
of an agent A that it is identical to an agent of the shape vb.A" such that
A’ has the property {b/@}¢. For now we can use the term “identical” as
meaning, roughly, “bisimulation equivalent” (cf. [11]). We return to this
issue shortly.

e [a|p, [T]¢. These are the universal next-state quantifiers well-known from
modal logic. So [a]é will hold of an agent just in case it is a process, and
whatever agent results from the performance of an a-transition must satisfy

&,

e a— ¢, a—, ¢, a <+ ¢. These primitives express name input-output prop-
erties. The first expresses of an agent A that it is an abstraction Aa’.A’, and

12

that {a/a'} A’ has the property ¢. The second expresses that A is an ab-
straction vAa'.A’, and that {a”/a'} A’ has the property {a"/a}¢$ whenever a”
does not occur freely in neither vAa’. A nor ¢ (minus a). The third expresses
the property that A is a concretion of the shape [a']A’, that a = o', and that
A’ has the property ¢. A fourth connective a <, ¢ will be derivable, as
new a.a < ¢.

e o —> 1, (p = 1) — . These primitives are used for second-order commu-
nication. The function arrow ¢ — 1) expresses of A that it is identical to a
second-order abstraction A\x.A’, and that if P is a process satisfying ¢, then
{P/x}A" will have property 1. The second primitive is a contextual prop-
erty. It holds of a second-order (process) concretion A of the shape va.[P|A’
provided that for any receiving context f with the property ¢ — v, the pro-
cess va.(fP) | A" will have the property 7. This idea of using a second-order
implication to capture contextual properties of process output originates
with the paper [4].

In addition to these primitives our intention is to allow properties to be defined
by greatest fixed points in the style familiar from the modal p-calculus (cf. [18]).
This is quite straightforward if we can define the required properties using covari-
ant recursion only. Unfortunately as yet we only have solutions that make use
of contravariant recursion, and thus we need to address the foundational problem
of making sense of this. This we do in the subsequent sections. First, how-
ever, some syntactical matters: Recursively defined properties take the shape
(vX(ar,...,a,).0)(b1,...,b,) (cf. [5]). Alternatively we use the sugared form
X (by,...,by,) in the context of a definition of the shape X (ay,...,a,) => ¢. We
require that recursive definitions are guarded in the sense that all occurrences of
X in ¢ must be within the scope of either a modal operator, or one of the ar-
rows. A formula ¢ is propositionally closed if ¢ does not have free occurrences of
(parametrised) variables X.

5 Expressing Trust

Let us try to express, using the connectives introduced above along with greatest
fixed points, the property d trusted that, intuitively, trusted information can
appear along trusted channels only. With some experimentation one arrives at a
definition like the following:

d trusted =>
[7] @ trusted A Vb.
[b] (/* Continuation: process */ d trusted V
/* Output */ d trusted_out_after b V
/* Input */ d@ trusted_in after b)

a trusted_out_after b =>

13

/* process */ @ trusted V

/* free name output */

(Jc.c¢ +(@ trusted_out_after b A (c€d D bea))) V

/* bound name output */

(new c.c + ((b€ed D d,c trusted_out_after b) A
(b€ d D d trusted_out_after b))) V

/* process output */

(Vd.d fresh O new

c.
(d,d,c trusted — d,d,c¢ trusted) — d,d,C trusted_out_after b)

d trusted_in after b =>
/* process */ @ trusted V
/* free name input */
(Ve.c — @ trusted_in after b) V
/* bound name input */
(c—, (b€ dDd,c trusted_in_after b) A
(b @D d trusted_in_after b)) V
/* process input */
(Ve.c¢ fresh D a,¢ trusted — a,C trusted_in_after b))

The idea is quite simple: To show that the process being predicated respects
the trustedness of names in @ we need to consider the various transitions that
may be possible from the initial state and the various types of continuation agents
that may ensue. If the continuation is a free output of a name ¢ then @ must
continue to be trusted, and if c¢ is trusted then b had better be trusted too. If
the continuation is a bound output of a name c¢ then if b was trusted we can
regard both @ and ¢ as trusted, and otherwise we must continue to respect the
trustedness of @. The most interesting cases are those for second-order input and
output. Consider for instance second order input. The process being input must
respect the trustedness of @, evidently. But in addition we must permit that
process to mention other trusted information of which we are not yet aware. That
information will be “fresh” to us, and we had better ensure that after input of
the process we respect the trustnedness of both @ and ¢ (as it were). Similarly for
process output. The receiving context may contain information which should be
trusted, but of which we have not yet been informed. Secondly we, as outputting
agent, may through scope extrusion generate new information to be trusted. All
three types of information needs to be trusted by the entire system.

The trustedness predicate above is given for polyadic communication. For
monadic communication a simpler definition can be given for which the disjunct
a trusted is removed from the input and output predicates, and for which the
recursive calls of the input and output predicates are replaced by calls of the main
trustedness predicate. In the proofs we use the monadic version only. However,
the arguments extend to the polyadic case quite easily.

Observe the two contravariant occurrences of the trustedness predicate, for
the cases of second order input and output. We see no possibility at present of

14

avoiding these. Freeness checks, for instance, are clearly much too inexpressive.
On the other hand the semantics of the modal p-calculus on which the logic is
built rests on the fact that fixed points are required to be computed of monotone
operations only, and in the presence of contravariant recursion monotonicity will
fail. In the next section we go on to show a way of bypassing this problem.

Trust and monotonicity One should not view the above trustedness predicate
as a serious candidate for proving trust in distributed systems: For this it has too
many shortcomings. Essentially the trustedness predicate embodies a particular
and very rigid protocol for handling mutual trust:

1. Whenever a new piece of information passes a piece of trusted information,
trust is extended.

2. Trust increases monotonically, ie. there is no way of revoking trust.

In terms of modelling security protocol the second point is damaging, as very
many attacks rely on replays using eg. old and possibly compromised session keys.

6 On Contravariant Recursion

A standard semantical account of our specification logic would appeal to a seman-
tical mapping ||#[,(p) where p is an environment giving for each formula identifier
X a set of agents, possibly parametrised on a sequence of names or finite sets
of names, and ||¢[[,(p) is a set of agents. For fixed points, function arrows, and
“boxes” we would expect a clauses like the following (for simplicity we consider
only unparametrised recursive definitions):

1) [X1l5(p) = p(X)

2) |wX.9ll,(p) = U{S | S C [lo],({S/X}p)}

3) [llalgll(p) ={P |VA.P = A> A€ |lgll,(n)}

4) o = ¢l () = {A [A=A A VP € [|6]|(p), {P/z} A" € [[¢]](p)}
= lloll,(p) = ll¢lls(p)

We might hope that, despite the contravariant recursion, v.X.¢ would nonetheless
be the greatest fixed point of v(X). Unfortunately this is not the case. Consider
for instance the formula

o~~~ A~~~

(5) ¢ = vX.[a](([b](Fc.c =d A c + true) AN X) — X).

Consider the set
Si={P":n€w,P=a)X.(P|X)}

where P" = P | P | --- (n times)--- | P is the n’ary parallel composition of P.
Observe that Sy C ||¢]|,({S1/X}p). For let Q € Sy, ie. Q = P™ for some n € w.
Whenever @ % Q' then Q' = (AX.P | X) | P""!, considering | as a commutative

15

monoid operation. If R € ||[b](3c.c = d A ¢ < true)|/,({S1/X}) then R = P™ for
some m € w. So Q'R will have shape P* for some k € w. Thus S; is a prefixed
point of [a](([b](3c.c = d A ¢ < true) A X) — X). The set Sy = {b.[d']0} (d' # d)
is another such prefixed point, as no member of S, has an a-transition enabled.
But no set containing both P and b.[d']0 can be a prefixed point. So greatest fixed
points do not in general exist.

So we either abandon the enterprise here or else we try to make sense of con-
travariant recursion by other means. What we are really after is an iterative
understanding of recursive definitions where iteration would be in number of tran-
sitions. Indeed this is what we do. Directly formalising this would be less than
transparent, however, as we would have no understanding of iteration as a limiting
construction. Instead we resort to an interval based semantics (cf. [4]).

7 Intervals

An interval is a pair (S7,Ss) for which S; C Sy. One should regard the interval
(S1,S2) as determining a pair of approximations, S; a lower approximation giving
agents that must be included, and S5 an upper approximation giving agents that
may be included, or, better, have not yet been ruled out. Our intention is to
compute greatest fixed points as the limit of upper approximations. Intervals are
ordered pointwise by (Si,S2) T (S7,S5) iff S5 € S} and S, C S;. There is a

natural function space construction on intervals,
(51,52) — (Si,Sé) =Sy — Si,Sl — Sé)
which is covariant in both arguments:

Proposition 1 Let I, I', J be intervals. If I T I' then I — J C I' — J and
J—ICJ—T. O

For the interval-based semantics we introduce some constants and operations
on sets of agents:

dfresh = ({Alanfm(A)=0}{A|anm(A)=0})

new a.(Sy, So {Ajvd A=A A €S} {A|vai A< A A €Sy}

(
(51, 52) (
(S1,S5) A (S, 80 = (S1N S, 8N S,
(51,8) v (S,8) = (S1US,S,US,)
[@](S1,8:) = {P|P3ADAcSL{P|IP3ADACS,))
a— (S1,8) = ({Ab.A|{a/b}A € Si},{\b.A|{a/b}A € S5})
a< (51.9) = ({la]A]AeSi}{[adA]Ac S}
(S1,52) = (51,55) = ({va.lPlA|V(\x.A") € Sywva{P/x}A" | A€ Si},
{vi

vi.|P]A |VY(\z.A") € Syva{P/z}A" | A € S5})

16

Observe that the definition is parametric on the relation <. We return to the
definition of this relation later.

Now, let p be a formula environment, a mapping of formula identifiers to
agent intervals. We define an interval-based semantics, ||¢|/(p). For simplicity we
continue to consider only unparametrised recursive definitions, and leave out the
semantics for name equality, inequality, finite set equality, membership, inequality,
and quantification. These features are easily dealt with, and adds only complexity
to the exposition.

[XT[(p) = p(X)
v X.8ll(p) = 1{(S1,52) | (S1,S2) interval,
[[|({(S1,52)/ X }p) E (S1,52)}

6 AYl[(p) = ll9ll(o) Allll(p)
oV 4ll(p) = lloll(p) v 1¥]l(p)
|@ fresh||(p) = d fresh
|new @.¢l|(p) = new @.S
lla]oll(p) = [a]l[¢]l(p)
la = ¢[l(p) = a—|oll(p)
la =, ¢ll(p) = ({vAb.A|{d/b}A € m(|[{d'/a}e| (p))},

{vAb.A [{a'/b}A € ma([|[{a’/a}dll(p))})
(where o’ & fn(\b.A) U fn(¢p) — {a})
la < ¢[l(p) = a<|oll(p)
¢ = l(p) = ll¢ll(p) = ll¥ll(p)
(¢ =) —=ll(p) = (lollle) = Ll(p)) = lIvll(p)

For propositionally closed ¢ we abbreviate ||¢||(p) by ||¢]|. We first prove that the
semantics is well-defined:

Lemma 2 For all formulas ¢ and formula environments p, ||¢||(p) is an interval.

PROOF Structural induction. O

The crucial point of the interval-based semantics is that definable operators
become monotone:

Lemma 3 For all formulas ¢ and formula environments p, the interval operator
A(S1, 52) [[0]|({(S1, 52)/ X }p)
18 monotone.

Proor Use prop. 1. O

By means of lemma 3, using the familiar Knaster-Tarski Fixed Point Theo-
rem we can conclude that ||[vX.¢||(p) is indeed the least fixed point (under C,

17

mind) of the interval operator A\(St, Ss).||¢]|({(S1, S2)/X }p). Moreover, if f is any
monotone interval operator, define

f° = (Dead,{A| A agent})
= FUm
= Uearf”

where

Dead = [r]false A Ya.[a]false.

We start iterating from Dead to make induction work out slightly simpler. This
is a technical convenience only.

Corollary 4 [[vX.¢]|(p) = Ux(A(S1, S2).[|6[|({(S1, S2)/ X }p))"

PROOF By the Knaster-Tarski Fixed Point Theorem. a

8 An Iterative Semantics

Intuitively we would want to think of an agent A satisfying the property ¢, if
(for p given) ||¢||(p) = (S1,52) and A € Sy (as Sy is in some intuitive meaning
the largest set consistent with the satisfaction clauses). In this section we give an
alternative, iterative, semantics which is in a sense the semantics we are looking
for, as it explains fixed points as an iteration limit. Our intention is to compute
the semantics of a formula ¢ as the limit of an increasing chain of sets of agents
l6]|" (o), n € w. At each iteration step, ||¢||" (o) will be a set of agents which is
permitted to depend on the behavior of agents only down to a global transition
depth n. To get at this notion we introduce a version of the simulation preorder.

Definition 5 (Simulation preorder)

1. Define the preorders =<,, inductively by the following clauses (where we use f
to range over functions from names to abstractions or processes to abstrac-
tion, as appropriate given the context):

(a) P =<y @ holds always.

(b) P =,y Q iff n(P) = fn(Q) and @ =5 B implies P % A such that
A=, B.

() Ax.Ay 21 Ay Ay iff for all a (P), {a/x}A; <, {a/y}As ({P/x}A; <,
{P/y}As).

(d) [G]Al jn—H [b}AQ iff a = b and Al jn AQ, Z/CL.[G}Al jn—i—l l/b[b]AQ iff
for all fresh ¢, {c/a}A; <, {¢/b}Ay, vd.[P]A =<,41 vb.[Q]B iff for all
process abstractions Az.A’ for which @ and b are fresh, va.{P/z}A’ |
A<, vb{Q/x}A" | B.

18

2. A< Biffforallnecw, A<, B. A~ Biff A< B and B < A.
3. Let S be a set of agents. Then 1, S = {B |34 € S.A <, B}.

Observe that &, being the intersection of a simulation order and its converse, is
strictly coarser than bisimulation equivalence [11]. Def. 5 determines the preorder
used in the interval semantics of the new operator. In fact we could have used any
preorder there which is at least as strong as < (such as bisimulation equivalence).

We can now introduce the iterative semantics ||¢||(0), where o is an environ-
ment assigning sets of agents to formula identifiers:

lo]” = {A]Aan agent}

X" (0) = g1 o(X)
X" (o) = o™ {vX.6["(c)/X}o)
lp A" (o) = o)™ (o) N][e]" (o)
lpv o™ (o) = [lol" (o) uly" (o)
|@ fresh|"t'(0) = {A|a@nfn(A) =0}
[lnew ¢|"*'(0) = {A|va.A' =, A A € |¢]" (0)}
la]g|"™ (o) = {P|P>ADAc]¢|"(0)}
la = " (0) = {M.A]{a/b}A € |0]"(0)}
la =, 8" (o) = {Ab.A|{d'/b}A € [{d'/a}o|" (o),

a & fa(Ab.A) U (fn(d) — {a})}
la ¢ ol""(0) = {laJA] A€ o]"(0)}
lo =" (@) = lél"(@) = [4]"(0)
(6 = w) = 9lI" (o) = {va[PlA|¥(z.A) € 6]" (o) = [l¥]"(0).
vi{P/z}A"[A€ |v]"(0)}
= (I61"(e) = [¢¥1"(0)) = [I7]" (o)

Observe that guardedness is important for this definition to make sense. As above
abbreviate ||¢|" (o) by ||¢]|" when ¢ is propositionally closed. We want to show
the following theorem relating the interval-based and the iterative semantics:

Theorem 6 Let ¢ be a propositionally closed formula, and let ||¢]| = (Si,S2).
Then A € Sy iff for alln € w, A € ||8]".

We prove this theorem in the appendix. Here we just give some intuition for
why we might expect the theorem to hold.

The interval semantics constructs the semantics of greatest fixed points by si-
multaneously approaching the limit from below and from above. The lower approx-
imation is used for contravariant argument places, and the upper one for covariant
ones. The two limits, the lower and the upper, will not in general meet. However,
by disallowing diamonds and least fixed points we obtain a continuity property

19

of our logic, in the sense that finite approximations are sufficient to determine
whether a property holds of a given process. Here “finite approximations” are ap-
proximants in a temporal rather than functional sense. The important ingredient
is a truncation operator trunc(n, A) which ensures termination at a given transi-
tion depth. Operationally the truncation operator is very simple: If P % A then
trunc(n + 1, P) % trunc(n, P), and no transition from trunc(0, P) is possible.
Secondly the truncation operator commutes with A, v, and concretion formation
while decreasing the truncation index, ie. trunc(n + 1, Aa.A) = Aa.trunc(n, A)
etc.

Notice that while our proof of theorem 6 may depend on the truncation oper-
ator, the conclusion (the theorem itself) does not.

Using the truncation operator the proof of theorem 6 can be outlined as follows:
Assume A € Sy where (S1,52) = ||¢||. We conclude:

Ae S, iff trunc(n,A) € S, (lemma 20)
iff trunc(n,A) € S; (lemma 21)
iff trunc(n,A) € ||¢]" (lemma 23)
iff Aelo]” (lemma 22)

The proofs of these four lemmas are given in the appendix.

9 The Andrew Protocol: Specification

Our chief interest is in the properties of secrecy and authenticity. These concern
the agents Alice and Bob running in an unknown (and potentially hostile) envi-
ronment Z. Z should be assumed to have access only to channels and data open
to outside intruders. Evidently this includes the channel xfer (but also the tags
data, switch etc.). However, the initial value of K, should clearly be regarded
as secure, as should the channels in and out. We adopt the following intuitive
account of secrecy and authenticity:

e Secrecy: A fresh piece of datum (ie. a secret) received along in can only be
output along a secret channel.

o Authenticity: Only pieces of data previously received along in can be output
along out.

Our aim is to formalise these properties as formulas ¢ for which the following kind
of sequent should be established

(6) Z: {in,out} fresh F (vK,.Alice K, | Bob Ky) | Z : ¢.

This is intended to mean that if 7 is any agent for which in and out is not free,
the agent obtained by

e putting together Alice and Bob using Ky,

20

e protecting K, by a local scope declaration, and
e letting the resulting system run in parallel with Z,

will satisfy the desired property ¢. By theorem 6 we can for “satisfaction” either
use A € m(||@]]), or A € ||¢]|" for all n € w. The latter gives directly an induction
principle which we rely on quite heavily in the proofs that follow.

Formalising secrecy and authenticity in terms of a ¢ in a context such as (6)
is not that difficult. For secrecy:

a secret =>
[7](d@ secret) A
[in](bound_input D b —, @, b secret)
Ve.[e](free_output D Id.d+ ((d€dDc€ @) Nd secret))

Here we use the following two ancillary predicates:

bound_input = a —, true
free_output = Ja.a < true

For secrecy the property ¢ of (6) becomes {in, out} secret. The specification
of secrecy reflects the intuition very closely. Secrets are either members of the
initial value of @, or they have sometime been input along in as a fresh name.
Observe that only traces of T-transitions, name inputs along in, or free outputs
are considered. This is admissible as correctness is stated of an open system: If
we accidentally choose a Z which violates secrecy by, say, passing secret-revealing
processes to the outside world through an unsafe channel, then there will be an-
other Z which decodes these secret-revealing processes to pass out the (first-order)
secrets in a manner that will violate the proof goal.
Authenticity is specified in very similar terms:

d authentic =>
[7](d authentic) A
[in|(bound_input D b —, @, b authentic)
[out](free_output D Vd.d «+ (d € @ A d authentic))

and the desired property ¢ of (6) becomes {in, out} authentic. In this paper we
consider the proof of secrecy only.

10 Proving Trust

Secrecy is proved using the trusted predicate introduced earlier. For the proofs
we consider only the monadic version.

Lemma 7

X :d,in trusted - X : @, in secret

21

PROOF We use a goal driven proof strategy, exploiting the induction principle
given by theorem 6. We need to show that whenever X € ||d@, in trusted||" for
all n € w then X € ||@, in secret||™ for all m € w. We use induction in m. The
details are straightforward. O

We refer to the m of the above proof as the “approximation index”.

The problem of proving secrecy is thus “reduced” to the problem of proving
trust. The point of the trustedness predicate is that it lends itself to a structural
analysis. The verification takes the shape of series of lemmas intended to support
this structural analysis. The most difficult issue is how to deal with parallel
composition. In this case we need to be careful about the creation of new internal
resources. We extend the sequent notation slightly, following the suggestion of [5],
by writing, eg.,)

XY ' X|Y vy

to express that whenever X satisfies ¢ and Y satisfies 1, then vb.(X | V) satisfies
~, where the scope of b includes both ¢ and 1 (but not 7). The delicate part of
the trustedness predicate is to deal with the situations in which the “coverage”
of the trust predicate needs to be modified because trusted channels are given
local scopes, or because trust needs to be extended to channels that are currently
unknown to the agent being predicated.

We first consider expanding the set of trusted name to include fresh ones in
the case of processes:

Lemma 8
X :d trusted, X : b fresh - X : a, b trusted

PrROOF This is a direct consequence of lemma 10 below. But as the result is
needed for lemma (9) it needs a separate proof here. The proof is a straightforward
induction using approximation indices and is left out. O

As a consequence of lemma 8, if we can show P : () trusted (lemma 13) then
we can show P : @ trusted for any set @ of names that do not occur in P.

We next need a series of results concerning locally scoped names. The first
lemma shows that a trusted name can be made local without trust being violated.

Lemma 9
X :d, b trusted F° X : @ trusted

PROOF Assume - P : Ei,g trusted. We show vb.P : @ trusted. So assume
vb.P % P'. P' can be assumed to have the shape VE.Q such that P % Q. We
proceed by induction in approximation index and cases in). The case for a =7
is trivial so assume that a = c.

e () a process: Trivial, use the induction hypothesis.

22

e Q=1[dQ, d¢ b. We get vb.QQ' : @ trusted by the induction hypothesis.
Also d € d@ implies d € @,b so ¢ € @, b too, by the assumption. But ¢ € b so
c & a as desired.

e) =[dQ and d € b. By the assumption we get - Q' : &',gtrusted and,
since d € b, ¢ € a,b. But ¢ € b so ¢ € d. Also, by the induction hypothesis
we get - vb — d.QQ' : d,d trusted and we are done.

e () =vd.[d]Q'. Use the induction hypothesis.

e () =vi.[Q1]Qz. We need to show

(7) F vb.vé|Q1)Qs : Vd.d fresh D new €.
(@,d,€ trusted — @, d, € trusted) — @, d, € trusted.

Let d be fresh and we need to show

(8) yg.ya[Ql]QQ i new €.

—

(@,d,€ trusted — @, d, € trusted) — @, d, € trusted.

We choose € to have the shape b, ¢ for some ¢}, and (8) is thus reduced to

(9) Fve—6.1Q1]Q2 : (d, l;, i, d trusted — a, l;, i, c[trusted)
a

—

— a,b,cq,d trusted.

By the assumption,

(10) F v@[Q1]Q, : Vd.d fresh D new €.
(@,b,d,€ trusted — @, b,d, € trusted) — @, b, d, € trusted,

SO

—

,C1,d trusted — @, b, ¢1,d trusted)
b,c1,d trusted,

(11) b vé = 61.[Q1]Q2 - (@,

—

SIS

settling (9) and the case.
e () = \d.QQ". We need to show

(12) b vb Ad.Q' : Vd.d — @ trusted.

which is resolved be the induction hypothesis.

e (Q =vAd.QQ'. We need to show

23

(13) F vbwAd.Q' : d —, @, d trusted.
This is reduced to
(14) b vb.Q' : @, d trusted

where we can choose d to be not free in P. For such a P we can conclude
that - P : d, b, c trusted, and hence (14) is obtained.

o ()= Vg.)\l‘.Ql. We need to show
(15) F vb.Az.Q' : Vd.d fresh D @,d trusted — @, d trusted.

So let d be fresh for ul;.)\:c.Q’, and let - Q" : &’,cftrusted and we must
show F ul;.{Q”/:r}Q’ . @,d trusted. Now, since b is alpha-converted such
as not to collide with names free in Q" we obtain by lemma 8 that also
FQ":d, l;, d fresh. By the assumption,

(16) - A\z.Q'" : d, 5, d trusted — a, l;, d trusted

so we see that - {Q"/x}Q'" : @, b, d trusted, and then the result follows by
the induction hypothesis, concluding the proof.

O

We also need to consider the case of expanding the set of trusted names to
fresh ones for functions:

Lemma 10 Assume that X : @ trusted - A : @ trusted and b N fn(A4) = 0.
Assume also that - B : @, b trusted. Then - {B/X}A: d,b trusted. O

The proof of this lemma turns out to be surprisingly delicate, and requires
techniques that are somewhat different from the quite elementary techniques used
elsewhere in this section. Essentially lemma 10 states a property which is much
more “intensional” than the corresponding property 8, concerning, as it does, func-
tion definability: All functions in @ trusted — a trusted that do not “mention”
b can be extended to functions in a, b trusted — a, b trusted. The proof of this
lemma, is deferred to appendix 3.

One further result is needed, to show that local scoping does not affect infor-
mation which is already trusted.

Lemma 11

X : @ trusted F’ X : @ trusted

24

PROOF The proof is quite simple, following the inductive proof strategy already
introduced with lemma 8. a

We now proceed to the first main result, proving that the trustedness predicate
is preserved by parallel composition:

Lemma 12
X : @b trusted,Y : @,b trusted Hb X 'Y : @ trusted

PROOF See appendix 4. O

To start off proofs of trust in the case of open terms we need to show that all
terms respect trustedness of the empty set of names.

Lemma 13 For all P, - P : () trusted

PROOF See appendix 5. O

11 Deriving a Type System

In this section we show how a type system for inferring judgments of the form
? F@ A : b trusted can be derived from the results achieved so far. Here ? is
a set of hypotheses which are either boolean combinations of name equations or
inequations, or of one of the forms z : @ trusted, or f : @ trusted — a trusted.
The interpretation of judgments is self-evident: A judgment is true if any substitu-
tion of names for names and agents for agent variables that makes the hypotheses
true, also makes the conclusion true. We write 7 = F' where I is an equational

=

or inequational assertion (or a derived form such as a € b), if F is a consequence

of 7. The proof system uses an ancillary relation ? F* A : ¢ fresh to hold if ¢
does not occur freely in vb. A, and whenever z (f) is a process (function) variable
occurring in 7 then ? - x : ¢ fresh.

Structural rules:

? FP P @ trusted
? Fbe PG trusted

LocALl

? ' P: @, ctrusted

LocaLr2 2 -
?7 5 P @ trusted

? b P:@trusted ?F° P:¢éfresh
? F* P: @, ctrusted

FORGET1

7+ A:dtrusted = d trusted 7 F A: ¢ fresh

FORGET2 —— ~—
7?7+ A:d, Ctrusted — d,C trusted

25

?' P @ trusted ? &7’
? F P @ trusted

CONS

?,c:dl—EP:Jtrusted ?,c;édl—EP:d'trusted

CASES = -

7" P:dtrusted

App ? - f:dtrusted — d trusted 7 P :d trusted
? + fP:d trusted

EmpPTY = _

? Fb P trusted

Term rules:
NIL —

? F0: @ trusted

? P P:@trusted ? FYQ:d trusted

SUM 7 —
?7H P4+ (@ :adtrusted
? F' P : @ trusted
PREFIX1 7 -
? F’c.P:d trusted
ceb
PREFIX2 7 -
? F’¢.P:d trusted
? b A : G trusted out_after c
PREFIX3 7 —
?7 F’¢c.A:d trusted
? F" A : @ trusted_in_after ¢
PREFIX4 7 -
?7 F’¢c.A:d trusted
PAR ?FP:dtrusted ?F(Q:dtrusted
?HP|Q:adtrusted
?'1-5% A . § trusted
Nu (See below)

? FP ué A @ trusted

7.c=dF P:dtrusted ?,c#dH Q:d trusted
COND ,C a tru ,CF Q:dtru

? b if ¢ = d then P else Q : d trusted

? F P @ trusted

Brock - —
? " P\c: d trusted

? FY A -3 trusted
? +b A : 4G trusted_in_after ¢

In1

26

? b A d trusted_in_ after d ¢ fresh

IN2 = -
? Fb X\e.A : @ trusted_in_after d

?Edea cfresh ?7F"A:d ctrusted in after d

IN3 7 -
? F’vAc.A: d trusted_in_after d
Ind ?kdgd cfresh ? ' A:Gtrusted_in_after d
? P vAe.A: @ trusted_in after d
NG ?,x:d,C trusted Hb A d,C trusted_in_after d ¢ fresh
? FP Ar.A : @ trusted_in_after d
? 10 A G trusted
Ourl —
? F° A:d trusted_out_after ¢
ours ¢b ?=ced>ded ?H' A:dtrusted_out_after d
? F0 [c]A : @ trusted_out_after d
ours _¢€ b ?ldead ? Hb A : @, c trusted_out_after d
? b [c]A : @ trusted_out_after d
Oura € b ?=dga ? - A : @ trusted_out_after d

? F0 [c]A : @ trusted_out_after d
?,f:d,c, e trusted — a,c, € trusted
=€ (fP | A):d,c € trusted_out_after d
cCb € fresh
? FP [P]A : @ trusted_out_after d

OuTth

The set 7’ in rule NU is computed in the following way:
?"=7 U{z:éfresh |z mentioned in ? } U {f : @ fresh | f mentioned in ? }

To terminate proof construction we have the following rule of unfolding and dis-
charge:)
(7' Y D(dy,...,d,) : a trusted]

? R F(ci,...,¢y) : @ trusted

? ' D(ey, ..., c,) : @ trusted
The rule is subject to the sidecondition that ?' +¥ D(dy,...,d,) : d trusted is
a substitution instance of ? F* D(cy,...,¢,) : @ trusted, and that the assumed
deduction

?2HY D(dy,....d,) : d trusted

-

? F F(ey,...,¢,) 1 @ trusted

27

is non-trivial in the sense that it includes the application of a term rule (cf. similar
side conditions in [8]).

Theorem 14 (Soundness) If? -5 A @ trusted is provable in the above infer-
ence system then it is true.

PROOF The difficult cases (LocALl, LocAL2, FORGET1, FORGET2, PAR, OUT5)
are already dealt with. The remaining rules are quite straightforward. O

Our conjecture is that for the blocking-free fragment of the calculus the type
system is complete and decidable.

12 Secrecy of the Andrew Protocol

In this section we use the type system of section 11 to prove the secrecy of the
Andrew protocol as stated in section 9. In particular we obtain

Theorem 15
7 :{in,out} fresh - (vK,.Alice K, | Bob Ky) | Z : {in, out} secret

PROOF First use lemma 7 to reduce the problem to one of trust instead of secrecy.
Now the proof is a straightforward application of the given proof system. We
illustrate just the beginning steps of the proof. First the proof goal is reduced to
the following three subgoals:
(17) Z : {in,out} fresh - Z : {in, out} trusted
(18) F Alice Ky : {in,out, K} trusted
(19) - Bob Ky : {in, out, K} trusted
Of these, (17) is resolved by FORGET1. For (18) we use the term rules (unfolding
and sum) to resolve to the following 3 subgoals:
(20) F in.\d.xfer!(K,,![datal[d]0).Alice K,y : {in, out, K,;} trusted
(21) F in.vAd. - - - : {in, out, K,;} trusted
(22) - AliceSwitch Ky, : {in, out, K} trusted
We consider just subgoal (20). Using a few obvious term rules we reduce to:
(23) F xfer!(K,![datal[d]0).Alice K,y : {in, out, K} trusted
and then to
(24) f: {in, out, K} trusted — {in, out, K} trusted
- f(Ku![data][d]0) | Alice K, : {in,out, K,;} trusted
which is in a few more steps reduced to the following two:
(25) F Kg![data)[d]0 : {in, out, K} trusted
(26) F AliceK,, : {in, out, K} trusted
of which (25) is easily dealt with, and (26) is discharged by the unfolding and

discharge rule. The proof of subgoal (20) is thus complete. The remaining parts
of the proof are completed in similar fashions and left out. 0O

28

13 Conclusion

In this paper we have addressed the problem of proving behavioral properties
of computationally rather rich higher-order communicating processes in terms
of examples drawn from the field of computer security. We have introduced a
second-order process calculus based on the m-calculus, and shown, by means of a
very simple example, how the important features of security and authentication
protocols—viz. nonce generation, key generation, communication, encryption and
decryption—can be reduced to features of this process calculus. We have shown
also how to account for a simple predicate of trust in a monotonically increasing set
of channels using a general second-order temporal logic based on a safety fragment
of the modal p-calculus, and we have shown how to give semantics to this logic in
the presence of contravariant recursion in two different, but equivalent, ways. One,
iterative, account is useful for deriving induction principles used in the subsequent
correctness proofs. We then showed trust of our simple protocol example through
a series of lemmas, identifying ways of decomposing the trust predicate according
to process structure. Here parallel composition and local name declaration are
the difficult connectives. Having obtained these decomposition principles it was a
fairly simple matter to devise a sound type system with which correctness of our
protocol example could be proved.

Revoking Trust A serious shortcoming of our approach is that revocation of
trust is not supported. We have already commented on this issue. The problem
is that our trustedness predicate attempts to use general computational features
for deciding when to extend and when to revoke trust where in reality these are
protocol-specific features. In future work we will have to investigate more refined
versions of the trust predicate to address more realistic protocols and properties.
Also we have not yet considered proofs of authenticity.

Encryption Primitives We give a direct representation of private key encryp-
tion where keys are primitive. We have not yet resolved how to handle variations
such as public-key encryption or computed keys in our setting. Public-key encryp-
tion is handled using structured channels in CSP/FDR by Lowe [12]—it is quite
possible that a similar approach would be useful here. The extension to the basic
calculus needed would be quite modest.

Alternative Representations An important issue is to which extent higher-
order features and blocking are really needed to adequately represent encryption
and decryption. Mainly the choice of representation depends on the level of in-
direction one is willing to suffer. For instance we are currently building formal
evidence to show that our second-order process calculus with blocking can in fact
be reduced to first-order w-calculus without blocking. However, the reduction is
extremely indirect and not usable as a modelling tool. In the full version of [2]

29

several alternative representations of encryption and decryption in the m-calculus
are discussed. The most interesting idea is to use structured channels as in [12] to
represent the encoding of A by the key K as an abstraction

AL (L, K) LA,

Here A is a unary m-calculus abstraction representing the data to be encoded.
Synchronisation is along the structured channel (I, K) to ensure that both the
“location” [of {A}k and K itself are present simultaneously. In this approach
decryption is made safe as the location I" of {A}f, is not passed to {{A}x, }x,
along a publicly known channel. Compared to our approach the w-calculus rep-
resentation introduces a level of indirection by passing pointers instead of the
resources themselves. Thus the model is moved, in our view, one step further
away from the physical realities being modelled with the ensuing risk of introduc-
ing discrepancies. On the other hand the computational primitives involved are
also simpler and computationally more tractable. It would be of interest to relate
our second-order representation with a first-order one such as that of Abadi and
Gordon, to gain better faith in the correctness of our representations as well as in
our accounts of correctness properties. Observe that due to the communication
of pointers rather than the objects themselves, a logical account of security and
authenticity properties in a first-order setting would be likely to be very different
from the account suggested in the present paper.

Acknowledgements

Thanks are due to Martin Abadi, Jose-Luis Vivas and Alan Mycroft for comments
and discussions on several topics treated here. It is the credit of Jose-Luis to have
observed the need for firewalling using the blocking operator. Also thanks are due
to one anonymous referee in particular for some very insightful comments.

References

[1] M. Abadi. Secrecy by typing in security protocols (draft). Manuscript,
Available at http://www.research.digital.com/SRC/personal/Martin_Abadi/
home.html, 1997.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proc. 4th ACM Conference on Computer and Communications
Security, pages 36-47, 1997. Full version available as tech. rep. 414, Univ.
Cambridge Computer Lab.

(3] M. Abadi and R. M. Needham. Prudent engineering practice for crypto-
graphic protocols. IEEE Transactions on Software Engineering, 22:2-15,
1996.

30

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. Amadio and M. Dam. Reasoning about higher-order processes. In Proc.
CAAP’95, Lecture Notes in Computer Science, 915:202-217, 1995.

R. Amadio and M. Dam. A modal theory of types for the 7-calculus. In Proc.
FTRTFT’96, Lecture Notes in Computer Science, 1135:347-365, 1996.

J.-P. Banatre, C. Bryce, and D. Le Metayer. Compile time detection of in-
formation flow in sequential programs. In Proc. European Symp. on Research
in Computer Security, LNCS 875, pages 55-73, 1994.

M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. Proc.
Royal Society of London A, 19809.

M. Dam. Model checking mobile processes. Information and Computation,
129:35-51, 1996.

D. Denning. Certification of programs for secure information flow. Commu-
nications of the ACM, 20:504-513, 1977.

R. Focardi and R. Gorrieri. The compositional security checker: A tool for the
verification of information flow properties. To appear in IEEE Transactions
on Software Engineering.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the ACM, 32:137-162, 1985.

G. Lowe. Breaking and fixing the needham-schroeder public-key authentica-
tion protocol. Proc. TACAS, Lecture Notes in Computer Science, 1055:147—
166, 1996.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, T and
I1. Information and Computation, 100(1):1-40 and 41-77, 1992.

M. Mizuno and D. Schmidt. A security flow control algorithm and its denota-
tional semantics correctness proof. Formal Aspects of Computing, 4(1):727—
754, 1992.

R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83—-133, 1984.

P. Orbak. Can you trust your data? Proc. TAPSOFT’95, Lecture Notes in
Computer Science, 915:575-589, 1995.

D. Sangiorgi. From m-calculus to higher-order m-calculus—and back. To
appear in Proc. TAPSOFT’93, 1993.

C. Stirling and D. Walker. Local model checking in the modal mu-calculus.
Theoretical Computer Science, 89:161-177, 1991.

31

[19] B. Thomsen. A calculus of higher order communicating systems. In Proc.
POPL’89, pages 143—-154, 1989.

[20] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4:1-21, 1996.

Appendix 1: Operational Semantics
Agent Syntax

A o= 0|A+A | aA | A|A | va.A | if a =) then A else A |
A\a | D(ay,...,a,) | Aa.A | Az.A | vha.A | [a]A | [P]A

The Arity Calculus The purpose of the arity calculus is to perform a basic
sanity check to ensure eg. that agent expressions do not get bound to channel
names as a result of communication, and that, in a communication, the right
number of arguments is transferred.

An arity is an expression # of the shape +w or —w where w € {chan, agent }*.
The null arity is (), and by convention, +() = () = —(). Moreover +w = —w and
—w = +w. We use the notation A : for arity assignment, disambiguating by
context.

A:() B:() A:0 A:0 B:() A:() B:#6

O:() A+ B:) a.A: () A|B:#6 A|B:#6

A:0 B:0 A0 A:() B:()

A|B:() va.A:0 if a=0then Aelse B: ()
D=F F:—chan" A —w A:—w
D(ay,...,a:n):() (v)Aa.A: —chanw Azx.A: —agentw

A:() A:+w A:() B:+w

A\a. 2 () la]A : +chanw [A]B : +agentw

The Transition Semantics The transition relation is derived from a pair of
relations A —+ B and A -3+ B where «a is a name or the special symbol 7. The
relation — is used for rewriting of agent terms into a normal form by passing and
instantiating communicated values, by resolving conditionals, and by commuting
lambda’s etc. with restrictions. The relation —% is used to account for the basic
rendez-vous mechanism in CCS style. Both the normalisation and the transition
relation applies to well-formed agents only.

32

Normalisation Let a communication prefix be an expression pre of one of the
forms [a], va.]a], va.[P], Aa., vAa., or Az.. The normalisation relation is defined
by the following clauses:

(par) A—s A
pary 3 'B— A" | B
B:()
(mergel) pre(A) | B — pre(A | B)
A—>Xa A" A':0 B—[B B :-0
(comm1)

A| B — ({b/a}A") | B’
A—->viaA A:0 B-—vb[h|B B :-0
A| B —>vb.(({b/a}A") | B")

A—-> XA A:0 B-—vd|P/B B':-6
A| B = va.({P/z}A") | B’

(comm2)

(comms3)

(nul) va.(v)\b. A —>—> (v)Ab.va.A (a#0)

(nu2)

va r.A == \z.va. A

(m3) — A raa @70

(nut) va.vh.[b|A —>—> vb.[blva. A (a #9)
A— B

(nu5) va.A = va.B
(if1) if a = a then A else B — A
(if?) if a =0b then A else B —— B
(block1) A\é j ﬁ:\a
(block2) (pre(AN\a _)_) pre(A\a)

(id) D= Xby.---\b,.P P:)

" "Dlar, ... an) = {a1 /by, ..., an b} P

Define the normal form of A, nf(A), as the unique B, if it exists, such that
A —»* B and B /4~ B’ for any B'.

33

The Transition Relation The transition relation is determined by the follow-
ing rules where we require for A —$+ B to be provable that A : ():

nf(A) 3+ B
A B

(norm)

(sum) A A
AT B S A

(alpha) — o4

(merge2) Ao A
J AB5 A B

(commy) A A BB

A|BSs A | B
A A

(nuf) va.A = va.A' (o 7 a)
A A

(block3) a5 Al a#a

Observe that in the definition of both — and -3+ symmetric cases (for the rules
(par), (merge), (comm) and (sum)) are omitted, and that we in general assume
alpha-conversion to be applied whenever necessary to avoid capture of variables.
This applies, in particular, for the (merge) and (comm) rules. Completing the
appendix we can now define the transition relation proper.

Definition 16 (The Transition Relation) Let A % B iff for some B', A =%~
B' and nf(B') is defined and equal to B.

Proposition 17 If A % A’ then A’ is well-formed and either a process, an ab-
straction, or a concretion. If A = A' then A" is well-formed and a process.

PROOF Induction in size of derivations. O

Appendix 2: Proof of Theorem 6

In this appendix we give proofs of lemma’s 20, 21, 23, and 22. These lemma’s are
all proved by induction in formula structure.

We need a little preliminary work. First we observe that both semantics give
rise to upper-closed sets. The proof of these two lemmas are routine and left out.

Lemma 18 Assume that for all X, if p(X) = (S1,S2) then Sy =1 Sy. Let
[6l(p) = (51, 53). Then Sy =1 S5 D

34

Lemma 19 Let o(X) =1, (X) for all X. Then ||6]|" (o) =t |9]]" (o). O

Now we proceed to the four main lemmas. Say that a formula identifier X
occurs in ¢ at depth n iff X occurs freely in ¢ in the scope of n occurrences of a
modal operator or one of the input/output operators <, — etc.

Lemma 20 Let ¢ and n € w be given. Suppose p has the property (x) that
whenever a formula identifier X occurs in ¢ at depth n' then for all agents A,
A € m(p(X)) iff trunc(n—n', A) € my(p(X)). Then for all A, A € mo(||0]|(p)) iff
trunc(n, A) € m([[¢]|(p)).

PROOF Structural induction.
¢ = vX.¢'. Suppose first that A € my(||¢||(p)). Then, by corollary 4, for all &,
(27) A € mp(A(S1, S2)[|&'[|({(S1, S2)/ X }p)").
We must show that also
(28) trunc(n, A) € ma(A(S1, S2)-|¢[[({(S1,52)/ X }0)").
We proceed by well-founded induction in &:
o x = 0: Trivial.
e k =k'+1: We obtain
A € my(A(St, S2). || ()

where o' = {\(S1,S3).]|¢'||({(S1,S2)/X}p)<' /X}p. Observe that, by the
induction hypothesis, and since X can only occur in guarded positions in ¢',
o' has the property (x). Thus we find that (27) is satisfied.

e Kk = Uy..k' is a limit ordinal: This case follows trivially, as Ll is set inter-
section in its second component.

¢ = ¢1 A ¢o. We obtain:

A€ mo(llér A dall(p)
iff A€ m(l|é1(p) and A € ma([|d2] (p))
iff trunc(n,A) € m(||¢1]/(p)) and trunc(n, A) € m(||¢2|/(p))
iff trunc(n,A) € ma(|[d1 A ¢2||(p))

¢ = [a]¢’. We obtain:

A € mo([llal¢'[l(p))
iff for all B, if A% B then B € my(||¢'||(p))

if n=0o0rn=n'+1and for all B, if A % B then
trunc(n’, B) € m([|¢'[|(p))
iff trunc(n, A) € m(||¢|l(p))

35

¢ = ¢1 — ¢2. We obtain

(Az.A) € my(]|¢]l(p))
iff for all B, if B € m1(||#1]|(p)) then {B/x}A € ma(||d2]|(p))

iff n=0o0rn=n'+1andforall B, if B € m(||¢1]/(p)) then
trunc(n', {B/x}A) € m(][¢2/|(p))

iff n=0orn=n'+1and forall B, if B € m(||¢1]/(p)) then
trunc(n, {B/x}trunc(n’, A)) € m(||p2|(p))
(as trunc(n’, {B/x}A) =~ trunc(n’, {B/x}trunc(n’, A)), and by
proposition 18)

iff trunc(n,A\z.A) € m(||¢]|(p))

The remaining cases are similar to the above and left to the reader. O

Observe that we take the equivalence
(29) trunc(n,{B/x}A) = trunc(n, {B/z}trunc(n, A))
as evident. Now we proceed to the second main lemma, which is proved in a rather

similar fashion:

Lemma 21 Let ¢ and n € w be given. Suppose p has the property (x%) that
whenever a formula identifier X occurs in ¢ at depth n' then for all agents A,
trunc(n — n', A) € m(p(X)) iff trunc(n — n', A) € my(p(X)). Then for all A,
trunc(n, A) € mi([[¢(p)) iff trunc(n, A) € m(||¢] (p))-

PROOF The proof follows the pattern of the proof of lemma 20. The most difficult
case is that of fixed points:

¢ = vX.¢'. Assume first that trunc(n, A) € m(||[vX.¢'||(p)). Using corollary 4 it
follows that we find a x such that

(30) trunc(n, A) € mi(A(S1, S2).[[¢'[|({S1, S2)/ X }p)".

Observe that, by monotonicity, this same property will hold for all " > k. We
show, using well-founded induction, that

(31) trunc(n, A) € m(A(S1, S2).||¢'[|({S1, S2)/ X }p)".

This proof is quite straightforward and left out. It follows, again by monotonicity,
that this same property holds for all " < k. We can thus conclude that

(32) trunc(n, A) € m(||[vX.¢'||(p)).

For the converse direction we assume (32) and need to establish a x for which (30)
holds. This is straightforward.

The remaining cases are left for the reader. a

The proof of the following lemma is very similar to the proof of lemma 20 and
therefore omitted.

36

Lemma 22 Let ¢ and n € w be given. Assume that o has the property that
whenever a formula identifier X occurs in ¢ at depth n' then for all agents A,
trunc(n —n', A) € o(X) iff A € o(X). Then for all ¢, trunc(n, A) € ||8]|" (o) iff
A€ [lo]]" (o). O

Finally we arrive at the lemma which ties up the two semantics for truncated
agent.

Lemma 23 Let ¢ and n € w be given. Assume that p and o have the property
that whenever a formula identifier X occurs in ¢ at depth n' then for all agents
A, trunc(n — n', A) € m(p(X)) iff trunc(n — n', A) € o(X). Then for all ¢,
trunc(n, A) € mi ([(p)) iff trunc(n, A) € [|¢[" (o)

PRroOOF The most delicate cases are for the connectives that introduce contravari-
ance. We consider here just the second-order arrow:

¢ = ¢1 — ¢o. We obtain:

trunc(n + 1, A\x. A) € m1(]|¢]|(p))

iff for all B, if B € my(||#1]/(p)) then trunc(n,{B/z}A) € m1(]|d2]/(p))
iff for all B, if trunc(n, B) € ma(||¢1]|(p)) then

trunc(n, {trunc(n, B)/z}A) € m(||¢2]|(p)) (lemma 20
iff for all B, if trunc(n, B) € m1(||¢1]/(p)) then

trunc(n, {trunc(n, B)/z}A) € m(||#2]|(p)) (lemma 21)
iff for all B, if trunc(n, B) € ||¢1||"(c) then

trunc(n, {trunc(n, B)/x}A) € ||¢2]|"(¢) (ind. hyp.)
iff for all B, if B € ||¢1]|"(0) then

trunc(n, {B/z}A) € ||¢2]|"(0) (lemma 22)
iff trunc(n+1,\z.4) € ||¢]|"(0)

Appendix 3: Proof of lemma 10

In this appendix we prove

Lemma 10 Assume that x : @ trusted - A : @ trusted and b N fn(4) = 0.
Assume also that - B : @, b trusted. Then - {B/x}A :d,b trusted.

PROOF Theorem 6 along with lemmas 24 and 25 below. a

The proof of lemma 10 is by induction using theorem 6. We explore the possible
computations of the agent { B/x}A under the assumption stated in the lemma. In
fact we generalise the statement somewhat, to prove the following lemma instead:

Lemma 24 If

37

X1 :ay trusted,z; : a) fresh,...,x, : d, trusted, x, : d, fresh
Fuve A d trusted,

and if the following conditions are satisfied:

1. the sets a, a;, CZ, 5, ¢ are mutually disjoint,

2. bnn(A) =0,

3. ¢ C¢

4. the variables xv, ..., x, occur linearly in A,
d. CEUCZ:&'UC_’)forallizlgign,

6. I—Bi:ti,l;,c_; trusted for alli:1 <i<n,

-

then b vé{By/x1}---{Bn/x,}A : d,b trusted.

Most of the remainder of this appendix is devoted to the proof of lemma 24.
First, however, we discuss the uses of this lemma. Its significance is, of course, to
make the induction needed for 10 work. Concerning linearity the generalisation is
in need of justification, however:

Lemma 25 If 7,2y : ¢, x0: ¢ A(xy,29) 1 ¢ then 7, x: ¢ Az, x) : 1.

PROOF Induction in structure of . O

Lemma 25 fails in the presence of the diamond modality. The sets & ¢ of (1),
(3), (5), (6) are needed to permit substitution to be performed in the context of
the set ¢ of local channel names, of which some, the members of 07, are trusted.

We can now proceed to the proof of lemma 24. Let # be the substitution
{By/x1}--{Bn/x,}. The proof explores the computations of vc.fA. For this
purpose we need to capture the ways the B; and the A may interact in performing
computation steps. This is done by the following lemma. In the statement of the
lemma we tacitly assume that the transition relation % applies to general terms,
not only, as is common, terms without free occurrences of process variables.

Lemma 26 Assume that the variables xy, . ..x, occur linearly in A. Assume that
A 2 C. One of the following 4 cases apply:

1. AS A and C = 0A.
2. Some B; = B! and C = {B!/z;}0A.

3. a =1, for someb, B;, Bj, B, 2 B;, B L Bi, i # j, B; | Bj is defined,
and C = {Bj/z;}{B}/z;}0A.

38

4. o = 7, for some B;, B; % Bl, A LN B! | A" is defined, and C =
{B!/z;}0A

PROOF The proof is by structural induction in A. We consider here only the case
of A = Ay | A;. The remaining cases are easier and left to the reader. So assume
that #A4 % C. One of two cases apply. Either

(1) 9141 ﬂ) Cl and C = Cl | 914.2, or
(i) the symmetrical case applies, or
(il) a =17, 04, > Cy, A 5 Cy, Cy | Cs is defined, and C; | Cy = C.

So assume that (i) holds. By the induction hypothesis one of the cases (1)—(4)
holds of A;.

1. Ay % A and C; = AA,. Then A; | Ay % A\ | Ay and C = 04 | A,.

2. B; = B! and C; = {B!/z;}0A;. Then, due to the assumption of linearity,
C = {B!/x;}0 A as required.

3. a=r1, Bi % B!, B; % B!, B| B! defined, i # j, and
Cr = {Bi/z:}{B}/x;}0A:.
Then we can use linearity to conclude that C' = {Bj/x;}{ B} /x;}0(A, | As).

4. a =1, B; LN B!, A, N Ay, and Cy = {B}/z;}0A). Then, using linearity,
Ay | Ay 5 AL | Ay, and Cy | Cy has the right form.

So assume instead (iii). Again we use the induction hypothesis to conclude that
one of (1)-(4) must hold for A; and Aj respectively. Actually, (3) and (4) are
both rules out, as these apply to 7-transitions only.

e (1)-(1): Assume 4; 5 A}, ¢, = 04, A, > A,, and C, = 6A4). Then
A | Ay 5 Ay | A, and C | Cy has the desired shape.

o (1)-(2): Assume A; 5 A, Cy = 04, B; % B!, and C, = {B!/z;}0A,.
Then we find that A; | A4y % A | Ay and C = {B!/z;}0(4} | A,) so that
(4) holds of A.

e (2)(2): Assume B; 5 B!, Cy = {B!/z;}0A;, B; 5 B, Cy = {B}/x;}0A,.

Due to linearity, i # j. Also B; | Bj is defined. Moreover, C; | C =
{Bj/xi}{B]/x;}0(A; | Ay) so that (3) holds of A.

39

The case (2)—(1) is symmetrical to the (1)—(2) case and left out. The proof is thus
complete. O

We need another lemma, mainly to show that if a process concretion of the
shape [P]A has the property (@ trusted — d@ trusted) — @ trusted then - P :
@ trusted too. In fact a more general property holds:

Lemma 27 IfFvé(P | Q) : @ trusted then for somed Cc, = P, ¢ trusted
and b Q : @ ¢ trusted, and z : @,¢ trusted,y : @, ¢ trusted F vé(z | y) :
d trusted.

PROOF We show that we can find a ¢ such that - P : @, ¢ trusted by induction
in the approximation index as usual. So assume that P = A. There are a number
of cases to consider for which we consider the most difficult one only:

Assume that A = vd.[A;]A;y. Then a = b for some b and

ve.(P | Q) = viwd.[A1](4; | Q),

assuming bound names are alpha-converted as appropriate. As F vé.(P | Q) :
d trusted we must also have that

(34) véw _’[1](A2 | Q) : Vé.e _'_’ resh O new f.

—

(d, ¢, f trusted — @,¢, f trusted) — @, €, f trusted.

Let € be fresh for ch[Al}AQ. By choosing names appropriately we can be sure
that € is also fresh for vé.vd.[A;](As | Q), so that

—

(35) vévd.[A1)(Ay | Q) : new f.

— —

(d,€, f trusted — @, €, f trusted) — @, €, ftrusted.
We find fl C ¢and f; C d such that

(36) v — fivd = fo.[Ai](42 | Q) :
(d, f1, fa, € trusted — @, fi, fo, € trusted) — d, f1, fa, @ trusted.

—

Now, let - F': a, ﬁ, ﬁ, € trusted — a, ﬁ, fg, € trusted. We get that
(37) v — fivd — fo.(FA) | Ay | Q : @, f1, fo, @ trusted.

By the induction hypothesis we see that we can find f:’ Cc— ﬂ, and f;’ Cd-— f_’;
such that

(38) FA; : @, fi, f, f, fi, € trusted
(39) A2 : d’aﬁ; flla ;: fQI € trusted
(40) Q : @

-) - —»’
) lafla 2 2:etrUSted'

40

Choose ¢ = f1 U fl and f fg J f2 Observe that neither ¢ nor f have elements
occurring freely in F', so ¢’ and f can be chosen independently of F'. Let us verify
that

(41) vd[4,]AQ (d fhflaf?anae trusted — @, f1, f1, fa, f4, € trusted)
— Cl fl; flaf?an;e trusted

So assume that

(42) = F: Ez’,ﬂ,ﬂ,ﬁ,f;,é’trusted — Ft,ﬂ,ﬂ,ﬁ,ﬁ’,é’trusted

Since neither f{ nor fz have elements in common with F' we obtain that also
(43) + F': a, f:, f;, € trusted — a, f:, f;, € trusted,

and so the desired conclusion can be drawn, appealing to the observation above
of independence of choice of F, ¢, and f.

Before completing the proof one slightly delicate matter needs to be attended
to. Observe that our choice of ﬁ and f; depends on the choice of A. However, it
is only the size of the sets ﬁ and ﬁ that matter, as bound names can be alpha-
converted. As the underlying transition system is finitely-branching maximal sizes
of sets fl and fg can be determined. Notice now that it is possible to “pad” these
sets, if necessary, using dummy names that are never used, to obtain sets of equal
size, independent of the choice of A.

Having made this observation it is now a simple matter to realise that the
second part of the lemma is also true. O

Corollary 28 If

- vé[P]Q : vd.(@,d trusted — @,d trusted) — @,d trusted

—

then for some ¢ C ¢, - P : EL’,E’ trusted and t Q : d, d trusted, and = :
@, trusted,y : @,c trusted b vé[z]y : vd.(@,d trusted — @,d trusted)
a,d trusted.

PRroor Use lemma 27. O

Now we can proceed to the proof of lemma 24. Assume that vé04 % C. By
lemma 26 one of the cases (1)—(4) of the statement of the lemma applies (where
a & @). We proceed accordingly.

1. We have that A % A’ and C = vc.#A’. We use the definition of @, b trusted.
e o =7 and C is a process. The induction hypothesis applies.

e o =d and C is a process. The induction hypothesis applies.

e a =dand C = [e|]C’ (or, more generally, C = vé.[e]C" and e ¢ ¢). We
have that A" = [e]A” for some A" as the x; are process variables, and

41

(44) xy : ay trusted, x; : a71 fresh,...,x, : a, trusted, z, : azl fresh
Fvc A" Je.e + (d trusted A (e € d D d € d))

thus

(45) z1 : @] trusted,x; : a} fresh,...,z, : d, trusted, z, : azl fresh
Fuvc A" . d trusted

and e € @ D d € d. By the induction hypothesis we find that - vc.0A" :
d@,b trusted. Assume also that e € @,b. Then e € @ as d & fn(A). So

e € J,gtoo, and - vc.0A : a, b trusted.
a = d and C'is a bound output agent. This case is similar and left out.

a = d and C = v [C'|C" where we can assume that A" = [A]A,,
0A; = C'" and AA;, = C". We get that

(46) z; : @] trusted,x; : a} fresh,...,z, : d, trusted, z, : azl fresh
Fuvc A’ 1 Ve.€ fresh D new d.
(@,d,€ trusted — @, d, € trusted) — @, d, € trusted

Let € be fresh for 0 A’. We need to show that

(47) F vE[0A]0A, : new d.
(d@,b,d, € trusted — @, b, d, € trusted) — @, b, d, € trusted,

where ¢ is chosen to satisfy the conditions of the lemma. So we need to
find d such that

(48) kv @[QAI]QAQ : o o
(d,b,d, € trusted — @, b,d, € trusted) — @, b, d, € trusted.
Assume that
(49) F A\y.D : d, l;, J: € trusted — a, l;, J: € trusted.
We need to show

(50) Fvé—d{0A,/y}D | HA, :
a, l;, CZ € trusted.

To show this using the induction hypothesis we need to show the fol-
lowing two subgoals:

(51) z;y : d] trusted,x; : a..d ¢ fresh,...,
T, . Gy trusted,z, : a_’;l, CZ ¢ fresh,
z:d,d, d_: € trusted
Fvd — da Ay @, d, ¢ trusted

(52) F{0A,/y}D :a,b,c, d e trusted

where @ C &@—d. To prove first (51), from (46) we see that

42

(53) x1 : ay trusted,x; : a},€ fresh,...,
T, : a, trusted,z, : al, € fresh,
Fve A" new d.(d,d, € trusted — @, d, € trusted)

—

— a,d, € trusted
where € is appropriately chosen. So we find that

(54) xy : aj trusted,x; : a},d, € fresh, ...,
i B
Ty Gy trusted,x, : al,d, € fresh,

- vd — d.[A])As : (@, d, € trusted — @, d, € trusted)

—

— a,d, € trusted

L

=

(choosing in the process the d), and then

(55) xy : aj trusted, x; : a71, d.é fresh, ...,
T, : Gy trusted,z, : azl, CZ € fresh,
F . a, cZ: € trusted — a, cf, € trusted
Fvé—d.(FA;) | As : @, d, & trusted.

Now F Az.x:a, cf, € trusted — a, CZ: € trusted so we find that

(56) z1 : @] trusted,x; : a},d, € fresh,...,
Ty @ dp trusted,z, : a/ . d, € fresh
Fvé—d. Ay | Ay d,d, € trusted.

—

By lemma 27 we can find ¢ C @— d such that

(57) 1 : aj trusted, x; : a71, d.é fresh, ...,
T, : Gy trusted,z, : azl, CZ € fresh
A, c_;, d_; € trusted,

(58) xy : aj trusted, x; : a71, d.é fresh, ...,
T, : Gy trusted,z, : azl, CZ € fresh
Ay d, e d_: € trusted,

- - - -
o

(59) z : d,c,d,€ trusted,y : d,c,d, € trusted

’
Fvé—dua|y:ddé trusted

Observe that ¢ can be chosen uniformly in z and y. We thus find
that (51) holds. To show (52) we use (57) along with the induction
hypothesis to show that

(60) AA, : a, b, ¢, d, & trusted
and another application of the induction hypothesis to the sequent
(61) z : a, b,d, ¢ trusted - F(z) :a, b, d, ¢ trusted

establishes (52) and the subcase is complete.

43

e o =dand C =vcAd.C" = Md.vé.C", or C = vé.vAd.C". The proof is
left out.

e a=dand C =véAx.C" = Ax.vé.C", so that A’ has the shape \z.A"”
and C" = vé.0 A" up to naming of . We get that
(62) 1 : ay trusted, x; : a71 fresh,...,
Ty @ dp trusted,z, : a/, fresh
Fuvc A Ve.e fresh D d, € trusted — d, € trusted.

We conclude

(63) 1 : d] trusted,x; : a}, € fresh,...,
Typ @ ap trusted,z, : al,€ fresh
X :d,€ trusted
Fwve A" . d, € trusted.

Now the result follows directly from the induction hypothesis.

2. We have that B; = B! and C = v@{Bi/z\}---{B}/z;} - {Bn/zn}A.
Again we follow the def. of @, b trusted.

e a=7ora=dand C is a process. The induction hypothesis applies.

e a=dand C =véle|]C', e ¢ ¢ In this case B;] will have the shape [e] B
and

(64) [e] B! : Je.e « (@, b, trusted Ae € d@,b,¢ Ddeab,c)
thus
(65) B! : @, b, ¢ trusted
so by the induction hypothesis, F ve.Cl d’,gtrusted. Also e € Ei,g
implies d € a@,b as d € . So indeed
(66) + v@{Bi/z1}---{B!/z;} - {Bn/z,}A: @ b trusted.
e a =dand C =vé[e]C” and e € ¢ This case is left for the reader.

e o = d and C has the shape v f.[C"]C" where B, = Z/f.[Bi,l}Bi,g,
C' = Bi,l and C" = {Bl/l‘l} te {BZ’Q/l‘z} v {Bn/fEn}A We get that
(67) B! :Vé.¢ fresh D new f.
(@b, ¢

a

—

— —
] =

, €, [trusted — d,b,c, €,
,c, e, [trusted.

trusted)

Q

S

We need to show that
(68) v f.[B;i1]C" : VE.€ fresh D new f.

(d@,b, e, f trusted — @,b, €, f trusted)
a,b, e, f trusted.

So let € be fresh for C. We can assume that €, ¢ and f are disjoint.
(68) is then reduced first to

— — - —

(69) vévf.[B;1]C" : new f.(@,b,@ f trusted — @b, f trusted)
— a,b, e, f trusted.

and then we need to find ¢; and fl such that

— —

(70) Ve — .V f1 [Zl]C” .
a, b, ci, e, fi trusted — d, b, 1, €, fi trusted)
C_i — —

— d,b,cq, €, f1 trusted.

)

—~

So assume that

—

(71) - \y.D : a, b, i, ¢, ﬂ trusted — @, b, ¢}, €, f1 trusted
and we need to show

(72) vé— G .vf — f;.{Bi,l/y}D | C": @b, ¢ fi trusted.

—) - —

To prove this by the induction hypothesis we need to find sets ¢; C c—¢;
and fg C f fl such that

(73) 1 : d] trusted,x; : a.é fi, fg fresh,.
Xt ay, € fl,fQ trusted x; : a; fresh, .
T, . Gy trusted, z, : an,e fl, fg fresh,

—

Y a;, e, fl,fg trusted,y : a) fresh
Fvé—éuwf — fly\A @, c, e fi trusted
(74) y : @, 1,63, €, fi, fg trusted - D : d, ¢, 6, €, fl,fg trusted

(75) + Bi,j : ai, g, g, ﬁ, f2 trusted,] S {1, 2}
To prove (73), by assumption we have

(76) x1 : d] trusted,x; : a} fresh,...,
x; : a; trusted, x; : a, fresh,...,
Ty @ dp trusted,z; : a), fresh
Fuve A dtrusted

from which we can deduce

(77) . 47 trusted,z; : d) fresh,.
. Vé.¢ fresh O new f. (al,e f trusted — a;, e ,ftrusted)
— a;, €, f trusted x; . a; fresh,.
T, : Gy trusted,z, : an fresh
Fwvc.A:VéEE fresh D new f.(c?, €, ftrusted — a, €, ftrusted)
— a, €, ftrusted

and

45

(78) xy : aj trusted, x; : a71, ¢ fresh, ...,
x; i new f.(cfi,é’,ftrusted — a;, €, ftrusted)
— a;, €, ftrusted, T c;; fresh,...,
T, . Gy trusted,z, : azl, € fresh
Fvc. A new f.(c?, e, ftrusted — a, €, ftrusted)
— d, € ftrusted

>

and then

(79) x1 : a; trusted, x; : a71, ¢ fresh, ...,
T; I new f(cfi,é',ftrusted — a;, €, ftrusted)

— a;, €, ftrusted, X az fresh,...,

X, : Gy trusted,z, : azl, € fresh

Fuveé—¢.A: new f.(c—i, i, €, ftrusted — d, e, €, ftrusted)

— d, ¢y, €, [trusted.

Now we use the assumption on z; to instantiate the local names fto
the left of the turnstile as two parts, f1 which is named by f to the
right of the turnstile, and a part f2 which becomes bound by f f1

(80) z; : @] trusted, y a’l,é fl fresh,.
Z; 1 new f2 (al,e fl,fQ trusted — a;, €, fl, fg trusted)
— a;, €, fl, fg trusted, z; : a fresh,.
X, @ dp trusted, x, : azl,é,ﬂ fresh
Fvé—é.A ¢ (d,é, e, f| trusted — @, ¢}, ¢, f, trusted)

—
-

— d, ¢, €, f1 trusted,

from where we get
(81) xq : @} trusted, : a71,é' fi fresh,.
z; : new fy. (al,e f1, fo trusted - a;, €, fl, o trusted)
— a;, €, fl, fg trusted, z; : a fresh,.
T, . Gy trusted,z, : azl,é',f_’i fresh,
f.d,c,ée, fl trusted — d, c},g fl trusted
Fve—é.(f(z;) | A) 1 @ ¢, € fi trusted.

Now, using the assumption on x; we see:

(82) xy : aj trusted, x; : aZ,é',fi, ﬁ fresh,...,
z; : (a;, €, i, f; trusted — @, €, f1, fo trusted)
— a;, €, fl,fg trusted i c;; fresh,...,
T, . Gy trusted,z, : an,e fl,fg fresh,
fra, e, €, f1 trusted — a, ¢, €, f1 trusted, f: fg fresh
Fuve—

vé—avf — fi.(f(x:) | A) : @, ¢, ¢ fi trusted

46

where fincludes ﬁ Now we use the induction hypothesis to conclude

(83) f:d, c‘{,é’,ﬂ trusted — d, ¢y, €, ﬁ trusted, f : f_; fresh
Ff:d, €, fi, fo trusted — @, ¢y, €, f1, fo trusted

which suffices to conclude (73). Subgoal (74) follows by the induction

hypothesis applied to (71). Finally (75) is easily proved by the methods
already introduced.

; C1,

e The cases for name and process input are left to the reader.

3. Of the numerous subcases consider the following: B; N vé.[B;1|B;2 and
B; LN Ay.B:, and our task is then to prove that

(84) Fvéwve{By/x\}---{Biajxi}--- {{le/y}B;/a:J} B,z } A
a trusted

where € is chosen to not be confused with other variables. The proof is quite
an easy exercise given the previous steps, and left for the reader.

4. Similar comments apply to the final case.

This completes the proof. O

Appendix 4: Proof of lemma 12
In this appendix we prove
Lemma 12

X : @b trusted,Y : @b trusted F* X 'Y : @ trusted

PRrOOF Reducing the proof goal we obtain two subgoals of the shapes:

(85) X

,gtrusted, Y
(86) X : @,b t

,b trusted F0 X 'Y : [7]d trusted
rusted, Y : bt

)
L d, ,b trusted F? X |V : Ve.[c](@ trusted V - -)

Considering first (85) observe that a transition of vb.X | Y can be due to either
(1) a 7-transition of X, (2) a 7-transition of Y (symmetrical to (1)), or (3) a
communication of X and Y resulting in agents of matching arity (ie. a name
abstraction matching a name concretion, etc.). Thus we see that we can reduce
(85) the following list of subgoals:

47

(87) X : @,b trusted,Y : @b trusted Hb X 'Y : @ trusted
(88) X : Je.c « (@, b trusted A (c € @ D d € d@)),
Y :Ve.c — @, b trusted)
Hb X | Y : @ trusted
(89) X : new c.c « ((d € @,b D (@,b,c trusted)) A (d & @,
Y:c—, (d€db>ab,ctrusted) A(d ¢ d,b>a,b
b X | Y : @ trusted
(90) X : Vd.d fresh D new ¢
(d, 5, cZ; ¢ trusted — d, l;, cf, ¢ trusted) — @, 5, cf, ¢ trusted
Y :Ve.c fresh D d, l;, C trusted — d, l_;, ¢ trusted
Hb X | Y : @ trusted

b D @b trusted))
trusted)

Subgoal (87) arises in several ways: Because a 7-transition of X, because of a
T-transition of Y, or because of a synchronisation where both X and Y evolve
into processes. In any case the subgoal is immediately resolved by the induction
hypothesis. Subgoal (88) is resolved by a little elementary reasoning to a sequent
of the shape (87). Subgoal (89) is equally easy to resolve. Finally we address
subgoal (90). Letting d = () we obtain:

(91) X : new C.(d, b, ¢ trusted — @, b, ¢ trusted) — @, b, ¢ trusted
Y :Vé.c fresh D d,b,c trusted — d,b, ¢ trusted
FC X | Y : @ trusted

which is reduced to

—

(92) X : (a, 5, ¢ trusted — d, 5, ¢ trusted) — @, l;, ¢ trusted
¢ fresh
Y : ¢ fresh Da, l;, ¢ trusted — d, l;, ¢ trusted
Hbe X | Y : @ trusted

which can be decomposed into two subgoals:

(93) X : (a, b, ¢ trusted — @, b, ¢ trusted) — @, b, ¢ trusted

Y :d,b, ¢ trusted — da, l;, ¢ trusted
FX|Y:db,ctrusted

—
—

(94) X : d,b,C trusted 0 G trusted

of which (93) is immediate, and (94) is an application of lemma 9. This completes
the proof of (85). We need also to consider (86). Exploiting the symmetry of |
this goal can be resolved to the following (long) list of subgoals:

(95) X : @,b trusted,Y : @b trusted Hb X 'Y : @ trusted
(96) X :d¢b, X:cdb
X :d+« (@,btrusted A (d€d,b>Dcedb

),

48

Y . d, b trusted

F X | Y 1 3d.d + (@ trusted A (d € @D ¢ € @)
97) X:deb, X:cdb

X :d+ (@b trusted A (d € @,bD c € d,b)),

Y :a, b trusted

Fo X |Y inew d.d + ((c €@ D d,d trusted) A (c € @ D @ trusted))
(98) X :c b

X :newd.d < ((c€db>ab,dtrusted) A (c ¢ @,b D @b trusted))

Y : @ b trusted

F X | Y inew d.d + ((c € @D @,d trusted) A (¢ € @ D @ trusted))
(99) X :c &b

X : V& fresh O new d.

(a b,d, trusted — @,b,d, € trusted) — @, b, d, ¢ trusted
Y : @b trusted
”X|Y Vé.é fresh D new d.
(d, d, & trusted — @,d, ¢ trusted) — d, d, & trusted

(100)X : c &b

X :Vd.d — @b trusted)

Y :a, b trusted

F0 X | Y :Vd.d — @ trusted)
(100X :c¢b

X:d—, (c€a@b>ab,dtrusted) A (c ¢ @b D @ b trusted)

Y . d, b trusted

Hb X | Y :d—, d trusted)
(102X ccgh

X Vd d fresh O @ E d trusted — a, l;, d trusted

Y :a, b trusted

by | Y : ch, d fresh O a, d trusted — a, d trusted

l

Subgoal (95) is as usual resolved immediately by the induction hypothesis. This
applies also to (96) given a minute amount of boolean reasoning. Subgoal (96) and
(97) arise because of the assumption of a free output for X followed by existential
elimination to the left and a case analysis on d. In the latter case the free output
of X becomes a bound output of the entire process, due to the local scope of b.

Subgoal (97) is reduced to

(103) X :deb, X:c¢b
X :d< (d,btrusted A\ (d€d,bDce
Y :d,b trusted

1
S

~—
~

49

Hb-d X |Y:d<+ ((cedDd,dtrusted) A (c¢ @ D d trusted))
and further, using a little boolean reasoning, to

(104) X :deb, X:cgb
X :d, b trusted
cEd,
Y :a, b trusted
F-4 X | Y 1 d « @,d trusted

which follows by the induction hypothesis. Subgoal (98) is straightforward. Now,
for (99) we reduce this to

(105) X : d &b,

- (a, b, d, & trusted — @,b,d, € trusted) — @, b,d, ¢ trusted,
: € fresh, Y :d fresh

—

. d,b trusted,
I—b X |Y: (@ d étrusted — @,d, € trusted) — @,d, € trusted

i

and then, using lemma 9, to

(106) X :d & b,
X: (@b, d,é trusted — @,b,d, ¢ trusted) — @, b,d, ¢ trusted,
Y. l_;, d_: € trusted,
b X Y (a, d, & trusted — @, d, € trusted) — @, d, & trusted

Now we use right arrow introduction:

(107) X : d & b,

: (a, b, d,é trusted — @, b, d. ¢ trusted) — @, b,d, ¢ trusted,
,5, CZ; € trusted,

L d, cZ: € trusted — a, CZ € trusted

: b fresh

X | Y | Z:d,d, ¢ trusted

Ly

1

NN <

We can now appeal to lemma 10 to reduce to

(108) X : d ¢ b,
X : (a, b,d, ¢ trusted — @,b,d, ¢ trusted) — @, b, d, € trusted
Y . d, 5, CZ; € trusted,
Z :d, l;, cf, € trusted — a, E d, € trusted
F X |Y | Z:d,d, ¢ trusted

which is resolved by the induction hypothesis. We leave out the proofs of subgoal
(100) and (101). Finally we need to consider (102). We first reduce this to

50

(109) c¢b X:dfresh

—
—

X:

X :d,b, d trusted — a, 5, d trusted
Y :d fresh,
Y:
|_b

l

—

,b trusted
X | Y :d,d trusted — @,d trusted

—»

and then, using lemma 8 to

(110) X : ¢ ¢ b X :d fresh
X :d, l;, d trusted — a, l;, d trusted
Y :a, 5, d trusted

F* X |Y : @,d trusted — @,d trusted

Now we introduce — to the right:

—

gb X: d fresh

,Jtrusted — d, 5, d trusted
:d,b, d trusted

:d,d trusted

: b fresh

(X | Y)(Z) : @, d trusted

(111) X : ¢
1 a

Loy

’

l

NN

Observe that we here use am applicative notation which strictly speaking is not
in the syntax of the process calculus. Using 8 once more we obtain

(112) X :¢c¢ b X :d fresh

X :d,b,d trusted — @, b, d trusted
Y :d, b, d trusted
Z: d,b,d trusted

(X\Y)() : @ d trusted

which is provable by the induction hypothesis. O

Appendix 5: Proof of lemma 13

In this appendix we prove

Lemma 13 For all P, P : () trusted.

For the proof we need the following lemma, permitting us to make free names
private while preserving trustedness of names.

Lemma 29 Suppose @ Nb=10. Then

X : @ trusted - vb.X : @ trusted

51

PROOF Suppose - P : @ trusted and vb.P % P'. Then P' has the shape VE.Q
such that P % (). We proceed by induction in approximation index and cases in
() as usual. The case for a = 7 is trivial, so assume a = c.

e () =[d|Q". Then F @' : d trusted, and d € @ implies ¢ € d. Whether or
not d € b we get that vb.(Q' has the desired property.

e ()= VJ[Ql]QQ. We need to show

(113) F vb.vd.[Q1]Q. : VE.¢ fresh D new f.
(d,¢é, f trusted — @, €, f trusted) — @, €, f trusted.

Reduce this to

—
—

(114) F vb.vd.[Q1]Q. : new f.(@,, f trusted — @, &, f trusted)
€, f trusted

— —

(115) vb.vd — di.]Q1]Q, : (@, € d; trusted — @, &, d; trusted)
— d, €,d; trusted.

- -
—

So let = A\y.D : d, €, d, trusted — @, €,d; trusted and we need to show

-

(116) F vb.vd — di.{Q:/y}D | Q; : @, &,d, trusted.
By assumption we have

(117) F vd.[Q1]Q, : VE.€ fresh D new f.

— —
- =

(@, €, f trusted — @, €, f trusted) — @, €, f trusted.

- -

(118) vd — d_i.[Ql]Qg : (@, €, dy trusted — @, €, d; trusted)
€,d; trusted.

So we have

(119) F vd — d, {Q1/y}D | Qs : @,&, d; trusted.
But then - vb.vd — d:.{Ql/y}D | Q2 : d,¢, d, trusted by the induction
hypothesis.

e The remaining cases are straightforward.

52

O

We can now proceed to the proof of lemma 13 which is by induction in ap-
proximation index as usual.

So assume that P % P’. Assume o = a. We proceed by cases in P’ as usual,

observing that the case for P' as process is trivial:

e P’ free output of shape [b]P”. By the induction hypothesis - P” : () trusted
and b €) D a € () completing the case.

P’ bound output of shape vb.[b]P". As a & () and - P" : () trusted by the
induction hypothesis we get

(120) F vb.[b]P" : new c.c <— ((a € 0 D ¢ trusted) A (a ¢ 0 D 0 trusted))

as desired.

P’ process concretion of shape vb.[P,]P,. Let & be fresh. We must show
(121) F vb.|P]P, : new d.(Z,d trusted — ¢, d trusted) — ¢, d trusted.
We reduce this to showing

(122) - vb.[P]P, : (trusted — ¢ trusted) — € trusted.

So let = Ay.D : ¢ trusted — ¢ trusted and we must show

(123) F vb.{P,/y}D | P, : @ trusted.

Now F P, : ¢ fresh so - P; : ¢ trusted by lemma 8, and thus

(124) = {Py/y} D : ¢ trusted.

Also - P, : ¢ fresh so also - P, : ¢ trusted. But then

(125) - {P,/y}D | P, : ¢ trusted

by lemma 12, and so by lemma 29 we conclude (123).

e The remaining cases are straightforward.

The proof of lemma 13 is thus complete. O

93

