
Proving Trust in Systems of Second-OrderProcesses: Preliminary Results�Mads DamSwedish Institute of Computer ScienceAbstractWe consider the problem of proving correctness properties for concurrentsystems with features such as higher-order communication and dynamic re-source generation. Operational models of security and authentication proto-cols based on the higher-order �-calculus are considered as examples. In thissetting key features such as nonces/time stamps, encryption/decryption,and key generation can be modelled in a simple and abstract fashion us-ing channel name generation and second-order process communication. Atemporal logic is proposed as an appropriate logic for expressing correct-ness properties such as secrecy and authenticity. The logic is based on themodal �-calculus with only greatest �xed points and universal next-statequanti�cation. Extensions include �rst-order features to deal with names,and second-order features including function space constructions to dealwith process input and output. One di�culty is that formulas need re-cursion in both covariant and contravariant positions. We show how thisproblem can be overcome in two di�erent, but equivalent, ways, �rst usinga standard semantical account based on intervals, and then by an iterativeconstruction. We propose a predicate of trust in a monotonically increas-ing set of channels as an example, and establish structural decompositionprinciples for this predicate for concurrent composition and local channeldeclaration. On this basis a type system for trust inference can be derivedquite easily, and we use this type system to establish trust of a very simpleprotocol example.1 IntroductionIn this paper we consider the problem of proving correctness properties in seman-tically very rich models of concurrent systems with features for communicationof second- and higher-order objects (eg.: code), and for dynamically generatingand communicating resource names. A long list of recent programming languages�Work partially supported by Esprit BRA 8130 LOMAPS. Work partly done while visitingCMI, Universit�e d'Aix Marseille 1 1



and models, including Java, CML, Facile, Oz, Actors, Erlang, and the �-calculus,explore these sorts of features to various extents. Typical of many applicationswritten in these kinds of languages is that they are open, designed and intended tooperate in environments that are possibly hostile, and at any rate only partiallyknown at compile time. An important task is therefore to protect information andresources against intrusion, intended or otherwise. Intruders have at their disposalthe full armoury usually considered in the �eld of computer security: they can stealmessages, tamper with messages, crack codes, synthesize messages, store and re-play messages, and much more. In the presence of higher-order communicationthey can even generate programs (viruses) that will be activated dynamically bythe receiving agent. The question we address is how, in spite of this, we can provethat a system nonetheless performs correctly.Key management protocols Classical key management protocols such as theNeedham-Schroeder protocol provide excellent examples of programs designed towork reliably in face of hostile intruders. A typical purpose of a key manage-ment protocol is for participants to agree on a secret session key given some initialamount of trusted information. In this paper we show how such protocols canfruitfully be viewed as higher-order communicating processes and show some ini-tial ideas as to how, on this basis, they can be veri�ed. The idea is best introducedthrough a simple example, a modi�ed version of the corrected version of the An-drew remote RPC protocol as introduced by Needham, Abadi, and Burrows [7].This protocol is extremely simple, yet it introduces all the features needed toaccount for a whole class of key management protocols. Initially the two partici-pants, A and B, share a private key Kab. The task is to agree on a new session key.Using standard notation the protocol can be described as the exchange betweenA and B of the following three message sequence:1. A! B : fNagKab2. B ! A : fNa; K 0abgKab3. A! B : fNagK0abIn step (1) A transmits the nonce Na to B, signalling his intent to generate a newsession key. B responds, in step (2), by returning the new session key K 0ab, alongwith Na to authenticate the message, both encrypted using the old key Kab. Instep (3), A returns the nonce Na to B, this time encrypted using the new key K 0ab,serving as an acknowledgement to B that the previous message was received anddecrypted.Modelling key management protocols as second-order processes Theprotocol involves the following features: 2



1. Value passing and data type operations: Given a (possibly composite) mes-sage m it is possible to communicate m from A to B. It is also possible,given messages m1 and m2, to form the pair (m1; m2).2. Private key encryption and decryption: Given a message m and a privatekey K, we can form fmgK , m encrypted using key K. Also, given fmgKand given K we can decrypt to extract the message m.3. Key generation. B has the capability of generating a new private key K 0ab,by assumption distinct from any other key known to any other participantin the exchange, friendly or hostile.4. Nonce generation. It is possible to generate a fresh, non-composite piece ofinformation, by assumption distinct from any other such pieces of informa-tion possessed by other participants.We propose accounting for these features in the following fashion:� Nonces are names as in the �-calculus [13]. New names are declared by thebinding �a:A introducing a as a new name with scope initially extendingover A but not further. In �a:A, a will by de�nition be distinct from anyother name occurring freely in A. Furthermore it is possible dynamically toextend the scope of a by \scope extrusion", eg. �a:b:[a]P which declares anew name a and immediately passes it to the outside world along the channelb.� Keys are names too, introduced using the �-operator. Observe that in the�-calculus names are channel identi�ers. This we can exploit in accountingfor encryption in the following way:� Encryption is second-order process passing. A message m encrypted usingthe private key K is an object that can deliver m to anyone happening tonow K. That is, it is a process with one output port K along which m ispassed to whoever possesses K and is willing to listen.This suggests using a second-order version of the �-calculus as a semantical frame-work for modelling key management protocols, and indeed this is what we proposeto do. Of course such models will be highly idealised: For instance the bit lengthsused to represent nonces and keys are bounded, opening up for attacks on theencryption/decryption algorithms, and information can often be extracted fromencrypted messages with very limited knowledge of the keys, or no knowledge atall, by analysing their bit representations. Nonetheless we believe that an idealisedmodelling of key management aspects alone can be useful, leaving analysis of ac-tual encryption algorithms to be addressed by other means, even while recognisingthat a really water-tight boundary between the two is not a reasonable hope (cf.[3]). 3



Nested encryption and �rewalling One complication needs to be attendedto, though. As encryption can be nested we need to consider process terms of theshape P = a:[K1:[K2:[m]0]:0]P 0;modelling a process passing ffmgK2gK1 along a and then proceeding to act as P 0.A process receiving such a packet and decrypting to extract m would have theshape Q = a:�X1:(X1 j (K1:�X2:X2 j (K2:�m:Q0(m)))):That is, it receives the process X1, activates it and tries to receive from it alongK1another process which it proceeds to activate, to try and receive from it m alongK2. As it stands, however, the �-calculus has no good way of preventing a thirdparty from stealing m using K2 once Q has decrypted using K1. That is, once Qhas reached the con�guration (K2:[m]0) j (K2:�m:Q0(m)), if an external intruderis present that may know about K2 it will have the capability of receiving the mwithout necessarily having to know K1 �rst. Thus decryption is unsafe, contraryto most reasonable modelling assumptions (cf. [7]).A good remedy of this is to use a �rewalling, or blocking operator Ana pre-venting communication along the channel a between A and its environment. Thisoperator is already well known: It is just the CCS restriction operator, extendedto the �-calculus in the obvious fashion by allowing state transitions Pna b! Ajust in case A has the shape A0na, P b! A0, and b, the communication channel,is distinct from a. This operator was also considered in the context of higherorder processes by Thomsen [19]1. Using the blocking operator we can protect mfrom theft along K2 by putting (K2:[m]0) j (K2:�m:Q0(m)) inside a K2 �rewall.Observe that we regard a as free in Ana. Thus communication of a across the a�rewall itself will be perfectly legitimate.First or second-order �-Calculus? The blocking operator helps to explainwhy we insist on using second-order process passing even while we already know[17] that higher-order processes are reducible to �rst-order ones in the �-calculus.The point is that in the presence of the blocking operator the higher-order reduc-tion of [17] is no longer applicable. We are currently accumulating strong evidenceto suggest that the reduction from the second-order calculus with blocking to the�rst-order �-calculus with or without blocking while feasible in principle is verycomplicated and de�nitely not suitable as a modelling tool.Speci�cation in second-order temporal logic Our aim is to use a second-order temporal logic to specify desired correctness properties like secrecy and1The blocking operator is sometimes known as \dynamic restriction", as a contrast to thestatic binding discipline of the �-calculus restriction. We �nd this terminology confusing, how-ever, since in another sense the blocking operator is really the more static one, as name scopesare not subject to dynamic change. 4



authenticity. Speci�cally we suggest using a fragment of the modal �-calculusextended with �rst-order features for names and name generation, and two arrowsto account for process input and output. The logic follows quite closely ideasput forward in [4], using a function arrow � !  for input dependency, and asecond-order arrow (� !  ) !  for contextual output dependency. The ideais the following: A process waiting to input a parameter x to continue acting asP is written as a lambda-abstraction �x:P . Dually, a process wanting to outputto some receiver the process Q1 to continue acting as Q2 is written as the term[Q1]Q2, called a process concretion. Sometimes Q1 and Q2 may share a vector ofprivate channel names ~a wishing to maintain these connections after Q1 has beenpassed to its receiver. Such a process concretion is written �~a:[Q1]Q2. Match-ing receiver and sender results in the term �x:P j �~a:[Q1]Q2 which is identi�edwith the term �~a:fQ1=xgP j Q2, alpha-converting the bound names ~a as neededto avoid collision with names free in P . The input arrow expresses the expectedfunctional dependency: For �x:P to have the property �!  it must be the casethat Q1 has the property � only if fQ1=xgP has the property  . The output arrowexpresses dependency upon receiving context: The process concretion �~a:[Q1]Q2will have the property (� !  ) !  just in case �x:P has the property � !  only if �~a:fQ1=xgP j Q2 has the property . In [4] we showed how this settingcould be used to achieve an appropriate level of discriminatory power when mea-sured against a strong version of bisimulation equivalence (cf. [11]), and we beganinvestigating proof principles for these connectives.Handling contravariant recursion Attempting to write down a �rst sugges-tion for a predicate expressing monotonically increasing trust in a set of channelsfaces a basic di�culty in that contravariant recursion seems indispensable. Wehave so far found no way around this di�culty. The problem is that the Knaster-Tarski �xed point theorem usually appealed to for least and greatest �xed pointsemantics require monotonicity which fails in the presence of contravariant recur-sion. We address this issue by giving alternative semantics in two di�erent, butequivalent ways. First we suggest a semantics based on intervals in which solutionsto recursive equations are computed using standard techniques as pairs of lowerand upper approximations which will in general not meet. One will expect upperapproximations to be the solutions of interest, and to support this we devise analternative model using an iterative construction. This iterative model exploits acontinuity property which is very useful in providing induction principles for lateruse. These properties only hold, however, for a fragment of the modal �-calculuswhich lacks least �xed points and diamonds (existential next-state quanti�ers).This, however, is a limited loss in view of the nature of the properties in which wehave primary interest: Matters like secrecy and authenticity would be expectedto have formulations as invariants and not to use existential computation pathquanti�cation. 5



Proving trust We then arrive at a suggestion for a process predicate expressingtrust in a monotonically increasing set of channels, using contravariant recursionand greatest �xed points only, and the rest of the paper is devoted to proof princi-ples for this trustedness predicate, and the proof of trust for a very simple exampleprotocol. The most involved proof principles concern, as one should expect, par-allel composition and name scoping. Several crucial lemmas need to be proved,of which we highlight two. First we need to show that if P is a process whichrespects trust of ~a, and b does not occur freely in P , then P will respect the trustof ~a [ fbg (we usually write ~a; b as a shorthand). The proof of this is, as oneshould expect, a simple inductive argument, using the induction principle hintedto earlier. However, we also need a corresponding result for functions, that if �x:Phas the property ~a trusted! ~a trusted, and if b does not occur freely in �x:P ,then �x:P will also have the property ~a; b trusted! ~a; b trusted. This propertyhas a far more intensional character as it has to do with de�nability of functions,and the proof is also much more delicate.Deriving a type system Having proved the crucial lemmas for decomposingtrust for parallel compositions and � declarations we show how we quite simplycan derive a type system for proving assertions of the shape `~a A : ~b trusted,and how, using this type system, we can prove correctness of the Andrew protocolexample discussed above.A word of caution One should take this correctness proof with a pinch of salt,though, for the following reason: The trustedness predicate we consider assumestrusted sets of names to be monotonically increasing. That is, we can accomodateprotocols that add to the set of trusted names, but not protocols that revoke trust.But this means that all attacks that rely on some earlier piece of trusted informa-tion, like an old session key, having been compromised, can not be accomodated,as users of the protocol for our trustedness predicate to be applicable, can notbe allowed to divulge such information. This is the reason for the \preliminaryresults" subtitle of the paper, and the reason why our approach should not yetbe considered applicable to security and authentication protocols in general, butrather be considered as a �rst attempt to �nd useful speci�cation and reason-ing principles for concurrent programs that mix higher-order process passing withdynamic name generation and communication features as in the �-calculus.Related work The present paper can be viewed as part of an ongoing trendtowards operationally based accounts of security and authentication protocol. Theclosest predecessor of this work is Abadi and Gordon's work on the spi calculus[2]. Even though our work was developed independently, it is the credit of Abadiand Gordon �rst to have observed the usefulness of the �-calculus name scopingdiscipline for modelling security protocol features like nonce and key generation.In the spi calculus extra operators for encryption and decryption are added to the6



�-calculus. Properties such as secrecy and authenticity are accounted for in equa-tional terms, for instance by reecting insensitivity of environments to changes intrusted values. By contrast we represent such properties more directly, as a logicalformula. Moreover, due to the explicit treatment of encryption and decryption arather non-standard version of testing equivalence [15] has to be appealed to forthe correctness proofs in [2]. This complication does not arise in our approach sincewe reduce encryption and decryption to more general computational features.Recently a number of authors have attempted to use state exploration methodsto analyse security protocols (cf. [12, 10]). In such approaches the main di�culty isto faithfully represent protocols and intruders as �nite state automata. Instead ofleaving intruders undetermined, as in our approach, it becomes necessary to stateexplicitly at every possible step whether an action is or is not possible, includinghistory dependencies. Secondly it becomes di�cult to deal with unbounded infor-mation, such as protocols runs that can cause an in principle unbounded numberof nonces, time stamps, or keys to be generated. For this reason (and for sheermodel size considerations, one suspects) work has so far focused on public keyencryption, and on single session establishment runs.In another related strand of work a large number of authors have used staticanalysis and type systems to analyse security of information ow, cf. [1, 6, 9, 14, 20,16]. The scope of these analyses is roughly the same as ours: They analyse whethersecurity levels are respected during program execution, sometimes stratifying theanalysis by eg. distinguishing readers and writers. As in our work revocation oftrust is not supported. Our contribution to this line of work is to show how atype system for secure information ow can quite easily be derived from the verygeneral and sound semantical basis that we provide, using the account of programsas second order �-calculus processes, and types/properties as interpreted second-order temporal formulas.A Road Map We start by presenting the version of the second-order �-calculusused in the present paper and show, as an example, how the Andrew protocolis represented in this calculus. We then proceed to introduce the syntax and in-tended semantics of our second-order modal �-calculus. To illustrate our needfor contravariant recursion we suggest, in section 5, a predicate of trust in a �-nite set of names. This prompts an investigation of ways to give semantics toour logic in face of this di�culty. This issue is addressed in sections 6, 7, and8 where we present two alternative semantics, and show them equivalent. Oneof these semantics, the iterative one, is particularly useful in that it identi�es aninduction principle which is used throughout the remainder of the paper. Havingestablished a reasonable semantics we can then proceed to complete the speci�-cations of secrecy and authenticity, and to prove that these properties actuallyhold of our example. Only proof of secrecy is considered in this paper. As thecorrectness properties are stated as properties of open systems (senders, receivers,and unknown intruders) a useful proof strategy is to provide a sequence of lemmas7



showing the ways in which the trust predicate composes over the process combina-tors. The di�cult cases are restriction and parallel composition. Proofs are givenin section 10 and in the appendix. Up to some minor details what the structurallemmas established in section 10 amounts to, is a type system for trust inference.This type system is exhibited and shown to be sound in section 11. Then, in sec-tion 12, we show as an example how the type system is used to establish secrecy ofthe Andrew protocol. Finally, in section 13, we summarise our results and discusssome outstanding matters including alternatives for representing cryptographicprimitives, how to measure the correctness of our representations, and the needfor the blocking operator.2 ProcessesIn this section we give an informal presentation of the language used to modelprotocols., and as much as its operational semantics as is needed to understandthe speci�cation logic and the reasoning of the correctness proofs. A formalisedsemantics is given in appendix 1. Roughly, the process language is a merge of the�-calculus [13] with the second-order process-passing calculus presented in [4]. Ituses the following primitive objects:� Channel names a, b, along with the special label � , used for invisible, orsilent transitions.� Agent variables x, y.� Agent constants D. With each constant is associated a unique de�ningequation D = A where A is an agent according to the de�nition below.Agents come in three avours: Processes which perform transitions; abstractions,responsible for name and agent input; and concretions, responsible for name andagent output. Process terms are ranged over by P , Q, abstractions by F , con-cretions by C, and agents in general by A and B. To each well-formed agentterm is assigned an arity +w or �w, w 2 fchan; agentg� indicating, e.g. for anabstraction, the number and position of channel and agent arguments it requiresto become a process term. The null arity is (), and by convention, +() = () = �().Processes Processes are agent terms of null arity: They neither require norprovide parameters to be able to perform (or refuse) transitions. Agent variablesare (open) process terms; 0 is the terminated process; P + Q is the process thatcan choose between transitions of P and of Q; a:A is the pre�x process that canperform an a-transition and evolve into A; P j Q is the parallel composition ofP and Q; �a:P declares a new name a, local to P (but exportable to the outsideworld through subsequent communications); if a = b then P else Q is theconditional, often generalised to arbitrary boolean combinations of name equalities8



and inequalities; Pna is blocking; and if D = F and F has shape �b1: � � ��bn:Pthen D(a1; : : : ; an) is a process term too.Abstractions We operate with two abstraction constructors, one for free inputand one for bound output, similar to the situation in [5]. The free input abstractionhas the shape �a:A (�x:A) and has arity�chanw (�agentw) if A is an abstractionterm of arity �w or, if w is empty, A is a process term. The arity of a boundinput abstraction, ��a:A, is calculated similarly.Concretions Concretions have one of the form [a]A, �a:[a]A, or �~a[P ]A. The�rst instance corresponds to the output of the free channel name a. The secondto the output of a local name a, and the third to the output of a process term Pwith local names ~a. If A is a concretion term of arity +w then [a]A and �a:[a]Aboth have arity +chanw and �~a[P ]A has arity +agentw. If w is empty A is againa process term.The transition semantics A standard �-calculus style semantics can easilybe given to the above language. We assume a transition relation P �! Q, anda family of transition relations P a! A. A few examples su�ces to highlight theimportant points:� Invisible transitions arise because of communication. For communication totake place arities of the resulting abstraction/concretion pair must match.Thus, e.g. if P1 a! ��b1:F and P2 a! �b2:[b2]C, F has arity �w, and Chas arity +w, communication can take place. Then, if F j C = Q0, theinvisible transition P1 j P2 �! Q = �b2:fb2=b1gQ0 is enabled, where weassume variables to have been alpha-converted such that confusion does notarise. Similarly, if P1 a! �x:F and P2 a! � ~b2:[P ]C we obtain P1 j P2 �! Q =� ~b2:fP=xgQ0 where Q0 = F j C.� Similarly, for P1 j P2, it is possible that no communication takes place. Thus,eg. if P1 a! �b:F and F j P2 = Q0 then P1 j P2 a! Q = �b:Q0. Observe againthat �-conversion is used to avoid capture of variables.� The remaining connectives reect the intuitions given above. Thus, for in-stance, �a:A declares a local name a in A and does not permit a-transitionsto take place. That is, �a:P b! A if and only if a 6= b and P b! A0 andA = �a:A0.3 An Example: The Andrew Secure RPC Pro-tocolConsider the Andrew secure RPC protocol given in the introduction. We showhow to represent this protocol in the second-order process calculus, using the ideas9



Alice = �Kab.in?d.xfer!fdata,dgKab.Alice Kab + AliceSwitch KabAliceSwitch = �Kab.�Na.xfer!fswitch,NagKab.xfer?x.x j(AliceSwitch Kab + (Kab?(t; N 0a; K 0ab).if t = next and Na = N 0athen xfer!fack,NagK0ab.(Alice K 0ab + AliceSwitch Kab)else AliceSwitch Kab))Figure 1: Agent AliceBob = �Kab.xfer?x.x j ((Bob Kab) + (Kab?(t,x).if t = data then out!x.(Bob Kab) elseif t = switchthen�K 0ab.xfer!fnext,x,K 0abgkab.xfer?x.x j((Bob Kab) + (K 0ab?(t,N 0a).if t = ack and N 0a = x then (Bob K 0ab) else (Bob Kab)))else (Bob Kab))) Figure 2: Agent Boboutlined in the introduction. Thus nonces and encryption keys are representedas names, and encryption and decryption as second-order communication. As a�rst approximation of such a representation consider the agents Alice and Bobpresented in �gures 1 and 2. We use some abbreviations. Firstc!(T1; : : : ; Tn):A �= c:[T1] � � � [Tn]AfT1; : : : ; TngK �= K!(T1; : : : ; Tn):0where T1; : : : ; Tn ranges over names and processes. Secondly we let c?(v1; : : : ; vn):Aabbreviate the sum of all terms of the shape c:(�)�v1: � � � :(�)�vn:A where the �is optional, and requires the lambda to which it is applied to be a free nameabstraction. Observe that this involves a non-deterministic commitment to aparticular choice of input parameter types and thus may introduce deadlocks.This can be remedied, but as we are only interested in properties to hold for allpossible computations the matter has little importance.Compared to the \standard" account little has been changed except that theprotocols have been augmented with message tags to handle control ow, and adata transfer phase, in which input data is received along a channel in, encryptedand passed from Alice to Bob, and then output along out. As our aim is to10



specify and analyse properties in terms of external input-output behaviour somesuch modi�cation is necessary, and in most parts it is completely uncontroversial.On three counts, however, some discussion is needed.Free and bound input Our process language possesses the capability of de-tecting whether a given argument occurred freely or bound at the sender. Onthe face of it this is clearly an unreasonable assumption: What is received are bitstrings and even if some tag of some sort states the nature of the argument howis this tag to be trusted? On the other hand we need this distinction in orderto know, when a channel parameter is received along a trusted channel, whetherto extend trust to this new channel or not. Our policy is simple: new channelscommunicated along trusted channels are themselves to be trusted. The argumentof unreasonable expressiveness is countered by the examples always allowing forboth free and bound input, as is the case above.Looseness of speci�cation The data transfer phases of Alice and Bob consistsimply of inputting a piece of data, encrypting and then transferring it over themedium, respectively receiving the encrypted package, decrypting and then out-putting. In this respect the model is overspeci�c: it states explicitly, for instance,that old session keys are not corrupted. But this is too strong an assumption asmany attacks use replays with old and corrupted session keys. Rather one wouldwant to replace Alice by an open speci�cation of the shapeAlice = �Kab.(F Kab);AliceSwitch Kabwhere F is a free abstraction variable subject to assumptions such as� F never reveals its �rst argument to the outside world,� F never reveals secrets received along in, except when encrypted by Kab.Distinguishing name and process parameters One more remark needs tobe made concerning the representation. In the systems we are modelling, data isshifted in terms of bit strings or voltages on a wire. Thus there is no way to tellwhether a piece of datum is really a nonce or a piece of encrypted information.This does not hold in the representation, as name and process passing are treateddistinctly. Observe, however, that the safety of our conclusions are not a�ectedby this. Rather intruders are given slightly more discriminating power in therepresentation than in the modelled system. Our conjecture is that in practicethis issue is negligible.4 Process PropertiesOur chief interest is in the properties of secrecy and authenticity. Our intentionis to formulate these as functional and temporal properties expressing constraints11



on the input-output behaviour of the system under consideration. In our examplethe system consists of the agents Alice and Bob running in an unknown (andpotentially hostile) environment Z. Z should be assumed to have access only tochannels and data open to outside intruders. Evidently this includes the channelxfer (but also the tags data, switch etc.). However, the initial value of Kabshould be regarded as trusted, as should the channels in and out. Supposing nowthat � expresses an correctness property such as secrecy. The overall proof goalcan then be formulated as a sequent of the shapeZ :  ` (�Kab.Alice Kab j Bob Kab) j Z : �where  are the assumptions made on Z (roughly: that Z does not know in andout).Since the intruder Z is already considered \part of" the global system whichis considered, the correctness property � does not need to speak about processpassing: If eg. secrecy is violated there will be a way for Z to reveal a secret alonga name which is not out, resorting to encryption or other second-order communi-cation only internally. More general properties which do talk about second-ordercommunication will be needed once we arrive at the proofs, however.Thus a suitable functional + temporal logic for our purpose will need to talkabout names and their identities, properties of names and processes which areoutput, dependencies on names and properties of processes being received, in ad-dition to usual safety properties. Observe, however, that to express the correctnessproperties we have in mind there is no use for liveness properties or existentialpath quanti�cation. This fact will be quite useful once we come to consider thesemantics. The logic will have the following primitives:� a = b, 6= b, � ^  , � _  , 8a:�, 9a:�. This is just �rst-order logic withequality. We also need basic operations on �nite sets ~a: set membership andquanti�cation over �nite sets.� ~a fresh, new ~a:�. The �rst primitive expresses that no element of the set ~aoccurs freely in the agent being predicated. The second primitive expressesof an agent A that it is identical to an agent of the shape �~b:A0 such thatA0 has the property f~b=~ag�. For now we can use the term \identical" asmeaning, roughly, \bisimulation equivalent" (cf. [11]). We return to thisissue shortly.� [a]�, [� ]�. These are the universal next-state quanti�ers well-known frommodal logic. So [a]� will hold of an agent just in case it is a process, andwhatever agent results from the performance of an a-transition must satisfy�.� a ! �, a !� �, a  �. These primitives express name input-output prop-erties. The �rst expresses of an agent A that it is an abstraction �a0:A0, and12



that fa=a0gA0 has the property �. The second expresses that A is an ab-straction ��a0:A0, and that fa00=a0gA0 has the property fa00=ag� whenever a00does not occur freely in neither ��a0:A nor � (minus a). The third expressesthe property that A is a concretion of the shape [a0]A0, that a = a0, and thatA0 has the property �. A fourth connective a  � � will be derivable, asnew a:a �.� � !  , (� !  ) ! . These primitives are used for second-order commu-nication. The function arrow �!  expresses of A that it is identical to asecond-order abstraction �x:A0, and that if P is a process satisfying �, thenfP=xgA0 will have property  . The second primitive is a contextual prop-erty. It holds of a second-order (process) concretion A of the shape �~a:[P ]A0provided that for any receiving context f with the property �!  , the pro-cess �~a:(fP ) j A0 will have the property . This idea of using a second-orderimplication to capture contextual properties of process output originateswith the paper [4].In addition to these primitives our intention is to allow properties to be de�nedby greatest �xed points in the style familiar from the modal �-calculus (cf. [18]).This is quite straightforward if we can de�ne the required properties using covari-ant recursion only. Unfortunately as yet we only have solutions that make useof contravariant recursion, and thus we need to address the foundational problemof making sense of this. This we do in the subsequent sections. First, how-ever, some syntactical matters: Recursively de�ned properties take the shape(�X(a1; : : : ; an):�)(b1; : : : ; bn) (cf. [5]). Alternatively we use the sugared formX(b1; : : : ; bn) in the context of a de�nition of the shape X(a1; : : : ; an) => �. Werequire that recursive de�nitions are guarded in the sense that all occurrences ofX in � must be within the scope of either a modal operator, or one of the ar-rows. A formula � is propositionally closed if � does not have free occurrences of(parametrised) variables X.5 Expressing TrustLet us try to express, using the connectives introduced above along with greatest�xed points, the property ~a trusted that, intuitively, trusted information canappear along trusted channels only. With some experimentation one arrives at ade�nition like the following:~a trusted =>[� ] ~a trusted ^ 8b.[b](/* Continuation: process */ ~a trusted _/* Output */ ~a trusted out after b _/* Input */ ~a trusted in after b)~a trusted out after b => 13



/* process */ ~a trusted _/* free name output */(9c.c  ( ~a trusted out after b ^ (c 2 ~a � b 2 ~a))) _/* bound name output */(new c.c  ((b 2 ~a � ~a; c trusted out after b) ^(b 62 ~a � ~a trusted out after b))) _/* process output */(8~d.~d fresh � new ~c.(~a; ~d;~c trusted ! ~a; ~d;~c trusted) ! ~a; ~d;~c trusted out after b)~a trusted in after b =>/* process */ ~a trusted _/* free name input */(8c:c! ~a trusted in after b) _/* bound name input */(c!� (b 2 ~a � ~a; c trusted in after b) ^(b 62 ~a � ~a trusted in after b)) _/* process input */(8~c.~c fresh � ~a;~c trusted ! ~a;~c trusted in after b))The idea is quite simple: To show that the process being predicated respectsthe trustedness of names in ~a we need to consider the various transitions thatmay be possible from the initial state and the various types of continuation agentsthat may ensue. If the continuation is a free output of a name c then ~a mustcontinue to be trusted, and if c is trusted then b had better be trusted too. Ifthe continuation is a bound output of a name c then if b was trusted we canregard both ~a and c as trusted, and otherwise we must continue to respect thetrustedness of ~a. The most interesting cases are those for second-order input andoutput. Consider for instance second order input. The process being input mustrespect the trustedness of ~a, evidently. But in addition we must permit thatprocess to mention other trusted information of which we are not yet aware. Thatinformation will be \fresh" to us, and we had better ensure that after input ofthe process we respect the trustnedness of both ~a and ~c (as it were). Similarly forprocess output. The receiving context may contain information which should betrusted, but of which we have not yet been informed. Secondly we, as outputtingagent, may through scope extrusion generate new information to be trusted. Allthree types of information needs to be trusted by the entire system.The trustedness predicate above is given for polyadic communication. Formonadic communication a simpler de�nition can be given for which the disjunct~a trusted is removed from the input and output predicates, and for which therecursive calls of the input and output predicates are replaced by calls of the maintrustedness predicate. In the proofs we use the monadic version only. However,the arguments extend to the polyadic case quite easily.Observe the two contravariant occurrences of the trustedness predicate, forthe cases of second order input and output. We see no possibility at present of14



avoiding these. Freeness checks, for instance, are clearly much too inexpressive.On the other hand the semantics of the modal �-calculus on which the logic isbuilt rests on the fact that �xed points are required to be computed of monotoneoperations only, and in the presence of contravariant recursion monotonicity willfail. In the next section we go on to show a way of bypassing this problem.Trust and monotonicity One should not view the above trustedness predicateas a serious candidate for proving trust in distributed systems: For this it has toomany shortcomings. Essentially the trustedness predicate embodies a particularand very rigid protocol for handling mutual trust:1. Whenever a new piece of information passes a piece of trusted information,trust is extended.2. Trust increases monotonically, ie. there is no way of revoking trust.In terms of modelling security protocol the second point is damaging, as verymany attacks rely on replays using eg. old and possibly compromised session keys.6 On Contravariant RecursionA standard semantical account of our speci�cation logic would appeal to a seman-tical mapping k�ks(�) where � is an environment giving for each formula identi�erX a set of agents, possibly parametrised on a sequence of names or �nite setsof names, and k�ks(�) is a set of agents. For �xed points, function arrows, and\boxes" we would expect a clauses like the following (for simplicity we consideronly unparametrised recursive de�nitions):(1) kXks(�) = �(X)(2) k�X:�ks(�) = [fS j S � k�ks(fS=Xg�)g(3) k[a]�ks(�) = fP j 8A:P a! A � A 2 k�ks(�)g(4) k�!  ks(�) = fA j A = �x:A0; 8P 2 k�ks(�); fP=xgA0 2 k ks(�)g= k�ks(�)! k ks(�)We might hope that, despite the contravariant recursion, �X:� would nonethelessbe the greatest �xed point of �(X). Unfortunately this is not the case. Considerfor instance the formula(5) � = �X:[a](([b](9c:c = d ^ c true) ^X)! X):Consider the set S1 = fP n : n 2 !; P = a:�X:(P j X)gwhere P n = P j P j � � � (n times) � � � j P is the n'ary parallel composition of P .Observe that S1 � k�ks(fS1=Xg�). For let Q 2 S1, ie. Q = P n for some n 2 !.Whenever Q a! Q0 then Q0 = (�X:P j X) j P n�1, considering j as a commutative15



monoid operation. If R 2 k[b](9c:c = d ^ c true)ks(fS1=Xg) then R = Pm forsome m 2 !. So Q0R will have shape P k for some k 2 !. Thus S1 is a pre�xedpoint of [a](([b](9c:c = d ^ c true) ^X)! X). The set S2 = fb:[d0]0g (d0 6= d)is another such pre�xed point, as no member of S2 has an a-transition enabled.But no set containing both P and b:[d0]0 can be a pre�xed point. So greatest �xedpoints do not in general exist.So we either abandon the enterprise here or else we try to make sense of con-travariant recursion by other means. What we are really after is an iterativeunderstanding of recursive de�nitions where iteration would be in number of tran-sitions. Indeed this is what we do. Directly formalising this would be less thantransparent, however, as we would have no understanding of iteration as a limitingconstruction. Instead we resort to an interval based semantics (cf. [4]).7 IntervalsAn interval is a pair (S1; S2) for which S1 � S2. One should regard the interval(S1; S2) as determining a pair of approximations, S1 a lower approximation givingagents that must be included, and S2 an upper approximation giving agents thatmay be included, or, better, have not yet been ruled out. Our intention is tocompute greatest �xed points as the limit of upper approximations. Intervals areordered pointwise by (S1; S2) v (S 01; S 02) i� S1 � S 01 and S 02 � S2. There is anatural function space construction on intervals,(S1; S2)! (S 01; S 02) = S2 ! S 01; S1 ! S 02)which is covariant in both arguments:Proposition 1 Let I, I 0, J be intervals. If I v I 0 then I ! J v I 0 ! J andJ ! I v J ! I 0. 2For the interval-based semantics we introduce some constants and operationson sets of agents:~a fresh = (fA j ~a \ fn(A) = ;g; fA j ~a \ fn(A) = ;g)new ~a:(S1; S2) = (fA j �~a:A0 � A;A0 2 S1g; fA j �~a:A0 � A;A0 2 S2g)(S1; S2) ^ (S 01; S 02) = (S1 \ S 01; S2 \ S 02)(S1; S2) _ (S 01; S 02) = (S1 [ S 01; S2 [ S 02)[�](S1; S2) = (fP j P �! A � A 2 S1g; fP j P �! A � A 2 S2g)a! (S1; S2) = (f�b:A j fa=bgA 2 S1g; f�b:A j fa=bgA 2 S2g)a (S1; S2) = (f[a]A j A 2 S1g; f[a]A j A 2 S2g)(S1; S2)) (S 01; S 02) = (f�~a:[P ]A j 8(�x:A0) 2 S2:�~a:fP=xgA0 j A 2 S 01g;f�~a:[P ]A j 8(�x:A0) 2 S1:�~a:fP=xgA0 j A 2 S 02g)16



Observe that the de�nition is parametric on the relation �. We return to thede�nition of this relation later.Now, let � be a formula environment, a mapping of formula identi�ers toagent intervals. We de�ne an interval-based semantics, k�k(�). For simplicity wecontinue to consider only unparametrised recursive de�nitions, and leave out thesemantics for name equality, inequality, �nite set equality, membership, inequality,and quanti�cation. These features are easily dealt with, and adds only complexityto the exposition. kXk(�) = �(X)k�X:�k(�) = uf(S1; S2) j (S1; S2) interval;k�k(f(S1; S2)=Xg�) v (S1; S2)gk� ^  k(�) = k�k(�) ^ k k(�)k� _  k(�) = k�k(�) _ k k(�)k~a freshk(�) = ~a freshknew ~a:�k(�) = new ~a:Sk[�]�k(�) = [�]k�k(�)ka! �k(�) = a! k�k(�)ka!� �k(�) = (f��b:A j fa0=bgA 2 �1(kfa0=ag�k(�))g;f��b:A j fa0=bgA 2 �2(kfa0=ag�k(�))g)(where a0 62 fn(�b:A) [ fn(�)� fag)ka �k(�) = a k�k(�)k�!  k(�) = k�k(�)! k k(�)k(�!  )! k(�) = (k�k(�)! k k(�))) kk(�)For propositionally closed � we abbreviate k�k(�) by k�k. We �rst prove that thesemantics is well-de�ned:Lemma 2 For all formulas � and formula environments �, k�k(�) is an interval.Proof Structural induction. 2The crucial point of the interval-based semantics is that de�nable operatorsbecome monotone:Lemma 3 For all formulas � and formula environments �, the interval operator�(S1; S2):k�k(f(S1; S2)=Xg�)is monotone.Proof Use prop. 1. 2By means of lemma 3, using the familiar Knaster-Tarski Fixed Point Theo-rem we can conclude that k�X:�k(�) is indeed the least �xed point (under v,17



mind) of the interval operator �(S1; S2):k�k(f(S1; S2)=Xg�). Moreover, if f is anymonotone interval operator, de�nef 0 = (Dead ; fA j A agentg)fn+1 = f(fn)f� = t�<�f�:where Dead = [� ]false ^ 8a:[a]false:We start iterating from Dead to make induction work out slightly simpler. Thisis a technical convenience only.Corollary 4 k�X:�k(�) = t�(�(S1; S2):k�k(f(S1; S2)=Xg�))�Proof By the Knaster-Tarski Fixed Point Theorem. 28 An Iterative SemanticsIntuitively we would want to think of an agent A satisfying the property �, if(for � given) k�k(�) = (S1; S2) and A 2 S2 (as S2 is in some intuitive meaningthe largest set consistent with the satisfaction clauses). In this section we give analternative, iterative, semantics which is in a sense the semantics we are lookingfor, as it explains �xed points as an iteration limit. Our intention is to computethe semantics of a formula � as the limit of an increasing chain of sets of agentsk�kn(�), n 2 !. At each iteration step, k�kn(�) will be a set of agents which ispermitted to depend on the behavior of agents only down to a global transitiondepth n. To get at this notion we introduce a version of the simulation preorder.De�nition 5 (Simulation preorder)1. De�ne the preorders �n inductively by the following clauses (where we use fto range over functions from names to abstractions or processes to abstrac-tion, as appropriate given the context):(a) P �0 Q holds always.(b) P �n+1 Q i� fn(P ) = fn(Q) and Q �! B implies P �! A such thatA �n B.(c) �x:A1 �n+1 �y:A2 i� for all a (P ), fa=xgA1 �n fa=ygA2 (fP=xgA1 �nfP=ygA2).(d) [a]A1 �n+1 [b]A2 i� a = b and A1 �n A2, �a:[a]A1 �n+1 �b:[b]A2 i�for all fresh c, fc=agA1 �n fc=bgA2, �~a:[P ]A �n+1 �~b:[Q]B i� for allprocess abstractions �x:A0 for which ~a and ~b are fresh, �~a:fP=xgA0 jA �n �~b:fQ=xgA0 j B. 18



2. A � B i� for all n 2 !, A �n B. A � B i� A � B and B � A.3. Let S be a set of agents. Then "n S = fB j 9A 2 S:A �n Bg.Observe that �, being the intersection of a simulation order and its converse, isstrictly coarser than bisimulation equivalence [11]. Def. 5 determines the preorderused in the interval semantics of the new operator. In fact we could have used anypreorder there which is at least as strong as � (such as bisimulation equivalence).We can now introduce the iterative semantics k�k(�), where � is an environ-ment assigning sets of agents to formula identi�ers:k�k0 = fA j A an agentgkXkn+1(�) = "n+1 �(X)k�X:�kn+1(�) = k�kn+1(fk�X:�kn(�)=Xg�)k� ^  kn+1(�) = k�kn+1(�) \ k kn+1(�)k� _  kn+1(�) = k�kn+1(�) [ k kn+1(�)k~a freshkn+1(�) = fA j ~a \ fn(A) = ;gknew �kn+1(�) = fA j �~a:A0 �n+1 A;A0 2 k�kn+1(�)gk[�]�kn+1(�) = fP j P �! A � A 2 k�kn(�)gka! �kn+1(�) = f�b:A j fa=bgA 2 k�kn(�)gka!� �kn+1(�) = f�b:A j fa0=bgA 2 kfa0=ag�kn(�);a 62 fn(�b:A) [ (fn(�)� fag)gka �kn+1(�) = f[a]A j A 2 k�kn(�)gk�!  kn+1(�) = k�kn(�)! k kn(�)k(�!  )! kn+1(�) = f�~a:[P ]A j 8(�x:A0) 2 k�kn(�)! k kn(�):�~a:fP=xgA0 j A 2 kkn(�)g= (k�kn(�)! k kn(�))) kkn(�)Observe that guardedness is important for this de�nition to make sense. As aboveabbreviate k�kn(�) by k�kn when � is propositionally closed. We want to showthe following theorem relating the interval-based and the iterative semantics:Theorem 6 Let � be a propositionally closed formula, and let k�k = (S1; S2).Then A 2 S2 i� for all n 2 !, A 2 k�kn.We prove this theorem in the appendix. Here we just give some intuition forwhy we might expect the theorem to hold.The interval semantics constructs the semantics of greatest �xed points by si-multaneously approaching the limit from below and from above. The lower approx-imation is used for contravariant argument places, and the upper one for covariantones. The two limits, the lower and the upper, will not in general meet. However,by disallowing diamonds and least �xed points we obtain a continuity property19



of our logic, in the sense that �nite approximations are su�cient to determinewhether a property holds of a given process. Here \�nite approximations" are ap-proximants in a temporal rather than functional sense. The important ingredientis a truncation operator trunc(n;A) which ensures termination at a given transi-tion depth. Operationally the truncation operator is very simple: If P �! A thentrunc(n + 1; P ) �! trunc(n; P ), and no transition from trunc(0; P ) is possible.Secondly the truncation operator commutes with �, �, and concretion formationwhile decreasing the truncation index, ie. trunc(n + 1; �a:A) = �a:trunc(n;A)etc.Notice that while our proof of theorem 6 may depend on the truncation oper-ator, the conclusion (the theorem itself) does not.Using the truncation operator the proof of theorem 6 can be outlined as follows:Assume A 2 S2 where (S1; S2) = k�k. We conclude:A 2 S2 i� trunc(n;A) 2 S2 (lemma 20)i� trunc(n;A) 2 S1 (lemma 21)i� trunc(n;A) 2 k�kn (lemma 23)i� A 2 k�kn (lemma 22)The proofs of these four lemmas are given in the appendix.9 The Andrew Protocol: Speci�cationOur chief interest is in the properties of secrecy and authenticity. These concernthe agents Alice and Bob running in an unknown (and potentially hostile) envi-ronment Z. Z should be assumed to have access only to channels and data opento outside intruders. Evidently this includes the channel xfer (but also the tagsdata, switch etc.). However, the initial value of Kab should clearly be regardedas secure, as should the channels in and out. We adopt the following intuitiveaccount of secrecy and authenticity:� Secrecy: A fresh piece of datum (ie. a secret) received along in can only beoutput along a secret channel.� Authenticity: Only pieces of data previously received along in can be outputalong out.Our aim is to formalise these properties as formulas � for which the following kindof sequent should be established(6) Z : fin; outg fresh ` (�Kab:Alice Kab j Bob Kab) j Z : �:This is intended to mean that if Z is any agent for which in and out is not free,the agent obtained by� putting together Alice and Bob using Kab,20



� protecting Kab by a local scope declaration, and� letting the resulting system run in parallel with Z,will satisfy the desired property �. By theorem 6 we can for \satisfaction" eitheruse A 2 �2(k�k), or A 2 k�kn for all n 2 !. The latter gives directly an inductionprinciple which we rely on quite heavily in the proofs that follow.Formalising secrecy and authenticity in terms of a � in a context such as (6)is not that di�cult. For secrecy:~a secret =>[� ](~a secret) ^[in](bound input � b!� ~a; b secret)8c:[c](free output � 9d:d ((d 2 ~a � c 2 ~a) ^ ~a secret))Here we use the following two ancillary predicates:bound input = a!� truefree output = 9a:a trueFor secrecy the property � of (6) becomes fin; outg secret. The speci�cationof secrecy reects the intuition very closely. Secrets are either members of theinitial value of ~a, or they have sometime been input along in as a fresh name.Observe that only traces of � -transitions, name inputs along in, or free outputsare considered. This is admissible as correctness is stated of an open system: Ifwe accidentally choose a Z which violates secrecy by, say, passing secret-revealingprocesses to the outside world through an unsafe channel, then there will be an-other Z which decodes these secret-revealing processes to pass out the (�rst-order)secrets in a manner that will violate the proof goal.Authenticity is speci�ed in very similar terms:~a authentic =>[� ](~a authentic) ^[in](bound input � b!� ~a; b authentic)[out](free output � 8d:d (d 2 ~a ^ ~a authentic))and the desired property � of (6) becomes fin; outg authentic. In this paper weconsider the proof of secrecy only.10 Proving TrustSecrecy is proved using the trusted predicate introduced earlier. For the proofswe consider only the monadic version.Lemma 7 X : ~a; in trusted ` X : ~a; in secret21



Proof We use a goal driven proof strategy, exploiting the induction principlegiven by theorem 6. We need to show that whenever X 2 k~a; in trustedkn forall n 2 ! then X 2 k~a; in secretkm for all m 2 !. We use induction in m. Thedetails are straightforward. 2We refer to the m of the above proof as the \approximation index".The problem of proving secrecy is thus \reduced" to the problem of provingtrust. The point of the trustedness predicate is that it lends itself to a structuralanalysis. The veri�cation takes the shape of series of lemmas intended to supportthis structural analysis. The most di�cult issue is how to deal with parallelcomposition. In this case we need to be careful about the creation of new internalresources. We extend the sequent notation slightly, following the suggestion of [5],by writing, eg., X : �; Y :  ~̀b X j Y : to express that whenever X satis�es � and Y satis�es  , then �~b:(X j Y ) satis�es, where the scope of ~b includes both � and  (but not ). The delicate part ofthe trustedness predicate is to deal with the situations in which the \coverage"of the trust predicate needs to be modi�ed because trusted channels are givenlocal scopes, or because trust needs to be extended to channels that are currentlyunknown to the agent being predicated.We �rst consider expanding the set of trusted name to include fresh ones inthe case of processes:Lemma 8 X : ~a trusted; X : ~b fresh ` X : ~a;~b trustedProof This is a direct consequence of lemma 10 below. But as the result isneeded for lemma (9) it needs a separate proof here. The proof is a straightforwardinduction using approximation indices and is left out. 2As a consequence of lemma 8, if we can show P : ; trusted (lemma 13) thenwe can show P : ~a trusted for any set ~a of names that do not occur in P .We next need a series of results concerning locally scoped names. The �rstlemma shows that a trusted name can be made local without trust being violated.Lemma 9 X : ~a;~b trusted ~̀b X : ~a trustedProof Assume ` P : ~a;~b trusted. We show �~b:P : ~a trusted. So assume�~b:P �! P 0. P 0 can be assumed to have the shape �~b:Q such that P �! Q. Weproceed by induction in approximation index and cases in Q. The case for � = �is trivial so assume that � = c.� Q a process: Trivial, use the induction hypothesis.22



� Q = [d]Q0, d 62 ~b. We get �~b:Q0 : ~a trusted by the induction hypothesis.Also d 2 ~a implies d 2 ~a;~b so c 2 ~a;~b too, by the assumption. But c 62 ~b soc 62 ~a as desired.� Q = [d]Q0 and d 2 ~b. By the assumption we get ` Q0 : ~a;~b trusted and,since d 2 ~b, c 2 ~a;~b. But c 62 ~b so c 2 ~a. Also, by the induction hypothesiswe get ` �~b� d:Q0 : ~a; d trusted and we are done.� Q = �d:[d]Q0. Use the induction hypothesis.� Q = �~c:[Q1]Q2. We need to show(7) ` �~b:�~c:[Q1]Q2 : 8~d:~d fresh � new ~e:(~a; ~d; ~e trusted! ~a; ~d; ~e trusted)! ~a; ~d; ~e trusted.Let ~d be fresh and we need to show(8) ` �~b:�~c:[Q1]Q2 : new ~e:(~a; ~d; ~e trusted! ~a; ~d; ~e trusted)! ~a; ~d; ~e trusted.We choose ~e to have the shape ~b; ~c1 for some ~c1, and (8) is thus reduced to(9) ` �~c� ~c1:[Q1]Q2 : (~a;~b; ~c1; ~d trusted! ~a;~b; ~c1; ~d trusted)! ~a;~b; ~c1; ~d trusted.By the assumption,(10) ` �~c:[Q1]Q2 : 8~d:~d fresh � new ~e:(~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted)! ~a;~b; ~d; ~e trusted,so(11) ` �~c� ~c1:[Q1]Q2 : (~a;~b; ~c1; ~d trusted! ~a;~b; ~c1; ~d trusted)! ~a;~b; ~c1; ~d trusted,settling (9) and the case.� Q = �d:Q0. We need to show(12) ` �~b:�d:Q0 : 8d:d! ~a trusted.which is resolved be the induction hypothesis.� Q = ��d:Q0. We need to show 23



(13) ` �~b:��d:Q0 : d!� ~a; d trusted.This is reduced to(14) ` �~b:Q0 : ~a; d trustedwhere we can choose d to be not free in P . For such a P we can concludethat ` P : ~a;~b; c trusted, and hence (14) is obtained.� Q = �~b:�x:Q0. We need to show(15) ` �~b:�x:Q0 : 8~d:~d fresh � ~a; ~d trusted! ~a; ~d trusted.So let ~d be fresh for �~b:�x:Q0, and let ` Q00 : ~a; ~d trusted and we mustshow ` �~b:fQ00=xgQ0 : ~a; ~d trusted. Now, since ~b is alpha-converted suchas not to collide with names free in Q00 we obtain by lemma 8 that also` Q00 : ~a;~b; ~d fresh. By the assumption,(16) ` �x:Q0 : ~a;~b; ~d trusted! ~a;~b; ~d trustedso we see that ` fQ00=xgQ0 : ~a;~b; ~d trusted, and then the result follows bythe induction hypothesis, concluding the proof. 2We also need to consider the case of expanding the set of trusted names tofresh ones for functions:Lemma 10 Assume that X : ~a trusted ` A : ~a trusted and ~b \ fn(A) = ;.Assume also that ` B : ~a;~b trusted. Then ` fB=XgA : ~a;~b trusted. 2The proof of this lemma turns out to be surprisingly delicate, and requirestechniques that are somewhat di�erent from the quite elementary techniques usedelsewhere in this section. Essentially lemma 10 states a property which is muchmore \intensional" than the corresponding property 8, concerning, as it does, func-tion de�nability: All functions in ~a trusted! ~a trusted that do not \mention"~b can be extended to functions in ~a;~b trusted! ~a;~b trusted. The proof of thislemma is deferred to appendix 3.One further result is needed, to show that local scoping does not a�ect infor-mation which is already trusted.Lemma 11 X : ~a trusted ~̀b X : ~a trusted24



Proof The proof is quite simple, following the inductive proof strategy alreadyintroduced with lemma 8. 2We now proceed to the �rst main result, proving that the trustedness predicateis preserved by parallel composition:Lemma 12 X : ~a;~b trusted; Y : ~a;~b trusted ~̀b X j Y : ~a trustedProof See appendix 4. 2To start o� proofs of trust in the case of open terms we need to show that allterms respect trustedness of the empty set of names.Lemma 13 For all P , ` P : ; trustedProof See appendix 5. 211 Deriving a Type SystemIn this section we show how a type system for inferring judgments of the form� `~a A : ~b trusted can be derived from the results achieved so far. Here � isa set of hypotheses which are either boolean combinations of name equations orinequations, or of one of the forms x : ~a trusted, or f : ~a trusted! ~a trusted.The interpretation of judgments is self-evident: A judgment is true if any substitu-tion of names for names and agents for agent variables that makes the hypothesestrue, also makes the conclusion true. We write � j= F where F is an equationalor inequational assertion (or a derived form such as a 2 ~b), if F is a consequenceof �. The proof system uses an ancillary relation � ~̀b A : c fresh to hold if cdoes not occur freely in �~b:A, and whenever x (f) is a process (function) variableoccurring in � then � ` x : c fresh.Structural rules: Local1 � ~̀b P : ~a trusted� ~̀b;c P : ~a trustedLocal2 � ~̀b P : ~a;~c trusted� ~̀b;~c P : ~a trustedForget1 � ~̀b P : ~a trusted � ~̀b P : ~c fresh� ~̀b P : ~a;~c trustedForget2 � ` A : ~a trusted! ~a trusted � ` A : ~c fresh� ` A : ~a;~c trusted! ~a;~c trusted25



Cons �0 ~̀b P : ~a trusted � j= �0� ~̀b P : ~a trustedCases �; c = d ~̀b P : ~a trusted �; c 6= d ~̀b P : ~a trusted� ~̀b P : ~a trustedApp � ` f : ~a trusted! ~a trusted � ` P : ~a trusted� ` fP : ~a trustedEmpty �� ~̀b P : ; trustedTerm rules: Nil �� ~̀b 0 : ~a trustedSum � ~̀b P : ~a trusted � ~̀b Q : ~a trusted� ~̀b P +Q : ~a trustedPrefix1 � ~̀b P : ~a trusted� ~̀b c:P : ~a trustedPrefix2 c 2 ~b� ~̀b c:P : ~a trustedPrefix3 � ~̀b A : ~a trusted out after c� ~̀b c:A : ~a trustedPrefix4 � ~̀b A : ~a trusted in after c� ~̀b c:A : ~a trustedPar � ` P : ~a trusted � ` Q : ~a trusted� ` P j Q : ~a trustedNu �0 ~̀b;~c A : ~a trusted� ~̀b �~c:A : ~a trusted (See below)Cond �; c = d ~̀b P : ~a trusted �; c 6= d ~̀b Q : ~a trusted� ~̀b if c = d then P else Q : ~a trustedBlock � ~̀b P : ~a trusted� ~̀b Pnc : ~a trustedIn1 � ~̀b A : ~a trusted� ~̀b A : ~a trusted in after c26



In2 � ~̀b A : ~a trusted in after d c fresh� ~̀b �c:A : ~a trusted in after dIn3 � j= d 2 ~a c fresh � ~̀b A : ~a; c trusted in after d� ~̀b ��c:A : ~a trusted in after dIn4 � j= d 62 ~a c fresh � ~̀b A : ~a trusted in after d� ~̀b ��c:A : ~a trusted in after dIn5 �; x : ~a;~c trusted ~̀b A : ~a;~c trusted in after d ~c fresh� ~̀b �x:A : ~a trusted in after dOut1 � ~̀b A : ~a trusted� ~̀b A : ~a trusted out after cOut2 c 62 ~b � j= c 2 ~a � d 2 ~a � ~̀b A : ~a trusted out after d� ~̀b [c]A : ~a trusted out after dOut3 c 2 ~b � j= d 2 ~a � ~̀b A : ~a; c trusted out after d� ~̀b [c]A : ~a trusted out after dOut4 c 2 ~b � j= d 62 ~a � ~̀b A : ~a trusted out after d� ~̀b [c]A : ~a trusted out after dOut5 �; f : ~a;~c; ~e trusted! ~a;~c; ~e trusted~̀b�~c (fP j A) : ~a;~c; ~e trusted out after d~c � ~b ~e fresh� ~̀b [P ]A : ~a trusted out after dThe set �0 in rule Nu is computed in the following way:�0 = � [ fx : ~c fresh j x mentioned in �g [ ff : ~c fresh j f mentioned in �gTo terminate proof construction we have the following rule of unfolding and dis-charge: [�0 `~b0 D(d1; : : : ; dn) : ~a0 trusted]...� ~̀b F (c1; : : : ; cn) : ~a trusted� ~̀b D(c1; : : : ; cn) : ~a trustedThe rule is subject to the sidecondition that �0 `~b0 D(d1; : : : ; dn) : ~a0 trusted isa substitution instance of � ~̀b D(c1; : : : ; cn) : ~a trusted, and that the assumeddeduction �0 `~b0 D(d1; : : : ; dn) : ~a0 trusted...� ~̀b F (c1; : : : ; cn) : ~a trusted27



is non-trivial in the sense that it includes the application of a term rule (cf. similarside conditions in [8]).Theorem 14 (Soundness) If � ~̀b A : ~a trusted is provable in the above infer-ence system then it is true.Proof The di�cult cases (Local1, Local2, Forget1, Forget2, Par, Out5)are already dealt with. The remaining rules are quite straightforward. 2Our conjecture is that for the blocking-free fragment of the calculus the typesystem is complete and decidable.12 Secrecy of the Andrew ProtocolIn this section we use the type system of section 11 to prove the secrecy of theAndrew protocol as stated in section 9. In particular we obtainTheorem 15Z : fin; outg fresh ` (�Kab:Alice Kab j Bob Kab) j Z : fin; outg secretProof First use lemma 7 to reduce the problem to one of trust instead of secrecy.Now the proof is a straightforward application of the given proof system. Weillustrate just the beginning steps of the proof. First the proof goal is reduced tothe following three subgoals:(17) Z : fin; outg fresh ` Z : fin; outg trusted(18) ` Alice Kab : fin; out; Kabg trusted(19) ` Bob Kab : fin; out; Kabg trustedOf these, (17) is resolved by Forget1. For (18) we use the term rules (unfoldingand sum) to resolve to the following 3 subgoals:(20) ` in:�d:xfer!(Kab![data][d]0):AliceKab : fin; out; Kabg trusted(21) ` in:��d: � � � : fin; out; Kabg trusted(22) ` AliceSwitchKab : fin; out; Kabg trustedWe consider just subgoal (20). Using a few obvious term rules we reduce to:(23) ` xfer!(Kab![data][d]0):AliceKab : fin; out; Kabg trustedand then to(24) f : fin; out; Kabg trusted! fin; out; Kabg trusted` f(Kab![data][d]0) j AliceKab : fin; out; Kabg trustedwhich is in a few more steps reduced to the following two:(25) ` Kab![data][d]0 : fin; out; Kabg trusted(26) ` AliceKab : fin; out; Kabg trustedof which (25) is easily dealt with, and (26) is discharged by the unfolding anddischarge rule. The proof of subgoal (20) is thus complete. The remaining partsof the proof are completed in similar fashions and left out. 228



13 ConclusionIn this paper we have addressed the problem of proving behavioral propertiesof computationally rather rich higher-order communicating processes in termsof examples drawn from the �eld of computer security. We have introduced asecond-order process calculus based on the �-calculus, and shown, by means of avery simple example, how the important features of security and authenticationprotocols|viz. nonce generation, key generation, communication, encryption anddecryption|can be reduced to features of this process calculus. We have shownalso how to account for a simple predicate of trust in a monotonically increasing setof channels using a general second-order temporal logic based on a safety fragmentof the modal �-calculus, and we have shown how to give semantics to this logic inthe presence of contravariant recursion in two di�erent, but equivalent, ways. One,iterative, account is useful for deriving induction principles used in the subsequentcorrectness proofs. We then showed trust of our simple protocol example througha series of lemmas, identifying ways of decomposing the trust predicate accordingto process structure. Here parallel composition and local name declaration arethe di�cult connectives. Having obtained these decomposition principles it was afairly simple matter to devise a sound type system with which correctness of ourprotocol example could be proved.Revoking Trust A serious shortcoming of our approach is that revocation oftrust is not supported. We have already commented on this issue. The problemis that our trustedness predicate attempts to use general computational featuresfor deciding when to extend and when to revoke trust where in reality these areprotocol-speci�c features. In future work we will have to investigate more re�nedversions of the trust predicate to address more realistic protocols and properties.Also we have not yet considered proofs of authenticity.Encryption Primitives We give a direct representation of private key encryp-tion where keys are primitive. We have not yet resolved how to handle variationssuch as public-key encryption or computed keys in our setting. Public-key encryp-tion is handled using structured channels in CSP/FDR by Lowe [12]|it is quitepossible that a similar approach would be useful here. The extension to the basiccalculus needed would be quite modest.Alternative Representations An important issue is to which extent higher-order features and blocking are really needed to adequately represent encryptionand decryption. Mainly the choice of representation depends on the level of in-direction one is willing to su�er. For instance we are currently building formalevidence to show that our second-order process calculus with blocking can in factbe reduced to �rst-order �-calculus without blocking. However, the reduction isextremely indirect and not usable as a modelling tool. In the full version of [2]29



several alternative representations of encryption and decryption in the �-calculusare discussed. The most interesting idea is to use structured channels as in [12] torepresent the encoding of A by the key K as an abstraction�l:(l; K):�l0:A(l0):Here A is a unary �-calculus abstraction representing the data to be encoded.Synchronisation is along the structured channel (l; K) to ensure that both the\location" l of fAgK and K itself are present simultaneously. In this approachdecryption is made safe as the location l0 of fAgK1 is not passed to ffAgK1gK2along a publicly known channel. Compared to our approach the �-calculus rep-resentation introduces a level of indirection by passing pointers instead of theresources themselves. Thus the model is moved, in our view, one step furtheraway from the physical realities being modelled with the ensuing risk of introduc-ing discrepancies. On the other hand the computational primitives involved arealso simpler and computationally more tractable. It would be of interest to relateour second-order representation with a �rst-order one such as that of Abadi andGordon, to gain better faith in the correctness of our representations as well as inour accounts of correctness properties. Observe that due to the communicationof pointers rather than the objects themselves, a logical account of security andauthenticity properties in a �rst-order setting would be likely to be very di�erentfrom the account suggested in the present paper.AcknowledgementsThanks are due to Martin Abadi, Jose-Luis Vivas and Alan Mycroft for commentsand discussions on several topics treated here. It is the credit of Jose-Luis to haveobserved the need for �rewalling using the blocking operator. Also thanks are dueto one anonymous referee in particular for some very insightful comments.References[1] M. Abadi. Secrecy by typing in security protocols (draft). Manuscript,Available at http://www.research.digital.com/SRC/personal/Martin Abadi/home.html, 1997.[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spicalculus. In Proc. 4th ACM Conference on Computer and CommunicationsSecurity, pages 36{47, 1997. Full version available as tech. rep. 414, Univ.Cambridge Computer Lab.[3] M. Abadi and R. M. Needham. Prudent engineering practice for crypto-graphic protocols. IEEE Transactions on Software Engineering, 22:2{15,1996. 30
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[19] B. Thomsen. A calculus of higher order communicating systems. In Proc.POPL'89, pages 143{154, 1989.[20] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure owanalysis. Journal of Computer Security, 4:1{21, 1996.Appendix 1: Operational SemanticsAgent SyntaxA ::= 0 A+ A a:A A j A �a:A if a = b then A else AAna D(a1; : : : ; an) �a:A �x:A ��a:A [a]A [P ]AThe Arity Calculus The purpose of the arity calculus is to perform a basicsanity check to ensure eg. that agent expressions do not get bound to channelnames as a result of communication, and that, in a communication, the rightnumber of arguments is transferred.An arity is an expression � of the shape +w or �w where w 2 fchan; agentg�.The null arity is (), and by convention, +() = () = �(). Moreover +w = �w and�w = +w. We use the notation A : � for arity assignment, disambiguating bycontext. �O : () A : () B : ()A +B : () A : �a:A : () A : � B : ()A j B : � A : () B : �A j B : �A : � B : �A j B : () A : ��a:A : � A : () B : ()if a = b then A else B : ()D = F F : �channD(a1; : : : ; a : n) : () A : �w(�)�a:A : �chanw A : �w�x:A : �agentwA : ()Ana : () A : +w[a]A : +chanw A : () B : +w[A]B : +agentwThe Transition Semantics The transition relation is derived from a pair ofrelations A !! B and A �!! B where � is a name or the special symbol � . Therelation!! is used for rewriting of agent terms into a normal form by passing andinstantiating communicated values, by resolving conditionals, and by commutinglambda's etc. with restrictions. The relation �!! is used to account for the basicrendez-vous mechanism in CCS style. Both the normalisation and the transitionrelation applies to well-formed agents only.
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Normalisation Let a communication pre�x be an expression pre of one of theforms [a], �a:[a], �~a:[P ], �a:, ��a:, or �x:. The normalisation relation is de�nedby the following clauses: (par) A!! A0A j B !! A0 j B(merge1) B : ()pre(A) j B !! pre(A j B)(comm1) A!! �a:A0 A0 : � B !! [b]B0 B0 : ��A j B !! (fb=agA0) j B0(comm2) A!! ��a:A0 A0 : � B !! �b:[b]B0 B0 : ��A j B !! �b:((fb=agA0) j B0)(comm3) A!! �x:A0 A0 : � B !! �~a:[P ]B0 B0 : ��A j B !! �~a:(fP=xgA0) j B0(nu1) ��a:(�)�b:A!! (�)�b:�a:A (a 6= b)(nu2) ��a:�x:A!! �x:�a:A(nu3) ��a:[b]A!! [b]�a:A (a 6= b)(nu4) ��a:�b:[b]A!! �b:[b]�a:A (a 6= b)(nu5) A!! B�a:A!! �a:B(if1) �if a = a then A else B !! A(if2) �if a = b then A else B !! B(block1) A!! A0Ana!! A0na(block2) �(pre(A))na!! pre(Ana)(id) D = �b1: � � ��bn:P P : ()D(a1; : : : ; an)!! fa1=b1; : : : ; an=bngPDe�ne the normal form of A, nf(A), as the unique B, if it exists, such thatA!!� B and B 6!! B0 for any B0. 33



The Transition Relation The transition relation is determined by the follow-ing rules where we require for A �!! B to be provable that A : ():(norm) nf(A) �!! BA �!! B(sum) A �!! A0A+B �!! A0(alpha) �a:A a!! A(merge2) A �!! A0A j B �!! A0 j B(comm4) A a!! A0 B a!! B0A j B �!! A0 j B0(nu6) A �!! A0�a:A �!! �a:A0 (� 6= a)(block3) A �!! A0Ana �!! A0na � 6= aObserve that in the de�nition of both !! and �!! symmetric cases (for the rules(par), (merge), (comm) and (sum)) are omitted, and that we in general assumealpha-conversion to be applied whenever necessary to avoid capture of variables.This applies, in particular, for the (merge) and (comm) rules. Completing theappendix we can now de�ne the transition relation proper.De�nition 16 (The Transition Relation) Let A �! B i� for some B0, A �!!B0 and nf(B0) is de�ned and equal to B.Proposition 17 If A a! A0 then A0 is well-formed and either a process, an ab-straction, or a concretion. If A �! A0 then A0 is well-formed and a process.Proof Induction in size of derivations. 2Appendix 2: Proof of Theorem 6In this appendix we give proofs of lemma's 20, 21, 23, and 22. These lemma's areall proved by induction in formula structure.We need a little preliminary work. First we observe that both semantics giverise to upper-closed sets. The proof of these two lemmas are routine and left out.Lemma 18 Assume that for all X, if �(X) = (S1; S2) then S2 =" S2. Letk�k(�) = (S 01; S 02). Then S 02 =" S 02. 234



Lemma 19 Let �(X) ="n (X) for all X. Then k�kn(�) ="n k�kn(�). 2Now we proceed to the four main lemmas. Say that a formula identi�er Xoccurs in � at depth n i� X occurs freely in � in the scope of n occurrences of amodal operator or one of the input/output operators  , ! etc.Lemma 20 Let � and n 2 ! be given. Suppose � has the property (�) thatwhenever a formula identi�er X occurs in � at depth n0 then for all agents A,A 2 �2(�(X)) i� trunc(n�n0; A) 2 �2(�(X)). Then for all A, A 2 �2(k�k(�)) i�trunc(n;A) 2 �2(k�k(�)).Proof Structural induction.� = �X:�0. Suppose �rst that A 2 �2(k�k(�)). Then, by corollary 4, for all �,(27) A 2 �2(�(S1; S2):k�0k(f(S1; S2)=Xg�)�):We must show that also(28) trunc(n;A) 2 �2(�(S1; S2):k�0k(f(S1; S2)=Xg�)�):We proceed by well-founded induction in �:� � = 0: Trivial.� � = �0 + 1: We obtain A 2 �2(�(S1; S2):k�0k(�0)where �0 = f�(S1; S2):k�0k(f(S1; S2)=Xg�)�0=Xg�. Observe that, by theinduction hypothesis, and since X can only occur in guarded positions in �0,�0 has the property (�). Thus we �nd that (27) is satis�ed.� � = t�0<��0 is a limit ordinal: This case follows trivially, as t is set inter-section in its second component.� = �1 ^ �2. We obtain:A 2 �2(k�1 ^ �2k(�))i� A 2 �2(k�1k(�)) and A 2 �2(k�2k(�))i� trunc(n;A) 2 �2(k�1k(�)) and trunc(n;A) 2 �2(k�2k(�))i� trunc(n;A) 2 �2(k�1 ^ �2k(�))� = [a]�0. We obtain:A 2 �2(k[a]�0k(�))i� for all B, if A a! B then B 2 �2(k�0k(�))i� n = 0 or n = n0 + 1 and for all B, if A a! B thentrunc(n0; B) 2 �2(k�0k(�))i� trunc(n;A) 2 �2(k�k(�))35



� = �1 ! �2. We obtain(�x:A) 2 �2(k�k(�))i� for all B, if B 2 �1(k�1k(�)) then fB=xgA 2 �2(k�2k(�))i� n = 0 or n = n0 + 1 and for all B, if B 2 �1(k�1k(�)) thentrunc(n0; fB=xgA) 2 �2(k�2k(�))i� n = 0 or n = n0 + 1 and for all B, if B 2 �1(k�1k(�)) thentrunc(n0; fB=xgtrunc(n0; A)) 2 �2(k�2k(�))(as trunc(n0; fB=xgA) � trunc(n0; fB=xgtrunc(n0; A)), and byproposition 18)i� trunc(n; �x:A) 2 �2(k�k(�))The remaining cases are similar to the above and left to the reader. 2Observe that we take the equivalence(29) trunc(n; fB=xgA) � trunc(n; fB=xgtrunc(n;A))as evident. Now we proceed to the second main lemma, which is proved in a rathersimilar fashion:Lemma 21 Let � and n 2 ! be given. Suppose � has the property (�2) thatwhenever a formula identi�er X occurs in � at depth n0 then for all agents A,trunc(n � n0; A) 2 �1(�(X)) i� trunc(n � n0; A) 2 �2(�(X)). Then for all A,trunc(n;A) 2 �1(k�k(�)) i� trunc(n;A) 2 �2(k�k(�)).Proof The proof follows the pattern of the proof of lemma 20. The most di�cultcase is that of �xed points:� = �X:�0. Assume �rst that trunc(n;A) 2 �1(k�X:�0k(�)). Using corollary 4 itfollows that we �nd a � such that(30) trunc(n;A) 2 �1(�(S1; S2):k�0k(fS1; S2)=Xg�)�:Observe that, by monotonicity, this same property will hold for all �0 � �. Weshow, using well-founded induction, that(31) trunc(n;A) 2 �2(�(S1; S2):k�0k(fS1; S2)=Xg�)�:This proof is quite straightforward and left out. It follows, again by monotonicity,that this same property holds for all �0 < �. We can thus conclude that(32) trunc(n;A) 2 �2(k�X:�0k(�)):For the converse direction we assume (32) and need to establish a � for which (30)holds. This is straightforward.The remaining cases are left for the reader. 2The proof of the following lemma is very similar to the proof of lemma 20 andtherefore omitted. 36



Lemma 22 Let � and n 2 ! be given. Assume that � has the property thatwhenever a formula identi�er X occurs in � at depth n0 then for all agents A,trunc(n� n0; A) 2 �(X) i� A 2 �(X). Then for all �, trunc(n;A) 2 k�kn(�) i�A 2 k�kn(�). 2Finally we arrive at the lemma which ties up the two semantics for truncatedagent.Lemma 23 Let � and n 2 ! be given. Assume that � and � have the propertythat whenever a formula identi�er X occurs in � at depth n0 then for all agentsA, trunc(n � n0; A) 2 �1(�(X)) i� trunc(n � n0; A) 2 �(X). Then for all �,trunc(n;A) 2 �1(k�k(�)) i� trunc(n;A) 2 k�kn(�)Proof The most delicate cases are for the connectives that introduce contravari-ance. We consider here just the second-order arrow:� = �1 ! �2. We obtain:trunc(n + 1; �x:A) 2 �1(k�k(�))i� for all B, if B 2 �2(k�1k(�)) then trunc(n; fB=xgA) 2 �1(k�2k(�))i� for all B, if trunc(n;B) 2 �2(k�1k(�)) thentrunc(n; ftrunc(n;B)=xgA) 2 �1(k�2k(�)) (lemma 20i� for all B, if trunc(n;B) 2 �1(k�1k(�)) thentrunc(n; ftrunc(n;B)=xgA) 2 �1(k�2k(�)) (lemma 21)i� for all B, if trunc(n;B) 2 k�1kn(�) thentrunc(n; ftrunc(n;B)=xgA) 2 k�2kn(�) (ind. hyp.)i� for all B, if B 2 k�1kn(�) thentrunc(n; fB=xgA) 2 k�2kn(�) (lemma 22)i� trunc(n + 1; �x:A) 2 k�kn(�) 2Appendix 3: Proof of lemma 10In this appendix we proveLemma 10 Assume that x : ~a trusted ` A : ~a trusted and ~b \ fn(A) = ;.Assume also that ` B : ~a;~b trusted. Then ` fB=xgA : ~a;~b trusted.Proof Theorem 6 along with lemmas 24 and 25 below. 2The proof of lemma 10 is by induction using theorem 6. We explore the possiblecomputations of the agent fB=xgA under the assumption stated in the lemma. Infact we generalise the statement somewhat, to prove the following lemma instead:Lemma 24 If 37



x1 : ~a1 trusted; x1 : ~a01 fresh; : : : ; xn : ~an trusted; xn : ~an fresh` �~c:A : ~a trusted;and if the following conditions are satis�ed:1. the sets ~a, ~ai, ~a0i, ~b, ~c are mutually disjoint,2. ~b \ fn(A) = ;,3. ~c0 � ~c,4. the variables x1; : : : ; xn occur linearly in A,5. ~ai [ ~a0i = ~a [ ~c0 for all i : 1 � i � n,6. ` Bi : ~a;~b; ~c0 trusted for all i : 1 � i � n,then ` �~c:fB1=x1g � � � fBn=xngA : ~a;~b trusted.Most of the remainder of this appendix is devoted to the proof of lemma 24.First, however, we discuss the uses of this lemma. Its signi�cance is, of course, tomake the induction needed for 10 work. Concerning linearity the generalisation isin need of justi�cation, however:Lemma 25 If �; x1 : �; x2 : � ` A(x1; x2) :  then �; x : � ` A(x; x) :  .Proof Induction in structure of  . 2Lemma 25 fails in the presence of the diamond modality. The sets ~c, ~c0 of (1),(3), (5), (6) are needed to permit substitution to be performed in the context ofthe set ~c of local channel names, of which some, the members of ~c0, are trusted.We can now proceed to the proof of lemma 24. Let � be the substitutionfB1=x1g � � � fBn=xng. The proof explores the computations of �~c:�A. For thispurpose we need to capture the ways the Bi and the A may interact in performingcomputation steps. This is done by the following lemma. In the statement of thelemma we tacitly assume that the transition relation �! applies to general terms,not only, as is common, terms without free occurrences of process variables.Lemma 26 Assume that the variables x1; : : : xn occur linearly in A. Assume that�A �! C. One of the following 4 cases apply:1. A �! A0 and C = �A0.2. Some Bi �! B0i and C = fB0i=xig�A.3. � = � , for some b, Bi, Bj, Bi b! B0i, Bj b! B0j, i 6= j, B0i j B0j is de�ned,and C = fB0i=xigfB0j=xjg�A. 38



4. � = � , for some Bi, Bi b! B0i, A b! A0, B0i j A0 is de�ned, and C =fB0i=xig�A0Proof The proof is by structural induction in A. We consider here only the caseof A = A1 j A2. The remaining cases are easier and left to the reader. So assumethat �A �! C. One of two cases apply. Either(i) �A1 �! C1 and C = C1 j �A2, or(ii) the symmetrical case applies, or(iii) � = � , �A1 b! C1, �A2 b! C2, C1 j C2 is de�ned, and C1 j C2 = C.So assume that (i) holds. By the induction hypothesis one of the cases (1){(4)holds of A1.1. A1 �! A01 and C1 = �A01. Then A1 j A2 �! A01 j A2 and C = �A01 j A2.2. Bi �! B0i and C1 = fB0i=xig�A1. Then, due to the assumption of linearity,C = fB0i=xig�A as required.3. � = � , Bi b! B0i, Bj b! B0j, B0i j B0j de�ned, i 6= j, andC1 = fB0i=xigfB0j=xjg�A1:Then we can use linearity to conclude that C = fB0i=xigfB0j=xjg�(A1 j A2).4. � = � , Bi b! B0i, A1 b! A01, and C1 = fB0i=xig�A01. Then, using linearity,A1 j A2 b! A01 j A2, and C1 j C2 has the right form.So assume instead (iii). Again we use the induction hypothesis to conclude thatone of (1){(4) must hold for A1 and A2 respectively. Actually, (3) and (4) areboth rules out, as these apply to � -transitions only.� (1){(1): Assume A1 b! A01, C1 = �A01, A2 b! A02, and C2 = �A02. ThenA1 j A2 �! A01 j A02 and C1 j C2 has the desired shape.� (1){(2): Assume A1 b! A01, C1 = �A01, Bi b! B0i, and C2 = fB0i=xig�A2.Then we �nd that A1 j A2 b! A01 j A2 and C = fB0i=xig�(A01 j A2) so that(4) holds of A.� (2){(2): Assume Bi b! B0i, C1 = fB0i=xig�A1, Bj b! B0j, C2 = fB0j=xjg�A2.Due to linearity, i 6= j. Also B0i j B0j is de�ned. Moreover, C1 j C2 =fB0i=xigfB0j=xjg�(A1 j A2) so that (3) holds of A.
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The case (2){(1) is symmetrical to the (1){(2) case and left out. The proof is thuscomplete. 2We need another lemma, mainly to show that if a process concretion of theshape [P ]A has the property (~a trusted ! ~a trusted)! ~a trusted then ` P :~a trusted too. In fact a more general property holds:Lemma 27 If ` �~c:(P j Q) : ~a trusted then for some c0 � c, ` P : ~a; ~c0 trustedand ` Q : ~a; ~c0 trusted, and x : ~a; ~c0 trusted; y : ~a; ~c0 trusted ` �~c:(x j y) :~a trusted.Proof We show that we can �nd a ~c0 such that ` P : ~a; ~c0 trusted by inductionin the approximation index as usual. So assume that P �! A. There are a numberof cases to consider for which we consider the most di�cult one only:Assume that A = �d:[A1]A2. Then � = b for some b and�~c:(P j Q) b! �~c:� ~d:[A1](A2 j Q);assuming bound names are alpha-converted as appropriate. As ` �~c:(P j Q) :~a trusted we must also have that(34) �~c:� ~d:[A1](A2 j Q) : 8~e:~e fresh � new ~f:(~a;~e; ~f trusted! ~a;~e; ~f trusted)! ~a;~e; ~f trusted:Let ~e be fresh for � ~d:[A1]A2. By choosing names appropriately we can be surethat ~e is also fresh for �~c:� ~d:[A1](A2 j Q), so that(35) �~c:� ~d:[A1](A2 j Q) : new ~f:(~a;~e; ~f trusted! ~a;~e; ~f trusted)! ~a;~e; ~f trusted:We �nd ~f1 � ~c and ~f2 � d such that(36) �~c� ~f1:� ~d� ~f2:[A1](A2 j Q) :(~a; ~f1; ~f2; ~e trusted! ~a; ~f1; ~f2; ~e trusted)! ~a; ~f1; ~f2; ~e trusted:Now, let ` F : ~a; ~f1; ~f2; ~e trusted! ~a; ~f1; ~f2; ~e trusted. We get that(37) �~c� ~f1:� ~d� ~f2:(FA1) j A2 j Q : ~a; ~f1; ~f2; ~e trusted:By the induction hypothesis we see that we can �nd ~f 01 � ~c� ~f1, and ~f 02 � ~d� ~f2such that(38) FA1 : ~a; ~f1; ~f 01; ~f2; ~f 02; ~e trusted(39) A2 : ~a; ~f1; ~f 01; ~f2; ~f 02; ~e trusted(40) Q : ~a; ~f1; ~f 01; ~f2; ~f 02; ~e trusted. 40



Choose ~c0 = ~f1 [ ~f 01 and ~f = ~f2 [ ~f 02. Observe that neither ~c0 nor ~f have elementsoccurring freely in F , so ~c0 and ~f can be chosen independently of F . Let us verifythat(41) � ~d[A1]A2 : (~a; ~f1; ~f 01; ~f2; ~f 02; ~e trusted! ~a; ~f1; ~f 01; ~f2; ~f 02; ~e trusted)! ~a; ~f1; ~f 01; ~f2; ~f 02; ~e trustedSo assume that(42) ` F : ~a; ~f1; ~f 01; ~f2; ~f 02; ~e trusted! ~a; ~f1; ~f 01; ~f2; ~f 02; ~e trustedSince neither ~f 01 nor ~f 02 have elements in common with F we obtain that also(43) ` F : ~a; ~f1; ~f2; ~e trusted! ~a; ~f1; ~f2; ~e trusted,and so the desired conclusion can be drawn, appealing to the observation aboveof independence of choice of F , c0, and f .Before completing the proof one slightly delicate matter needs to be attendedto. Observe that our choice of ~f1 and ~f2 depends on the choice of A. However, itis only the size of the sets ~f1 and ~f2 that matter, as bound names can be alpha-converted. As the underlying transition system is �nitely-branching maximal sizesof sets ~f1 and ~f2 can be determined. Notice now that it is possible to \pad" thesesets, if necessary, using dummy names that are never used, to obtain sets of equalsize, independent of the choice of A.Having made this observation it is now a simple matter to realise that thesecond part of the lemma is also true. 2Corollary 28 If` �~c:[P ]Q : � ~d:(~a; ~d trusted! ~a; ~d trusted)! ~a; ~d trustedthen for some ~c0 � ~c, ` P : ~a; ~c0 trusted and ` Q : ~a; ~c0 trusted, and x :~a; ~c0 trusted; y : ~a; ~c0 trusted ` �~c:[x]y : � ~d:(~a; ~d trusted ! ~a; ~d trusted) !~a; ~d trusted.Proof Use lemma 27. 2Now we can proceed to the proof of lemma 24. Assume that �~c:�A �! C. Bylemma 26 one of the cases (1){(4) of the statement of the lemma applies (where� 62 ~c). We proceed accordingly.1. We have that A �! A0 and C = �~c:�A0. We use the de�nition of ~a; b trusted.� � = � and C is a process. The induction hypothesis applies.� � = d and C is a process. The induction hypothesis applies.� � = d and C = [e]C 0 (or, more generally, C = �~c:[e]C 0 and e 62 ~c). Wehave that A0 = [e]A00 for some A00 as the xi are process variables, and41



(44) x1 : ~a1 trusted; x1 : ~a01 fresh; : : : ; xn : ~an trusted; xn : ~a0n fresh` �~c:A0 : 9e:e (~a trusted ^ (e 2 ~a � d 2 ~a))thus(45) x1 : ~a1 trusted; x1 : ~a01 fresh; : : : ; xn : ~an trusted; xn : ~a0n fresh` �~c:A00 : ~a trustedand e 2 ~a � d 2 ~a. By the induction hypothesis we �nd that ` �~c:�A00 :~a;~b trusted. Assume also that e 2 ~a;~b. Then e 2 ~a as d 62 fn(A). Soe 2 ~a;~b too, and ` �~c:�A : ~a;~b trusted.� � = d and C is a bound output agent. This case is similar and left out.� � = d and C = �~c:[C 0]C 00 where we can assume that A0 = [A1]A2,�A1 = C 0 and �A2 = C 00. We get that(46) x1 : ~a1 trusted; x1 : ~a01 fresh; : : : ; xn : ~an trusted; xn : ~a0n fresh` �~c:A0 : 8~e:~e fresh � new ~d:(~a; ~d; ~e trusted! ~a; ~d; ~e trusted)! ~a; ~d; ~e trustedLet ~e be fresh for �A0. We need to show that(47) ` �~c:[�A1]�A2 : new ~d:(~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted)! ~a;~b; ~d; ~e trusted,where ~c is chosen to satisfy the conditions of the lemma. So we need to�nd ~d such that(48) ` �~c� ~d:[�A1]�A2 :(~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted)! ~a;~b; ~d; ~e trusted.Assume that(49) ` �y:D : ~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted.We need to show(50) ` �~c� ~d:f�A1=ygD j �A2 :~a;~b; ~d; ~e trusted.To show this using the induction hypothesis we need to show the fol-lowing two subgoals:(51) x1 : ~a1 trusted; x1 : ~a01; ~d; ~e fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~d; ~e fresh,x : ~a; ~c0; ~d; ~e trusted` � ~d� ~d:x j A2 : ~a; ~d; ~e trusted(52) ` f�A1=ygD : ~a;~b; ~c0; ~d; ~e trustedwhere ~c0 � ~c� ~d. To prove �rst (51), from (46) we see that42



(53) x1 : ~a1 trusted; x1 : ~a01; ~e fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~e fresh,` �~c:A0 : new ~d:(~a; ~d; ~e trusted! ~a; ~d; ~e trusted)! ~a; ~d; ~e trustedwhere ~e is appropriately chosen. So we �nd that(54) x1 : ~a1 trusted; x1 : ~a01; ~d; ~e fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~d; ~e fresh,` � ~d� ~d:[A1]A2 : (~a; ~d; ~e trusted! ~a; ~d; ~e trusted)! ~a; ~d; ~e trusted(choosing in the process the ~d), and then(55) x1 : ~a1 trusted; x1 : ~a01; ~d; ~e fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~d; ~e fresh,F : ~a; ~d; ~e trusted! ~a; ~d; ~e trusted` �~c� ~d:(FA1) j A2 : ~a; ~d; ~e trusted.Now ` �x:x : ~a; ~d; ~e trusted! ~a; ~d; ~e trusted so we �nd that(56) x1 : ~a1 trusted; x1 : ~a01; ~d; ~e fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~d; ~e fresh` �~c� ~d:A1 j A2 : ~a; ~d; ~e trusted.By lemma 27 we can �nd ~c0 � ~c� ~d such that(57) x1 : ~a1 trusted; x1 : ~a01; ~d; ~e fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~d; ~e fresh` A1 : ~a; ~c0; ~d; ~e trusted,(58) x1 : ~a1 trusted; x1 : ~a01; ~d; ~e fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~d; ~e fresh` A2 : ~a; ~c0; ~d; ~e trusted,(59) x : ~a; ~c0; ~d; ~e trusted; y : ~a; ~c0; ~d; ~e trusted` �~c� ~d:x j y : ~a; ~d~e trustedObserve that ~c0 can be chosen uniformly in x and y. We thus �ndthat (51) holds. To show (52) we use (57) along with the inductionhypothesis to show that(60) �A1 : ~a;~b; ~c0; ~d; ~e trustedand another application of the induction hypothesis to the sequent(61) x : ~a;~b; ~d; ~e trusted ` F (x) : ~a;~b; ~d; ~e trustedestablishes (52) and the subcase is complete.43



� � = d and C = �~c:�d:C 00 = �d:�~c:C 00, or C = �~c:��d:C 00. The proof isleft out.� � = d and C = �~c:�x:C 00 = �x:�~c:C 00, so that A0 has the shape �x:A00and C 00 = �~c:�A00 up to naming of x. We get that(62) x1 : ~a1 trusted; x1 : ~a01 fresh; : : : ;xn : ~an trusted; xn : ~a0n fresh` �~c:A0 : 8~e:~e fresh � ~a;~e trusted! ~a;~e trusted.We conclude(63) x1 : ~a1 trusted; x1 : ~a01; ~e fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~e freshx : ~a;~e trusted` �~c:A00 : ~a;~e trusted.Now the result follows directly from the induction hypothesis.2. We have that Bi �! B0i and C = �~c:fB1=x1g � � � fB0i=xig � � � fBn=xngA.Again we follow the def. of ~a;~b trusted.� � = � or � = d and C is a process. The induction hypothesis applies.� � = d and C = �~c:[e]C 0, e 62 ~c. In this case B0i will have the shape [e]B00iand(64) [e]B00i : 9e:e (~a;~b; ~c0 trusted ^ e 2 ~a;~b; ~c0 � d 2 ~a;~b; ~c0)thus(65) B00i : ~a;~b; ~c0 trustedso by the induction hypothesis, ` �~c:C 0 : ~a;~b trusted. Also e 2 ~a;~bimplies d 2 ~a;~b as d 62 ~c0. So indeed(66) ` �~c:fB1=x1g � � � fB0i=xig � � � fBn=xngA : ~a;~b trusted.� � = d and C = �~c:[e]C 00 and e 2 ~c. This case is left for the reader.� � = d and C has the shape �~c:� ~f:[C 0]C 00 where B0i = � ~f:[Bi;1]Bi;2,C 0 = Bi;1 and C 00 = fB1=x1g � � � fBi;2=xig � � � fBn=xngA. We get that(67) B0i : 8~e:~e fresh � new ~f:(~a;~b; ~c0; ~e; ~f trusted! ~a;~b; ~c0; ~e; ~f trusted)! ~a;~b; ~c0; ~e; ~f trusted.We need to show that(68) �~c:� ~f :[Bi;1]C 00 : 8~e:~e fresh � new ~f:(~a;~b; ~e; ~f trusted! ~a;~b; ~e; ~f trusted)! ~a;~b; ~e; ~f trusted.44



So let ~e be fresh for C. We can assume that ~e, ~c and ~f are disjoint.(68) is then reduced �rst to(69) �~c:� ~f :[Bi;1]C 00 : new ~f:(~a;~b; ~e; ~f trusted! ~a;~b; ~e; ~f trusted)! ~a;~b; ~e; ~f trusted.and then we need to �nd ~c1 and ~f1 such that(70) �~c� ~c1:� ~f � ~f1:[Bi;1]C 00 :(~a;~b; ~c1; ~e; ~f1 trusted! ~a;~b; ~c1; ~e; ~f1 trusted)! ~a;~b; ~c1; ~e; ~f1 trusted.So assume that(71) ` �y:D : ~a;~b; ~c1; ~e; ~f1 trusted! ~a;~b; ~c1; ~e; ~f1 trustedand we need to show(72) �~c� ~c1:� ~f � ~f1:fBi;1=ygD j C 00 : ~a;~b; ~c1; ~e; ~f1 trusted.To prove this by the induction hypothesis we need to �nd sets ~c2 � ~c�~c1and ~f2 � ~f � ~f1 such that(73) x1 : ~a1 trusted; x1 : ~a01; ~e; ~f1; ~f2 fresh; : : : ;xi : ~ai; ~e; ~f1; ~f2 trusted; xi : ~a0i fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~e; ~f1; ~f2 fresh;y : ~ai; ~e; ~f1; ~f2 trusted; y : ~a0i fresh` �~c� ~c1:� ~f � ~f1:y j A : ~a; ~c1; ~e; ~f1 trusted(74) y : ~a; ~c1; ~c2; ~e; ~f1; ~f2 trusted ` D : ~a; ~c1; ~c2; ~e; ~f1; ~f2 trusted(75) ` Bi;j : ~ai;~b; ~e; ~f1; ~f2 trusted, j 2 f1; 2g.To prove (73), by assumption we have(76) x1 : ~a1 trusted; x1 : ~a01 fresh; : : : ;xi : ~ai trusted; x1 : ~a0i fresh; : : : ;xn : ~an trusted; x1 : ~a0n fresh` �~c:A : ~a trustedfrom which we can deduce(77) x1 : ~a1 trusted; x1 : ~a01 fresh; : : : ;xi : 8~e:~e fresh � new ~f:(~ai; ~e; ~f trusted! ~ai; ~e; ~f trusted)! ~ai; ~e; ~f trusted; xi : ~a0i fresh; : : : ;xn : ~an trusted; xn : ~a0n fresh` �~c:A : 8~e:~e fresh � new ~f:(~a;~e; ~f trusted! ~a;~e; ~f trusted)! ~a;~e; ~f trustedand 45



(78) x1 : ~a1 trusted; x1 : ~a01; ~e fresh; : : : ;xi : new ~f:(~ai; ~e; ~f trusted! ~ai; ~e; ~f trusted)! ~ai; ~e; ~f trusted; xi : ~a0i fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~e fresh` �~c:A : new ~f:(~a;~e; ~f trusted! ~a;~e; ~f trusted)! ~a;~e; ~f trustedand then(79) x1 : ~a1 trusted; x1 : ~a01; ~e fresh; : : : ;xi : new ~f:(~ai; ~e; ~f trusted! ~ai; ~e; ~f trusted)! ~ai; ~e; ~f trusted; xi : ~a0i fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~e fresh` �~c� ~c1:A : new ~f:(~a; ~c1; ~e; ~f trusted! ~a; ~c1; ~e; ~f trusted)! ~a; ~c1; ~e; ~f trusted.Now we use the assumption on xi to instantiate the local names ~f tothe left of the turnstile as two parts, ~f1 which is named by ~f to theright of the turnstile, and a part ~f2 which becomes bound by ~f � ~f1:(80) x1 : ~a1 trusted; x1 : ~a01; ~e; ~f1 fresh; : : : ;xi : new ~f2:(~ai; ~e; ~f1; ~f2 trusted! ~ai; ~e; ~f1; ~f2 trusted)! ~ai; ~e; ~f1; ~f2 trusted; xi : ~a0i fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~e; ~f1 fresh` �~c� ~c1:A : (~a; ~c1; ~e; ~f1 trusted! ~a; ~c1; ~e; ~f1 trusted)! ~a; ~c1; ~e; ~f1 trusted,from where we get(81) x1 : ~a1 trusted; x1 : ~a01; ~e; ~f1 fresh; : : : ;xi : new ~f2:(~ai; ~e; ~f1; ~f2 trusted! ~ai; ~e; ~f1; ~f2 trusted)! ~ai; ~e; ~f1; ~f2 trusted; xi : ~a0i fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~e; ~f1 fresh,f : ~a; ~c1; ~e; ~f1 trusted! ~a; ~c1; ~e; ~f1 trusted` �~c� ~c1:(f(xi) j A) : ~a; ~c1; ~e; ~f1 trusted.Now, using the assumption on xi we see:(82) x1 : ~a1 trusted; x1 : ~a01; ~e; ~f1; ~f2 fresh; : : : ;xi : (~ai; ~e; ~f1; ~f2 trusted! ~ai; ~e; ~f1; ~f2 trusted)! ~ai; ~e; ~f1; ~f2 trusted; xi : ~a0i fresh; : : : ;xn : ~an trusted; xn : ~a0n; ~e; ~f1; ~f2 fresh,f : ~a; ~c1; ~e; ~f1 trusted! ~a; ~c1; ~e; ~f1 trusted, f : ~f2 fresh` �~c� ~c1:� ~f � ~f1:(f(xi) j A) : ~a; ~c1; ~e; ~f1 trusted46



where ~f includes ~f2. Now we use the induction hypothesis to conclude(83) f : ~a; ~c1; ~e; ~f1 trusted! ~a; ~c1; ~e; ~f1 trusted, f : ~f2 fresh` f : ~a; ~c1; ~e; ~f1; ~f2 trusted! ~a; ~c1; ~e; ~f1; ~f2 trustedwhich su�ces to conclude (73). Subgoal (74) follows by the inductionhypothesis applied to (71). Finally (75) is easily proved by the methodsalready introduced.� The cases for name and process input are left to the reader.3. Of the numerous subcases consider the following: Bi d! �~e:[Bi;1]Bi;2 andBj d! �y:B0j, and our task is then to prove that(84) ` �~c:�~e:fB1=x1g � � � fBi;2=xig � � � ffBi;1=ygB0j=xjg � � � fBn=xngA :~a trustedwhere ~e is chosen to not be confused with other variables. The proof is quitean easy exercise given the previous steps, and left for the reader.4. Similar comments apply to the �nal case.This completes the proof. 2Appendix 4: Proof of lemma 12In this appendix we proveLemma 12 X : ~a;~b trusted; Y : ~a;~b trusted ~̀b X j Y : ~a trustedProof Reducing the proof goal we obtain two subgoals of the shapes:(85) X : ~a;~b trusted; Y : ~a;~b trusted ~̀b X j Y : [� ]~a trusted(86) X : ~a;~b trusted; Y : ~a;~b trusted ~̀b X j Y : 8c:[c](~a trusted _ � � �)Considering �rst (85) observe that a � transition of �~b:X j Y can be due to either(1) a � -transition of X, (2) a � -transition of Y (symmetrical to (1)), or (3) acommunication of X and Y resulting in agents of matching arity (ie. a nameabstraction matching a name concretion, etc.). Thus we see that we can reduce(85) the following list of subgoals:
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(87) X : ~a;~b trusted; Y : ~a;~b trusted ~̀b X j Y : ~a trusted(88) X : 9c:c (~a;~b trusted ^ (c 2 ~a � d 2 ~a));Y : 8c:c! ~a;~b trusted)~̀b X j Y : ~a trusted(89) X : new c:c ((d 2 ~a;~b � (~a;~b; c trusted)) ^ (d 62 ~a;~b � ~a;~b trusted))Y : c!� (d 2 ~a;~b � ~a;~b; c trusted) ^ (d 62 ~a;~b � ~a;~b trusted)~̀b X j Y : ~a trusted(90) X : 8~d:~d fresh � new ~c:(~a;~b; ~d;~c trusted! ~a;~b; ~d;~c trusted)! ~a;~b; ~d;~c trustedY : 8~c:~c fresh � ~a;~b;~c trusted! ~a;~b;~c trusted~̀b X j Y : ~a trustedSubgoal (87) arises in several ways: Because a � -transition of X, because of a� -transition of Y , or because of a synchronisation where both X and Y evolveinto processes. In any case the subgoal is immediately resolved by the inductionhypothesis. Subgoal (88) is resolved by a little elementary reasoning to a sequentof the shape (87). Subgoal (89) is equally easy to resolve. Finally we addresssubgoal (90). Letting ~d = ; we obtain:(91) X : new ~c:(~a;~b;~c trusted! ~a;~b;~c trusted)! ~a;~b;~c trustedY : 8~c:~c fresh � ~a;~b;~c trusted! ~a;~b;~c trusted~̀b X j Y : ~a trustedwhich is reduced to(92) X : (~a;~b;~c trusted! ~a;~b;~c trusted)! ~a;~b;~c trusted~c freshY : ~c fresh � ~a;~b;~c trusted! ~a;~b;~c trusted~̀b;~c X j Y : ~a trustedwhich can be decomposed into two subgoals:(93) X : (~a;~b;~c trusted! ~a;~b;~c trusted)! ~a;~b;~c trustedY : ~a;~b;~c trusted! ~a;~b;~c trusted` X j Y : ~a;~b;~c trusted(94) X : ~a;~b;~c trusted ~̀b;~c ~a trustedof which (93) is immediate, and (94) is an application of lemma 9. This completesthe proof of (85). We need also to consider (86). Exploiting the symmetry of jthis goal can be resolved to the following (long) list of subgoals:(95) X : ~a;~b trusted; Y : ~a;~b trusted ~̀b X j Y : ~a trusted(96) X : d 62 ~b; X : c 62 ~bX : d (~a;~b trusted ^ (d 2 ~a;~b � c 2 ~a;~b));48



Y : ~a;~b trusted~̀b X j Y : 9d:d (~a trusted ^ (d 2 ~a � c 2 ~a))(97) X : d 2 ~b; X : c 62 ~bX : d (~a;~b trusted ^ (d 2 ~a;~b � c 2 ~a;~b));Y : ~a;~b trusted~̀b X j Y : new d:d ((c 2 ~a � ~a; d trusted) ^ (c 62 ~a � ~a trusted))(98) X : c 62 ~bX : new d:d ((c 2 ~a;~b � ~a;~b; d trusted) ^ (c 62 ~a;~b � ~a;~b trusted))Y : ~a;~b trusted~̀b X j Y : new d:d ((c 2 ~a � ~a; d trusted) ^ (c 62 ~a � ~a trusted))(99) X : c 62 ~bX : 8~e:~e fresh � new ~d:(~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted)! ~a;~b; ~d; ~e trustedY : ~a;~b trusted~̀b X j Y : 8~e:~e fresh � new ~d:(~a; ~d; ~e trusted! ~a; ~d; ~e trusted)! ~a; ~d; ~e trusted(100)X : c 62 ~bX : 8d:d! ~a;~b trusted)Y : ~a;~b trusted~̀b X j Y : 8d:d! ~a trusted)(101)X : c 62 ~bX : d!� (c 2 ~a;~b � ~a;~b; d trusted) ^ (c 62 ~a;~b � ~a;~b trusted)Y : ~a;~b trusted~̀b X j Y : d!� ~a trusted)(102)X : c 62 ~bX : 8~d; ~d fresh � ~a;~b; ~d trusted! ~a;~b; ~d trustedY : ~a;~b trusted~̀b X j Y : 8~d; ~d fresh � ~a; ~d trusted! ~a; ~d trustedSubgoal (95) is as usual resolved immediately by the induction hypothesis. Thisapplies also to (96) given a minute amount of boolean reasoning. Subgoal (96) and(97) arise because of the assumption of a free output for X followed by existentialelimination to the left and a case analysis on d. In the latter case the free outputof X becomes a bound output of the entire process, due to the local scope of ~b.Subgoal (97) is reduced to(103) X : d 2 ~b; X : c 62 ~bX : d (~a;~b trusted ^ (d 2 ~a;~b � c 2 ~a;~b));Y : ~a;~b trusted 49



~̀b�d X j Y : d ((c 2 ~a � ~a; d trusted) ^ (c 62 ~a � ~a trusted))and further, using a little boolean reasoning, to(104) X : d 2 ~b; X : c 62 ~bX : ~a;~b trustedc 2 ~a;Y : ~a;~b trusted~̀b�d X j Y : d ~a; d trustedwhich follows by the induction hypothesis. Subgoal (98) is straightforward. Now,for (99) we reduce this to(105) X : d 62 ~b;X : (~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted)! ~a;~b; ~d; ~e trusted;Y : ~e fresh; Y : d freshY : ~a;~b trusted,~̀b X j Y : (~a; ~d; ~e trusted! ~a; ~d; ~e trusted)! ~a; ~d; ~e trustedand then, using lemma 9, to(106) X : d 62 ~b;X : (~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted)! ~a;~b; ~d; ~e trusted;Y : ~a;~b; ~d; ~e trusted,~̀b X j Y : (~a; ~d; ~e trusted! ~a; ~d; ~e trusted)! ~a; ~d; ~e trustedNow we use right arrow introduction:(107) X : d 62 ~b;X : (~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted)! ~a;~b; ~d; ~e trusted;Y : ~a;~b; ~d; ~e trusted,Z : ~a; ~d; ~e trusted! ~a; ~d; ~e trustedZ : ~b fresh~̀b X j Y j Z : ~a; ~d; ~e trustedWe can now appeal to lemma 10 to reduce to(108) X : d 62 ~b;X : (~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted)! ~a;~b; ~d; ~e trusted;Y : ~a;~b; ~d; ~e trusted,Z : ~a;~b; ~d; ~e trusted! ~a;~b; ~d; ~e trusted~̀b X j Y j Z : ~a; ~d; ~e trustedwhich is resolved by the induction hypothesis. We leave out the proofs of subgoal(100) and (101). Finally we need to consider (102). We �rst reduce this to50



(109) X : c 62 ~b X : ~d freshX : ~a;~b; ~d trusted! ~a;~b; ~d trustedY : ~d fresh;Y : ~a;~b trusted~̀b X j Y : ~a; ~d trusted! ~a; ~d trustedand then, using lemma 8 to(110) X : c 62 ~b X : ~d freshX : ~a;~b; ~d trusted! ~a;~b; ~d trustedY : ~a;~b; ~d trusted~̀b X j Y : ~a; ~d trusted! ~a; ~d trustedNow we introduce ! to the right:(111) X : c 62 ~b X : ~d freshX : ~a;~b; ~d trusted! ~a;~b; ~d trustedY : ~a;~b; ~d trustedZ : ~a; ~d trustedZ : b fresh~̀b (X j Y )(Z) : ~a; ~d trustedObserve that we here use am applicative notation which strictly speaking is notin the syntax of the process calculus. Using 8 once more we obtain(112) X : c 62 ~b X : ~d freshX : ~a;~b; ~d trusted! ~a;~b; ~d trustedY : ~a;~b; ~d trustedZ : ~a;~b; ~d trusted~̀b (X j Y )(Z) : ~a; ~d trustedwhich is provable by the induction hypothesis. 2Appendix 5: Proof of lemma 13In this appendix we proveLemma 13 For all P , ` P : ; trusted.For the proof we need the following lemma, permitting us to make free namesprivate while preserving trustedness of names.Lemma 29 Suppose ~a \~b = ;. ThenX : ~a trusted ` �~b:X : ~a trusted51



Proof Suppose ` P : ~a trusted and �~b:P �! P 0. Then P 0 has the shape �~b:Qsuch that P �! Q. We proceed by induction in approximation index and cases inQ as usual. The case for � = � is trivial, so assume � = c.� Q = [d]Q00. Then ` Q0 : ~a trusted, and d 2 ~a implies c 2 ~a. Whether ornot d 2 ~b we get that �~b:Q0 has the desired property.� Q = � ~d:[Q1]Q2. We need to show(113) ` �~b:� ~d:[Q1]Q2 : 8~e:~e fresh � new ~f:(~a;~e; ~f trusted! ~a;~e; ~f trusted)! ~a;~e; ~f trusted.Reduce this to(114) ` �~b:� ~d:[Q1]Q2 : new ~f:(~a;~e; ~f trusted! ~a;~e; ~f trusted)! ~a;~e; ~f trustedwhere ~e is fresh, and then to(115) ` �~b:� ~d� ~d1:[Q1]Q2 : (~a;~e; ~d1 trusted! ~a;~e; ~d1 trusted)! ~a;~e; ~d1 trusted.So let ` �y:D : ~a;~e; ~d1 trusted! ~a;~e; ~d1 trusted and we need to show(116) ` �~b:� ~d� ~d1:fQ1=ygD j Q2 : ~a;~e; ~d1 trusted.By assumption we have(117) ` � ~d:[Q1]Q2 : 8~e:~e fresh � new ~f:(~a;~e; ~f trusted! ~a;~e; ~f trusted)! ~a;~e; ~f trusted.So for some ~c0 � ~c,(118) ` � ~d� ~d1:[Q1]Q2 : (~a;~e; ~d1 trusted! ~a;~e; ~d1 trusted)! ~a;~e; ~d1 trusted.So we have(119) ` � ~d� ~d1:fQ1=ygD j Q2 : ~a;~e; ~d1 trusted.But then ` �~b:� ~d � ~d1:fQ1=ygD j Q2 : ~a;~e; ~d1 trusted by the inductionhypothesis.� The remaining cases are straightforward.52



2We can now proceed to the proof of lemma 13 which is by induction in ap-proximation index as usual.So assume that P �! P 0. Assume � = a. We proceed by cases in P 0 as usual,observing that the case for P 0 as process is trivial:� P 0 free output of shape [b]P 00. By the induction hypothesis ` P 00 : ; trustedand b 2 ; � a 2 ; completing the case.� P 0 bound output of shape �b:[b]P 00. As a 62 ; and ` P 00 : ; trusted by theinduction hypothesis we get(120) ` �b:[b]P 00 : new c:c ((a 2 ; � c trusted) ^ (a 62 ; � ; trusted))as desired.� P 0 process concretion of shape �~b:[P1]P2. Let ~c be fresh. We must show(121) ` �~b:[P1]P2 : new ~d:(~c; ~d trusted! ~c; ~d trusted)! ~c; ~d trusted.We reduce this to showing(122) ` �~b:[P1]P2 : (~c trusted! ~c trusted)! ~c trusted.So let ` �y:D : ~c trusted! ~c trusted and we must show(123) ` �~b:fP1=ygD j P2 : ~c trusted.Now ` P1 : ~c fresh so ` P1 : ~c trusted by lemma 8, and thus(124) ` fP1=ygD : ~c trusted.Also ` P2 : ~c fresh so also ` P2 : ~c trusted. But then(125) ` fP1=ygD j P2 : ~c trustedby lemma 12, and so by lemma 29 we conclude (123).� The remaining cases are straightforward.The proof of lemma 13 is thus complete. 2
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