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Abstract

We propose a lightweight approach for certification of Java byte-
code monitor inlining using proof-carrying code. The main purpose
of such a framework is to enable development use of monitoring for
quality assurance, while minimizing the runtime overhead of monitor-
ing, minimizing the need for changes to the load- and runtime tcb,
and eliminating the need for post-shipping code rewrites with the re-
sulting loss of liability. Policies to be enforced are specified in the
ConSpec policy specification language which, roughly, express regular
sequences of method calls to some fixed API. Proofs are represented as
Java class files augmented with logical assertion in Floyd/Hoare logic
style: Assertions are associated to each program point as well as to
method entry and (exceptional and normal) exit points using stan-
dard, JML-style pre- and post-conditions. Such a proof representation
is adequate in our case, as all proofs generated in our framework can
be recognized in time linear in the size of the associated program. The
basic proof generation strategy is to compare the effects of an actual,
untrusted, inliner, with the effects of a trusted “ghost” inliner which
is never actually executed, but is nonetheless present for analysis pur-
poses. At time of receiving a program with proof annotations, it is
sufficient for the receiver to plug in its own trusted ghost inliner and
check the resulting, given, verification conditions, to be sure inlining
has been performed correctly, of the correct policy. We have proved
correctness of the approach at the Java bytecode level. A prototype
implementation has been produced. We finally report on an example
based on a J2ME snake game with a simple two-state policy.

1 Introduction

Program monitoring is a well-established and efficient approach to prevent
potentially misbehaving software clients from causing harm, for instance by
violating system integrity properties, or by accessing data to which the client
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is not entitled. The conceptual model is simple and familiar from policy-
based management: Potentially dangerous actions by a client program are
intercepted and routed to a policy decision point (pdp) in order to determine
whether the actions should be allowed to proceed or not. In turn, these
decisions are routed to a policy enforcement point (pep), responsible for
ensuring that only policy-compliant actions are executed.

Explicit Policy Monitoring Often, clients, pdp’s, and pep’s, are viewed
as independently executing, possibly distributed, agents, that use OS and
network services for communication and synchronization. For application
programs that execute in a local environment such as a Java Runtime En-
vironment, this model, however, has a number of drawbacks:

• Concepts needed for policy enforcement such as application program,
state, thread, session, and “potentially dangerous action” may be ev-
ident at the level of a Java runtime system, but not at the system, or
OS level.

• The machinery needed for policy enforcement needs to interfere with
both application program execution (i.e. the Java runtime system),
and the relevant OS and network service primitives. It is far from
obvious that this can be done without affecting program behaviour,
even in the case of policy-compliant programs, for instance in the case
of threading.

Monitor Inlining A complementary approach is to use monitor inlin-
ing [12]. This approach uses program rewriting to push some or all pol-
icy enforcement functionality into the client programs themselves, by code
rewriting. When applicable, this has a number of advantages:

• Overhead for marshalling and demarshalling policy information be-
tween the various decision and enforcement points in the system is
eliminated.

• All information needed for policy enforcement is directly available to
the pdp and the pep.

• Extensions to the runtime trusted computing base (tcb) needed for
policy enforcement are localized to the client program.

• By proving the inliner correct, in the sense that it enforces the policy
correctly, and that it interferes with program execution only when
necessary, the need for extensions (trust) can to a large extent be
eliminated.
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This, however, presupposes that inlining is performed under the jurisdiction
of the executing agent. Otherwise, some mechanism is needed to transfer
evidence that the inlining has been performed correctly from the site per-
forming the inlining to the site using the inlined code. One method for
doing this is code signing, but this reintroduces the need for trust, and the
need for a large and complex tcb to support this. In this paper we examine
the possibility of instead using a proof-carrying code architecture to certify
policy compliance at a semantical level. This approach has some interesting
advantages:

• The need for extra trust relationships on the runtime tcb is eliminated.

• The enforcement architecture can be realized in a way which is back-
wards compatible, in the sense that pcc-aware client programs can be
executed without modification in a pcc-unaware host environment.

The cost, of course, is the need for a loadtime proof checker which in this
case, however, is quite simple.

Certified Monitoring The goal is to make monitor inlining available as
a quality assurance tool to the application developer in a transparent and
fully automated way. Given a policy to be enforced we provide the means
to automatically inline a monitor for this policy, along with a proof, as a
set of annotations to the Java bytecode, that the resulting inlined program
is indeed policy compliant. Upon receiving such an annotated application
program, the receiving agent can then, again without user intervention,
perform two essential checks:

1. A check that the statement proved is correct, i.e. that the policy
claimed for the bytecode is indeed a policy accepted by the receiving
agent.

2. A check that the proof itself is correct, in the sense that the conclu-
sion —that the application program is policy adherent—indeed follows
from the bytecode according to sound steps of reasoning provided by
the bytecode annotations.

Inliner Our approach is as follows. Policies are given as security automata
in the style of Schneider [26] in a special-purpose language, ConSpec [4],
developed in the context of the EU FP6 S3MS project [1]. The policies
express constraints on the allowed sequences of calls to some selected set
of API methods. An inliner for such a policy converts the corresponding
security automaton to snippets of Java bytecode, to be inserted at selected
points in the instruction sequence for each application method. The inliner
examined in this paper follows the principles of previous work in this area,
including [12, 3, 9] and Erlingsson’s PoET/PSLang toolset [12].
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Proof Generation The key idea in proof generation is to compare the
effects of the embedded, untrusted, inliner with a trusted inliner, inserted
as explicit ghost instructions in each method instruction sequence. The
two inliners are compared through a monitor invariant, expressing that the
state of the embedded inliner is in synchrony with that of the ghost inliner.
This monitor invariant is inserted, as annotations, at method entry, method
exit, and at each method call point. In principle we would then use a wp-
based proof completion procedure to propagate verification conditions to the
remaining program points. Unfortunately, there is no guarantee that such
an approach would be feasible. However, it turns out that it is sufficient to
perform the wp propagation for the inlined code snippets and not for the
client code, under some critical assumptions:

• The inlined code appears as contiguous subsequences of the entire
instruction sequences in the inlined methods.

• Control transfers out of these contiguous snippets are allowed only
when the monitor invariant is guaranteed to hold.

• Control transfers into the inlined snippets are allowed only when the
wp-generated assertions follow from the monitor invariant.

• The embedded monitor state is represented in such a way that a simple
syntactic check suffices to determine if some non-inlined instruction
can have an effect on its value.

We claim that our approach can handle any inliner which adheres to these
four constraints. The last constraint can be handled, in particular, by imple-
menting the embedded monitor state as a static member of a final security
state class. The important consequence is that, for instructions that do not
appear in the inlined snippets, and not including putstatic instructions to
the security state field, it is sufficient to annotate the corresponding program
point by the monitor invariant to obtain a fully annotated method which is
locally valid in the sense that method pre- and post-conditions match, and
that each program point annotation follows from successor point annotations
by simple and local reasoning alone.

Proof Recognition This approach to proof generation allows a corre-
spondingly simple approach to proof recognition at the receiving end. Trans-
mitted applications will be constructed from fully annotated class files from
which the ghost instructions have been removed. Property (1) and (2) above
can then be checked by the receiving agent simply by inserting its own ghost
inliner in place of the ghost inliner used during proof generation, and by
checking local validity of the resulting fully annotated program. Note that
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this approach makes proof recognition quite independent of the actual in-
liner used: As long as the proof generation principles using static final ghost
states is adhered to, any inliner producing locally valid annotations will do.

Contributions The contribution of this paper is to show formally the
soundness of this approach at the level of Java bytecode. We also report
briefly of a prototype implementation of proof generation and proof recog-
nition tools, the latter executable on Java enabled mobile devices.

1.1 Related Work

Proof-Carrying Code For background on proof-carrying code we refer to
[23]. Our approach is based on simple Floyd-like program point annotations
in the style of Bannwarth and Müller [5], and method specifications extended
by pre- and post-conditions in the style of JML [15].

Security Automata Schneider [26] proposed the use of automata as a
tool to formalize security policies, and monitor inlining to enforce such poli-
cies was examined in [12, 11]. The PoET/PSLang toolset by Erlingsson
[11] implements monitor inlining for Java. That work represents security
automata directly in terms of Java code snippets, making it difficult to for-
mally prove correctness properties of the approach. Subsequent work on
monitor inlining includes [3] and [9]. Edit automata [21, 22] are examples
of security automata that go beyond pure monitoring, as truncations of the
event stream, to allow also event insertions, for instance to recover gracefully
from policy violations.

Type-Based Enforcement A number of authors have considered type
systems for security policy enforcement, e.g. [27, 28, 16, 8, 13]. Directly
related to the work reported here is the type-based Mobile system due to
Hamlen et al [16]. The Mobile system uses a simple library extension to Java
bytecode to help managing updates to the security state. The use of linear
types allows a type system to localize security-relevant actions to objects
that have been suitably unpacked, and the type system can then use this
property to check for policy compliance.

Mainly, in comparison to [16], we consider our work as examining to
which extent a pcc approach could be a suitable alternative to the use of
types. In principle, a pcc approach could be useful, as it might allow richer
classes of programs and inlining strategies to be admitted. Although it is
premature to draw any firm conclusions, we believe this may indeed be the
case. Compared to our work, the approach of [16] addresses threads, but not
inheritance. An extension of our work to threads is left to future work. The
security policies considered are not directly comparable. Mobile enforces
per-object policies, whereas the policies enforced in our work (as in most
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work on IRM enforcement) are per session. Since Mobile leaves security
state tests and updates as primitives, it is quite likely that Mobile could be
adapted, at least to some forms of per session policies. On the other hand, to
handle per-object policies our approach would need to be extended to track
object references. Finally, it is worth noting that Mobile relies on a specific
inlining strategy, whereas our approach is less sensitive to this. Indeed, [3]
shows how to generate annotations under rather modest assumptions on the
inliner, by fixing control points immediately before and after each method
call at which the embedded state must be correctly updated.

1.2 Overview of the Paper

After a few notational preliminaries we present the JVM execution model
in section 3. In section 4 the state assertion language is introduced, and in
section 5 we address method and program annotations, give the conditions
for (local and global) validity used in the paper, and sketch a soundness proof
for local validity. We briefly describe the ConSpec language in section 6, and
(our version of) security automaton is introduced in section 7. The inlining
algorithm is specified is section 8. Section 9 introduces the ghost inliner,
and section 10, then, presents the main results of the paper, namely the
algorithms for proof generation and proof recognition, including soundness
proofs. Finally, section 11 reports briefly on our prototype implementation,
and we conclude by discussing some open issues and directions for future
work. A standard JVM semantics for instructions used by the inliner and
some proofs are deferred to the appendix.

1.3 Acknowledgements

Thanks to Irem Aktug, Dilian Gurov, Bart Jacobs and Johan Linde for
useful discussions on many topics related to monitor inlining.

2 Preliminaries

A stack is an element s ∈ A∗, s[i] is the i’th element of s counting from the
top, if defined, v :: s is the stack obtained by pushing v on the top of s, and
lth(s) is the length of s. We write a for sequences a0, . . . , an.

3 Program Model

We assume that the reader is familiar with Java bytecode syntax, the Java
Virtual Machine (JVM), and formalisations of the JVM such as [14]). Here,
we only present components of the JVM, that are essential for the definitions
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in the rest of the text. A few simplifications have been made in the presen-
tation. In particular, we disregard static initializers and to ease notation a
little we ignore issues concerning overloading.

Classes and Types We use c for class names, m for method names, and
f for field names. For our purpose it suffices to think of class names as
fully qualified. A type τ is either a primitive type, including integers, or
an object type, determined by a class name c. An object type determines a
set of fields and methods defined for that type through its class declaration.
The class declarations induce a class hierarchy, and we write c1 <: c2 if
c1 is a subclass of c2. If c defines m (declares f) explicitly, then c defines
(declares) c.m (c.f). Otherwise, c defines c′.m (declares c′.f) if c is the
smallest superclass of c′ that contains an explicit definition (declaration)
of c.m (c.f). Single inheritance ensures that definitions/declarations are
unique, if they exist.

Values and Objects Each type τ determines a set ‖τ‖ of values of that
type, and Val =

⋃
τ ‖τ‖ is the set of values, ranged over by v. Integers

are infinite precision. Values of object type are (typed) locations � ∈ Loc,
mapped to objects, or arrays, by a heap h. The typing assertion h � v : c
asserts that v is location Loc, and that in the typed heap h, Loc is defined and
of type c, and similarly for arrays. Typing preserves the subclass relation,
in the sense that if h � v : c and c <: c′ then h � v : c′ as well. For objects,
it suffices to assume that if h � v : c then the object h(v) determines a field
h(v).f (method h(v).m) whenever f (m) is declared (defined) in c. Non-
static fields are values. Static fields are identified with field references of the
form c.f . To handle those, heaps are extended to assignments of values to
field references.

Methods A method environment is a mapping Γ, usually elided, taking
method references to their definitions. To simplify notation, method over-
loading is not considered, so a method is uniquely identified by a method
reference of the form M = c.m. A method c.m has type γ → τ , written
c.m : γ → τ , if γ is the list of argument types and τ is the return type of the
method. A method definition is a pair (I,H) consisting of an instruction
array I and an exception handler array H. We use the notation M [L] = ι
to indicate that Γ(M) = (I,H) and IL is defined and equal to the instruc-
tion ι. The exception handler array H is a partial map from integer indices
to exception handlers. An exception handler (b, e, t, c) catches exceptions of
type c and its subtypes raised by instructions in the range [b, e) and transfers
control to address t, if it is the topmost handler that covers the instruction
for this exception type.

7



Configurations and Transitions A configuration of the JVM is a pair
C = (R,h) of a stack R of activation records and a heap h. For normal
execution, the activation record at the top of the execution stack has the
shape (M, pc, s, r), where:

• M is a reference to the currently executing method.

• The program counter pc is an index into the instruction array of M .

• The operand stack s ∈ Val∗ is the stack of values currently being
operated on, including local variables.

• r is an array of registers, or local variables.

We assume a transition relation →JVM on JVM configurations. In appendix
A we give details for instructions used in our inliner. A configuration of the
shape C = ((M, pc, s, r) :: R,h) is calling, if M [pc] is an invoke instruction,
and it is returning normally, if M [pc] is a return instruction. For exceptional
configurations the top frame has the form (b) where b is the location of an
exceptional object, i.e. of class THROWABLE. Such a configuration is called
exceptional. With reference to the semantics shown in appendix A we say
that C is returning exceptionally if C is exceptional, and if C →JVM C ′

implies that C ′ are exceptional as well. I.e. the normal frame immediately
succeeding the top exceptional frame in C is popped in C ′, if C ′ is exceptional
as well.

Programs and Types For the purpose of this paper we can view a pro-
gram P as a collection of class declarations determining types of fields and
methods belonging to classes in P , and a method environment Γ giving a
method definition of each method in P . An execution E of a program P
is a (possibly infinite) sequence of JVM configurations C0C1 . . . where C0 is
an initial configuration consisting of a single, normal activation record with
an empty stack, no local variables, M as a reference to the main method of
P , pc = 0, Γ set up according to P , and for each i ≥ 0, Ci →JVM Ci+1. We
restrict attention to configurations that are type safe, in the sense that heap
contents match the types of corresponding locations, and that arguments
and return/exceptional values for primitive operations as well as method
invocations match their prescribed types. The Java bytecode verifier serves,
among other things, to ensure that type safety is preserved under machine
transitions (cf. [19]).

API Method Calls The only non-standard aspect of →JVM is the treat-
ment of API methods. We assume a fixed API for which we have access only
to the signature, but not the implementation, of its methods. We therefore
treat API method calls as atomic instructions with a non-deterministic se-
mantics. This is similar to the approach taken in, e.g. [24]. In this sense, we
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do not practice complete mediation [25]. When an API method is called ei-
ther the pc is incremented and arguments popped from the operation stack
and replaced by an arbitrary return value of appropriate type, or else an
arbitrary exceptional activation record is returned. Similarly, the return
configurations for API method invocations contain an arbitrary heap, since
we do not know how API method bodies change heap contents.

Our approach hinges on our ability to recognize such method calls. This
property is destroyed by the reflect API, which is left out of consider-
ation. Among the method invocation instructions, we discuss here only
invokevirtual; the remaining invoke instructions are treated similarly.

4 Assertions

In the appendix we present a transition semantics for a collection of instruc-
tions I used by the inliner. The main use of this semantics is to serve as
justification of a wp characterization, also shown in the appendix. The wp
characterization uses Floyd-style annotations of each program point (possi-
ble value of pc for the given method) in a standard fashion.

Assertion Syntax The annotations are given in an assertion language
similar to that introduced by Bannwarth and Müller [5]. Assertions a and
expressions e used in this language are given in the following abstract syntax:

e ∈ Exp ::= v | e.f | c.f | si | ri | e BOp e

a ∈ Ast ::= e BRel e | a ∧ a | ¬a | e : c

where i ∈ ω. We use BOp as a generic binary operator among integer
addition, subtraction, and multiplication, and similarly BRel ranges over
integer less-than and equality. The expression si accesses the i’th element
of the operation stack, and ri accesses the i’th register; a heap assertion is
one that does not reference the stack, or any of the registers. Disjunction
(∨), implication (⇒) and unary minus are defined as usual.

Assertion Semantics Expressions and assertions are evaluated relative
to a configuration C = (R,h). Expressions return elements in the lifted
domain of integers and locations as follows:

• |e.f |C =

⎧⎨
⎩

h(|e|C).f, |e|C is defined and of
object type c such that c declares f

⊥, otherwise

• |c.f |C =
{
h(c.f), if c declares f
⊥, otherwise
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• |si|C =

⎧⎨
⎩

s[i], if ∃R,h,M, pc, s, r.C = ((M, pc, s, r) :: R,h), and
lth(s) ≥ i

⊥, otherwise

• |ri|C =

⎧⎨
⎩

r[i], if ∃R,h,M, pc, s, r.C = ((M, pc, s, r) :: R,h), and
lth(r) ≥ i

⊥, otherwise

• |e1 BOp e2|C = |e1|C BOp |e2|C
Assertions are then evaluated as expected:

• |e1 BRel e2|C =

⎧⎨
⎩

TRUE if |e1|C and |e2|C are both defined
and, if they are, |e1|C BRel |e2|C

FALSE otherwise

• |e : c|C =

⎧⎨
⎩

TRUE if |e|C is defined, of object type, and
h � |e|C : c

FALSE otherwise ,

and boolean operations are evaluated as usual.
We define a syntactical macro for conditional expressions IF(a0, a1, a2) =

(a0 ⇒ a1) ∧ (¬a0 ⇒ a2) as well as a generalized form which takes an array
of conditions, an array of values and an “else”-value

SELECT(a1,a2, aelse) = IF(a1,0, a2,0, IF(a1,1, a2,1, . . . , IF(a1,n, a2,n, aelse) . . .)).

5 Extended Method Definitions

In this section we extend method definitions by assertion annotations at
each program point, and by pre- and post-conditions at method entry and
(normal or exceptional) return.

Definition 1 (Extended Method Definition) An extended method de-
finition is a tuple (I,H,A, req , ens , exs) where

1. (I,H) is a method definition,

2. A is an array of assertions such that |I| = |A|, representing a proof
outline of the local validity of the method,

3. req (requires), ens (ensures), exs (exsures) are heap assertions.

Extended method environments take method references to extended method
definitions, and an extended program is a program with an extended envi-
ronment.
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We often refer to assertions req as the precondition, and to ens and exs as
the (normal and exceptional) postconditions of the given method. The pre-
and post-conditions are assumed to be heap assertions for simplicity: This is
sufficient for the purpose of the present paper, and it makes for a much sim-
pler “calling convention”. For extended programs, the notions of transition
and execution are not affected by the presence of annotations. An extended
program is valid, if all annotations are validated by their corresponding con-
figurations in any execution starting in a configuration satisfying the initial
precondition. Or, in other words:

Definition 2 (Extended Program Validity) An extended program P is
valid if for each maximal execution E = C0C1 · · · of P such that |reqmain|C0

= TRUE, for each i : 0 ≤ i(≤ |E|), if Ci has the shape ((M, pc, s, r) :: R,h)
and Γ(M) = (I,H,A, req , ens , exs) then

1. |Apc |Ci = TRUE

2. If pc = 1 then |req |Ci = TRUE

3. If Ci is returning normally then |ens |Ci = TRUE

4. If Ci is returning exceptionally, and Ci has the shape ((b) :: (M, pc, s, r)
:: R,h) then |exs |Ci = TRUE.

Validity is the basic semantic notion of interest. It is, however, neither
modular, nor tractable. In its place we work with the following notion of
local validity expressed using weakest preconditions and local conditions on
control transfer. To explain this let Γ(M) = (I,H,A, req , ens , exs). The
weakest precondition function wpM : dom(I) → Ast computes weakest pre-
conditions according to table 1. The definition uses the auxillary functions
shift and unshift which increments, resp. decrements, each stack index by
one. Also, by convention, AL = FALSE whenever L > |I|.

The wpM function takes method pre- and post-conditions from M , and
M :s assignment of assertions to program points, to compute the weakest
assertion required at a given program point, for the “successor assertions”
to hold at “successor configurations”, including, in particular, the exsures
assertion in case the instruction concerned is ATHROW.

Our approach to verification condition generation is based on weakest
preconditions for instructions produced by the inliner, and an easily com-
putable approximation of the weakest precondition for other instructions.
For this reason it is useful to generalize the setting slightly. In the context
of an extended method definition Γ(M) = (I,H,A, req , ens , exs), an anno-
tation transformer is a mapping fM : Dom(I) → Ast which typically, for a
given program point, iterates the wp computation one step.

The correctness of the wp definition is captured by the following key
per-instruction property:
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IL AL

INSTANCEOF c AL+1[s0 : c/s0]
ALOAD n unshift(AL+1[rn/s0])
ASTORE n (shift(AL+1)) ∧ s0 = rn

ATHROW
SELECT((s0 : c ∧ b ≤ L < e)(b,e,L′,c)∈H ,

(AL′)(b,e,L′,c)∈H , exs)
DUP unshift(AL+1[s1/s0])
GETFIELD f unshift(AL+1[s0.f/s0])
GETSTATIC c.f unshift(AL+1[c.f/s0])
GOTO L′ AL′

ICONST n unshift(AL+1[n/s0])
IF ICMPEQ L′ IF(s0 = s1, shift2(AL′), shift2(AL+1))
IFEQ L′ IF(s0 = 0, shift(AL′), shift(AL+1))
PUTSTATIC c.f shift(AL+1)[s0/c.f ]
LDC v unshift(AL+1[v/s0])
INVOKESTATIC System.exit TRUE

Table 1: Specification of the wpM function

Property 1 Let Γ(M) = (I,H,A, req , ens , exs). The annotation trans-
former fM is valid on a configuration C = ((M, pc, s, r) :: R,h) which is
neither calling nor returning, if the following properties hold:

1. Suppose that C →JVM C ′ = ((M ′, pc ′, s′, r′) :: R′h′. Then |Apc′ |C ′ =
|wpM (A)pc |C.

2. Suppose that C →JVM C ′ = ((b′) :: (M, pc ′, s′, r′) :: R′, h′) →JVM C ′′ =
((M, pc ′′, s′′, r′′) :: R′′, h′′) (so that C ′ is not returning exceptionally).
Then |Apc′′ |C ′′ ≡ |wpM (A)pc |C.

3. Suppose that C →JVM C ′ = ((b′) :: (M ′, pc ′, s′, r′) :: R′, h′) →JVM

((b′′) :: (M ′′, pc ′′, s′′, r′′) :: R′′, h′′) (so that C ′ is returning exception-
ally). Then |exs |C ′ ≡ |wpM (A)pc |C.

We phrase this as a property rather than as a lemma as we for now only
establish it for instructions that are used by the inliner.

Lemma 1 The annotation transformer wpM defined in table 1 is valid on
all configurations C = ((M, pc, s, r) :: R,h) for which wpM is defined.

Proof The proof is a case analysis on the instruction M [pc]. Here we
address only the case M [pc] = ATHROW. The remaining cases are straight-
forward.

We first prove 2. If C →JVM C ′ then C ′ has the shape ((l) :: (M, pc, s, r)
:: R,h), and if C ′ is not returning exceptionally then C ′′ = ((M, pc ′, l, r) ::
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R,h) such that (pc, l, h) matches an earliest entry (b, e, pc ′, c) in the ex-
ception handler table. We then just need to use the assumption |Apc′ |C ′′

to conclude that |wpM (A)pc |C = TRUE. For the converse implication, if
|wpM (A)pc |C = TRUE, since C ′ is not returning exceptionally, this can only
be because there is some earliest entry (b, e, pc ′, c) that matches l and pc,
making |Apc′ |C ′′ = TRUE as required. �

We can then define a suitable notion of local validity in the following
way:

Definition 3 (Local Validity) Let an extended method definition M =
(I,H,A, req , ens , exs) be given.

1. M is locally valid, if there is a valid annotation transformer fM such
that

(a) req ⇒ A0

(b) AL ⇒ f(A,L) for all program points L ∈ Dom(I).

2. The extended program P is locally valid, if each extended method def-
inition in P is locally valid, and if, whenever M = (I,H,A, req , ens ,
exs) and IL is an invoke instruction with (static) method reference c.m
then, whenever c′ is any class defining m, and the method definition
of c′.m is M ′ = (I ′,H ′, A′, req ′, ens ′, exs ′), then

(a) AL ⇒ req ′,

(b) ens ′ ⇒ AL+1,

(c) if there is a first entry (b, e, L′, c′′) in H such that b ≤ L < e, and
c′ <: c′′ then exs ′ ⇒ AL′ , and

(d) if no (b, e, L′, c′′) as in (c) exists, then exs ′ ⇒ exs.

The account of dynamic call resolution in def. 3.2 is quite crude, but the
details are unimportant since, in this paper, pre- and post-conditions are
always identical and common to all methods in P . The important property
is the local validity is sufficient to prove (global) validity:

Theorem 1 For any extended program P , if P is locally valid then P is
valid.

Proof (Sketch) We assume that P is locally valid, and that fM has the
required property. To show that P is valid it suffices to verify properties 1.–
4. for each maximal execution E of P that validates the initial precondition
of main, and each i : 0 ≤ i ≤ |E|. The proof is by induction on i. If Ci−1 is
normal (to allow us to use the induction hypothesis) and neither calling, nor
returning, we use lemma 1 and local validity to conclude. If Ci−1 is calling
then, by def. 3.2.a (since pre- and postconditions are unable to address the
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stack and the registers) we obtain that the precondition req ′ of the called
method holds, and hence, by local validity, also the relevant program point
annotation. If Ci−1 is returning normally, we use property 3.2.b instead.
Finally assume Ci−1 is exceptional. Then there must exist a j < i− 1 such
that Cj is normal and all frames k : j < k < i are exceptional. There are two
cases: Either j = i− 2 and Ci is normal (so the exception is caught by the
method throwing the exception), or not. In the former case we conclude by
lemma 1.2, local validity, and the induction hypothesis. In the latter case,
by local validity, the induction hypothesis, and lemma 1.3, the exceptional
postcondition for the top frame holds for Cj . By condition 3.4 it follows that
the exceptional postcondition holds for the top frame for all k : j < k < i,
and the result the follows by condition 3.3 or 3.4, depending on whether Ci

is normal or exceptional. �

6 Security Specifications

We distinguish between two types of security specifications: policies and
contracts. The only difference between policies and contracts is in the way
they are used. A policy resides in the host-system and is defined by the
consumer. It specifies what behaviors are acceptable for programs executing
on the host. A contract on the other hand is a specification how the program
behaves. It is defined by the producer, and is distributed with the program.

ConSpec In this paper we consider security specifications written in the
ConSpec language [4, 2]. ConSpec is similar to PSlang [11], but more con-
strained, in order to allow for a decidable entailment (containment) problem.
An example of a ConSpec specification is given in fig. 1. The syntax is in-
tended to be largely self-explanatory: The specification in figure 1 states that
the program has to ask the user for permission each time it intends to send
a file over bluetooth. No exception may arise during the user query. A Con-
Spec specification tells when and with what arguments an API method may
be invoked. If the specification has one or more constraints on a method,
the method is said to be security relevant and we refer to invocations of
this method as security relevant calls. In the example, there are two secu-
rity relevant methods, GUI.approveSend and Bluetooth.obexSend. The
specification expresses the constraints on security relevant actions in terms
of guarded commands where the guards are side-effect free and terminating
boolean expressions. These expressions may involve constants, method call
parameters, objects fields, and values returned by accessor or test methods
that are guaranteed to be side-effect free and terminating.

Scope Definitions The set of API’s considered is assumed to be fixed.
API calls, whether security relevant or not, are trusted. Non-API calls, on
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SCOPE Session

SECURITY STATE boolean sendApproved = false;

AFTER answer = GUI.approveSend()
PERFORM

answer -> { sendApproved = true; }
!answer -> { sendApproved = false; }

EXCEPTIONAL GUI.approveSend()
PERFORM

false -> { }

BEFORE Bluetooth.obexSend(String file)
PERFORM

sendApproved -> { sendApproved = false; }

Figure 1: A security specification example written in ConSpec.

the other hand, are untrusted. The scope declaration tells whether the speci-
fication should hold on a single object, for each session, for multiple sessions,
or globally, at the level of the entire virtual machine. In this paper we focus
on the session scope. That is, monitoring is kicked off together with some
client program, monitors all security-relevant calls of untrusted methods
belonging to that program, and stops once the program is terminated.

Security State The security state declaration is a list of variable declara-
tions which specifies the variables in the monitor state. The work reported
here is not very sensitive to the choice of state variables, but in order to de-
cide policy entailment by a standard language inclusion test it is important
that the state variables range over finite domains.

Events and Clauses An event clause defines an action related to a secu-
rity relevant action. The event modifiers BEFORE, AFTER and EXCEPTIONAL
specifies if the action should be taken before the call to the method, upon
normal return from the method or upon exceptional return from the method.
Guards are evaluated top to bottom, in order to obtain a deterministic se-
mantics and hence, when it applies, a tractable entailment problem. If no
clause guards hold, the call is violating.
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7 Security Automata

ConSpec policies are formalized in terms of security automata. The notion
of security automata was introduced by Schneider [26]. In this paper we view
a security automaton as an automaton A = (Q, δ, q0) where Q is a countable
(not necessarily finite) set of states, Σ is the alphabet of security relevant
actions (sra’s, typically α), q0 ∈ Q is the initial state, and δ : Q×Σ ⇀ Q is
a (partial) transition functions. All states q ∈ Q are viewed as accepting.

Notation 1 For a security automaton A = (Q, δ, q0), q
α−→ q′ abbreviates

the condition q′ = δ(q, α).

All security automata considered in this paper are assumed to be generated
by a ConSpec policy, in a manner which we do not make precise here. The
details are not complicated. We refer to [3] for details. For the purpose of
this paper it suffices to note that security automaton actions are induced by
clauses in a corresponding ConSpec specification in the style of 1, involving
guard evaluation and security state updates.

Pre-actions and Post-actions The alphabet Σ is partitioned into pre-
actions and (normal or exceptional) post-actions. Pre-actions α ∈ Σ↑ have
the form (c.m, (v1, . . . , vn), h) where (v1, . . . , vn) is the sequence of param-
eters to API method c.m, and h is the heap at time of call. Normal post-
actions α ∈ Σ↓ have the form (c.m, (v1, . . . , vn), h1, h2, v) where (v1, . . . , vn)
is the sequence of parameters to API method c.m, h1 is heap at time of call,
h2 is heap at time of normal return, and v is returned value. Exceptional
post-actions α ∈ Σ⇓ have the same form, but now the call returns excep-
tionally, h2 is the heap at time of exceptional return, and v is the returned
THROWABLE object. Then, Σ = Σ↑ ∪ Σ↓ ∪ Σ⇓.

Security-relevant Actions We explain how security-relevant actions are
produced under execution. Consider an execution E = C0C1 · · ·. Let Ci =
((Mi, pci, si :: l :: s′i, ri) :: Ri, hi) be a configuration such that M [pci] =
invokevirtual m (other invoke instructions are handled similarly). Then
sra(Ci), the security-relevant pre-action of Ci, is (c.m, si, hi), if the smallest
superclass defining m of (the class of) h(l) under <: is the API class c. Note
that the type and arity of c.m is determined since overloading is disregarded,
and since the program has been bytecode verified.

For post-actions we assume for simplicity that all API methods return
a value. Let Ci = ((Mi, pci, si :: l :: s′i, ri) :: Ri, hi) be a configuration
as above such that M [pci] = invokevirtual m, and suppose that Ci+1 =
((Mi, pci+1, v :: s′i, ri) :: Ri, h

′
i). Then sra(Ci, Ci+1), the security-relevant

(normal) post-action of the transition Ci →JVM Ci+1, is (c.m, si, hi, hi+1, v),
again provided that c is an API class, and that c is the smallest superclass
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defining m of h1(l). Similarly, if Ci+1 = ((l) :: (Mi, pci, si :: l :: s′i, ri) ::
Ri, h

′
i) then sra(Ci, Ci+1), the security-relevant (exceptional) post-action of

the transition Ci →JVM Ci+1, is (c.m, si, hi, hi+1, l), where c is determined
as above.

In cases other than the above three, sra(C) = sra(C,C ′) = ε, the empty
string.

Policy Adherence The security-relevant trace of E, srt(E), now, is de-
termined co-inductively in the following way:

srt(ε) = ε

srt(C) = sra(C)
srt(C0C1E) = sra(C0)sra(C0, C1)srt(C1E)

Definition 4 (Policy Adherence) The program P adheres to security po-
licy PA, if for all executions E of P , either srt(E) ∈ PA or srt(E) =
wsra(C,C ′) ∧ w ∈ PA for some w.

8 Inlining

By inlining we refer to the procedure of compiling a policy into a JVM
based reference monitor and embedding this monitor into a target program.
A program with a correctly inlined reference monitor (IRM) is guaranteed
to adhere to the policy which the program was rewritten to comply with.

Inlining is in this paper assumed to be compositional in the sense that one
method can be treated in isolation. This means that proper security state
updates, checks and interventions due to security relevant actions must take
place before the method returns or calls another method.

Our inliner achieves this by initializing the security state before any-
thing else in the main method and replacing each invokevirtual c.m by
JVM code corresponding to the pseudo code in table 2 (see appendix B).
The replacement is referred to as a block of inlined code. The only way to
enter this block of code is through the first instruction. We assume that no
instructions in a block of inlined code (except explicit throw instructinos)
will raise any exceptions. The inliner stores arguments to the virtual call for
use in event handler code, once virtual call resolution has been performed.
Once the dynamic call has been identified each piece of event code evaluates
guards by reference to the embedded monitor state and the stored argu-
ments, and updates the state according to the matching clause, alt. exits, if
no matching clause is found.

The embedded monitor state is represented as a static field ms of a
final security state class, named to avoid clashes with classes in the target
program. This choice of representation relies on the following fact of JVM
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L: Save parameters in local variables

Assign target object to local variable t

If t : cN then cN .m-before event code
else if t : cN−1 then cN−1.m-before event code

...
else if t : c1 then c1.m-before event code

LExcStart : Invokevirtual c.m

LExcEnd : Goto LHandlerEnd

LHandlerStart : If t : cN then cN .m-exceptional event code
else if t : cN−1 then cN−1.m-exceptional event code

...
else if t : c1 then c1.m-exceptional event code

Rethrow exception

LHandlerEnd : If t : cN then cN .m-after event code
else if t : cN−1 then cN−1.m-after event code

...
else if t : c1 then c1.m-after event code

where t represents the target object of the method call and
c1, . . . , cN are all the API-classes defining or overriding m
ordered such that for all i < j, ci <: cj.

Figure 2: Pseudo-code for the inlining replacement of L: invokevirtual
c.m.

execution which we state as an assumption due to our open-ended treatment
of large parts of the JVM instruction set.

Assumption 1 Suppose that c is final and that f is static. Assume that
C = ((M, pc, s, r) :: R,h) →JVM C ′ and M [pc] �= putstatic c.f . If |c.f =
v|C = TRUE then |c.f = v|C ′ = TRUE.

In other words, the only instruction which can affect the value stored in
a static field f of a final class c is an explicit assignment to c.f , and in
particular, the assumption ensures that instructions originating from the
target program are unable to affect the embedded monitor state.

We refer to the method resulting from inlining a method M with a policy
PA as I(M,A), and I(P,A) is the result of inlining each method in P with
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PA.

Theorem 2 (Soundness of Inliner) The inlined method I(M,P) adher-
es to the policy P.

Proof This is a consequence of corollary 3 and theorem 5 proved below.�

9 Ghost Inlining

The first step in proof generation is to produce a trusted inlined ghost mon-
itor with which the actually inlined monitor can be compared. The ghost
inliner uses special-purpose ghost instructions operating on a ghost state
that is accessible exclusively to the ghost monitor. These ghost instructions
are never actually executed, but they appear in intermediate representations
of the method bytecodes in order to produce and recognize the adherence
proofs.

9.1 Ghost Instructions

The ghost instructions are guarded multi-assignment commands for updat-
ing the ghost state, and for evaluating and storing method call arguments
and dynamic class identities. A ghost instruction is written in the following
way

〈xg := a1 → e1 | . . . | an → en〉 (1)

where xg is a vector of ghost variables, ai are guard assertions and ei are
expression vectors of the same type and dimension as xg. The guards ai

and expressions ei,j may refer to the ghost variables. Typically, each xi

will determine a unique static field of some final security state object with
state x. When such a ghost assignment is executed the first value, ei,
whose guard, ai, is satisfied is assigned to xg. In case no guard is satisfied
the undefined state, ⊥, is assigned to xg. Given the postcondition A, the
weakest precondition for the instruction (1) above, labeled L, is computed
as

wpM (L) = SELECT((a1, . . . , an), (φ[e1/xg], . . . , φ[en/xg]), φ[⊥/x g ])

9.2 Ghost Inlining

The policy adherence proofs are closely related to the notion of ghost in-
lining. A ghost inlining is an extra (trusted) inlining, on top of the actual
inlining, implemented with ghost instructions. The ghost instructions are
just as the embedded IRM, constructed from the guarded updates in the
event clauses and the insertion points are determined by the method signa-
tures and corresponding invoke instructions. The sole purpose of the ghost
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inlining is to act as a reference when verifying the actual inlining. In other
words, the proof shows that a security relevant method is called if and only
if this is permitted by the ghost IRM. It does this by showing that the
following properties hold:

1. The state of the embedded IRM is in sync with the ghost state before
each security relevant method call.

2. The security relevant method is called only when permitted in the
state of the embedded IRM.

The ghost inlining for a method is generated by the function GI . This
function takes a method definition and a policy, represented by a security
automaton A, and returns an array of instructions with ghost instructions
inserted. Similarly, GI (P,PA) is the result of ghost inlining each method in
P . The ghost inlining is done according to figure 3 which is an implemen-
tation of the schema in figure 2. Special care is taken to the main method
in which a ghost update is inserted which initializes all ghost security state
fields.

In fig. 3, t is the target object, arg i the identifier for the i’th argument,
and ms is the embedded monitor state.

First, ghost representations of the target and argument are stored as new
local variables tg, argg

1, . . . , arg
g
n. Then, a ghost assignment is enacted cor-

responding to the pre-action applying to the dynamically resolved method
call. Similar to figure 2, each BEFORE, AFTER, and EXCEPTIONAL
clause evaluates the guards relevant to the resolved method call and up-
dates the ghost state accordingly. This evaluation uses ghost versions of the
target and arguments. We do not need to worry about the representation of
the ghost state itself, other than it is mapped to an actual automaton state
value by the heap after ghost inlining.

An event clause in ConSpec updates the security state variables through
a list of asignments while a ghost instruction does this in one vector assign-
ment. It is however easy to convert the former to the latter through back
substitution. For this purpose we define

collapse((x1 := e1, . . . , xn := en), e) =
{

e if n = 0
e[en/xn] otherwise

Given a monitor state ms = (x, y, z), a ConSpec state update s = x :=
7; z := z + 2; y := x + z; can be collapsed to the ghost update ms :=
collapse(s,ms) and written as (x, y, z) := (7, 7 + 2, z + 2).

The ghost inliner does not add any entry in the exception table but
assumes that an exception handler (L,L+ 1, Throwable, LExcHandler ) exists
for each instruction L:invokevirtual c.m whose exceptional return could
be security relevant.
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L: 〈(tg, arg1
g, . . . , argn

g) := TRUE → (sn, . . . , s0)〉

〈msg := tg : cN → BEFORE [cN .m]
| tg : cN−1 → BEFORE [cN−1.m]

...
| tg : c1 → BEFORE [c1.m]
| TRUE → msg〉

invokevirtual c.m

〈msg := tg : cN → AFTER[cN .m]
| tg : cN−1 → AFTER[cN−1.m]

...
| tg : c1 → AFTER[c1.m]
| TRUE → msg〉

...

LExcHandler : 〈msg := tg : cN → EXCEPTIONAL[cN .m]
| tg : cN−1 → EXCEPTIONAL[cN−1.m]

...
| tg : c1 → EXCEPTIONAL[c1.m]
| TRUE → msg〉

Figure 3: Ghost implementation of pseudo code in figure 2

The key property of the ghost inliner is that it exactly reflects the be-
haviour of the underlying automaton running on the programs security rel-
evant actions. We go on to make this intuition precise.

Use msg(C) to abbreviate the value of msg in the heap of C. Let E =
C0 · · ·Ci0 · · ·Cin · · ·Cm be an execution of GI (P,PA) such that msg(Cm) �=
⊥ and such that i0, . . . , in are all those j for which Cj is a calling configu-
ration, of an API method c.m. Then, E has the shape

C0 · · ·Ci0−1Ci0Ci0+1Ci0+2 · · ·Cin−1Cin · · ·Cm

such that each transition Cij−1 →JVM Cij is the execution of a ghost in-
struction corresponding to a BEFORE block in figure 3, and each tran-
sition Cij+1 →JVM Cij+2 is the execution of the corresponding AFTER/
EXCEPTIONAL block. Note that it may be that m = in, and if m > in +1
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then again Cin+1 →JVM Cin+2 is the execution of the corresponding AF-
TER/EXCEPTIONAL block.

Lemma 2 There is a derivation of A of the form

q0 = msg(Ci0−1)
sra(Ci0

)−→ msg(Ci0)
sra(Ci0

Ci0+1)−→ msg(Ci0+2) =

msg(Ci1−1)
sra(Ci1

)−→ · · · sra(Cin )−→ msg(Cin)
sra(CinCin+1)−→ msg(Cin+2)

where, by convention, ε−→ is the identity relation, q0 is the initial state of
A, and, if m ≤ in + 1 the last transition is not included.

Proof (Sketch) We ignore the details of the BEFORE , AFTER, and EXC-
EPTIONAL ghost state updates (which is really the meat of the argument).
By induction on n. The base case is an easy special case of the induction
step. So, consider an execution of the shape ECin−1CinCin+1Cin+2 where
Cin is calling. By the induction hypothesis there is a derivation as pre-
scribed by the lemma ending in an automaton state msg(Cin−1+2), and,
since all calling configurations are included among the ij , msg(Cin−1+2) =
msg(Cin−1). By the assumed correctness of the BEFORE block we ob-

tain that msg(Cin−1)
sra(Cin )−→ msg(Cin), and similarly, by the correctness

of the AFTER or EXCEPTIONAL clause, if msg(Cin+2) �= ⊥, msg(Cin+1)
sra(CinCin+1)−→ msg(Cin+2). This is sufficient to derive the result. �

Corollary 1 Let E = C0 · · ·Ci0 · · ·Cin · · ·Cm be an execution of GI (P,PA)
such that i0, . . . , in are all j for which Cj is a calling configuration, of some
API method c.m. If msg(Cin) �= ⊥ then srt(E) ∈ PA.

Proof Use lemma 2. �

10 Contract Adherence Proofs

Recall that the embedded state should be in sync with the ghost state when
control of execution passes to another method (through a method call, a
return statement or an exception). This can be guaranteed by letting each
method ensure, require and exsure the equality of the ghost monitor state
and the embedded monitor state, msg = ms. This assertion is from now on
denoted Ψ and referred to as the synchronization assertion.

Accordingly, we call an extended method definition (I,H,A, req , ens ,exs)
synchronizing, if it is locally valid and req = ens = exs = ψ. We call a
program P synchronizing, and say that P has synchronizing annotations, if
all method definitions in P are synchronizing.
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If an extended method definition M = (I ′,H,A, req , ens , exs) is syn-
chronizing and I ′ = GI (I,PA) then the method (I,H) adheres to the policy
PA. This allows us to derive verification conditions for policy adherence as
follows:

Definition 5 (Verification Conditions) Given an array of assertions A,
a method M = (I,H) and a policy PA the set of verification conditions
VC (A,M,PA) contains the following assertions:

• Ψ ⇒ A0

• AL ⇒ wpM ′(A)L for each label L ∈ I ′ = GI (M,PA) where M ′ =
(I ′,H,A,Ψ,Ψ,Ψ)

Corollary 2 VC (A,M,PA) is valid if, and only if, the extended method
(GI (M,PA),H,A,ψ, ψ, ψ) is synchronizing.

Theorem 3 (Validity of VC Implies Contract Adherence) Suppose
there is an A such that

∧
VC (A,M,PA) is valid for each method M in P .

Then P adheres to the security policy PA.

Proof (Sketch) We assume that
∧

VC (A,M,PA) is valid for each method
M in P . Consider any execution E = C0 · · ·Ci0 · · ·Cin · · ·Cm such that
i0 . . . , in are all those j for which Cj is calling some API method (as above).
We claim that then Ψ holds at all program points Cij . The proof of this is
similar to the proof of theorem 1 and left out. By construction, ms(Cij ) �= ⊥.
(The embedded inliner never assigns ⊥ to ms). It follows that msg(Cij ) �=
⊥, and the result then follows by corollary 1. �

10.1 Proof Generation

Reflecting def. 5 we view a policy adherence proof as an assignment of
assertions to program points in a program with all methods ghost inlined,
such that all verification conditions are valid.

Definition 6 (Adherence Proof) An adherence proof is defined locally
for each method and for the program as a whole.

1. A method adherence proof for a method definition MA = (I,H) with
contract PA is a mapping A of labels in GI (I,PA) to assertions such
that

∧
VC (A,MA,PA) is valid.

2. An adherence proof for a program P assigns a method adherence proof
to each method in each class of P .

23



The reader may justifiably object to a concept of proof which is not in general
efficiently recognizable. In this paper, however, we only generate proofs
for programs that have already been inlined. This ensures that proofs are
sufficiently simple that they can be both efficiently generated and efficiently
recognized. Regardless:

Corollary 3 (Adherence Proof Soundness) If there is an adherence proof
for P with respect to policy PA then P adheres to PA.

Proof By theorem 3.

The annotation for a given program point is generated differently, ac-
cording to whether the instruction at that program point can appear as part
of an inlined block or not. Instructions inside the inlined block affect the
processing of the embedded and the ghost state, method call arguments etc.
For this reason they need detailed analysis using wp. Instructions outside
the inlined blocks, on the other hand, allow a more robust treatment, as
they only are required to preserve the synchronization assertion ms = msg

which they do, due to assumption 1.
For this to add up, an important prerequisite is that the synchronization

assertion is preserved by each block of inlined and ghost inlined code. That
is, if an inlined block is entered in a state satisfying the synchronization
assertion then the synhronization assertion also holds on exit of that block.
To make this statement precise let an inlined block at the interval [L,L′] be
the consecutive sequence of instructions, including those generated by the
ghost inliner, appearing in the code fragment on fig. 2.

Lemma 3 (Preservation of the Synchronization Assertion) Given
an inlined and ghost inlined method definition M = (I,H) and an inlined
block at [L,L′] in I, there exists an assertion array A with |A| = |I| such
that Ψ ⇒ AL, AL ⇒ wpM ′(L), AL+1 ⇒ wpM ′(L+ 1), . . ., A′

L′ ⇒ wpM ′(L′)
and A′

L′ ⇒ Ψ, where M ′ is the extended method definition (I,H,A,Ψ,Ψ,Ψ).

Proof The construction is shown in appendix C. �
Lemma 3 relies crucially on the property of inlined blocks that control trans-
fers out of the inlined block is possible only when the wp-generated assertion
is sufficient to guarantee the synchronization assertion, and vice versa for
transfers inside the inlined block.

Generation of the annotations is done by the anno function defined as
follows.

Definition 7 (Annotation Function) Given a method definition M =
(I,H) and a set of labels IL of the inlined instructions in I, anno(M, IL)
returns an array A of assertions such that

AL =
{

narr (wpM ′(L)) if L ∈ IL or IL is an invoke instruction
Ψ otherwise
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where M ′ = (I,H,A,Ψ,Ψ,Ψ) and narr (φ) returns φ′ = Ψ ∧ ag
0 = a0 =

s0 ∧ . . . ∧ ag
n = an = sn if φ′ ⇒ φ, otherwise φ.

Note that anno is well-defined as inlined blocks are loop-free.

Theorem 4 (Locally Valid Annotation) Given an inlined method M ′

= I(M,A) = (I,H) and a ghost inlined method body I ′ = GI (I,PA) with
IL the set of labels of inlined or ghost inlined instructions in I ′, the method
(I ′,H, anno((I ′,H), IL),Ψ,Ψ,Ψ) is locally valid.

Proof We show that the two properties in definition 3 hold. Let IL be the
set of labels of inlined instructions in MC .

1. Ψ ⇒ A0

This holds since A0 = Ψ by definition of anno if 0 /∈ IL and by lemma
3 otherwise.

2. AL ⇒ wpM (L) for all labels L ∈ B

If L ∈ IL or BL is an invoke instruction we have, by definition of anno,
AL ⇒ wpM (L).

Otherwise we have, by definition of anno, AL = Ψ. We also know
that wpM (L) = Ψ (by assumption 1 and 3), thus we conclude that
AL ⇒ wpM (L) for this case as well.

Theorem 4 allows us to prove a partial converse to theorem 3, namely that
verification conditions generated from properly inlined methods are valid.

Corollary 4 Suppose M = I(M ′,PA). Then there is an A such that∧
VC (A,M,PA) is valid. �

Putting it all together:

Theorem 5 (Proof Generation) For each program P and policy PA
there is an algorithm, linear in |P | + |PA|, which produces an adherence
proof of I(P,PA) with contract PA.

Proof Given theorem 4 the only property left to show is the complexity
bound which is verified by inspection. �

10.2 Proof Recognition

To verify that a given mapping of labels to assertions indeed is a proof,
the receiver has to verify that the resulting verification conditions hold.
This task is in general undecidable, however in our settings the verification
conditions are simple and predictable enough to be efficiently provable.
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For the proof recognition statement to follow we consider TM recognizers
of “adherence proof candidates”, i.e. TM’s which take type and arity correct
assignments of assertions to program points for each method in a given target
program, as input, and produce a binary accept/reject result.

Theorem 6 (Efficient Recognition) The class of linear-time recogniz-
able adherence proofs includes all adherence proofs generated from inlined
programs using the algorithm of theorem 5.

Proof It suffices to show that each member of a set

VC (anno(GI (I(M,PA),PA)), I(M,PA),PA)

can be reduced to TRUE in time linear in |M |.
• Ψ ⇒ A0

This is trivial since A0 = Ψ. (See proof of theorem 4, item 1.)

• AL ⇒ wpM (L) for each label L in B

If L ∈ IL or IL is an invoke instruction we have AL = narr(wpM (L))
as defined in definition 7. AL then either equals wpM (L) (in which case
it is trivial) or it is on the form Ψ∧ ag

0 = a0 = s0 ∧ . . .∧ ag
n = an = sn.

The later form is chosen at points where the weakest precondition is

SELECT((t : cn ∧ tg : cn, . . . , t : c1 ∧ tg : c1),
(SELECT((cn.mG1 ∧ cn.mg

G1
, . . . , cn.mGi ∧ cn.mg

Gi
),

(cn.mf1(ms,a) = cn.mg
f1

(msg,ag), . . . ,
cn.mfi

(ms,a) = cn.mg
fi

(msg,ag)), TRUE),
...

...
SELECT((c1.mG1 ∧ c1.mg

G1
, . . . , c1.mGj ∧ c1.mg

Gj
),

c1.mf1(ms,a) = c1.mg
f1

(msg,ag), . . . ,
c1.mfj

(ms,a) = c1.mg
fj

(msg,ag)), TRUE)),
ms = msg)

(See proof of lemma 3.) The verification condition can then be rewrit-
ten and simplified by iterated applications of the rule x = y ⇒ φ −→
φ[z/x][z/y] where x and y are instantiated with real variables and
ghost counterparts respectively and where z does not occur in φ. These
rewrites takes time proportional to the product of the number of vari-
ables and the length of the formula and does not change the size of
the expression since x, y and z are atomic. The result can then be
rewritten to TRUE using the rules (ψ ⇒ φ) ∧ (¬ψ ⇒ φ) −→ φ and
φ = φ −→ TRUE in time linearly proportional to the formula.

Tyhe upshot is that we can use a linear-time algorithm to recognize adher-
ence proofs, and in so doing we are guaranteed to recognize at least those
proofs generated by ourselves from correctly inlined input.
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11 System Architecture

Our architecture resembles the one by Colby, Lee and Necula [6] except
that we focus on verifying that a proper IRM is present. An overview of our
system is show in figure 4.

bytecode contract

inliner

assertino generator

Ghost Inliner

inlined classes

assertions

Inlined Classes w/ Ghost IRM

Ghost Inliner

vc−generator

valid / invalid

verification conditions

vc−checker checker

Inlined Classes w/ Ghost IRM

Figure 4: The architecture of our PCC implementation.

The developer side of the system runs in Java SE and the user side in
Java ME. Both parts utilizes a parser generated by CUP/JFlex [17, 18] and
the ASM library [7] for handling class files.

Inliner Our inliner is similar to the JVML SASI inliner by Erlingsson and
Schneider [12] and their successor implementation in PoET [10]. As input
it takes a Java bytecode program and a CosSpec policy. It rewrites the
program so that it complies with the given policy. Depending on the original
behavior of the program the inserted code may or may not be redundant.
In either case it simplifies the proof generation process significantly.

To keep track of the security state during execution the inliner creates
a set of public static fields in an final auxiliary class called SecState which
has no methods. The types and identifiers of the fields correspond to those
of the variables declared in the SECURITY STATE section in the policy. Code
that initializes these fields is compiled and added as a static initializer of
the SecState class.

The inliner proceeds by locating and replacing all invoke instructions
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with code that comprises checks and updates for all relevant event clauses
as described in section 8. If an invoke instruction calls c.m an event clause
concerning method c′.m′ is relevant iff m = m′ and c = c′ or c <: c′, c′ <: c.

Finally, for each method an IRMOffsetAttribute is embedded which
specifies at what offsets the inlined instructions can be found. This infor-
mation is needed for the proof generation.

Ghost Inliner The ghost inliner is an implementation of the GI function
described in section 9.2. It parses the class files and builds an object model
corresponding to the structure of the method. Ghost instructions are then
generated from the policy and inserted into this model.

Assertion Generator The assertion generator is an implementation of
the anno function. The list of offsets for the inlined instructions is recovered
from the IRMOffsetAttribute. The generator then initializes all assertions
of the non-inlined instructions to Ψ and proceeds by annotates the remaining
instructions by computing their weakest preconditions bottom up.

The IRMOffsetAttribute is discarded and an AssertionsAttribute is
embedded, containing a serialization of the resulting array of assertions.

11.1 Complexity

The execution time and memory foot print is linear in the size of the input.
The inliner and proof generator is implemented with the visitor pattern and
could, if preferred, be executed chained together in a single pass over the
bytecode.

12 System Demonstration

To demonstrate the system we have written a security specification and
chosen a program which potentially violates this specification. We inline
the program with the security specification and then show how a proof is
generated and verified.

12.1 A Privacy Policy and a Game

The policy prohibits executions which sends data on the network after ac-
cessing the memory of the device (see figure 5). The program we have chosen
is a “snake” game featuring loading of a highscore list from phone memory
and submitting current score to a server (see figure 6). These two functions
makes it possible for the user to violate the policy.
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SCOPE Session

SECURITY STATE boolean haveRead = false;

BEFORE javax.microedition.rms.RecordStore.openRecordStore(
string name, boolean createIfNecessary)

PERFORM
true -> { haveRead = true; }

BEFORE javax.microedition.io.Connector
.openDataOutputStream(string url)

PERFORM
haveRead == false -> { }

Figure 5: A ConSpec specification which disallows the program from sending
data over the network after accessing phone memory.

Figure 6: Screenshot of the Snake game.

12.2 Developers perspective

From a developers perspective, the only difference lies in the deployment
process. Between compilation and preverification the inliner is executed and
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between preverification and jar-packaging the proof generater is executed.
Figure 7 illustrates the PCC deployment process.

javac inline preveify proofgen jar

Figure 7: PCC deploy process.

The inliner and proof generator is executed from the CLI in the following
way:

> java -jar Inliner.jar -basic \
-lib midpapi20.jar \
-lib cldcapi11.jar \
-policy policy.txt \
-target *.class

> java -jar ProofGen policy.txt inlined/*.class

Both components could easily be integrated in the compile chain in any
modern IDE such as Eclipse.

It turns out that the inliner modifies the target program in two places.
The modification and the generated assertions for openRecordStore and
openDataOutputStream are illustrated in figure 8 and 9 respectively.

12.3 Users Perspective

The system should, to an as large extent as possible, be transparent to the
user and thus only intervene in case the proof checker failes to verify a given
proof. See figure 10.

13 Conclusions

We have demonstrated the feasibility of a proof-carrying approach to cer-
tified monitor inlining at the level of practical Java bytecode, including
exceptions and inheritance. This answers a question raised in [16]. We have
proved correctness of our approach in the sense of soundness: Policy adher-
ence proofs are sufficient to ensure compliance, and we also obtain partial
completeness results, namely that proofs for inlined programs can always
be generated, and such proofs are guaranteed to be recognized at program
loading time. Other properties are also interesting such as transparency:
Roughly, that all adherent behaviour is allowed by the inliner. This type
of property is, however, more relevant for the specific inliner, and not so
much for the certification mechanism, and consequently not addressed here
(but see e.g. [22, 9] for results in this direction). The approach is efficient:
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...

2: {Ψ}
ldc "HighScores"

4: {Ψ}
iconst 1

inlined

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

5: {TRUE = 1}
istore 3

6: {TRUE = 1}
astore 2

7: {TRUE = 1}
iconst 1

8: {TRUE = s0}
putstatic SecState.haveRead

11: {TRUE = SecState.haveRead}
aload 2

12: {TRUE = SecState.haveRead}
iload 3

13: {TRUE = SecState.haveRead}
〈haveRead g := TRUE → TRUE〉
{Ψ}
invokestatic RecordStore.openRecordStore

16: {Ψ}
astore 0

...

Figure 8: Generated assertions for inlining of RecordStore.openRecord-
Store

Proofs are small and recognised easily, by a simple proof checker (which is
the only required extension to the trusted computing base). An interesting
feature of our approach is that detailed modelling of bytecode instructions
is needed only for instructions appearing in the inlined code snippets. For
other instructions a simple conditional invariance property on static fields
of final objects suffices. This means, in particular, that our approach adapts
to new versions of the Java virtual machine very easily, needing only a check
that the static field invariance is maintained.

Two issues in particular are left for further investigation:

• The policy language lacks the ability to store object references. This,
we believe, is crucial for the long-term practical utility of the approach,
as it is needed in general, for instance to correlate object use events
with object creation events. To keep the complexity manageable we
have, however, left this issue for future work.

• Threads are not considered (but see [16] for a type-based approach).
Threads add interesting complications at all levels of the present work
(policy, inlining, proof generation, proof recognition). An investigation
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...

40: {Ψ}
aload 1

inlined

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

41: {IF(0 �= SecState.haveRead, TRUE,
IF(haveRead g = FALSE, Ψ,⊥ = SecState.haveRead))}
astore 3

42: {IF(0 �= SecState.haveRead, TRUE,
IF(haveRead g = FALSE, Ψ,⊥ = SecState.haveRead))}
getstatic SecState.haveRead

45: {IF(0 �= s0, TRUE,
IF(haveRead g = FALSE, Ψ,⊥ = SecState.haveRead))}
iconst 0

46: {IF(s0 �= s1, TRUE,
IF(haveRead g = FALSE, Ψ,⊥ = SecState.haveRead))}
if icmpne 52

49: {IF(haveRead g = FALSE, Ψ,⊥ = SecState.haveRead)}
goto 70

52: {TRUE}
getstatic System.err

55: {TRUE}
dup

56: {TRUE}
ldc "Program terminated!"

58: {TRUE}
invokevirtual PrintStream.println

61: {TRUE}
ldc "BEFORE openDataOutputStream violated."

63: {TRUE}
invokevirtual PrintStream.println

66: {TRUE}
iconst m1

67: {TRUE}
invokestatic System.exit

70: {IF(haveRead g = FALSE, Ψ,⊥ = SecState.haveRead)}
aload 3

{IF(haveRead g = FALSE, Ψ,⊥ = SecState.haveRead)}
〈haveRead g := haveReadg = FALSE → haveRead g〉

71: {Ψ}
invokestatic Connector.openDataOutputStream

74: {Ψ}
astore 2
...

Figure 9: Generated assertions for inlining of Connector.openDataOutput-
Stream

to address this is currently going on.
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Figure 10: The proof could not be verified.
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Appendix A. JVM Instruction Semantics

In this appendix we present a transition-style semantics of JVM instructions
used by the inliner. The semantics applies only to configurations that are
type safe and have passed the Java bytecode verifier, cf. [20, 29].

Notation

The transition rules use the following auxiallary operations:

• νl.− is a new location binder: it binds l to a location which is new,
i.e. not already allocated, in the argument.

• upd(r, n, l) is the update of the local variables obtained by replacing
the n’th register by l.

• (pc, l, h) matches (b, e, pc ′, c) if, and only if, pc ∈ [b, e) and h � l : c.

• clr(s) clear the operand stack.

Transition Rules

M [pc] = ALOAD n

((M, pc, s, r) :: R,h) → ((M, pc + 1, r[n] :: s, r) :: R,h)

M [pc] = ASTORE n

((M, pc, l :: s, r) :: R,h) → ((M, pc + 1, s, upd(r, n, l)) :: R,h)

M [pc] = ATHROW

((M, pc, l :: s, r) :: R,h) → ((l) :: (M, pc, l :: s, r) :: R,h)

M [pc] = DUP

((M, pc, v :: s, r) :: R,h) → ((M, pc + 1, v :: v :: s, r) :: R,h)

M [pc] = GETSTATIC c.f

((M, pc, s, r) :: R,h) → ((M, pc + 1, h(c.f) :: s, r) :: R,h)

M [pc] = GETFIELD f

((M, pc, o :: s, r) :: R,h) → ((M, pc + 1, h(o).f :: s, r) :: R,h)

M [pc] = GOTO L

((M, pc, s, r) :: R,h) → ((M, pc + L, s, r) :: R,h)

M [pc] = ICONST n

((M, pc, s, r) :: R,h) → ((M, pc + 1, n :: s, r) :: R,h)

M [pc] = IFEQ L n = 0
((M, pc, n :: s) :: R,h) → ((M, pc + L, s, r) :: R,h)

M [pc] = IFEQ L n �= 0
((M, pc, n :: s, r) :: R,h) → ((M,L, s, r) :: R,h)
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M [pc] = IF ICMPNEQ L n = m

((M, pc, n :: m :: s, r) :: R,h) → ((M,L, s, r) :: R,h)

M [pc] = IFICMPEQ L n �= m

((M, pc, n :: m :: s, r) :: R,h) → ((M, pc + 1, s, r) :: R,h)

M [pc] = PUTSTATIC c.f

((M, pc, v :: s, r) :: R,h) → ((M, pc + 1, s, r) :: R,h[(c.f) �→ v])

Exceptions:

M = (P,H) (pc, l, h) matches H(i) H(i) = (b, e, pc ′, c)
∀j > i : ¬((pc, l, h) matches H(j))

((l) :: (M, pc, s, r) :: R,h) → ((M, pc ′, l :: clr(s), r) :: R,h)

M = (P,H) ∀j > 0 : ¬((pc, l, h) matches H(j)
((l) :: (M, pc, s, r) :: R,h) → ((l) :: R,h
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Appendix B. Definition of Inliner

Here follows a general security specification concerning a method m : int →
int defined in class c and overridden in a subclass d. The policy defines event
clauses for BEFORE, AFTER and EXCEPTIONAL cases for each definition
of m. Each event clause has two guards and two statement lists.

The security specification and the following section of inlined code can
easily be generalized to handle an arbitrary number of event clauses, arbi-
trary number of guards and methods of arbitrary arity.

SCOPE Session
SECURITY STATE DECLARATION

BEFORE c.m(int a) PERFORM cbg1 -> {cbs1} | cbg2 -> {cbs2}
AFTER r = c.m(int a) PERFORM cag1 -> {cas1} | cag2 -> {cas2}
EXCEPTIONAL c.m(int a) PERFORM ceg1 -> {ces1} | ceg2 -> {ces2}

BEFORE d.m(int a) PERFORM dbg1 -> {dbs1} | dbg2 -> {dbs2}
AFTER r = d.m(int a) PERFORM dag1 -> {das1} | dag2 -> {das2}
EXCEPTIONAL d.m(int a) PERFORM deg1 -> {des1} | deg2 -> {des2}
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storeArgs: ASTORE ra deFail: ICONST 1

ASTORE rt INVOKESTATIC System.exit

ALOAD rt

ALOAD ra ceCheck: ALOAD rt

INSTANCEOF c

dbCheck: ALOAD rt IFEQ EEnd

INSTANCEOF d

IFEQ cbCheck ceGuard1: [EVALUATE ceg1]

IFEQ ceGuard2

dbGuard1: [EVALUATE dbg1] [EXECUTE ces1]

IFEQ dbGuard2 GOTO EEnd

[EXECUTE dbs1]

GOTO BEnd ceGuard2: [EVALUATE ceg2]

IFEQ ceFail

dbGuard2: [EVALUATE dbg2] [EXECUTE ces2]

IFEQ dBFail GOTO EEnd

[EXECUTE dbs2]

GOTO BEnd ceFail: ICONST 1

INVOKESTATIC System.exit

dBFail: ICONST 1

INVOKESTATIC System.exit EEnd: ATHROW

cbCheck: ALOAD rt handlerEnd: ALOAD rt

INSTANCEOF c INSTANCEOF d

IFEQ BEnd IFEQ caCheck

cbGuard1: [EVALUATE cbg1] daGuard1: [EVALUATE dag1]

IFEQ cbGuard2 IFEQ daGuard2

[EXECUTE cbs1] [EXECUTE das1]

GOTO BEnd GOTO AEnd

cbGuard2: [EVALUATE cbg2] daGuard2: [EVALUATE dag2]

IFEQ cbFail IFEQ daFail

[EXECUTE cbs2] [EXECUTE das2]

GOTO BEnd GOTO AEnd

cbFail: ICONST 1 daFail: ICONST 1

INVOKESTATIC System.exit INVOKESTATIC System.exit

BEnd: INVOKEVIRTUAL c.m caCheck: ALOAD rt

INSTANCEOF c

GOTO handlerEnd IFEQ AEnd

handlerStart: ALOAD rt caGuard1: [EVALUATE cag1]

INSTANCEOF d IFEQ caGuard2

IFEQ ceCheck [EXECUTE cas1]

GOTO AEnd

deGuard1: [EVALUATE deg1]

IFEQ deGuard2 caGuard2: [EVALUATE cag2]

[EXECUTE des1] IFEQ caFail

GOTO EEnd [EXECUTE cas2]

GOTO AEnd

deGuard2: [EVALUATE deg2]

IFEQ deFail caFail: ICONST 1

[EXECUTE des2] INVOKESTATIC System.exit

GOTO EEnd

AEnd:

Each [EVALUATE g] section transforms the a configuration ((M,pc, s, r) ::
R,h) to ((M,pc′, v :: s, r) :: R,h) where v is 0 or 1 if the guard g is false
or true respectively. An [EXECUTE stmts] transforms the a configuration
((M,pc, s, r) :: R,h) to ((M,pc′, s, r) :: R,h[collapse(stmts,ms)/ms]).
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Appendix C. Proof of lemma 3

This proof shows that lemma 3 holds for an example that can easily be
generalized. Just as in appendix B we concider a general policy for a method
m : int → int. In this example this method is defined by one class c and
c.m has a before, after and exceptional event clause with one guard each.
The policy is shown below.

SCOPE Session
SECURITY STATE DECLARATION

BEFORE c.m(int a) PERFORM cbg -> {cbs}
AFTER r = c.m(int a) PERFORM cag -> {cas}
EXCEPTIONAL c.m(int a) PERFORM ceg -> {ces}

We let c.mbf
f (ms) denote collapse(cbs,ms) and treat the after and ex-

ceptional cases similarly. Furthermore we assume that the first entry in the
exception table is (30, 32, 34, any ).
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ms = msg

NON-INLINED INSTRUCTION

// INLINED CODE START

ms = msg

ASTORE a

ASTORE t

ALOAD t

ALOAD a

// BEFORE

26: IF(t : c, A28, A30)
ALOAD t

INSTANCEOF c

IFEQ 30

28: IF(c.m
bf
G

g , IF(s1 : c, IF(c.m
bf
G

∧ c.m
bf
G

g , c.m
bf
f

(ms) = c.m
bf
f

g(msg, s0), c.m
bf
f

(ms) = ⊥),

ms = msg) ∧ a = s0 ∧ t = s1, TRUE)
[EVALUATE c BEFORE GUARD]

IFEQ 29

[PERFORM c BEFORE ACTION]

GOTO 30

29: TRUE

ICONST 1

INVOKESTATIC System.exit

30: IF(s1 : c, IF(c.m
bf
G

g , ms = c.m
bf
f

g(msg , s0), ms = ⊥), ms = msg) ∧ a = s0 ∧ t = s1
〈(tg, ag) := (s1, s0)〉
〈msg := tg : c → (c.m

bf
G

g → c.m
bf
f

g(msg, ag)) | TRUE → msg〉
ms = msg ∧ a = ag ∧ t = tg

INVOKEVIRTUAL c.m(int) : int

32: ms = msg ∧ a = ag ∧ t = tg

〈rg := s0〉
〈msg := tg : c → (c.m

af
G

→ c.m
af
f

(msg , rg , ag)) | TRUE → msg〉
IF(t : c, IF(c.m

af
G

, c.m
af
f

(ms, s0, a) = msg, TRUE), ms = msg)

ASTORE r

ALOAD r

A43
GOTO 43

// EXCEPTIONAL

34: ms = msg ∧ a = ag ∧ t = tg

〈msg := tg : c → (c.mex
G

g → c.mex
f

g(msg , ag)) | TRUE → msg〉
38: IF(t : c, A40, A42)

ALOAD t

INSTANCEOF c

IFEQ 42

40: IF(c.mex
G , c.mex

f (ms, a) = msg, TRUE)

[EVALUATE c EXCEPTIONAL GUARD]

IFEQ 41

[PERFORM c EXCEPTIONAL ACTION]

GOTO 42

41: TRUE

ICONST 1

INVOKESTATIC System.exit

42: ms = msg

ATHROW

// AFTER

43: IF(t : c, A44, A46)
ALOAD t

INSTANCEOF c

IFEQ 46

44: IF(c.m
af
G

, c.m
af
f

(ms, r, a) = msg , TRUE)

[EVALUATE c AFTER GUARD]

IFEQ 45

[PERFORM c AFTER ACTION]

GOTO 46

45: TRUE

ICONST 1

INVOKESTATIC System.exit

// INLINING END

46: ms = msg

NON-INLINED INSTRUCTION
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