
Proving Trust in Systems of Second-Order Processes(Extended Abstract)Mads DamSwedish Institute of Computer ScienceS-164 28 Kista, SwedenCopyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6-9, 1997, Kona, Hawaii.AbstractWe consider the problem of proving correctnessproperties for concurrent systems with features suchas higher-order communication and dynamic resourcegeneration. As examples we consider operational mod-els of security and authentication protocols based onthe higher-order �-calculus. Key features such asnonces/time stamps, encryption/decryption, and keygeneration are modelled using channel name genera-tion and second-order process communication. A tem-poral logic based on the modal �-calculus is used toexpress secrecy and authenticity. Extensions includefunction space constructions to deal with process inputand output. Contravariant recursion can be dealt within two di�erent ways, of which one, an iterative solu-tion, is discussed in the paper. We propose a predicateof trust in a monotonically increasing set of channelsas an example, and establish structural decompositionprinciples for this predicate for concurrent composi-tion and local channel declaration. On this basis a typesystem for trust inference can be derived quite easily.1 IntroductionIn this paper we consider the problem of provingcorrectness properties in semantically very rich mod-els of concurrent systems with features for communi-cation of second- and higher-order objects (eg.: code),and for dynamically generating and communicatingresource names. A long list of recent programminglanguages and models, including Java, CML, Facile,Oz, Actors, Erlang, and the �-calculus, explore thesesorts of features to various extents. Typical of manyapplications written in these kinds of languages is thatthey are open, designed and intended to operate in en-vironments that are possibly hostile, and at any rateonly partially known at compile time. An importanttask is therefore to protect information and resourcesagainst intrusion, intended or otherwise. Intrudershave at their disposal the full armoury usually consid-ered in the �eld of computer security: they can steal

messages, tamper with messages, crack codes, synthe-size messages, store and replay messages, and muchmore. In the presence of higher-order communicationthey can even generate programs (viruses) that willbe activated dynamically by the receiving agent. Thequestion we address is how, in spite of this, we canprove that a system nonetheless performs correctly.Key Management Protocols Classical key man-agement protocols such as the Needham-Schroederprotocol are examples of programs designed to workreliably in face of hostile intruders. In this paper weshow how key management protocols can fruitfully beviewed as higher-order communicating processes andwe show some initial ideas as to how, on this basis,they can be veri�ed. The idea is best introducedthrough a simple example, a modi�ed version of thecorrected version of the Andrew remote RPC protocolas introduced by Needham, Abadi, and Burrows [6].This protocol is extremely simple, yet it introducesall the features needed to account for a whole class ofkey management protocols. Initially two participants,A and B (sometimes called Alice and Bob), share aprivate key Kab. The task is to agree on a new ses-sion key. Using standard notation the protocol canbe described as the exchange between A and B of thefollowing three message sequence:1. A! B : fNagKab2. B ! A : fNa;K 0abgKab3. A! B : fNagK0abIn step (1) A transmits the nonce Na to B, signallinghis wish for B to generate a new session key. B re-sponds, in step (2), by returning the new session keyK 0ab, along with Na to authenticate the message, bothencrypted using the old keyKab. In step (3), A returnsthe nonce Na to B, this time encrypted using the newkeyK 0ab, serving as an acknowledgement to B that theprevious message was received and decrypted.

Modelling Key Management Protocols asSecond-Order Processes The protocol involvesthe following features:1. Message passing and data type operations: Givena (possibly composite) message m it is possibleto communicate m from A to B. It is also possi-ble, given messages m1 and m2, to form the pair(m1;m2).2. Private key encryption and decryption: Given amessage m and a private key K, we can formfmgK , m encrypted using key K. Also, givenfmgK and given K we can decrypt to extract themessage m.3. Key generation: B has the capability of generat-ing a new private keyK 0ab, by assumption distinctfrom any other key known to any other partici-pant in the exchange, friendly or hostile.4. Nonce generation. It is possible to generate afresh, non-composite piece of information, by as-sumption distinct from any other such pieces ofinformation possessed by other participants.We propose accounting for these features in the fol-lowing fashion:� Nonces and keys are names as in the �-calculus[11]. New names are declared by the binding �a:Aintroducing a as a new name with scope initiallyextending over A but not further. In �a:A, a willby de�nition be distinct from any other name oc-curring freely in A. Furthermore it is possible dy-namically to extend the scope of a by \scope ex-trusion", eg. �a:b:[a]P which declares a new namea and immediately passes it to the outside worldalong the channel b.� Encryption is second-order process passing.Names, hence keys, are channel identi�ers. Hencea message m encrypted using the private key Kcan be regarded as an object that can deliver mto anyone happening to know K. That is, it is aprocess with one output port K along which mis passed to whoever possesses K and is willingto listen. Thus fmgK is in our notation identi-�ed with the process K:[m]0, the process whichtransmits m along K and then terminates.This suggests using a second-order version of the �-calculus as a semantical framework for modelling keymanagement protocols, and indeed this is what wepropose to do. Of course such models will be highly

idealised: For instance the bit lengths used to rep-resent nonces and keys are bounded, opening up forattacks on the encryption/decryption algorithms, andinformation can often be extracted from encryptedmessages with very limited knowledge of the keys.Nonetheless we believe that an idealised modelling ofkey management aspects alone can be useful, leav-ing analysis of actual encryption algorithms to be ad-dressed by other means, even while recognising that areally water-tight boundary between the two is not areasonable hope.Nested Encryption and Firewalling One com-plication needs to be attended to, though. As encryp-tion can be nested we need to consider process termsof the shape P = a:[K1:[K2:[m]0]:0]P 0;modelling a process passing ffmgK2gK1 along a andthen proceeding to act as P 0. A process receiving sucha packet and decrypting to extract m would have theshapeQ = a:�X1:(X1 j (K1:�X2:X2 j (K2:�m:Q0(m)))):That is, it receives the process X1, activates it andtries to receive from it along K1 another process,X2, which it proceeds to activate, to try and receivefrom it m along K2. As it stands, however, the �-calculus has no good way of preventing a third partyfrom stealing m using K2 once Q has decrypted usingK1. That is, once Q has reached the con�guration(K2:[m]0) j (K2:�m:Q0(m)), if an external intruder ispresent that may know about K2 it will have the ca-pability of receiving the m without necessarily havingto know K1 �rst. Thus decryption is unsafe, contraryto most reasonable modelling assumptions (cf. [6]).A good �x is to use a �rewalling, or blocking oper-ator Ana preventing communication along the chan-nel a between A and its environment. This operatoris well known: It is just the CCS restriction opera-tor, extended to the �-calculus in the obvious fashionby allowing state transitions Pna b! A just in caseA has the shape A0na, P b! A0, and b, the commu-nication channel, is distinct from a. This operatorwas also considered in the context of higher order pro-cesses by Thomsen [13]. Using the blocking opera-tor we can protect m from theft along K2 by putting(K2:[m]0) j (K2:�m:Q0(m)) inside a K2 �rewall. Ob-serve that we regard a as free in Ana. Thus communi-cation of a across the a �rewall itself will be perfectlylegitimate.

Speci�cation in Second-Order Temporal LogicOur aim is to use a second-order temporal logic tospecify desired correctness properties like secrecy andauthenticity. Speci�cally we suggest using a fragmentof the modal �-calculus extended with �rst-order fea-tures for names and name generation, and two arrowsto account for process input and output. The logicfollows quite closely ideas put forward in [3], using afunction arrow � ! for input dependency, and asecond-order arrow (� !) ! for contextual out-put dependency. The idea is the following: A processwaiting to input a parameter x to continue acting asP is written as a lambda-abstraction �x:P . A pro-cess wanting to output to some receiver the processQ1 to continue acting as Q2 is written as the term[Q1]Q2, called a process concretion. Sometimes Q1and Q2 may share a vector of private channel names~a wishing to maintain these connections after Q1 hasbeen passed to its receiver. Such a process concretionis written �~a:[Q1]Q2. Matching receiver and senderresults in the term �x:P j �~a:[Q1]Q2 which is identi-�ed with the term �~a:fQ1=xgP j Q2, alpha-convertingthe bound names ~a as needed to avoid collision withnames free in P . The input arrow expresses the ex-pected functional dependency: For �x:P to have theproperty � ! it must be the case that Q1 hasthe property � only if fQ1=xgP has the property .The output arrow expresses dependency upon receiv-ing context: The process concretion �~a:[Q1]Q2 willhave the property (�!)! just in case �x:P hasthe property � ! only if �~a:fQ1=xgP j Q2 has theproperty . In [3] we showed how this setting couldbe used to achieve an appropriate level of discrimina-tory power when measured against a strong version ofbisimulation equivalence, and we began investigatingproof principles for these connectives.Handling Contravariant Recursion Unfortu-nately contravariant recursion appears indispensablefor formalising the trustedness predicates we have inmind. We have so far found no way around this dif-�culty. The problem is that the Knaster-Tarski �xedpoint theorem usually appealed to for least and great-est �xed point semantics require monotonicity whichfails in the presence of contravariant recursion. Inthis extended abstract we abandon the standard �xedpoint semantics for an iterative construction. This se-mantics provides an induction principle which is usedheavily in subsequent proofs. In the full version of thepaper we give also an equivalent �xed point seman-tics based on intervals. The iterative construction ex-ploits a continuity property which holds only for the

fragment of the modal �-calculus lacking least �xedpoints and diamonds (existential next-state quanti-�ers). This, however, is a limited loss in view of thenature of the properties in which we have primary in-terest: Matters like secrecy and authenticity would beexpected to have formulations as invariants and notto use existential computation path quanti�cation.Proving Trust We then suggest a process predi-cate expressing trust in a monotonically increasing setof channels, using contravariant recursion and greatest�xed points only. The rest of the paper is devoted toproof principles for this trustedness predicate, and theproof of trust for a very simple example protocol. Themost involved proof principles concern, as one shouldexpect, parallel composition and name scoping. Sev-eral crucial lemmas need to be proved, of which wehighlight two. First we need to show that if P is aprocess which respects trust of ~a, and b does not occurfreely in P , then P will respect the trust of ~a[fbg (weusually write ~a; b as a shorthand). The proof of this is,as one should expect, a simple inductive argument, us-ing the induction principle hinted to earlier. However,we also need a corresponding result for functions, thatif �x:P has the property ~a trusted! ~a trusted, andif b does not occur freely in �x:P , then �x:P will alsohave the property ~a; b trusted! ~a; b trusted. Thisproperty has a far more intensional character as it hasto do with de�nability of functions, and the proof isalso much more delicate.Deriving a Type System Having proved the cru-cial lemmas for decomposing trust for parallel com-positions and � declarations we show how we quitesimply can derive a type system for proving assertionsof the shape � `~a A : ~b trusted expressing that, un-der the assumptions �, and in the local context ~a, Ahas the property ~b trusted.Related Work The present paper can be viewed aspart of an ongoing trend towards operationally basedaccounts of security and authentication protocol. Theclosest predecessor of this work is Abadi and Gordon'swork on the spi calculus [2]. It is the credit of Abadiand Gordon �rst to have observed the usefulness of the�-calculus name scoping discipline for modelling secu-rity protocol features like nonce and key generation. Inthe spi calculus extra operators for encryption and de-cryption are added to the �-calculus. Properties suchas secrecy and authenticity are accounted for in equa-tional terms, for instance by reecting insensitivity ofenvironments to changes in trusted values. By con-

trast we represent such properties directly, as a logi-cal formula. Moreover, due to the explicit treatment ofencryption and decryption a rather non-standard ver-sion of testing equivalence has to be appealed to for thecorrectness proofs in [2]. This complication does notarise in our approach since we reduce encryption anddecryption to more general computational features.Recently a number of authors have attempted touse state exploration methods to analyse security pro-tocols (cf. [10, 9]). In approaches like these the maindi�culty is to faithfully represent protocols and in-truders as �nite state automata. Instead of leavingintruders undetermined, as in our approach, it be-comes necessary to state explicitly at every possiblestep whether an action is or is not possible, includinghistory dependencies. Secondly it becomes di�cult todeal with unbounded information, such as protocolsruns that can cause an in principle unbounded num-ber of nonces, time stamps, or keys to be generated.For this reason (and for sheer model size considera-tions, one suspects) work has so far focused on publickey encryption, and on single session establishmentruns.In another related strand of work a large number ofauthors have used static analysis and type systems toanalyse security of information ow, cf. [1, 5, 8, 14].The scope of these analyses is roughly the same asours: They analyse whether security levels are re-spected during program execution, sometimes strat-ifying the analysis by eg. distinguishing readers andwriters. As in our work revocation of trust is notsupported. Our contribution to this line of work isto show how a type system for secure informationow can quite easily be derived from the very gen-eral and sound semantical basis that we provide, us-ing the account of programs as second order �-calculusprocesses, and types/properties as interpreted second-order temporal formulas.For the full version of the paper we refer the readerto ftp://ftp.sics.se/pub/fdt/mfd/ptssop.ps.Z.2 ProcessesIn this section we give an informal presentation ofthe language used to model protocols, and as much ofits operational semantics as is needed to understandthe speci�cation logic and the reasoning of the correct-ness proofs. Roughly, the process language is a mergeof the �-calculus [11] with the second-order process-passing calculus presented in [3]. It uses the followingprimitive objects:� Channel names a, b, along with the special label� , used for invisible, or silent transitions.

� Agent variables x, y.� Agent constants D. With each constant is asso-ciated a unique de�ning equation D = A whereA is an agent according to the de�nition below.Agents come in three avours: Processes which per-form transitions; abstractions, responsible for nameand agent input; and concretions, responsible for nameand agent output. Process terms are ranged over by P ,Q, abstractions by F , concretions by C, and agents ingeneral by A and B. To each well-formed agent termis assigned an arity +w or �w, w 2 fchan; agentgn.A negative arity indicates the number and position ofchannel and agent arguments required for the agent tobecome a process term. Positive arities indicate argu-ments provided as outputs. The null arity is (), andby convention, +() = () = �().Processes Processes are agent terms of null arity:They neither require nor provide parameters to beable to perform (or refuse) transitions. Agent vari-ables are (open) process terms; 0 is the terminatedprocess; P +Q is the process that can choose betweentransitions of P and of Q; a:A is the pre�x processthat can perform an a-transition and evolve into A;P j Q is the parallel composition of P and Q; �a:Pdeclares a new name a, local to P (but exportableto the outside world through subsequent communica-tions); if a = b then P else Q is the conditional,often generalised to arbitrary boolean combinationsof name equalities and inequalities; Pna is the block-ing operator preventing synchronisation on the chan-nel a; and if D = F and F has arity �chann thenD(a1; : : : ; an) is a process term too.Abstractions We operate with two abstraction con-structors, one for free input and one for bound output,similar to the situation in [4]. The free input abstrac-tion has the shape �a:A (�x:A) and has arity �chanw(�agentw) if A is an abstraction term of arity �w or,if w is empty, A is a process term. The arity of a boundinput abstraction, ��a:A, is calculated similarly.Concretions Concretions have one of the forms[a]A, �a:[a]A, or �~a[P]A. The �rst instance corre-sponds to the output of the free channel name a, thesecond to the output of a local name a, and the thirdto the output of a process term P with local names ~a.If A is a concretion term of arity +w then [a]A and�a:[a]A both have arity +chanw and �~a[P]A has arity+agentw. If w is empty A is again a process term.

The Transition Semantics A standard �-calculusstyle semantics can easily be given to the above lan-guage. We assume a transition relation P �! Q, and afamily of transition relations P a! A. A few examplessu�ce to highlight the important points:� Invisible transitions arise because of communi-cation. For communication to take place ari-ties of the resulting abstraction/concretion pairmust match. Thus, e.g. if P1 a! ��b1:F andP2 a! �b2:[b2]C, F has arity �w, and C has ar-ity +w, communication can take place. Then,if F j C = Q0, the invisible transition P1 jP2 �! Q = �b2:fb2=b1gQ0 is enabled, where weassume variables to have been alpha-convertedsuch that confusion does not arise. Similarly,if P1 a! �x:F and P2 a! � ~b2:[P]C we obtainP1 j P2 �! Q = � ~b2:fP=xgQ0 where Q0 = F j C.� Similarly, for P1 j P2, it is possible that no com-munication takes place. Thus, eg. if P1 a! �b:Fand F j P2 = Q0 then P1 j P2 a! Q = �b:Q0.Observe again that �-conversion is used to avoidcapture of variables.� The remaining connectives reect the intuitionsgiven above. Thus, for instance, �a:A declaresa local name a in A and does not permit a-transitions to take place. That is, �a:P b! Aif and only if a 6= b and P b! A0 and A = �a:A0.3 Example: The Andrew ProtocolThe agent Alice below represents one part of theAndrew protocol as a second-order process using theideas outlined in the introduction:Alice = �Kab.in?d.xfer!fdata,dgKab.Alice(Kab) + AliceSw(Kab)AliceSw = �Kab.�Na.xfer!fswitch,NagKab.xfer?x.x j(AliceSw(Kab) + (Kab?(t;N 0a;K 0ab).if t = next and Na = N 0athen xfer!fack,NagK0ab.(Alice(K 0ab) + AliceSw(Kab))else AliceSw(Kab)))The complementary agent Bob is left out for brevity.The de�nition uses some abbreviations. Firstc!(T1; : : : ; Tn):A �= c:[T1] � � � [Tn]AfT1; : : : ; TngK �= K!(T1; : : : ; Tn):0

where T1; : : : ; Tn ranges over names and processes.Secondly we let c?(v1; : : : ; vn):A abbreviate the sumof all terms of the shape c:(�)�v1: � � � :(�)�vn:A wherethe � is optional, and requires the lambda to whichit is applied to be a free name abstraction. Observethat this involves a non-deterministic commitment toa particular choice of input parameter types and maythus introduce deadlocks. This can be remedied, butas we are only interested in properties to hold for allpossible computations the matter is insigni�cant.Compared to the \standard" account little has beenchanged except that the protocols have been aug-mented with message tags to handle control ow, anda data transfer phase, in which input data is receivedalong a channel in, encrypted and passed from Aliceto Bob, and then output along out. As our aim isto specify and analyse properties in terms of exter-nal input-output behaviour some such modi�cation isnecessary, and in most parts it is completely uncon-troversial. On two counts, however, some discussionis needed.Free and Bound Input Our process language pos-sesses the capability of detecting whether a given ar-gument occurred freely or bound at the sender. Onthe face of it this is clearly an unreasonable assump-tion: What is received are bit strings and even if sometag of some sort states the nature of the argument howis this tag to be trusted? On the other hand we needthis distinction in order to know, when a channel pa-rameter is received along a trusted channel, whetherto extend trust to this new channel or not. Our policyis simple: new channels communicated along trustedchannels are themselves to be trusted. The argumentof unreasonable expressiveness is countered by the ex-amples always allowing for both free and bound input,as is the case above.Looseness of Speci�cation The data transferphases of Alice and Bob consist simply of inputtinga piece of data, encrypting and then transferring itover the medium, respectively receiving the encryptedpackage, decrypting and then outputting. In this re-spect the model is overspeci�c: it states explicitly, forinstance, that old session keys are not corrupted. Butthis is too strong an assumption as many attacks usereplays with old and corrupted session keys. Ratherone would want to replace Alice by an open speci�-cation of the shapeAlice = �Kab.(F Kab);AliceSw Kabwhere F is a free abstraction variable subject to as-sumptions such as

� F never reveals its �rst argument to the outsideworld,� F never reveals secrets received along in, exceptwhen encrypted by Kab.4 Process PropertiesOur intention is to formulate properties like secrecyand authenticity as functional and temporal propertiesexpressing constraints on the input-output behaviourof the system under consideration. In our example thesystem consists of the agents Alice and Bob running inan unknown (and potentially hostile) environment Z.Z should be assumed to have access only to channelsand data open to outside intruders. This includes thechannel xfer. The initial value of Kab should be re-garded as trusted, as should the channels in and out.Suppose now that � expresses a correctness propertysuch as secrecy. The overall proof goal can then beformulated as a sequent of the shapeZ : ` �Kab:(Alice Kab j Bob Kab) j Z : �where is the assumption on Z (roughly: that Z doesnot know in and out).Since the intruder Z is already \part of" the globalsystem which is considered, the correctness property� does not need to speak about process passing: If eg.secrecy is violated there will be a way for Z to reveal asecret along a name which is not out, resorting to en-cryption or other second-order communication only in-ternally. More general properties which do talk aboutsecond-order communication will be needed once wearrive at the proofs, however.Thus a suitable functional + temporal logic for ourpurpose will need to talk about names and their iden-tities, properties of names and processes which areoutput, dependencies on names and properties of pro-cesses being received, in addition to usual safety prop-erties. Observe, however, that to express the correct-ness properties we have in mind there is no use forliveness properties or existential path quanti�cation.This fact will be quite useful once we come to considerthe semantics. The logic has the following primitives:� a = b, a 6= b, � ^ , � _ , 8a:�, 9a:�. This isjust �rst-order logic with equality. We also needbasic operations on �nite sets ~a: set membershipand quanti�cation over �nite sets.� ~a fresh, new ~a:�. The �rst primitive expressesthat no element of the set ~a occurs freely in theagent being predicated. The second primitiveexpresses of an agent A that it is identical toan agent of the shape �~b:A0 such that A0 has

the property f~b=~ag�. For now we can use theterm \identical" as meaning, roughly, \bisimula-tion equivalent". We return to this issue shortly.� [a]�, [�]�. These are the universal next-statequanti�ers well-known from modal logic. So [a]�will hold of an agent just in case it is a process,and whatever agent results from the performanceof an a-transition must satisfy �.� a! �, a!� �, a �. These primitives expressname input-output properties. The �rst expressesof an agent A that it is an abstraction �a0:A0, andthat fa=a0gA0 has the property �. The second ex-presses that A is an abstraction ��a0:A0, and thatfa00=a0gA0 has the property fa00=ag� whenever a00does not occur freely in neither ��a0:A nor � (mi-nus a). The third expresses the property that A isa concretion of the shape [a0]A0, that a = a0, andthat A0 has the property �. A fourth connectivea � � will be derivable, as new a:a �.� � ! , (� !) ! . These primitives are usedfor second-order communication. The functionarrow �! expresses of A that it is identical toa second-order abstraction �x:A0, and that if Pis a process satisfying �, then fP=xgA0 will haveproperty . The second primitive is a contextualproperty. It holds of a second-order (process) con-cretion A of the shape �~a:[P]A0 provided that forany receiving context f with the property �! ,the process �~a:(fP) j A0 will have the property .This idea of using a second-order implication tocapture contextual properties of process outputoriginates with the paper [3].In addition to these primitives our intention is to allowproperties to be de�ned by greatest �xed points in thestyle familiar from the modal �-calculus (cf. [7] for anadaptation to the �-calculus). This is quite straight-forward if we can de�ne the required properties usingcovariant recursion only. Unfortunately as yet we onlyhave solutions that make use of contravariant recur-sion, and thus we need to address the foundationalproblem of making sense of this. This we do in thesubsequent sections. First, however, some syntacticalmatters: Recursively de�ned properties take the shape(�X(a1; : : : ; an):�)(b1; : : : ; bn) (cf. [4]). Alternativelywe use the sugared form X(b1; : : : ; bn) in the contextof a de�nition of the shape X(a1; : : : ; an) => �. Werequire that recursive de�nitions are guarded in thesense that all occurrences of X in � must be withinthe scope of either a modal operator, or one of thearrows. A formula � is propositionally closed if � does

not have free occurrences of (parametrised) variablesX .5 Expressing TrustThe following predicate expresses a property oftrust in a �nite set ~a of channels. The example isgiven for monadic communication only. The general-isation to polyadic communication is quite easy andcan be found in the full version of the paper.~a trusted =>[�](~a trusted ^)8b:[b](~a trusted_~a trusted out after b _~a trusted in after b)~a trusted out after b =>(9c:c (~a trusted^ (c 2 ~a � b 2 ~a))) _(new c:c ((b 2 ~a � ~a; c trusted) ^(b 62 ~a � ~a trusted))) _(8~d.~d fresh � new ~c.(~a; ~d;~c trusted ! ~a; ~d;~c trusted)! ~a; ~d;~c trusted)~a trusted in after b =>(8c:c! ~a trusted) _(c!� (b 2 ~a � ~a; c trusted)^(b 62 ~a � ~a trusted)) _(8~c:~c fresh � ~a;~c trusted ! ~a;~c trusted))The idea is quite simple: To show that the processbeing predicated respects the trustedness of names in~a we need to consider the various transitions that maybe possible from the initial state and the various typesof continuation agents that may ensue. For instance,free outputs must be trusted only if the synchroni-sation channel is, and the continuation must preservetrust as stated. Bound outputs along trusted channelscause trust to be extended. For second order input theprocess being input must respect the trustedness of ~a,evidently. But in addition we must permit that pro-cess to mention other trusted information of which weare not yet aware. This information will be \fresh" tous, and we had better ensure that after input of theprocess we respect the trustnedness of both ~a and ~c(as it were).Observe the two contravariant occurrences of thetrustedness predicate, for the cases of second orderinput and output. We see no possibility at presentof avoiding these. Freeness checks, for instance, areclearly much too inexpressive. On the other hand thesemantics of the modal �-calculus on which the logicis built rests on the fact that �xed points are requiredto be computed of monotone operations only, and inthe presence of contravariant recursion monotonicity

will fail. This issue is addressed extensively in thefull version of the paper where we give two alternativesemantics of the logic, one based on intervals and stan-dard �xed point semantics, and an iterative semantics.Here we present only the latter.6 An Iterative SemanticsOur intention is to compute the semantics of a for-mula � as the limit of an increasing chain of sets ofagents k�kn(�), where n 2 ! is an approximation in-dex and � is an interpretation of predicate variables assets of agents (for simplicity we consider only set vari-ables). At each iteration step, k�kn(�) will be a setof agents which is permitted to depend on the behav-ior of agents only down to a global transition depthn. To get at this notion we introduce a version of thesimulation preorder.De�nition 1 (Simulation Preorder)1. De�ne the preorders�n inductively by the follow-ing clauses (where we use f to range over func-tions from names to abstractions or processes toabstraction, as appropriate given the context):(a) P �0 Q holds always.(b) P �n+1 Q i� fn(P) = fn(Q) and Q �! Bimplies P �! A such that A �n B.(c) �x:A1 �n+1 �y:A2 i� for all a (P),fa=xgA1 �n fa=ygA2 (fP=xgA1 �nfP=ygA2).(d) [a]A1 �n+1 [b]A2 i� a = b and A1 �nA2, �a:[a]A1 �n+1 �b:[b]A2 i� for all freshc, fc=agA1 �n fc=bgA2, �~a:[P]A �n+1�~b:[Q]B i� for all process abstractions �x:A0for which ~a and ~b are fresh, �~a:fP=xgA0 jA �n �~b:fQ=xgA0 j B.2. A � B i� for all n 2 !, A �n B. A � B i� A � Band B � A.3. Let S be a set of agents. Then "n S = fB j 9A 2S:A �n Bg.Observe that �, being the intersection of a simu-lation order and its converse, is strictly coarser thanbisimulation equivalence. We can now introduce thesemantics:k�k0 = fA j A an agentgkXkn+1(�) ="n+1 �(X)k�X:�kn+1(�) = k�kn+1(fk�X:�kn(�)=Xg�)k� ^ kn+1(�) = k�kn+1(�) \ k kn+1(�)

k� _ kn+1(�) = k�kn+1(�) [k kn+1(�)k~a freshkn+1(�) = fA j ~a \ fn(A) = ;gknew �kn+1(�) = fA j �~a:A0 �n+1 A;A0 2 k�kn+1(�)gk[�]�kn+1(�) = fP j P �! A � A 2 k�kn(�)gka! �kn+1(�) = f�b:A j fa=bgA 2 k�kn(�)gka!� �kn+1(�) = f�b:A j fa0=bgA 2 kfa0=ag�kn(�);a 62 fn(�b:A) [(fn(�)� fag)gka �kn+1(�) = f[a]A j A 2 k�kn(�)gk�! kn+1(�) = k�kn(�)! k kn(�)k(�!)! kn+1(�)= f�~a:[P]A j 8(�x:A0) 2 k�kn(�)! k kn(�):�~a:fP=xgA0 j A 2 kkn(�)gObserve that guardedness is important for this de�ni-tion to make sense. Abbreviate k�kn(�) by k�kn when� is propositionally closed, and let k�k = Tn2! k�kn.7 The Andrew Protocol: Speci�cationWe adopt the following intuitive account of secrecy:� Secrecy: A fresh piece of datum (ie. a secret) re-ceived along in can only be output along a secretchannel.Our aim is to formalise this as a formula � for whichthe following kind of sequent should be established(1) Z : fin; outg fresh` (�Kab:Alice Kab j Bob Kab) j Z : �:Finding such a � is not di�cult:~a secret =>[�](~a secret) ^[in](bound input � b!� ~a; b secret)8c:[c](free output � 9d:d ((d 2 ~a � c 2 ~a) ^ ~a secret))We use the following two ancillary predicates:bound input = a!� truefree output = 9a:a trueThe property � of (1) becomes fin; outg secret.The speci�cation of secrecy reects the intuition veryclosely. Secrets are either members of the initial valueof ~a, or they have sometime been input along in as afresh name. Observe that only traces of � -transitions,name inputs along in, or free outputs are considered.This is admissible as correctness is stated of an opensystem: If we accidentally choose a Z which violatessecrecy by, say, passing secret-revealing processes tothe outside world through an unsafe channel, thenthere will be another Z which decodes these secret-revealing processes to pass out the (�rst-order) secretsin a manner that will violate the proof goal.

8 Proving TrustSecrecy is proved using the trusted predicate intro-duced earlier. Proofs can be found in the full versionof the paper.Lemma 2 X : ~a; in trusted ` X : ~a; in secretThe problem of proving secrecy is thus \reduced" tothe problem of proving trust. The point of the trust-edness predicate is that it lends itself to a structuralanalysis. The veri�cation takes the shape of series oflemmas intended to support this structural analysis.The most di�cult issue is how to deal with parallelcomposition. In this case we need to be careful aboutthe creation of new internal resources. We extend thesequent notation slightly, following the suggestion of[4], by writing, eg., X : �; Y : ~̀b X j Y : to ex-press that whenever X satis�es � and Y satis�es ,then �~b:(X j Y) satis�es , where the scope of ~b in-cludes both � and (but not). The delicate part ofthe trustedness predicate is to deal with the situationsin which the \coverage" of the trust predicate needsto be modi�ed because trusted channels are given lo-cal scopes, or because trust needs to be extended tochannels that are currently unknown to the agent be-ing predicated.For the proofs we need lemmas of the following sort:Lemma 31. X : ~a trusted; X : ~b fresh ` X : ~a;~b trusted2. For all P , ` P : ; trustedA consequence of lemma 3 is that P : ~a trustedfor any set ~a of names that do not occur in P . Thenext lemma shows that trusted names can safely belocalised.Lemma 4 X : ~a;~b trusted ~̀b X : ~a trustedFor the case of process outputs we also need to con-sider expanding the set of trusted names to fresh onesfor functions:Lemma 5 Assume that X : ~a trusted ` A :~a trusted and ~b \ fn(A) = ;. Assume also that` B : ~a;~b trusted. Then ` fB=XgA : ~a;~b trusted.The proof of this lemma turns out to be surprisinglydelicate, and requires techniques that are somewhatdi�erent from the quite elementary techniques usedelsewhere in this section. Essentially lemma 5 statesa property which is much more \intensional" thanthe corresponding property 3, concerning, as it does,

function de�nability: All functions in ~a trusted !~a trusted that do not \mention" ~b can be extendedto functions in ~a;~b trusted! ~a;~b trusted.Using the stated lemmas we can then proceed to the�rst main result, showing that the trustedness predi-cate is preserved by parallel composition:Lemma 6X : ~a;~b trusted; Y : ~a;~b trusted ~̀b X j Y :~a trusted9 Deriving a Type SystemIn this section we show how a type system for in-ferring judgments of the form � `~a A : ~b trusted canbe derived from the results achieved so far. Here � isa set of hypotheses which are either boolean combina-tions of name equations or inequations, or of one of theforms x : ~a trusted, or f : ~a trusted ! ~a trusted.The proof system uses an ancillary relation � ~̀b A :c fresh to hold if c does not occur freely in �~b:A, andwhenever x (f) is a process (function) variable occur-ring in � then � ` x : c fresh. For concerns of spacewe leave out most rules from the abstract and give justa few examples.The inference system include structural rules topreform case analysis, and to reect most lemmas ofthe previous section, such as:� ~̀b P : ~a;~c trusted� ~̀b;~c P : ~a trusted� ~̀b P : ~a trusted � ~̀b P : ~c fresh� ~̀b P : ~a;~c trusted� ` A : ~a trusted! ~a trusted � ` A : ~c fresh� ` A : ~a;~c trusted! ~a;~c trustedSecondly a set of term rules are needed to structurallydecompose trust assertions, such as:�� ~̀b 0 : ~a trusted� ` P : ~a trusted � ` Q : ~a trusted� ` P j Q : ~a trusted�0 ~̀b;~c A : ~a trusted� ~̀b �~c:A : ~a trusted (See below)� ~̀b A : ~a trusted c fresh� ~̀b �c:A : ~a trusted in after d� j= d 2 ~a c fresh � ~̀b A : ~a; c trusted� ~̀b ��c:A : ~a trusted in after d

The set �0 in rule Nu is computed in the followingway:�0 = � [fx : ~c fresh j x mentioned in �g[ff : ~c fresh j f mentioned in �gTo terminate proof construction we have the followingrule of unfolding and discharge:[�0 `~b0 D(d1; : : : ; dn) : ~a0 trusted]...� ~̀b F (c1; : : : ; cn) : ~a trusted� ~̀b D(c1; : : : ; cn) : ~a trustedThe rule is subject to the sidecondition that �0 `~b0D(d1; : : : ; dn) : ~a0 trusted is a substitution instance of� ~̀b D(c1; : : : ; cn) : ~a trusted, and that the assumeddeduction �0 `~b0 D(d1; : : : ; dn) : ~a0 trusted...� ~̀b F (c1; : : : ; cn) : ~a trustedis non-trivial in the sense that it includes the appli-cation of a term rule (cf. similar side conditions in[7]). The type system is sound. We conjecture thatthe system is complete and decidable for the fragmentwithout blocking. The full version of the paper con-tains a proof of secrecy of the Andrew protocol usingthe type system.10 ConclusionWe have shown how to represent key managementprotocols as second-order processes, how to specify se-crecy as a higher-order temporal logic formula, howto give semantics to such a logic in face of contravari-ant recursion, and how to prove properties of trust instructural terms.As an approach to analysing correctness propertiesof security and authentication protocols our approachsu�ers serious shortcomings which we have not yet re-solved. First, trust in monotonically increasing sets ofchannels is not of huge practical interest. Protocols,and protocol users, in particular, must be permitted torevoke trust in resources such as old session keys thatare no longer in use. However, our trust predicatedoes not permit this, as it does not reect the proto-col features that govern trust revocation (eg. trust inthe current session key can be revoked once a new ses-sion key has been agreed upon). Observe though thatthis problem is shared with other approaches in theliterature to information ow analysis based on type

inference or static analysis. In future work we willhave to investigate more re�ned versions of the trustpredicate. Also we have not yet considered proofs ofauthenticity. Another important aspect is to repre-sent other encryption primitives such as public-keyencryption and computed keys. Structured channelsas in [10] appear useful and could easily be accomo-dated. Finally we need to address the correctness ofour representation of encryption, and to what extentthe higher-order model is really necessary and useful.An alternative could be to reduce to �-calculus properas suggested in the full version of [2]. This optionand its relation to our higher-order model would beworth exploring further. A noteworthy point is that inthe presence of the blocking operator the reduction ofhigher-order processes to �rst-order ones by Sangiorgi[12] is not applicable. We are currently accumulatingstrong evidence to suggest that the reduction from thesecond-order calculus with blocking to the �rst-order�-calculus with or without blocking while feasible inprinciple is very complicated and de�nitely not suit-able as a modelling tool.AcknowledgementsThanks are due to Mart��n Abadi, Jos�e Luis Vivas,Alan Mycroft and Dilian Gurov for comments and dis-cussions on several topics treated here. It is the creditof Jose-Luis to have observed the need for �rewallingusing the blocking operator. Also thanks are due toone anonymous referee in particular for some very in-sightful comments. The work was partially supportedby Esprit BRA 8130 LOMAPS and a Swedish Foun-dation for Strategic Research Junior Individual Grant.Part of the work was done while visiting CMI, Univer-sit�e d'Aix Marseille 1. The full version is available asftp://ftp.sics.se/pub/fdt/mfd/ptssop.ps.Z.References[1] M. Abadi. Secrecy by typing in security pro-tocols (draft). Manuscript, Available throughhttp://www.research.digital.com/SRC/, 1997.[2] M. Abadi and A. D. Gordon. A calculus for cryp-tographic protocols: The spi calculus. In Proc.4th ACM Conference on Computer and Commu-nications Security, pages 36{47, 1997. Full ver-sion available as tech. rep. 414, Univ. CambridgeComputer Lab.[3] R. Amadio and M. Dam. Reasoning about higher-order processes. In Proc. CAAP'95, LectureNotes in Computer Science, 915:202{217, 1995.

[4] R. Amadio and M. Dam. A modal theory of typesfor the �-calculus. In Proc. FTRTFT'96, LectureNotes in Computer Science, 1135:347{365, 1996.[5] J.-P. Banâtre, C. Bryce, and D. Le Metayer.Compile time detection of information ow in se-quential programs. In Proc. European Symp. onResearch in Computer Security, LNCS 875, pages55{73, 1994.[6] M. Burrows, M. Abadi, and R. M. Needham. Alogic of authentication. Proc. Royal Society ofLondon A, 1989.[7] M. Dam. Model checking mobile processes. In-formation and Computation, 129:35{51, 1996.[8] D. Denning. Certi�cation of programs for secureinformation ow. Communications of the ACM,20:504{513, 1977.[9] R. Focardi and R. Gorrieri. The compositionalsecurity checker: A tool for the veri�cation of in-formation ow properties. To appear in IEEETransactions on Software Engineering.[10] G. Lowe. Breaking and �xing the Needham-Schroeder public-key authentication protocol.Proc. TACAS, Lecture Notes in Computer Sci-ence, 1055:147{166, 1996.[11] R. Milner, J. Parrow, and D. Walker. A calculusof mobile processes, I and II. Information andComputation, 100(1):1{40 and 41{77, 1992.[12] Davide Sangiorgi. From �-calculus to Higher-Order �-calculus | and back. in Proc. TAP-SOFT'93 Lecture Notes in Computer Science,668:151{166, 1993.[13] B. Thomsen. A calculus of higher order com-municating systems. In Proc. POPL'89, pages143{154, 1989.[14] D. Volpano, G. Smith, and C. Irvine. A soundtype system for secure ow analysis. Journal ofComputer Security, 4:1{21, 1996.

