
Software Tools for Tehnology Transfer manusript No.(will be inserted by the editor)
A Veri�ation Tool for ErlangThomas Arts1, Gennady Chugunov2, Mads Dam2, Lars{�Ake Fredlund2, Dilian Gurov2, Thomas Noll31 Erisson Computer Siene Laboratory, Erisson Utveklings AB, e-mail: thomas�slab.erisson.se2 Swedish Institute of Computer Siene, e-mail: gena�sis.se,mfd�sis.se,fred�sis.se,dilian�sis.se3 Lehrstuhl f�ur Informatik II?, Aahen University of Tehnology, e-mail: noll�s.rwth-aahen.deThe date of reeipt and aeptane will be inserted by the editorAbstrat. This paper presents an overview of the mainresults of the projet \Veri�ation of Erlang Programs",whih is funded by the Swedish Business DevelopmentAgeny (NUTEK) and by Erisson within the ASTEC(Advaned Software TEChnology) initiative. Its mainoutome is the Erlang Veri�ation Tool (EVT), a theo-rem prover whih assists in obtaining proofs that Erlangappliations satisfy their orretness requirements for-mulated in a spei�ation logi. We give a summary ofthe veri�ation framework as supported by EVT, dis-uss reasoning priniples essential for suessful proofssuh as indutive and ompositional reasoning, and aneÆient treatment of side{e�et{free ode. The experi-enes of applying the tool in an industrial ase study aresummarised, and an approah for supporting veri�ationin the presene of program libraries is outlined.EVT is essentially a lassial proof assistant, or theorem{proving tool, requiring users to intervene in the proofproess at ruial steps suh as stating program invari-ants. However, the tool o�ers onsiderable support forautomati proof disovery through higher{level tatistailored to the partiular task of the veri�ation of Er-lang programs. In addition, a graphial interfae permitseasy navigation through proof tableaux, proof reuse, andmeaningful feedbak about the urrent proof state, to as-sist users in taking informed proof deisions.
1 IntrodutionErlang is a programming language developed at the Er-isson orporation for implementing teleommuniation? Most of the work was ompleted during the author's employ-ment at the Department of Teleinformatis, Royal Institute ofTehnology (KTH), Stokholm.

systems [1℄. It provides a funtional sublanguage, en-rihed with onstruts for dealing with side e�ets suhas proess reation and inter{proess ommuniation.Today many ommerially available produts o�ered byErisson are at least partly programmed in Erlang. Thesoftware of suh produts is typially organised into many,relatively small soure modules, whih at runtime exe-ute as a dynamially varying number of proesses op-erating in parallel and ommuniating through asyn-hronous message passing. The highly onurrent anddynami nature of suh software makes it partiularlyhard to debug and test. We therefore explore the alter-native of proof system-based veri�ation. The ore frag-ment of the Erlang language is eonomi and lean, al-lowing a ompat transitional semantis, and omponentinterfaes an be elegantly spei�ed in a modal logi withreursion, suggesting feasibility of suh an endeavour.Rather than working with some abstrat model of theErlang system under onsideration, our veri�ation ap-proah is diretly based on the ode: we show that a on-rete Erlang program satis�es a set of properties formal-ized in a suitable logi, a spei�ation language based onPark's �{alulus [24,18℄, extended with Erlang{spei�features. This is a quite powerful logi, due to the pres-ene of least and greatest �xed{point reursion, allow-ing the formalization of a wide range of behaviouralproperties. It semantially subsumes the temporal logisCTL, CTL�, and LTL. By employing a maro meh-anism, named formulas with parameters an be intro-dued to represent typial properties suh as safety, live-ness, and fairness onditions. The veri�ation problemin this rather general ontext is not deidable, but anbe automated to a onsiderable extent, requiring humanintervention at a few, but ritial points.Verifying reursive temporal properties of systemswith dynamially evolving proess strutures and un-bounded data is known to be hard. It requires a rih ver-i�ation framework supporting reasoning whih is para-

2 Thomas Arts et al.: A Veri�ation Tool for Erlangmetri on omponents, relativised on the properties ofomponents, ompositional, and provides support for in-dutive and o-indutive reasoning about reursively de-�ned omponents [7,8,12℄. Due to the onurreny anddynamism inherent in the systems we address, a varietyof (mutual) indution shemes need to be available; atthe same time it is often unlikely to foresee whih of thesemight work. We therefore employ symboli program ex-eution and instane heking to \disover" indutionshemes. Our mahinery is based on �xed-point ordinalapproximation and well-founded ordinal indution, andon a global disharge proof rule for ensuring onsistenyof the mutual indutions present in a proof struture.The e�ort on the veri�ation of Erlang programs istaking plae within a ollaborative projet between theFormal Design Tehniques group at the Swedish Insti-tute of Computer Siene and the Erisson ComputerSiene Laboratory, and is funded by the ASTEC (Ad-vaned Software TEChnology) ompetene enter of theSwedish Business Development Ageny (NUTEK). Sofar, the projet ativities have been direted towardsestablishing the mathematial mahinery [6,7,9,8℄, pro-viding basi tool support [3℄, performing ase studies [2℄,and motivating the hosen veri�ation framework [12℄.This paper presents an overview of the main resultsof this projet, and fouses in partiular on the ErlangVeri�ation Tool (EVT), a theorem prover that assists inestablishing formal orretness properties of Erlang ap-pliations. Although EVT has been applied in ase stud-ies working with real{life software (see below), it must bestressed that it is not intended to be used by the Erlangprogrammers themselves. In its urrent state, it shouldrather be understood as a \proof of onept", demon-strating that applying formal methods to Erlang pro-grams is feasible, at least if done by experts. EÆienyand user-friendliness being ruial aspets of a pratialveri�ation tool, we opted for designing a speial pur-pose theorem prover rather than trying to embed ourrih and ompliated veri�ation framework into someexisting general purpose theorem proving environment.The paper is organized as follows. In Setion 2 wesummarise the veri�ation framework supported by EVT:the Erlang programming language, its formal semantis,the property spei�ation language, and the proof sys-tem. In Setion 3 we desribe the implementation of thetool. Partiular emphasis is plaed on aspets whih areless often found in omparable tools like Coq [10℄, Is-abelle [25℄, NuPrl [5℄, and PVS [23℄, notably the dis-harge mehanism whih implements a well{founded in-dution sheme to handle in�nitary behaviour. Setion 4disusses the priniples of indutive and ompositionalreasoning applied to the veri�ation of Erlang programs.Sine large fragments of Erlang appliations are purelyfuntional, i.e., do not rely on side e�ets like proessommuniations, an eÆient and ompositional approahfor dealing with suh lassial funtional ode is abso-lutely essential, and is also disussed in Setion 4. Se-

tion 5 illustrates the reasoning priniples using a sim-ple example. Setion 6 summarises our experiene withusing EVT in a typial ase study: the veri�ation ofa distributed database query evaluation protool. Se-tion 7 presents an approah for dealing with modularityin an elegant fashion. Typial Erlang appliations makeextensive use of standard libraries whih implement ev-erything from basi operations on lists to omplex dis-tributed data bases. The paper proposes a semanti ap-proah to extending the apabilities of EVT for handlinglibrary modules without onsidering the atual imple-mentation of these modules. The next setion presentsrelated work. The paper is onluded with a setion ondisussion of the merits and shortomings of the tool.2 FoundationsIn this setion we briey highlight the foundations of ourapproah: the Erlang programming language, a spei�-ation logi for apturing orretness requirements of Er-lang programs, and a proof system for proof derivation.2.1 The Erlang Programming LanguageErlang/OTP is a programming platform providing theneessary funtionality for implementing open distributed(teleom) systems: the language Erlang with support foronurreny, and middleware OTP (Open Teleom Plat-form) providing ready{to{use omponents (libraries) andservies suh as a distributed data base manager, sup-port for \hot ode replaement", and design guidelinesfor using the omponents.2.1.1 Syntax of Core ErlangIn the following we onsider a ore fragment of the Er-lang programming language whih allows to implementdynami networks of proesses operating on data typessuh as integers, lists, tuples, or proess identi�ers (pid's),using asynhronous, all{by{value ommuniation via un-bounded ordered message queues alled mailboxes. RealErlang has several additional features suh as modules,mehanisms for ontrolling the distribution of proesses(onto omputation nodes), and support for interopera-tion with non{Erlang ode written in, e.g., C or Java.Besides Erlang expressions e the syntatial ate-gories of mathes m, patterns p, guards g, and valuesv are onsidered. The abstrat syntax of Core Erlangexpressions is:

Thomas Arts et al.: A Veri�ation Tool for Erlang 3e ::= bv j [e1|e2℄ j fe1, : : : ,eng j varj e(e1, : : : ,en)j begin e1, : : : ,en endj ase e of m endj ath ej reeive m endj e1!e2bv ::= atom j number j pid j [℄ j fgv ::= bv j [v1|v2℄ j fv1, : : : ,vngm ::= p1 when g1 -> e1; � � � ;pn when gn -> enp ::= bv j var j [p1|p2℄ j fp1, : : : ,pngg ::= e1, : : :,enThe Erlang values onsists of a set of atom literals(with an initial lowerase letter), the numbers (here in-tegers only), proess identi�er onstants ranged over bypid , and tuples and onses. The variables (ranged overby var) are symbols starting with an upperase letter.To support the understanding of the remaining syn-tati onstruts, we antiipate some elements of theformal semantis whih is going to be disussed in Se-tion 2.1.2. An Erlang proess, here written <e,pid,q>,is a ontainer for the evaluation of an expression e. Aproess has a unique proess identi�er (pid) whih isused to identify the reipient proess in ommuniations.Communiation is always binary, with one (anonymous)party sending a message (a value) to a seond party iden-ti�ed by its proess identi�er. Messages sent to a proessare put in its mailbox q, queued in arriving order. Thesemantis of Erlang spei�es perfet (non-lossy) om-muniation hannels of an unbounded size. The emptyqueue is eps, [[v℄℄ is the queue ontaining the one ele-ment v, and q1�q2 onatenates the queues q1 and q2. Toexpress the onurrent exeution of two sets of proessess1 and s2, the syntax s1 || s2 is used.The funtional sublanguage of Erlang is rather stan-dard: atoms, integers, lists and tuples are value onstru-tors; e(e1; : : : ; en) is a funtion all; begin e1; : : : ; en endis sequential omposition. The main hoie onstrut ofErlang is by mathing:ase e ofp1 when g1 -> e1;...pn when gn -> enendA guard gi an be omitted; in this ase, the triviallytrue guard true is assumed. The value that e evaluatesto is mathed sequentially against patterns (values thatmay ontain unbound variables) pi, respeting the op-tional guard expressions gi whih are expressions that,due to syntati restritions, are guaranteed to omputewithout side e�ets and terminate.

The onstruts involving side e�ets (non{funtionalbehaviour) are: reeive for reading from the mailboxwhih is assoiated with the proess evaluating the ex-pression and \!" for sending a value to a proess identi-�ed by its proess identi�er. More onretely, upon eval-uation of the expression e1!e2 the value of e2 is sent tothe proess with proess identi�er e1, whereas reeivem end inspets the proess mailbox q and retrieves (andremoves) the �rst element in q that mathes some pat-tern in m. One suh an element v has been found, eval-uation proeeds analogously to ase v of m end.In addition side e�ets are possible through builtinfuntions like self(), yielding the proess identi�er ofthe proess evaluating this expression, throw(v) for rais-ing an exeption v (that an be handled by a ath ex-pression), and spawn(f; [v1; : : : ; vn℄), resulting in a newproess being generated whih exeutes the funtion allf(v1; : : : ; vn), where the proess identi�er of the newproess is returned by the all to spawn.Expressions are interpreted relative to an environ-ment of \user de�ned" funtion de�nitions of the shape:f(p11; : : : ; p1k) ->e1;...f(pn1; : : : ; pnk) ->en:Example 1. We shall illustrate the intuitive meaning ofErlang programs using a simple but typial example.Consider a onurrent server whih repeatedly takes aninoming request from its message queue and spawns o�a proess to serve it:entral_server() ->reeive{request, Request, Client} ->spawn(serve, [Request, Client℄),entral_server()end.serve(Request, Client) ->Client!{response, handle(Request)}.handle(Request) ->ok.Note above that Erlang variables are always upper{ase (Request and Client) while atoms are lower{ase(entral server, request et.). The entral serverfuntion is ontinuously prepared to reeive tuples on-taining a request Request and a proess identi�er Client.It then spawns o� a new proess evaluating the servefuntion, whih simply invokes the handle funtion (justreturning an atom here) and sends the result bak to theproess identi�ed by Client.Sine Erlang is not statially typed a possible out-ome of sending a wrongly typed message to the serverproess is that the newly spawned proess will terminatedue to a runtime error, e.g. in the ase that Client doesnot refer to a valid proess identi�er.

4 Thomas Arts et al.: A Veri�ation Tool for Erlang2.1.2 A Semantis for ErlangThe formal semantis of Erlang is given as an opera-tional semantis in the form of a set of rules for derivinglabelled transitions between strutured states [26℄. Asmentioned earlier, the latter are given by parallel prod-uts of proesses. Our semantis for Erlang is a small{step operational one [11℄, whih is motivated by the freeintermixing of funtional and side{e�et onerns foundin Erlang.Here we are faed with the question how to han-dle the di�erent oneptual layers of entities in the lan-guage, i.e., funtional expressions and onurrent pro-esses, suh that modular (i.e., ompositional) reasoningis supported. A natural approah is to organise the se-mantis hierarhially, in layers, using di�erent sets oftransition labels at eah layer, and extending at eahlayer the struture of the state with new omponents asneeded.More onretely, �rst the Erlang expressions are pro-vided with a semantis that does not require any notionof proesses. The ations here are a omputation step� , an output pid !v, read(q; v) whih represents the read-ing of a value v from the queue of the proess in whoseontext the expression exeutes, and f(v1; : : : ; vn) ; vwhih represents the alling of a builtin funtion f (likespawn for proess spawning) with side e�ets on the pro-ess level. Here the non{� ations denote side e�ets ofexpression evaluations on the next level of the semantis.The seond semantis layer onerns onurrent pro-esses exeuting expressions in the ontext of a uniqueproess identi�er and a mailbox of inoming messages.Their operational behaviour is aptured through a set oftransition rules separated into two ases: (i) a single pro-ess onstraining the behaviours of an Erlang expressionand (ii) the (parallel) omposition of two Erlang systemsinto a single one, expressed by the parallel ompositiononstrut \ || ". The system ations are silent steps � ,output pid !v and input pid?v.Example 2 (Erlang Semantis). We will illustrate theoperational semantis by onsidering the ase of a builtinfuntion with side e�ets, like for instane spawn. Onthe level of Erlang expressions the evaluation of suh afuntion is overed by the transition ruleisProFun(f)f(v1,: : :,vn) f(v1;::: ;vn);v���������! vwhere the isProFun prediate reognizes the names ofbuiltin funtions with side e�ets, and v represents anyErlang value (akin to an input parameter). As seen in theabove rule the operational semantis is in�nitely branh-ing, due to ourrene of the v plaeholder. Any ompli-ations aused by this are naturally handled on the levelof the proof system, via proper introdution of quan-ti�ers. On the proess level spawning is handled more

diretly in the following rule:e spawn(f;[v1;::: ;vn℄);pid 0�����������������! e0 pid 0 6= pid<e,pid,q>��!<e0,pid,q>||<f(v1; : : : ; vn),pid 0,eps>One of the interleaving rules also makes a provisionfor proess spawning:s1 �! s10 pids(s10) \ pids(s2) = ;s1 || s2 �! s10 || s2The ondition pid 0 6= pid ensures that the proess iden-ti�er of the newly spawned proess is loally unique, andthe ondition pids(s10) \ pids(s2) = ;, where pids(s) re-turns the proess identi�ers of proesses in s, guaranteesthe same under parallel omposition.2.2 The Property Spei�ation LanguageVerifying properties of appliations programmed in Er-lang generally requires ompositional reasoning, i.e., theapability to redue arguments about the behaviour ofompound entities to arguments about the behavioursof its parts. To support ompositional reasoning, a spe-i�ation language for Erlang has to apture the labelledtransitions at eah layer of the transitional semantis(expressions and proesses). Poly{modal logi is parti-ularly suitable for the task, o�ering box and diamondmodalities employing the transition labels: a struturedstate s satis�es the formula h�i� if there is an �{derivativeof s (i.e., a state s0 suh that s ��! s0 is a valid labelledtransition) satisfying �, while s satis�es [�℄� if all �{derivatives of s satisfy �.Additionally, to support reasoning about data, theusual logial onnetives are brought in from (many{sorted) �rst{order logi, inluding term equality, quan-ti�ers, lambda abstration, and appliation. In the fol-lowing we let t range over general terms, T over vari-ables representing terms, and S over the sorts (types),although these sorts will usually not be written out informulas. Sorts are used to distinguish terms of the dif-ferent syntatial ategories of Erlang, suh as expres-sions, proess identi�ers, atoms, or proesses.The presene of reursion on di�erent layers requiresalso the spei�ation language to be reursive. Addingreursion in the form of least and greatest �xed pointsto the modalities desribed above results in a powerfulspei�ation language, broadly known as the �{alulus[24,18℄. Roughly speaking, least �xed{point formulas �X:�express eventuality (liveness) properties, while greatest�xed{point formulas �X:� denote invariant (safety) prop-erties. Nesting of �xed points allows ompliated reativ-ity and fairness properties to be spei�ed. Note that asusual referenes to �xed points an be made only under

Thomas Arts et al.: A Veri�ation Tool for Erlang 5an even number of negations, to ensure that the orre-sponding �xed points exists (due to monotoniity).The syntax of the logi an then be summarised asfollows:� ::= t1 = t2 (equality)j true j false (truth values)j :� j �1 ^ �2 j �1 _ �2 (onnetives)j 9T : S:� j 8T : S:� (quanti�ers)j �T : S:� j � t (abstration/appliation)j h�i� j [�℄� (modalities)j �X:� j �X:� j X (�xed points)j � < �0 (ordinal inequations)j t1 ��! t2 (transition assertions)This powerful logi is apable of expressing a widerange of important system properties, ranging from type{like assertions to omplex reativity properties of theinteration behaviour of a teleommuniation system.As a syntati onvention �xed{point formulas an benamed, e.g., name(� abbreviates the least �xed point�X:�[X=name℄ and name) � abbreviates the great-est �xed point �X:�[X=name℄ (X is assumed fresh in�). Moreover we sometimes denote an appliation of theform � t by t : �.The semantis of a formula in the logi is de�nedin the usual (denotational) fashion, as the set of Erlangsystems that satisfy the formula (see [7℄ for details).Example 3. 1. The type of natural numbers is the leastset whih ontains zero and whih is losed undersuessor. The property of being a natural numberan hene be de�ned reursively as a least �xed point,assuming the term onstrutors 0 and +1:nat (�N: (N = 0 _ 9V: (nat V ^N = V + 1))2. An interesting property of the onurrent server (f.Example 1) is stabilization, i.e. the onvergene onoutput and silent ations. This liveness property ex-presses that, assuming that no input is being re-eived, the proess is able to exeute only a �nitenumber of output and silent steps:stabilizes (�S:� 8P:8V:[P !V ℄stabilizes S^ [� ℄stabilizes S �2.3 The Proof SystemVerifying orretness properties of open distributed sys-tems written in Erlang requires reasoning about their in-terfae behaviour relativised by assumptions about er-tain system parameters. Tehnially, this an be ahievedby using a Gentzen{style proof system, allowing free pa-rameters to our within the proof judgments. The judg-ments are of the form � ` � where � and � are se-quenes of assertions. A judgment is deemed valid if, forany interpretation of the free variables, some assertion

in � is valid whenever all assertions in � are valid. Pa-rameters are simply variables ranging over spei� typesof entities, suh as messages, funtions, or proesses. Forexample, the proof judgment x ` � P (x) states thatobjet P has property � provided the parameter x of Psatis�es property .The proof rules of the proof system are mostly stan-dard from aounts of �rst{order logi in Gentzen{styleproof systems, with rules like 8R and 8L shown below:(8L) �; �fv=V g ` ��;8V : S:� ` � v 2 S(8R) � ` �;�� ` 8V : S:�;� V fresh in � , �To this regular proof system two rules were added: the�rst a ut{like rule, here alled term ut, for deompos-ing proofs about a ompound system to proofs about theomponents, the seond a disharge rule based on detet-ing loops in the proof. Roughly, the goal is to identifysituations where a latter proof node is an instane of anearlier one on the same proof branh, and where appro-priate �xed points have been unfolded. The dishargerule thus takes into aount the history of assertions inthe proof tree. In terms of the implementation this re-quires the preservation of the proof tree during proofonstrution. Combined, the term{ut rule and the dis-harge rule allow general and powerful indution ando{indution priniples to be applied, ranging from in-dution on the dynamially evolving arhiteture of asystem to indution on �nitary and o{indution on in-�nitary datatypes.3 The Erlang Veri�ation ToolThe proof system introdued in the previous setion hasbeen implemented in a proof assistant (or proof heker)named the \Erlang Veri�ation Tool" here, abbreviatedEVT1. This tool has been tailored to this proof sys-tem; rather than working with a set of open goals, theunderlying data struture is an ayli proof graph, toaount for the heking of the side onditions of thedisharge rule. The main reason for developing a newproof assistant tool prototype, rather than adapting ex-isting mature theorem provers like Coq [10℄, Isabelle [25℄,NuPrl [5℄, or PVS [23℄, is preisely our desire to experi-ment with the rule of disharge and the underlying proofgraph, in order to potentially enable more eÆient hek-ing of these onditions than a oding of the dishargerule in a general{purpose tool would permit. Moreovermost existing theorem provers are rather inexible inthat they o�er a set of prede�ned indution shemes,from whih the user has to hoose one at the outset ofthe proof. This ontrasts with our ambition to disover1 http://www.sis.se/fdt/VeriCode/evt.html

6 Thomas Arts et al.: A Veri�ation Tool for Erlangindution shemes through a lazy searh proedure inthe ourse of the proof.Two notable releases of EVT exist. The �rst releasewas reported in [3℄ and was an experimental prototypetailored espeially to the veri�ation of Erlang ode. Theseond and urrent tool release is more general, per-mitting the embedding of theories for other languages.Apart from the support for Erlang, an experimental em-bedding of a variant of the value{passing Calulus ofCommuniating Systems [19℄ (CCS for short) exists. Theurrent tool is, like the theorem provers HOL [14℄ andIsabelle [25℄, implemented in Standard ML [20℄.3.1 Terms, Variables, Formulas, and ProofsEVT has as foundation a simple variant of many{sorted�rst{order logi. Aordingly terms are typed (basedon their unique term onstrutors), but there is alsoa notion of subtyping to permit a hierarhy of types.Types an be equipped with type{spei� parsers andunparsers, to enable reading and printing of terms andformulas in native formats (e.g., to support Erlang syn-tax). Likewise derived formula onstruts, with language{spei� semantis, an be de�ned. The introdution ofsubtyping in the underlying theory an, as usual, intro-due typing{related proof obligations during parsing ofterms and formulas.For types onsidered to be freely generated (intu-itively those types where \semanti equality" oinideswith the syntati notion of equality) suh as the naturalnumbers, reursive prediates an be automatially gen-erated that permit strutural indution{style argumentsabout elements of the type.Sequents � ` � are pairs of ordered sequenes of for-mulas (assertions) � = �1; : : : ; �n and � = 1; : : : ; k.These formulas may ontain free variables, whih are oftwo kinds: parameters whih are generated by rules suhas 8R above, and meta variables, the result of postpon-ing the hoie of a witness in a proof rule suh as 8L. Toensure that assignments to meta variables are sound, asimple sheme assoiating indies with variables, basedon [27℄, is used. Bound variables are represented usingde Bruijn indies, to permit heking equality of formu-las quikly up to �{onversion, whih is important forobtaining eÆient implementations of the disharge rule.From a user's point of view, proving a property ofan Erlang program using EVT involves the \bakward"(i.e., goal{direted) onstrution of a proof graph (tableau).A proof graph is, here, an ayli direted graph of proofnodes ontaining sequents and rooted in an initial proofnode. Eah proof node in the graph is either a leaf node,meaning that it either represents an open goal or thatthe sequent was solved by the appliation of an axiomproof rule without premises, or it is a parent node thathas been redued by applying a proof rule suh that itshildren nodes orrespond to the premises of the rule.An appliation of the disharge rule is represented in

the proof graph by a direted ar from the dishargednode to the node of whih it is an instane, alled theompanion node. Ars in the proof tree are labelled bythe proof rule that aused the ar to appear, to permitexible display of proofs and portable proofs (to allowfor, as an example, proof{arrying ode shemes [21℄,whih generally require the proof representation to beindependent of the underlying mahinery).Open proof goals may also be (opy)disharged (orsubsumed in more standard terminology) when instanesof the goal an be found elsewhere in the proof graph.In pratie the appliation of the opydisharge rule isabsolutely essential to, for example, ombat the state ex-plosion aused by the interleaving semantis of Erlang.However, there are two restritions to its use. First, noopen proof goal an be opydisharged against an anes-tor proof node. Seond an ayliity ondition is enforedto prevent yli opydisharges. A �nished proof graphis a proof graph that ontains no open goals.The appliation of a proof rule an be anelled (un-done), resulting potentially in non{loal anellation ef-fets on the proof tree when e.g. the ompanion node ofa opydisharge node is anelled, naturally also ausingthe opydisharge to fail. Another suh problemati aseis when a meta variable is assigned or anelled in oneproof branh, but where this variable is also present inanother branh. In suh a situation both the assignmentand the anellation may also a�et the proof steps inthe seond proof branh. To permit a sound anellationsheme in spite of these diÆulties a global ordering ofproof sequents is introdued, based on the absolute orderin whih proof nodes were introdued by appliations ofproof rules.A proof graph an also ontain disharges with re-spet to nodes not atually in the same proof tree but inanother proof tree. Suh non{loal opydisharges are re-ferred to as appliations of lemmas, or lemmadisharges.Again an ayliity test is performed, to prohibit mutualdependenies between lemmas.A (�nished) proof is then a olletion of �nishedproof graphs suh that all non{loal disharges are madewithin the olletion of proof graphs.3.2 Rules, Tatis, and TatialsThe basi proof rules of the proof assistant are imple-mented in the tool as tatis, whih are funtions (in theStandard ML sense) from a sequent (the urrent goal, orthe onlusion) to a tuple onsisting of a list of sequents(the premises of the rule) and a list of assignments tometa variables aused by the tati. Thus, if the (SML)type of sequents is sequent, meta variables are of typevar, and if terms are represented by the type term, thenthe type of a tati istype tati =sequent -> sequent list * (var * term) list

Thomas Arts et al.: A Veri�ation Tool for Erlang 7Most rules are implemented as triggering on a par-tiular assertion position in a sequent, and thus requirea natural number argument to determine where in thesequent the rule is applied. Assertions, on both sides ofa sequent, are numbered starting from one. Thus, forinstane, the tati implementing the proof rule 8R hasthe signatureforall_r: int -> tatiBeing applied to a position i where, in the urrentgoal sequent, the ith assertion on the right{hand side isuniversally quanti�ed, the quanti�ed variable is replaedby a fresh variable.As most other proof assistants do, EVT provides ta-ti ombinators (tatials) to o�er a faility to derive newsound tatis from basi tatis. Examples of suh ta-tials aret_ompose: tati -> (tati list) -> tatit_orelse: tati -> tati -> tatit_fix: 'a ->('a -> ('a -> tati) -> tati) ->tatiThe tatial t ompose t tl applies the tati t to theurrent sequent and then applies the tatis in the listtl to the orresponding resulting goals, failing if t doesso or if the number of goal sequents does not math thenumber of tatis in tl. To evaluate t orelse t1 t2,�rst t1 is applied, and t2 is applied only if t1 fails.Finally t fix an be used to write reursive tatis, the�rst argument being an arbitrary initialization value, theseond a funtion of an arbitrary parameter and a \on-tinuation", and returning a tati.3.3 User Interfae and CommandsThe standard user interfae to the proof assistant is theonventional ommand line interfae of Standard ML (ofNew Jersey) to whih a number of ommands to interatwith the proof assistant has been added. Coneptuallythe user interfae de�nes notions suh as \the urrentproof graph" and \the urrent proof node". The om-mands of the proof assistant operate on proof graphs,possibly with side e�ets. For instane, there are om-mands to start a new proof, to de�ne a lemma, to nav-igate through proof graphs (i.e., to rede�ne the urrentproof node), to navigate through the hierarhy of proofgraphs, to extend (or omplete) a proof graph by ap-plying a tati to its urrent sequent resulting possiblyin new proof branhes, and to anel a previous proofstep. As another example the disharge and opydis-harge proof rules are implemented as ommands ratherthan tatis, sine they ause global e�ets on the graphstruture.A lear alternative to ombining tatis using tati-als is to diretly use the Standard ML programminglanguage failities to de�ne funtions exeuting proof

Fig. 1. The Graphial User Interfae of EVTommands. This works reasonably well, but has the dis-advantage that all intermediate proof nodes are kept.In ontrast, using tatial ombinators, no intermediateproof nodes are ever kept.A seond, graphial, user interfae is also available.This user interfae onsists of two parts: the �rst isprogrammed in Java and provides additional user assis-tane through the implementation of modern theoremprover features [4℄ suh as \proof{by{pointing" (to sug-gest, based on the proof ontext, the next proof rule toapply), a more strutured database of lemmata, proofreording and playbak, et. A sreenshot of a proofsession using the graphial user interfae is shown inFigure 1. The seond omponent of the graphial userinterfae is used to visualize and navigate through theproof graph, and is implemented by interfaing withthe daVini [13℄ graph visualisation system. Experieneswith the graphial interfae indiate that the initial train-ing period required to beome familiar with the tool isonsiderably shortened. However, for experiened usersthe ommand-line interfae sofar remains the interfaeof hoie.3.4 Cheking Disharge ConditionsOf partiular interest is the implementation of the dis-harge proof rule. Consider a proof node Nd, heneforthalled the disharge node, representing an open proofgoal of the form �d ` �d. Assume that there exists ananestor node N in the proof tree, heneforth alled theompanion node, labelled by a sequent � ` �. Here thedisharge proof rule an be used to hek whether theompanion node, and some auxiliary onditions formu-lated on the global proof graph, motivate the disharg-ing of the disharge node. An obvious generalisation isto searh for suitable ompanion nodes among all the

8 Thomas Arts et al.: A Veri�ation Tool for Erlanganestor nodes of Nd. A haraterisation of the ondi-tions regulating when suh a disharge step is sound isgiven in [7,9℄, here only a sketh is given.The overall idea is to keep trak of unfoldings of�xed{point de�nitions by annotating �xed points withordinal variables, representing the number of unfoldings.Unfolding a least �xed{point de�nition to the left of theturnstile (in �) or a greatest �xed{point de�nition tothe right of the turnstile (in �) results in the replae-ment of the ordinal variable � assoiated with the �xedpoint with a new ordinal variable �0, and introdues anordinal inequation �0 < � as an additional assumptionin � .For example, the rules for manipulating a greatest�xed point on the right{hand side, ourring under ap-pliations, are:� ` ((�X.�)�) t1 : : : tn; �� ` (�X.�) t1 : : : tn; � � fresh�; �0 < � ` (�f(�X.�)�0=Xg) t1 : : : tn; �� ` ((�X.�)�) t1 : : : tn; � �0 freshAbove, � ranges over ordinal variables. Intuitively the�rst rule orresponds to ommening a o-indution (onthe unfolding of the �xed point), and the seond reordsthe existene of an lesser ordinal as the inequation �0 <�. As a side-e�et the term vetor t1 : : : tn is kept inthe unfolded �xed point (as in Winskel's [29℄ taggingtehnique). This is used in proof searh to heuristiallydetermine whether unfolding is a progressing proof step.The disharge proof rule then omprises hekingthree onditions, given a proof node Nd � �d ` �d anda andidate ompanion node N � � ` �:{ Is there a mapping from N to Nd? That is, does asubstitution � exists suh that (i) for eah � 2 �,�� 2 �d and (ii) for eah � 2 �, �� 2 �d{ Does some ordinal derease on the path between Nand Nd? That is, is there some ordinal variable �ourring in N suh that �d ` �� < �{ The previous two onditions where loal, i.e., involv-ing only one pair of disharge and ompanion nodes.The third ondition is a global one whih examinesall related disharges throughout the proof tree to en-sure that disharges annot anel eah other (the-oretial details are elaborated in [7,9℄). In essenethis orresponds to heking whether the global-prooftree de�nes a proper simultaneous �xed point indu-tion sheme.3.5 Embedding of ErlangThe Erlang program onstruts are enoded as terms ofthe many{sorted �rst{order logi. The tool ontains ade�nition of the transition relations (on the expressionand system levels) as reursive prediates in the under-lying logi. In addition, and to improve the speed with

whih new transitions are omputed, a set of low{levelrules was implemented diretly, for inferring transitionse ��! e0 that trigger on the syntati shape of the Erlangonstrut e. An example of suh a rule is shown below,for the ase of input under parallel omposition to theleft in a sequent (T is assumed fresh in �;�):k ?L �; s1 pid ?v����! T; s0 = T k s2 ` ��; s2 pid ?v����! T; s0 = s1 k T ` ��; s1 k s2 pid ?v����! s0 ` �In general the handling of the operational semantis inEVT is split into two parts: a language{dependent partwhere tatis orresponding to the operational seman-tis of the language in question are introdued and aseond, largely language{independent part, for derivingvalid transitions from suh sets of operational semantistatis.3.6 Tatis for Deriving TransitionsThe present tool implements four high{level tatis, diasem l,diasem r, boxsem l and boxsem r, for reasoning aboutombinations of program terms and modalities. For ex-ample, the diasem r and boxsem r tatis try to ahievethe result of the rules h ir and [℄r given below. An un-derlying assumption of these rules is that the programterm t has a sequene of transitions t ��! t1; : : : ; t ��! tnunder the ation �, and that no other suh ontinuationstate tx exists.h ir � ` t1 : �; : : : ; tn : �;�� ` s : h�i�;�[℄r � ` t1 : �;� : : : � ` tn : �;�� ` s : [�℄�;�The means of realising tatis ahieving the e�et ofthese rules is by repeatedly applying language{spei�operational semanti tatis suh as, e.g., k ?L shownbefore, together with simple general simpli�ation stepssuh as splitting onjuntions and term equality reason-ing. In addition language dependent tatis and lemmasfor handling data are appealed to.4 Indutive and Compositional ReasoningCode veri�ation is an inherently omplex ativity inwhih the omplexity of the program behaviour is essen-tially multiplied with the omplexity of the property be-ing analyzed. Using the proof system without any plan-ning requires a large amount of low{level inferene stepsand deisions to be taken whih prohibits the veri�ationof industrial{sale software. To make our veri�ationmethod appliable in this setting, we have to lift the rea-soning to a suitably high level of abstration. High{level

Thomas Arts et al.: A Veri�ation Tool for Erlang 9reasoning means proving \in hunks", i.e., deomposingproof obligations about ompound objets to proof obli-gations about the omponents, and dealing with theseusing tatis designed to automate the lower{level rea-soning steps. At the same time, reasoning about ongoingbehaviour involves indutive and o{indutive argumentswhih have sometimes to be ombined with omposi-tional reasoning. Below we disuss (o{)indutive andompositional reasoning and their rôle in struturingproofs and higher{level reasoning.There is learly no general method for veri�ation ofarbitrary Erlang programs whih is e�etive and, at thesame time, leads to eonomi proofs. However, one ando muh better in speialised ases whih are well under-stood. A main diretion of researh is the identi�ationof fragments of Erlang and of the property spei�ationlanguage for whih eÆient veri�ation methods exist.One suh fragment is the side{e�et{free one, in whihan Erlang expression is evaluated purely for its value,and is not a�eting the environment in whih it is eval-uated in terms of sending messages, reading from themessage queue, or proess spawning. Setion 4.3 givesa high{level treatment of side{e�et{free funtion allsbased on ompositional reasoning.4.1 Indution and DishargeAutomating the veri�ation of omponents usually faesthe diÆulty of handling reursively de�ned behaviour.This requires indutive and o{indutive reasoning, de-pending on whether one investigates properties of termi-nating or ongoing behaviour. Many types of indutionare involved in examples suh as the ase study onsid-ered in Setion 6:{ Indution on the number of evaluation steps.{ Indution on the size of data values, suh as numbersor lengths of lists.{ Indution on the struture of funtion expressions.Indution on the number of evaluation steps from someinitial on�guration is typially used if we prove thatomputing the length of a list results in a natural num-ber, or that omparing two numbers results in a boolean.Co{indution is used, typially, for invariants, by show-ing that the invariant remains unbroken after any num-ber of omputation steps. General programs involve datatype operations, ommuniation, and, maybe, dynamireation of new proesses, in manners whih are inter-woven to a onsiderable extent. To handle these ompli-ations, most parts of the proof will involve indutionand o{indution at many levels simultaneously, whih,when properly formalized, may be exeedingly ompli-ated. Our proof{theoreti approah, using loop dete-tion or disharge, allows very substantial parts of thisformalisation to be almost ompletely hidden from theuser. In fat the disharge mehanism as desribed in

the previous setion attempts to ast the proof as on-struted so far as a proof by simultaneous indution,by seeking an ordering that makes the dependeny re-lation between indution and o{indution variables awell{founded one. Maintaining the onstraints on thisdependeny ordering is done by the proof editor. Thusthere is no need for users to speify the sequene, nest-ing, or mutual dependenies of simultaneous indutivearguments, or even to state that indution is being usedat all. All this is managed by the tool. Furthermore,the tool supports, through the disharge mehanism, thedisovery of suessful indution shemes; for making in-formed deisions, however, the user will need to have abasi understanding of the general priniples of simulta-neous �xed-point indution.4.2 Compositional ReasoningThe essene of ompositional veri�ation is the redu-tion of an argument about the behaviour of a ompoundsystem to arguments about the behaviour of its ompo-nents. A system s ontaining omponent t an be repre-sented through term substitution as s[t=T ℄, where T isa variable ranging over entities of the type of t. We anrelativise an assertion s[t=T ℄ : � about the ompoundobjet s[t=T ℄ to a ertain property of its omponentt by onsidering t as a parameter for whih property is assumed, provided we an show that t indeed satis-�es the assumed property . Tehnially, we ahieve thisthrough a term{ut proof rule of the shape:(TermCut) � ` t : ;� �; T : ` s : �;�� ` s[t=T ℄ : �;�Very often, onstrutors ourring within the sopeof reursion give rise to unbounded state spaes. An ex-ample is a proess spawning statement, giving rise to theformation of an unbounded proess set. In suh aseswe have to ombine (o{)indutive with ompositionalreasoning. For example, after a new proess s has beenspawned o� by a reursive proess t one an apply theabove term{ut rule to relativise the proof on the spei�-ation of t rather than on its implementation, thus avoid-ing new proesses from being generated by t expliitly inthe proess term, and thus allowing the (o{)indutionthrough loop detetion and disharge to go through.The above term{ut rule provides the basi low{levelfaility for ompositional reasoning. Applying the rulerequires a suitable hoie of the ut property . It shouldapture the essene of the behaviour of t needed for om-pleting the proof. In some speial ases we an give a on-rete struture to the formation of , as illustrated in thenext subsetion, and give (and support through tatis)more high{level deomposition priniples exploiting thisadditional struture.

10 Thomas Arts et al.: A Veri�ation Tool for Erlang4.3 Dealing with Side{E�et{Free Erlang CodeA frequent ase in pratie is dealing with funtion allswhere the body of the de�nition of the funtion is side{e�et{free, i.e., is evaluated purely for its value, and doesnot a�et the environment in whih it is evaluated interms of sending messages, reading from the messagequeue, or proess spawning. The libraries o�er a largenumber of suh funtions. For example, the list{sortingfuntion sort ould be used by the handle funtion inthe onurrent server (f. Example 1) to proess list sort-ing requests:handle ({srt, L}) ->sort (L).If we want to prove a property of suh a sorting server,we would like to reason on a high{level and replae fun-tion alls to the list{sorting library funtion sort withargument L, with a value variable V , by adding the as-sumption that V is a sorted permutation of L. What weabstrat from in this ase are the internal steps requiredto evaluate the sort funtion all. It is safe to do so sinethis omputation does not a�et the rest of the system.It only a�ets the number of silent (i.e., side{e�et{free)steps, therefore suh a deomposition assumes the prop-erty we are analysing to be \insensitive" to silent ations.In general, under the assumptions that{ e is a all of a funtion f , that{ the body of the de�nition of f is side{e�et{free, andthat{ � is insensitive to (the number of) side{e�et{freeations,the following deomposition priniple is appliable:(SefCut) � ` e : prepost(; �); �� ` ;��; V : � ` hV; pid; qi : �;�� ` he; pid; qi : �;�where prepost is as de�ned below and � is a formulainsensitive to silent ations.One a side{e�et{free funtion all has been fa-tored out, it an be spei�ed and veri�ed using well{known tehniques. A lassial method for the veri�a-tion of sequential programs is the axiomati methodof Hoare [16℄. It is based on assertions of the shapef gef�g, the intuitive semantis of whih, in our ontext,is: if the parameters of e satisfy the preondition , theexeution of e, provided it terminates, results in a valuesatisfying the postondition �. We follow the same idea,but require termination; a orretness notion known astotal orretness.We use assertions of the form e : prepost(; �) wheree : prepost(; �) = (! e : eval �)e : eval � (9V : erlangValue:(e = V ^ V : �)_ e : h�i true ^ [� ℄ eval �

For example, the required behaviour of the sort fun-tion an be spei�ed as a satisfation pair of the formsort(L) : prepost(L : list; �sort L) where the type list isde�ned by:L : list (L = [℄_ 9P;R : erlangValue:L = [P jR℄ ^ R : listand the type �sort L is de�ned by:V : �sort L =isSorted V^ isPermutation V LA more detailed aount of how to deal with side{e�et{free Erlang ode an be found in [15℄.5 ExampleWe shall illustrate the ideas presented above using theErlang program from Example 1. Reall the de�nitionof the onurrent server whih repeatedly takes a re-quest from its message queue and spawns o� a proessto serve it by handling the request, here always assumedto sueed, and responding with the obtained result tothe lient spei�ed in the request:entral_server() ->reeive{request, Request, Client} ->spawn(serve, [Request, Client℄),entral_server()end.serve(Request, Client) ->Client!{response, handle(Request)}.handle(Request) ->ok.The property we onsider is the liveness propertyfrom Example 3, namely stabilization, i.e., the onver-gene on output and silent (estep) ations. We reallits de�nition from Example 3:stabilizes (�S:� 8P:8V:[P !V ℄stabilizes S^ [� ℄stabilizes S �So, the initial proof goal is delared as:delare P:erlangPid, Q:erlangQueue in|- <entral_server(), P, Q> : stabilizesIn the proof sketh below we illustrate the interplaybetween automated proof searh { leading to disoveryof proof strutures suh as indution strategies { and

Thomas Arts et al.: A Veri�ation Tool for Erlang 11manual proof steps realising the disoveries in a revisedproof attempt.The following proof searh sript results in a symboliexeution of the proess until either a system whih isnot a singleton proess, or a repetition of the same on-trol state is enountered:loop(ase_by[(sp_and (sp_sat_syspro_r 1)(sp_not (sp_sat_is_queue_var_r 1)),t_queue_flat_r 1),(sp_and (sp_sat_syspro_r 1)(sp_unfoldable_r 1),t_gen_unfold_r 1)℄);In the �rst ase, if the �rst right{hand side formulais a satisfation pair the �rst part of whih is a sin-gle proess the queue term of whih is not a variable,the t_queue_flat_r tati is applied whih replaes theterm with a fresh variable and adds an equation to theleft equating this fresh variable with the queue term.This is done to insure that, in the seond ase, the pre-instane heking mehanism based on sp_unfoldable_rdetets ontrol-point repetition. Exeution of the aboveproof searh sript terminates beause a new proess wasspawned (and thus sp_sat_syspro_r failed). The re-sult is the sequent:Q = Q2�[[{request,Req,ClPid}℄℄�Q3,Q1 = Q2�Q3, not (P = P1) |-<begin P1, entral_server() end, P, Q1>|| <serve (Req, ClPid), P1, eps> : stabilizesThe queue Q2�[[{request,Req,ClPid}℄℄�Q3 isbuilt from the onatenation of three parts, Q1, thevalue [[{request,Req,ClPid}℄℄ and Q3. We have nowa lear indiation that the number of proesses in thesystem will grow without bound, so a blind proof searhis bound to fail. Rather, one has to proeed by indutionon the system struture. This is ahieved through om-positional reasoning by abstrating away the �rst pro-ess omponent whih is responsible for the unboundeddynami proess reation, and relativising the argumenton a property of this omponent. The hoie of a suit-able property is ruial, of ourse, for the indutionto sueed. In our partiular example it happens thatstabilizes omposes. We apply the term-ut rule toobtain the two new goals:|- <begin P1, entral_server() end, P, Q1> :stabilizesX : stabilizes |-X || <serve (Req, ClPid), P1, eps> :stabilizesthe �rst of whih orresponding to the indution basis,and the seond orresponding to the indution step. The

�rst of these an be be analysed by the sript presentedabove, terminating with the goal|- <entral_server(), P, Q1> : stabilizesbeause of deteting a pre-instane (we looped bak tothe initial ontrol point), ausing sp_unfoldable_r tofail. One might expet to be able to disharge here w.r.t.the initial goal, but this fails. The reason is that no or-dinal has been dereased. However, by inspeting theproof state we realize that the length of the queue of theproess has dereased, and that indeed stabilization ofthe server is a onsequene of the well{foundedness ofmessage queues. We therefore return to the initial goaland re-delare it by adding an expliit assumption on thewell-foundedness of the queue, whih will be maintainedthroughout the proof:delare P:erlangPid, Q:erlangQueue inQ : queue |-<entral_server(), P, Q> : stabilizesqueue (�Q : erlangQueue:� Q = eps_ 9V:9Q1:9Q2:Q = Q1�[[V ℄℄�Q2 ^ queue Q1�Q2�The revised proof will turn out to be, at leastpartly, by indution on the queue-term struture. All wehave to hange in the beginning is to approximate theleft formula, resulting in Q : queue being replaed byQ : queue(K) where K is an approximation ordinal, andto proeed as before. This eventually results in:Q2�[[{request,Req,ClPid}℄℄�Q3 : queue(K),Q1 = Q2�Q3 |-<entral_server(), P, Q1> : stabilizes,in plae of the unsuessful goal we ended upwith earlier. This goal is \almost" dishargablew.r.t. the initial goal after approximation. Forthe instane hek to go through, one needsQ1 : queue(K1), for some ordinal variable K1<K, insteadof Q2�[[{request,Req,ClPid}℄℄�Q3 : queue(K)to appear as an assumption in the sequent. Wetherefore unfold queue(K) via t_gen_unfold_l, fol-lowed by transferring the queue-term assumption viat_queue_invar_l to obtain a dishargable goal.The important goal we are left with is the sequentorresponding to the indution step. Fortunately, it anbe dealt with by the same proof sript as the initial goal,with the important di�erene that no new proesses willbe spawned. Parameter-assumption transfer, however,onerns in this ase not the queue but the proess pa-rameter X. And the number of ontrol states will growdue to the presene of two onurrent proesses.

12 Thomas Arts et al.: A Veri�ation Tool for Erlang6 Report on a Veri�ation Experiene: theAnalysis of A Distributed Database LookupManagerErlang is used extensively for writing robust distributedteleommuniation appliations. Central in many of theseappliations is a distributed database, Mnesia [28℄, alsowritten in Erlang. The Mnesia system is ruial to therobustness of many Erlang{based produts developed atErisson. It is, for instane, responsible for error reov-ery, the prompt and safe handling of whih is essentialin teleommuniation appliations. These features makethe Mnesia system a rewarding objet of study whentrying out new veri�ation tehniques.The ase study at hand onerns only a small partof the Mnesia system, a protool for the evaluation ofa query whih is distributed over several omputers ina network. The starting point for this ase study wasthe Erlang ode implementing the distributed database.We extrated, from the real implementation, the odefor the distributed query evaluation protool and addedsome ode to provide a very simple simulated interfaeto parts of the system that were irrelevant for the prob-lem at hand. The result was an Erlang program thatould be seen as a very preise, and in some sense for-mal, desription of the underlying algorithm. Isolationof the ode responsible for the lookup mehanism andanalysing the intended behaviour of the ode resulted,as a side e�et, in a lear and patentable piture of theunderlying protool [22℄.As input the protool reeives a database query di-vided into subqueries. These subqueries are distributedover the network in the form of proesses on those om-puters where the spei� data for a subquery is stored.Whenever a subquery proess reeives a message, it ex-trats the orresponding data from the database tablesand sends it along the network.One proess is responsible for initialising the lookupproess ring, and for olleting the resulting data. Toavoid exessive delays and storage onsumption, queryanswers are olleted in segments, managed by the lookupmanager (see Figure 2). The task we set ourselves wasto prove that the implementation provided a responsive-ness property: that input queries are eventually beingreplied to.6.1 Using the Tool in PratieMixing automated and interative veri�ation in the man-ner we propose puts very onsiderable demands on theuser interfae, to aid users ontrol of possibly very largeproofs. The tati programming language gives a lotof help, providing failities for naming and retrievingnodes, and for de�ning searh and navigation proe-dures. The simple tatis we developed for \model hek-ing", type hek, and termination, turned out to be sur-prisingly robust, requiring little adaptation even for quite

6?Æ��P1���= Æ��P2ZZZ}Æ��PnÆ��Pn-1BBBBN ���-
�� ��� �� �� ��� ��� �� �� ��� ��� �� �� �Fig. 2. Ring of proesses attahed to tables, with P1 the initialproesssubstantial modi�ations of the funtions and propertiesbeing heked. In our ase study so far we have proved anumber of properties for the ring proess, and for vari-ous approximations of it. The most sophistiated of thoseproofs ontains about 2000 proof nodes, of whih two-third has been generated automatially. To help visual-isation the daVini graph display faility [13℄ was used.Small graphs, less than 1000 nodes, are easily displayedby daVini, and it provides good help, for instane indebugging proof tatis. For larger proofs graphs reallyneed to be displayed inrementally (whih is not verywell supported urrently) or in segments, to avoid ex-essive delays.6.2 Conlusions on the Database Case StudyOur report is a tentative one, reporting more on qual-itative than quantitative experienes with the use of anovel approah to ode veri�ation for distributed sys-tems. The report must be a tentative one, sine there re-ally are not many tools or proof approahes around witha similar sope of addressing dynami proess networkson the level of atual running ode without resortingto approximate tehniques. The database lookup man-ager whih we addressed was about 200 lines of ode andexplored most \ore" features of the Erlang language in-luding list and number proessing, ommuniation, anddynami proess reation. Experiene with Erlang at Er-isson has indiated that | as a rule of thumb | oneline of Erlang ode orresponds to six lines of C ode.A entral issue on whih we have as yet little to sayis salability. Sine our proof system is highly omposi-tional it is atually realisti to hope to reuse proofs to-gether with their assoiated ode modules. As yet, how-ever, we have little pratial experiene with this.The proof approah whih we follow requires userintervention. We have developed tatis whih are quiterobust and manage to produe large parts of proofs with-out any user intervention at all. Moreover it is quite real-isti in many ases to hope to automate almost the entireproof searh proess, even in ases when model heking-

Thomas Arts et al.: A Veri�ation Tool for Erlang 13like tehniques fail. The ritial point at whih user in-tervention is really essential is, of ourse, in the iden-ti�ation of indutive assertions. In the example stud-ied here this was not at all easy. A partiular soure ofheadahe was the handling of proess identi�ers whihin Erlang play a rôle not unlike names in the �-alulus.Even though our handling of proess identi�ers and theirreation in Erlang is as yet imperfet, the tool was ableto assist the identi�ation of indutive assertions quitesubstantially, by having tatis whih were suÆientlyrobust to often aomodate smaller formula modi�a-tions ompletely automatially.The reader is referred to [2℄ for a more detailed de-sription of this ase study.7 Extension: Support for Program LibrariesAs pointed out in the preeding explanations, the veri-�ation of omplex distributed systems requires ompo-sitional reasoning methods. Aiming to bring veri�ationtehnology into industrial appliations and to supportresearh on industrially relevant problems in softwaredevelopment, it is neither meaningful nor manageableto start ompletely from srath when a new or modi-�ed veri�ation problem is being addressed. Instead itshould be possible to exploit known properties of sub-systems by reusing their proofs.A ompositional reasoning framework will turn outto be useful espeially in onnetion with standard pro-gram libraries and programming tehniques. Sine theseare developed to be used frequently, it is worth spendinga onsiderable e�ort in analysing and desribing theirproperties sine many appliations will potentially ben-e�t from this knowledge.An alternative to the approah we advoated in Se-tion 4.2 is to apture the behaviour of library funtionsby speifying their operational semantis on an abstratlevel, regardless of their onrete implementation. Tothis aim we provide rules in the style of Setion 2.1.2whih desribe the possible transitions that any Erlangproess evaluating the respetive funtion an take, re-strited by the shape of the environment if neessary.Adding these rules to the general proof system of Se-tion 2.3 enables us to argue about any program that usesthe library module without having to onsider the mod-ule's soure ode. In this way we support a ompositionalstyle of reasoning whih is relativised by the assumptionthat the onrete implementation of a library follows itsspei�ation.From a pragmatial point of view we an argue thatsuh assumptions are justi�ed sine software librariesare usually well{tested, and sine their frequent use un-overs unexpeted behaviour very soon. From a onep-tual point of view however, the onsisteny between thelibrary{spei� transition rules and the onrete imple-mentation with respet to the general proof system is

an issue: do the spei� rules fully reet the behaviourof the library funtions, or are they too abstrat in thesense that ertain details of the implementation are ig-nored although they have an impat on the veri�ationproblem? Or, in other words: is the (low{level) imple-mentation of the library module orret with respet tothe (high{level) spei�ation?Pragmatially, our onern is to provide a frameworkin whih we an prove properties of the ode in an ab-strat setting, where we use one abstration for all possi-ble properties. This abstration is very lose to the realimplementation, but there will always exist propertiesfor whih it turns out to be too general. However, if wean prove a ertain property about the abstration, thenwe inreased the level of on�dene in the ode; if we �ndthat a ertain property does not hold by reasoning in thisabstrated setting, then, most likely, this orresponds toan error in the real program.We now onretely demonstrate our ideas using aspei� lass of programs whih plays an important rôlein open distributed appliations. The essential hara-teristis of this lass are desribed in the following sub-setion.7.1 Generi Client{Server ImplementationsTo support the software development proess, the Er-lang/OTP Development Team has devised a wide rangeof design priniples whih desribe how to struture aonrete Erlang software arhiteture. In partiular sev-eral kinds of behaviour modules are o�ered as templatesto build onrete systems. Among these one �nds thegen server behaviour whih is widely used to imple-ment lient{server appliations in a standardized way.The gen server module o�ers a number of inter-fae funtions whih provide synhronous ommunia-tion, debugging support, error handling, and other ad-ministrative tasks. The atual, appliation{spei� im-plementation of the server has to be provided by the userin a separate module, alled the allbak module. When-ever the generi part of a server reeives a request, theorresponding allbak funtion is being invoked.For example, gen server provides the all funtionwhih an be invoked in the user proess to send a re-quest to a server:gen server:all(Server, Req)This request is handled by the generi server proessby exeuting the orresponding allbak funtion:allbak:handle all(Req, User, State)Here, allbak is the name of the allbak module, Useridenti�es the user proess, and State is a term repre-senting the urrent state of the server. The allbak fun-tion now deides whether the user should reeive a re-ply immediately (freply, Answer, NewStateg), later(fnoreply, NewStateg), or whether the server proess

14 Thomas Arts et al.: A Veri�ation Tool for Erlangshould terminate as a result of the request (fstop, Reason,NewStateg). In the �rst ase, Answer is the all returnvalue.7.2 The ApproahTo support the veri�ation of lient{server systems thatemploy the above generi implementation sheme, onemight think of the following strategies:{ The omplete system spei�ation inluding the all-bak and the gen server modules is fed into EVT.{ The generi server implementation in bakground iseliminated by deriving a standalone Erlang programwhih reets the essential behaviour of the system.The �rst approah requires no intermediate translationof the program system, but the proof will beome muhtoo ompliated due to the neessity to onsider the de-tails of the generi server implementation. Using theseond idea, the proof system has to deal with onlyone, omparatively simple piee of software. However,the soure ode has to be translated, and synhronousommuniation has to be implemented by asynhronousmessages, involving a potential state{spae overhead.As explained above, we follow a third approah here.We failitate the proofs by ignoring the onrete imple-mentation of the gen server module. Instead, we spe-ify its abstrat behaviour by inluding its syntati on-struts in the Erlang syntax, and by adding appropri-ate transition rules to the proof system. So the intu-itive meaning of the all/handle all mehanism asdesribed above gives rise to the following set of rules.A all in the user proess an be handled by theserver if it is in an idle state, as indiated by the loopatom. In this ase, the server proess exeutes the handle allallbak funtion, and the user proess is put into a waitstate until the request has been answered. Formally, thisis reeted by the following rule:hall(pid 0; req); pid ; qi k hloop(state); pid 0; q0i�! hwait(pid 0); pid ; qi khhandle all(req ; pid ; state); pid 0; q0iWhen the handle all funtion yields an answer, itis immediately returned to the waiting user proess, andthe server hanges into the idle state again:hwait(pid 0); pid ; qi khfreply; answer ;newstateg; pid 0; q0i�! hanswer ; pid ; qi k hloop(newstate); pid 0; q0iAs an be seen, the asynhronous ommuniation a-tions that are used in the gen server module to imple-ment synhronous message passing are ollapsed into anatomi handshake. The remaining funtions are repre-sented in a similar fashion.So far we have extended the proof system by appro-priate transition rules and applied it to simple examples,

starting with systems whih onsist of a �nite numberof lients and servers. Currently, for more elaboratedase studies, we are trying to identify tatis and ta-tials whih automatially take (most of) the deisionsdesribed in Setion 3, and we will try to extend themethod to programs whih involve dynami proess re-ation. The whole approah should also be easily adapt-able to several other libraries in the Erlang distribution,like systems of �nite{state mahines implemented by thegeneri gen fsm module.8 Related WorkIn this setion we shortly review other veri�ation frame-works whih support dedutive systems tailored towardsformal reasoning about programming languages, ignor-ing theorem{proving systems designed for the formal-ization of lassial or onstrutive mathematis, suh asCoq, HOL, or Nuprl.ACL2 2, the suessor of the \Boyer{Moore theoremprover" Nqthm, supports the �rst{order logi of totalreursive funtions with equality, o�ering mathematialindution on ordinals as the main proof method. Withinthis framework it is possible to de�ne models of vari-ous kinds of omputing systems and to prove theoremsabout them. Suesful industrial{sale appliations ofthis approah inlude orretness proofs of several as-sembler programs for a Motorola signal proessor and ofthe oating{point division unit of an AMD miroproes-sor.Another popular system is the Isabelle generi the-orem proving environment3. Its meta logi, alled Is-abelle/Pure, is used to delare the (onrete and ab-strat) syntax and the semantis (i.e., the inferene rules)of a onrete logi. Moreover it allows to instantiategeneri proof tools suh as a general tableau prover toobtain a spei� prover, or to manually ode speializedproof proedures. Conrete programming{oriented ap-pliations of this framework omprise veri�ation toolsfor the Java programming language, for distributed sys-tems spei�ed using I/O automata or the UNITY lan-guage, and for objet{oriented programs.Examples for other veri�ation systems of this kindare ELAN4 and Larh5.The spei�ation language of the PVS theorem prover6is based on lassial, typed higher{order logi supportingfuntions, sets, reords, tuples, enumerations, reursively{de�ned abstrat data types, prediate subtypes, and de-pendent typing. PVS provides a olletion of proof rulesthat are applied interatively under user guidane withina sequent alulus framework. Just like EVT the prover2 http://www.s.utexas.edu/users/moore/al2/3 http://www.l.am.a.uk/Researh/HVG/Isabelle/4 http://www.loria.fr/ELAN/5 http://www.sds.ls.mit.edu/spd/larh/6 http://pvs.sl.sri.om/

Thomas Arts et al.: A Veri�ation Tool for Erlang 15maintains a proof tree where the nodes are labeled bysequents. The primitive proof rules inlude propositionaland quanti�er rules, equational reasoning, indution, rewrit-ing, and deision proedures for linear arithmeti.All of the above frameworks ould be applied, atleast in priniple, to the veri�ation of Erlang programsas well. To this aim, the syntati onstruts and theirmeaning have to be de�ned in the orresponding spei�-ation formalism. With regard to the logi, however, onewould be dependent on those proof methods whih areprede�ned in the respetive system. For example thismeans that, at the outset of a proof, the user has tohoose from a olletion of prede�ned indution shemes.This requirement is in ontradition to our intentionto support the lazy disovery of ompliated indutionshemes through symboli program exeution, whih isessential for the pratial veri�ation of temporal prop-erties of programs with dynami behaviour.Of ourse the prie to be paid for this exibility isthe missing generality of our system with respet to thespei�ation language, whih makes it a speial{purposetheorem prover tailored towards the Erlang language.An alternative approah to the veri�ation of Erlangprograms is the use of abstrat interpretation tehniquesto reate a �nite{state model of the given program whihan be handled with standard model{heking tehniques.This approah is taken by Huh [17℄, where a onreteabstrat interpretation is suggested, essentially reduingin�nite data domains to �nite ones. However, the in�nitestate spaes arising from unbounded message queues orunbounded proess spawning, whih are harateristifor open distributed systems, are not handled there.9 ConlusionWe have given an overview of the main results obtainedin the ASTEC projet Veri�ation of Erlang Programs,fousing in partiular on the Erlang Veri�ation Tool, atheorem{proving tool whih assists in obtaining proofsthat Erlang appliations satisfy their orretness require-ments formulated in a spei�ation logi. We presented asummary of the veri�ation framework as supported byEVT, disussed reasoning priniples essential for suess-ful veri�ation suh as indutive and ompositional rea-soning and reasoning about side{e�et{free ode, sum-marized our experiene from a larger industrial ase study,and suggested a pratial method for supporting veri�-ation in the presene of program libraries.The experiene gained in the projet learly showsthe potential of the hosen framework. We were able toverify Erlang systems whih, due to their dynami na-ture, are beyond the sope of most other existing veri�-ation approahes. The prie to pay is the undeidabil-ity of the general veri�ation problem. The veri�ationtask has to be split into automatable and manually as-sisted parts. Thus, the suess of the approah depends

ruially on the eÆieny of the deision proedures em-ployed and on the support provided for minimizing theneed for human intervention in terms of high{level rea-soning priniples and user interfae.To make the presented veri�ation method prati-ally useful onsiderable additional e�ort is required inseveral researh diretions. These inlude providing au-tomati support for identifying appropriate indutionshemes, providing easy and ontext{sensitive aess tothe available proof mahinery through the graphial userinterfae, and designing eÆient deision proedures au-tomating the straightforward low{level reasoning and �-nite state spae exploration.Referenes1. J. Armstrong, R. Virding, C. Wikstr�om, andM. Williams. Conurrent Programming in Erlang(Seond Edition). Prentie-Hall International (UK)Ltd., 1996.2. T. Arts and M. Dam. Verifying a distributed databaselookup manager written in Erlang. In Pro. FormalMethods Europe'99, Leture Notes in Computer Siene,1708:682{700, 1999.3. T. Arts, M. Dam, L.-�a. Fredlund, and D. Gurov. Systemdesription: Veri�ation of distributed Erlang programs.In Pro. CADE'98, Leture Notes in Arti�ial Intelli-gene, 1421:38{41, 1998.4. Y. Bertot and L. Thery. A generi approah to buildinguser interfaes for theorem provers. Journal of SymboliComputation, 25(7):161{194, February 1998.5. R.L. Constable, S.F. Allen, H.M Bromley, W. R. Cleave-land, J. F. Cremer, R. W. Harper, D. J. Howe, T. B.Knoblok, N. P. Mendler, P. Panangaden, J. T. Sasaki,and S. F. Smith. Implementing Mathematis with theNuprl Proof Development System. Prentie Hall, 1986.6. M. Dam. Proving properties of dynami proess net-works. Information and Computation, 140:95{114, 1998.7. M. Dam, L.-�a. Fredlund, and D. Gurov. Toward paramet-ri veri�ation of open distributed systems. In Compo-sitionality: the Signi�ant Di�erene, H. Langmaak, A.Pnueli and W.-P. de Roever (eds.), Springer, 1536:150{185, 1998.8. M. Dam and D. Gurov. Compositional veri�ation ofCCS proesses. In Pro. PSI'99, Leture Notes in Com-puter Siene, 1755:247{256, 2000.9. M. Dam and D. Gurov. �-alulus with expliit pointsand approximations. In: Pro. FICS'2000, 2000.10. G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy,C. Parent, C. Paulin-Mohring, and B. Werner. The Coqproof assistant user's guide version 5.8. Tehnial Report154, INRIA, 1993.11. L.-�a. Fredlund. Towards a semantis for Erlang. Unpub-lished manusript, Swedish Institute of Computer Si-ene, 1999.12. L.-�a. Fredlund and D. Gurov. A framework for for-mal reasoning about open distributed systems. In Pro.ASIAN'99, Leture Notes in Computer Siene, 1742:87{100, 1999.

16 Thomas Arts et al.: A Veri�ation Tool for Erlang13. M. Fr�ohlih and M. Werner. The graph visualization sys-tem daVini { a user interfae for appliations. TehnialReport 5/94, Department of Computer Siene; Univer-sitt Bremen, 1994.14. M.J.C. Gordon and T.F.Melham (eds.). Introdution toHOL: a theorem proving environment for higher orderlogi. Cambridge Press, 1993.15. D. Gurov and G. Chugunov. Veri�ation of Erlang pro-grams: Fatoring out the side-e�et-free fragment. InPro. FMICS 2000, GMD Report No.91, pages 109{122,2000.16. C. A. R. Hoare. An axiomati basis for omputer pro-gramming. Communiations of the ACM, 12:576{580,1969.17. F. Huh. Veri�ation of Erlang programs using abstratinterpretation and model heking. In Pro. ICFP '99,ACM SIGPLAN Noties, 34(9):261{272, 1999.18. D. Kozen. Results on the propositional �-alulus. The-oretial Computer Siene, 27:333{354, 1983.19. R. Milner. Communiation and Conurreny. PrentieHall International, 1989.20. R. Milner, M. Tofte, and R. Harper. The De�nition ofStandard ML { Revised. MIT Press, 1997.21. George C. Neula. Proof-arrying ode. In Pro.POPL'97, 1997.22. H. Nilsson. Patent Appliation, 1999.23. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K.Srivas. PVS: Combining spei�ation, proof heking,and model heking. In Pro. CAV'96, Leture Notes inComputer Siene, 1102:411{414, 1996.24. D. Park. Finiteness is mu-Ine�able. Theoretial Com-puter Siene, 3:173{181, 1976.25. L.C. Paulson. Isabelle: A Generi Theorem Prover.Springer Verlag (LNCS 828), 1994.26. G. D. Plotkin. A strutural approah to operational se-mantis. Aarhus University report DAIMI FN-19, 1981.27. D. Sahlin, T. Franz�en, and S. Haridi. An intuitionistiprediate logi theorem prover. In Journal of Logi andComputation, 2(5):619{656, Otober 1992.28. C. Wikstr�om, H. Nilsson, and H. Mattson. Mnesiadatabase management system. In Open Teleom Plat-form Users Manual. Open Systems, Erisson UtveklingsAB, Stokholm, Sweden, 1997.29. G. Winskel. A note on model heking the modal�-alulus. Theoretial Computer Siene, 83:157{187,1991.

