
Software Tools for Te
hnology Transfer manus
ript No.(will be inserted by the editor)
A Veri�
ation Tool for ErlangThomas Arts1, Gennady Chugunov2, Mads Dam2, Lars{�Ake Fredlund2, Dilian Gurov2, Thomas Noll31 Eri
sson Computer S
ien
e Laboratory, Eri
sson Utve
klings AB, e-mail: thomas�
slab.eri
sson.se2 Swedish Institute of Computer S
ien
e, e-mail: gena�si
s.se,mfd�si
s.se,fred�si
s.se,dilian�si
s.se3 Lehrstuhl f�ur Informatik II?, Aa
hen University of Te
hnology, e-mail: noll�
s.rwth-aa
hen.deThe date of re
eipt and a

eptan
e will be inserted by the editorAbstra
t. This paper presents an overview of the mainresults of the proje
t \Veri�
ation of Erlang Programs",whi
h is funded by the Swedish Business DevelopmentAgen
y (NUTEK) and by Eri
sson within the ASTEC(Advan
ed Software TEChnology) initiative. Its mainout
ome is the Erlang Veri�
ation Tool (EVT), a theo-rem prover whi
h assists in obtaining proofs that Erlangappli
ations satisfy their
orre
tness requirements for-mulated in a spe
i�
ation logi
. We give a summary ofthe veri�
ation framework as supported by EVT, dis-
uss reasoning prin
iples essential for su

essful proofssu
h as indu
tive and
ompositional reasoning, and aneÆ
ient treatment of side{e�e
t{free
ode. The experi-en
es of applying the tool in an industrial
ase study aresummarised, and an approa
h for supporting veri�
ationin the presen
e of program libraries is outlined.EVT is essentially a
lassi
al proof assistant, or theorem{proving tool, requiring users to intervene in the proofpro
ess at
ru
ial steps su
h as stating program invari-ants. However, the tool o�ers
onsiderable support forautomati
 proof dis
overy through higher{level ta
ti
stailored to the parti
ular task of the veri�
ation of Er-lang programs. In addition, a graphi
al interfa
e permitseasy navigation through proof tableaux, proof reuse, andmeaningful feedba
k about the
urrent proof state, to as-sist users in taking informed proof de
isions.
1 Introdu
tionErlang is a programming language developed at the Er-i
sson
orporation for implementing tele
ommuni
ation? Most of the work was
ompleted during the author's employ-ment at the Department of Teleinformati
s, Royal Institute ofTe
hnology (KTH), Sto
kholm.

systems [1℄. It provides a fun
tional sublanguage, en-ri
hed with
onstru
ts for dealing with side e�e
ts su
has pro
ess
reation and inter{pro
ess
ommuni
ation.Today many
ommer
ially available produ
ts o�ered byEri
sson are at least partly programmed in Erlang. Thesoftware of su
h produ
ts is typi
ally organised into many,relatively small sour
e modules, whi
h at runtime exe-
ute as a dynami
ally varying number of pro
esses op-erating in parallel and
ommuni
ating through asyn-
hronous message passing. The highly
on
urrent anddynami
 nature of su
h software makes it parti
ularlyhard to debug and test. We therefore explore the alter-native of proof system-based veri�
ation. The
ore frag-ment of the Erlang language is e
onomi
 and
lean, al-lowing a
ompa
t transitional semanti
s, and
omponentinterfa
es
an be elegantly spe
i�ed in a modal logi
 withre
ursion, suggesting feasibility of su
h an endeavour.Rather than working with some abstra
t model of theErlang system under
onsideration, our veri�
ation ap-proa
h is dire
tly based on the
ode: we show that a
on-
rete Erlang program satis�es a set of properties formal-ized in a suitable logi
, a spe
i�
ation language based onPark's �{
al
ulus [24,18℄, extended with Erlang{spe
i�
features. This is a quite powerful logi
, due to the pres-en
e of least and greatest �xed{point re
ursion, allow-ing the formalization of a wide range of behaviouralproperties. It semanti
ally subsumes the temporal logi
sCTL, CTL�, and LTL. By employing a ma
ro me
h-anism, named formulas with parameters
an be intro-du
ed to represent typi
al properties su
h as safety, live-ness, and fairness
onditions. The veri�
ation problemin this rather general
ontext is not de
idable, but
anbe automated to a
onsiderable extent, requiring humanintervention at a few, but
riti
al points.Verifying re
ursive temporal properties of systemswith dynami
ally evolving pro
ess stru
tures and un-bounded data is known to be hard. It requires a ri
h ver-i�
ation framework supporting reasoning whi
h is para-

2 Thomas Arts et al.: A Veri�
ation Tool for Erlangmetri
 on
omponents, relativised on the properties of
omponents,
ompositional, and provides support for in-du
tive and
o-indu
tive reasoning about re
ursively de-�ned
omponents [7,8,12℄. Due to the
on
urren
y anddynamism inherent in the systems we address, a varietyof (mutual) indu
tion s
hemes need to be available; atthe same time it is often unlikely to foresee whi
h of thesemight work. We therefore employ symboli
 program ex-e
ution and instan
e
he
king to \dis
over" indu
tions
hemes. Our ma
hinery is based on �xed-point ordinalapproximation and well-founded ordinal indu
tion, andon a global dis
harge proof rule for ensuring
onsisten
yof the mutual indu
tions present in a proof stru
ture.The e�ort on the veri�
ation of Erlang programs istaking pla
e within a
ollaborative proje
t between theFormal Design Te
hniques group at the Swedish Insti-tute of Computer S
ien
e and the Eri
sson ComputerS
ien
e Laboratory, and is funded by the ASTEC (Ad-van
ed Software TEChnology)
ompeten
e
enter of theSwedish Business Development Agen
y (NUTEK). Sofar, the proje
t a
tivities have been dire
ted towardsestablishing the mathemati
al ma
hinery [6,7,9,8℄, pro-viding basi
 tool support [3℄, performing
ase studies [2℄,and motivating the
hosen veri�
ation framework [12℄.This paper presents an overview of the main resultsof this proje
t, and fo
uses in parti
ular on the ErlangVeri�
ation Tool (EVT), a theorem prover that assists inestablishing formal
orre
tness properties of Erlang ap-pli
ations. Although EVT has been applied in
ase stud-ies working with real{life software (see below), it must bestressed that it is not intended to be used by the Erlangprogrammers themselves. In its
urrent state, it shouldrather be understood as a \proof of
on
ept", demon-strating that applying formal methods to Erlang pro-grams is feasible, at least if done by experts. EÆ
ien
yand user-friendliness being
ru
ial aspe
ts of a pra
ti
alveri�
ation tool, we opted for designing a spe
ial pur-pose theorem prover rather than trying to embed ourri
h and
ompli
ated veri�
ation framework into someexisting general purpose theorem proving environment.The paper is organized as follows. In Se
tion 2 wesummarise the veri�
ation framework supported by EVT:the Erlang programming language, its formal semanti
s,the property spe
i�
ation language, and the proof sys-tem. In Se
tion 3 we des
ribe the implementation of thetool. Parti
ular emphasis is pla
ed on aspe
ts whi
h areless often found in
omparable tools like Coq [10℄, Is-abelle [25℄, NuPrl [5℄, and PVS [23℄, notably the dis-
harge me
hanism whi
h implements a well{founded in-du
tion s
heme to handle in�nitary behaviour. Se
tion 4dis
usses the prin
iples of indu
tive and
ompositionalreasoning applied to the veri�
ation of Erlang programs.Sin
e large fragments of Erlang appli
ations are purelyfun
tional, i.e., do not rely on side e�e
ts like pro
ess
ommuni
ations, an eÆ
ient and
ompositional approa
hfor dealing with su
h
lassi
al fun
tional
ode is abso-lutely essential, and is also dis
ussed in Se
tion 4. Se
-

tion 5 illustrates the reasoning prin
iples using a sim-ple example. Se
tion 6 summarises our experien
e withusing EVT in a typi
al
ase study: the veri�
ation ofa distributed database query evaluation proto
ol. Se
-tion 7 presents an approa
h for dealing with modularityin an elegant fashion. Typi
al Erlang appli
ations makeextensive use of standard libraries whi
h implement ev-erything from basi
 operations on lists to
omplex dis-tributed data bases. The paper proposes a semanti
 ap-proa
h to extending the
apabilities of EVT for handlinglibrary modules without
onsidering the a
tual imple-mentation of these modules. The next se
tion presentsrelated work. The paper is
on
luded with a se
tion ondis
ussion of the merits and short
omings of the tool.2 FoundationsIn this se
tion we brie
y highlight the foundations of ourapproa
h: the Erlang programming language, a spe
i�-
ation logi
 for
apturing
orre
tness requirements of Er-lang programs, and a proof system for proof derivation.2.1 The Erlang Programming LanguageErlang/OTP is a programming platform providing thene
essary fun
tionality for implementing open distributed(tele
om) systems: the language Erlang with support for
on
urren
y, and middleware OTP (Open Tele
om Plat-form) providing ready{to{use
omponents (libraries) andservi
es su
h as a distributed data base manager, sup-port for \hot
ode repla
ement", and design guidelinesfor using the
omponents.2.1.1 Syntax of Core ErlangIn the following we
onsider a
ore fragment of the Er-lang programming language whi
h allows to implementdynami
 networks of pro
esses operating on data typessu
h as integers, lists, tuples, or pro
ess identi�ers (pid's),using asyn
hronous,
all{by{value
ommuni
ation via un-bounded ordered message queues
alled mailboxes. RealErlang has several additional features su
h as modules,me
hanisms for
ontrolling the distribution of pro
esses(onto
omputation nodes), and support for interopera-tion with non{Erlang
ode written in, e.g., C or Java.Besides Erlang expressions e the synta
ti
al
ate-gories of mat
hes m, patterns p, guards g, and valuesv are
onsidered. The abstra
t syntax of Core Erlangexpressions is:

Thomas Arts et al.: A Veri�
ation Tool for Erlang 3e ::= bv j [e1|e2℄ j fe1, : : : ,eng j varj e(e1, : : : ,en)j begin e1, : : : ,en endj
ase e of m endj
at
h ej re
eive m endj e1!e2bv ::= atom j number j pid j [℄ j fgv ::= bv j [v1|v2℄ j fv1, : : : ,vngm ::= p1 when g1 -> e1; � � � ;pn when gn -> enp ::= bv j var j [p1|p2℄ j fp1, : : : ,pngg ::= e1, : : :,enThe Erlang values
onsists of a set of atom literals(with an initial lower
ase letter), the numbers (here in-tegers only), pro
ess identi�er
onstants ranged over bypid , and tuples and
onses. The variables (ranged overby var) are symbols starting with an upper
ase letter.To support the understanding of the remaining syn-ta
ti

onstru
ts, we anti
ipate some elements of theformal semanti
s whi
h is going to be dis
ussed in Se
-tion 2.1.2. An Erlang pro
ess, here written <e,pid,q>,is a
ontainer for the evaluation of an expression e. Apro
ess has a unique pro
ess identi�er (pid) whi
h isused to identify the re
ipient pro
ess in
ommuni
ations.Communi
ation is always binary, with one (anonymous)party sending a message (a value) to a se
ond party iden-ti�ed by its pro
ess identi�er. Messages sent to a pro
essare put in its mailbox q, queued in arriving order. Thesemanti
s of Erlang spe
i�es perfe
t (non-lossy)
om-muni
ation
hannels of an unbounded size. The emptyqueue is eps, [[v℄℄ is the queue
ontaining the one ele-ment v, and q1�q2
on
atenates the queues q1 and q2. Toexpress the
on
urrent exe
ution of two sets of pro
essess1 and s2, the syntax s1 || s2 is used.The fun
tional sublanguage of Erlang is rather stan-dard: atoms, integers, lists and tuples are value
onstru
-tors; e(e1; : : : ; en) is a fun
tion
all; begin e1; : : : ; en endis sequential
omposition. The main
hoi
e
onstru
t ofErlang is by mat
hing:
ase e ofp1 when g1 -> e1;...pn when gn -> enendA guard gi
an be omitted; in this
ase, the triviallytrue guard true is assumed. The value that e evaluatesto is mat
hed sequentially against patterns (values thatmay
ontain unbound variables) pi, respe
ting the op-tional guard expressions gi whi
h are expressions that,due to synta
ti
 restri
tions, are guaranteed to
omputewithout side e�e
ts and terminate.

The
onstru
ts involving side e�e
ts (non{fun
tionalbehaviour) are: re
eive for reading from the mailboxwhi
h is asso
iated with the pro
ess evaluating the ex-pression and \!" for sending a value to a pro
ess identi-�ed by its pro
ess identi�er. More
on
retely, upon eval-uation of the expression e1!e2 the value of e2 is sent tothe pro
ess with pro
ess identi�er e1, whereas re
eivem end inspe
ts the pro
ess mailbox q and retrieves (andremoves) the �rst element in q that mat
hes some pat-tern in m. On
e su
h an element v has been found, eval-uation pro
eeds analogously to
ase v of m end.In addition side e�e
ts are possible through builtinfun
tions like self(), yielding the pro
ess identi�er ofthe pro
ess evaluating this expression, throw(v) for rais-ing an ex
eption v (that
an be handled by a
at
h ex-pression), and spawn(f; [v1; : : : ; vn℄), resulting in a newpro
ess being generated whi
h exe
utes the fun
tion
allf(v1; : : : ; vn), where the pro
ess identi�er of the newpro
ess is returned by the
all to spawn.Expressions are interpreted relative to an environ-ment of \user de�ned" fun
tion de�nitions of the shape:f(p11; : : : ; p1k) ->e1;...f(pn1; : : : ; pnk) ->en:Example 1. We shall illustrate the intuitive meaning ofErlang programs using a simple but typi
al example.Consider a
on
urrent server whi
h repeatedly takes anin
oming request from its message queue and spawns o�a pro
ess to serve it:
entral_server() ->re
eive{request, Request, Client} ->spawn(serve, [Request, Client℄),
entral_server()end.serve(Request, Client) ->Client!{response, handle(Request)}.handle(Request) ->ok.Note above that Erlang variables are always upper{
ase (Request and Client) while atoms are lower{
ase(
entral server, request et
.). The
entral serverfun
tion is
ontinuously prepared to re
eive tuples
on-taining a request Request and a pro
ess identi�er Client.It then spawns o� a new pro
ess evaluating the servefun
tion, whi
h simply invokes the handle fun
tion (justreturning an atom here) and sends the result ba
k to thepro
ess identi�ed by Client.Sin
e Erlang is not stati
ally typed a possible out-
ome of sending a wrongly typed message to the serverpro
ess is that the newly spawned pro
ess will terminatedue to a runtime error, e.g. in the
ase that Client doesnot refer to a valid pro
ess identi�er.

4 Thomas Arts et al.: A Veri�
ation Tool for Erlang2.1.2 A Semanti
s for ErlangThe formal semanti
s of Erlang is given as an opera-tional semanti
s in the form of a set of rules for derivinglabelled transitions between stru
tured states [26℄. Asmentioned earlier, the latter are given by parallel prod-u
ts of pro
esses. Our semanti
s for Erlang is a small{step operational one [11℄, whi
h is motivated by the freeintermixing of fun
tional and side{e�e
t
on
erns foundin Erlang.Here we are fa
ed with the question how to han-dle the di�erent
on
eptual layers of entities in the lan-guage, i.e., fun
tional expressions and
on
urrent pro-
esses, su
h that modular (i.e.,
ompositional) reasoningis supported. A natural approa
h is to organise the se-manti
s hierar
hi
ally, in layers, using di�erent sets oftransition labels at ea
h layer, and extending at ea
hlayer the stru
ture of the state with new
omponents asneeded.More
on
retely, �rst the Erlang expressions are pro-vided with a semanti
s that does not require any notionof pro
esses. The a
tions here are a
omputation step� , an output pid !v, read(q; v) whi
h represents the read-ing of a value v from the queue of the pro
ess in whose
ontext the expression exe
utes, and f(v1; : : : ; vn) ; vwhi
h represents the
alling of a builtin fun
tion f (likespawn for pro
ess spawning) with side e�e
ts on the pro-
ess level. Here the non{� a
tions denote side e�e
ts ofexpression evaluations on the next level of the semanti
s.The se
ond semanti
s layer
on
erns
on
urrent pro-
esses exe
uting expressions in the
ontext of a uniquepro
ess identi�er and a mailbox of in
oming messages.Their operational behaviour is
aptured through a set oftransition rules separated into two
ases: (i) a single pro-
ess
onstraining the behaviours of an Erlang expressionand (ii) the (parallel)
omposition of two Erlang systemsinto a single one, expressed by the parallel
omposition
onstru
t \ || ". The system a
tions are silent steps � ,output pid !v and input pid?v.Example 2 (Erlang Semanti
s). We will illustrate theoperational semanti
s by
onsidering the
ase of a builtinfun
tion with side e�e
ts, like for instan
e spawn. Onthe level of Erlang expressions the evaluation of su
h afun
tion is
overed by the transition ruleisPro
Fun(f)f(v1,: : :,vn) f(v1;::: ;vn);v���������! vwhere the isPro
Fun predi
ate re
ognizes the names ofbuiltin fun
tions with side e�e
ts, and v represents anyErlang value (akin to an input parameter). As seen in theabove rule the operational semanti
s is in�nitely bran
h-ing, due to o

urren
e of the v pla
eholder. Any
ompli-
ations
aused by this are naturally handled on the levelof the proof system, via proper introdu
tion of quan-ti�ers. On the pro
ess level spawning is handled more

dire
tly in the following rule:e spawn(f;[v1;::: ;vn℄);pid 0�����������������! e0 pid 0 6= pid<e,pid,q>��!<e0,pid,q>||<f(v1; : : : ; vn),pid 0,eps>One of the interleaving rules also makes a provisionfor pro
ess spawning:s1 �! s10 pids(s10) \ pids(s2) = ;s1 || s2 �! s10 || s2The
ondition pid 0 6= pid ensures that the pro
ess iden-ti�er of the newly spawned pro
ess is lo
ally unique, andthe
ondition pids(s10) \ pids(s2) = ;, where pids(s) re-turns the pro
ess identi�ers of pro
esses in s, guaranteesthe same under parallel
omposition.2.2 The Property Spe
i�
ation LanguageVerifying properties of appli
ations programmed in Er-lang generally requires
ompositional reasoning, i.e., the
apability to redu
e arguments about the behaviour of
ompound entities to arguments about the behavioursof its parts. To support
ompositional reasoning, a spe
-i�
ation language for Erlang has to
apture the labelledtransitions at ea
h layer of the transitional semanti
s(expressions and pro
esses). Poly{modal logi
 is parti
-ularly suitable for the task, o�ering box and diamondmodalities employing the transition labels: a stru
turedstate s satis�es the formula h�i� if there is an �{derivativeof s (i.e., a state s0 su
h that s ��! s0 is a valid labelledtransition) satisfying �, while s satis�es [�℄� if all �{derivatives of s satisfy �.Additionally, to support reasoning about data, theusual logi
al
onne
tives are brought in from (many{sorted) �rst{order logi
, in
luding term equality, quan-ti�ers, lambda abstra
tion, and appli
ation. In the fol-lowing we let t range over general terms, T over vari-ables representing terms, and S over the sorts (types),although these sorts will usually not be written out informulas. Sorts are used to distinguish terms of the dif-ferent synta
ti
al
ategories of Erlang, su
h as expres-sions, pro
ess identi�ers, atoms, or pro
esses.The presen
e of re
ursion on di�erent layers requiresalso the spe
i�
ation language to be re
ursive. Addingre
ursion in the form of least and greatest �xed pointsto the modalities des
ribed above results in a powerfulspe
i�
ation language, broadly known as the �{
al
ulus[24,18℄. Roughly speaking, least �xed{point formulas �X:�express eventuality (liveness) properties, while greatest�xed{point formulas �X:� denote invariant (safety) prop-erties. Nesting of �xed points allows
ompli
ated rea
tiv-ity and fairness properties to be spe
i�ed. Note that asusual referen
es to �xed points
an be made only under

Thomas Arts et al.: A Veri�
ation Tool for Erlang 5an even number of negations, to ensure that the
orre-sponding �xed points exists (due to monotoni
ity).The syntax of the logi

an then be summarised asfollows:� ::= t1 = t2 (equality)j true j false (truth values)j :� j �1 ^ �2 j �1 _ �2 (
onne
tives)j 9T : S:� j 8T : S:� (quanti�ers)j �T : S:� j � t (abstra
tion/appli
ation)j h�i� j [�℄� (modalities)j �X:� j �X:� j X (�xed points)j � < �0 (ordinal inequations)j t1 ��! t2 (transition assertions)This powerful logi
 is
apable of expressing a widerange of important system properties, ranging from type{like assertions to
omplex rea
tivity properties of theintera
tion behaviour of a tele
ommuni
ation system.As a synta
ti

onvention �xed{point formulas
an benamed, e.g., name(� abbreviates the least �xed point�X:�[X=name℄ and name) � abbreviates the great-est �xed point �X:�[X=name℄ (X is assumed fresh in�). Moreover we sometimes denote an appli
ation of theform � t by t : �.The semanti
s of a formula in the logi
 is de�nedin the usual (denotational) fashion, as the set of Erlangsystems that satisfy the formula (see [7℄ for details).Example 3. 1. The type of natural numbers is the leastset whi
h
ontains zero and whi
h is
losed undersu

essor. The property of being a natural number
an hen
e be de�ned re
ursively as a least �xed point,assuming the term
onstru
tors 0 and +1:nat (�N: (N = 0 _ 9V: (nat V ^N = V + 1))2. An interesting property of the
on
urrent server (
f.Example 1) is stabilization, i.e. the
onvergen
e onoutput and silent a
tions. This liveness property ex-presses that, assuming that no input is being re-
eived, the pro
ess is able to exe
ute only a �nitenumber of output and silent steps:stabilizes (�S:� 8P:8V:[P !V ℄stabilizes S^ [� ℄stabilizes S �2.3 The Proof SystemVerifying
orre
tness properties of open distributed sys-tems written in Erlang requires reasoning about their in-terfa
e behaviour relativised by assumptions about
er-tain system parameters. Te
hni
ally, this
an be a
hievedby using a Gentzen{style proof system, allowing free pa-rameters to o

ur within the proof judgments. The judg-ments are of the form � ` � where � and � are se-quen
es of assertions. A judgment is deemed valid if, forany interpretation of the free variables, some assertion

in � is valid whenever all assertions in � are valid. Pa-rameters are simply variables ranging over spe
i�
 typesof entities, su
h as messages, fun
tions, or pro
esses. Forexample, the proof judgment x ` � P (x) states thatobje
t P has property � provided the parameter x of Psatis�es property .The proof rules of the proof system are mostly stan-dard from a

ounts of �rst{order logi
 in Gentzen{styleproof systems, with rules like 8R and 8L shown below:(8L) �; �fv=V g ` ��;8V : S:� ` � v 2 S(8R) � ` �;�� ` 8V : S:�;� V fresh in � , �To this regular proof system two rules were added: the�rst a
ut{like rule, here
alled term
ut, for de
ompos-ing proofs about a
ompound system to proofs about the
omponents, the se
ond a dis
harge rule based on dete
t-ing loops in the proof. Roughly, the goal is to identifysituations where a latter proof node is an instan
e of anearlier one on the same proof bran
h, and where appro-priate �xed points have been unfolded. The dis
hargerule thus takes into a

ount the history of assertions inthe proof tree. In terms of the implementation this re-quires the preservation of the proof tree during proof
onstru
tion. Combined, the term{
ut rule and the dis-
harge rule allow general and powerful indu
tion and
o{indu
tion prin
iples to be applied, ranging from in-du
tion on the dynami
ally evolving ar
hite
ture of asystem to indu
tion on �nitary and
o{indu
tion on in-�nitary datatypes.3 The Erlang Veri�
ation ToolThe proof system introdu
ed in the previous se
tion hasbeen implemented in a proof assistant (or proof
he
ker)named the \Erlang Veri�
ation Tool" here, abbreviatedEVT1. This tool has been tailored to this proof sys-tem; rather than working with a set of open goals, theunderlying data stru
ture is an a
y
li
 proof graph, toa

ount for the
he
king of the side
onditions of thedis
harge rule. The main reason for developing a newproof assistant tool prototype, rather than adapting ex-isting mature theorem provers like Coq [10℄, Isabelle [25℄,NuPrl [5℄, or PVS [23℄, is pre
isely our desire to experi-ment with the rule of dis
harge and the underlying proofgraph, in order to potentially enable more eÆ
ient
he
k-ing of these
onditions than a
oding of the dis
hargerule in a general{purpose tool would permit. Moreovermost existing theorem provers are rather in
exible inthat they o�er a set of prede�ned indu
tion s
hemes,from whi
h the user has to
hoose one at the outset ofthe proof. This
ontrasts with our ambition to dis
over1 http://www.si
s.se/fdt/VeriCode/evt.html

6 Thomas Arts et al.: A Veri�
ation Tool for Erlangindu
tion s
hemes through a lazy sear
h pro
edure inthe
ourse of the proof.Two notable releases of EVT exist. The �rst releasewas reported in [3℄ and was an experimental prototypetailored espe
ially to the veri�
ation of Erlang
ode. These
ond and
urrent tool release is more general, per-mitting the embedding of theories for other languages.Apart from the support for Erlang, an experimental em-bedding of a variant of the value{passing Cal
ulus ofCommuni
ating Systems [19℄ (CCS for short) exists. The
urrent tool is, like the theorem provers HOL [14℄ andIsabelle [25℄, implemented in Standard ML [20℄.3.1 Terms, Variables, Formulas, and ProofsEVT has as foundation a simple variant of many{sorted�rst{order logi
. A

ordingly terms are typed (basedon their unique term
onstru
tors), but there is alsoa notion of subtyping to permit a hierar
hy of types.Types
an be equipped with type{spe
i�
 parsers andunparsers, to enable reading and printing of terms andformulas in native formats (e.g., to support Erlang syn-tax). Likewise derived formula
onstru
ts, with language{spe
i�
 semanti
s,
an be de�ned. The introdu
tion ofsubtyping in the underlying theory
an, as usual, intro-du
e typing{related proof obligations during parsing ofterms and formulas.For types
onsidered to be freely generated (intu-itively those types where \semanti
 equality"
oin
ideswith the synta
ti
 notion of equality) su
h as the naturalnumbers, re
ursive predi
ates
an be automati
ally gen-erated that permit stru
tural indu
tion{style argumentsabout elements of the type.Sequents � ` � are pairs of ordered sequen
es of for-mulas (assertions) � = �1; : : : ; �n and � = 1; : : : ; k.These formulas may
ontain free variables, whi
h are oftwo kinds: parameters whi
h are generated by rules su
has 8R above, and meta variables, the result of postpon-ing the
hoi
e of a witness in a proof rule su
h as 8L. Toensure that assignments to meta variables are sound, asimple s
heme asso
iating indi
es with variables, basedon [27℄, is used. Bound variables are represented usingde Bruijn indi
es, to permit
he
king equality of formu-las qui
kly up to �{
onversion, whi
h is important forobtaining eÆ
ient implementations of the dis
harge rule.From a user's point of view, proving a property ofan Erlang program using EVT involves the \ba
kward"(i.e., goal{dire
ted)
onstru
tion of a proof graph (tableau).A proof graph is, here, an a
y
li
 dire
ted graph of proofnodes
ontaining sequents and rooted in an initial proofnode. Ea
h proof node in the graph is either a leaf node,meaning that it either represents an open goal or thatthe sequent was solved by the appli
ation of an axiomproof rule without premises, or it is a parent node thathas been redu
ed by applying a proof rule su
h that its
hildren nodes
orrespond to the premises of the rule.An appli
ation of the dis
harge rule is represented in

the proof graph by a dire
ted ar
 from the dis
hargednode to the node of whi
h it is an instan
e,
alled the
ompanion node. Ar
s in the proof tree are labelled bythe proof rule that
aused the ar
 to appear, to permit
exible display of proofs and portable proofs (to allowfor, as an example, proof{
arrying
ode s
hemes [21℄,whi
h generally require the proof representation to beindependent of the underlying ma
hinery).Open proof goals may also be (
opy)dis
harged (orsubsumed in more standard terminology) when instan
esof the goal
an be found elsewhere in the proof graph.In pra
ti
e the appli
ation of the
opydis
harge rule isabsolutely essential to, for example,
ombat the state ex-plosion
aused by the interleaving semanti
s of Erlang.However, there are two restri
tions to its use. First, noopen proof goal
an be
opydis
harged against an an
es-tor proof node. Se
ond an a
y
li
ity
ondition is enfor
edto prevent
y
li

opydis
harges. A �nished proof graphis a proof graph that
ontains no open goals.The appli
ation of a proof rule
an be
an
elled (un-done), resulting potentially in non{lo
al
an
ellation ef-fe
ts on the proof tree when e.g. the
ompanion node ofa
opydis
harge node is
an
elled, naturally also
ausingthe
opydis
harge to fail. Another su
h problemati

aseis when a meta variable is assigned or
an
elled in oneproof bran
h, but where this variable is also present inanother bran
h. In su
h a situation both the assignmentand the
an
ellation may also a�e
t the proof steps inthe se
ond proof bran
h. To permit a sound
an
ellations
heme in spite of these diÆ
ulties a global ordering ofproof sequents is introdu
ed, based on the absolute orderin whi
h proof nodes were introdu
ed by appli
ations ofproof rules.A proof graph
an also
ontain dis
harges with re-spe
t to nodes not a
tually in the same proof tree but inanother proof tree. Su
h non{lo
al
opydis
harges are re-ferred to as appli
ations of lemmas, or lemmadis
harges.Again an a
y
li
ity test is performed, to prohibit mutualdependen
ies between lemmas.A (�nished) proof is then a
olle
tion of �nishedproof graphs su
h that all non{lo
al dis
harges are madewithin the
olle
tion of proof graphs.3.2 Rules, Ta
ti
s, and Ta
ti
alsThe basi
 proof rules of the proof assistant are imple-mented in the tool as ta
ti
s, whi
h are fun
tions (in theStandard ML sense) from a sequent (the
urrent goal, orthe
on
lusion) to a tuple
onsisting of a list of sequents(the premises of the rule) and a list of assignments tometa variables
aused by the ta
ti
. Thus, if the (SML)type of sequents is sequent, meta variables are of typevar, and if terms are represented by the type term, thenthe type of a ta
ti
 istype ta
ti
 =sequent -> sequent list * (var * term) list

Thomas Arts et al.: A Veri�
ation Tool for Erlang 7Most rules are implemented as triggering on a par-ti
ular assertion position in a sequent, and thus requirea natural number argument to determine where in thesequent the rule is applied. Assertions, on both sides ofa sequent, are numbered starting from one. Thus, forinstan
e, the ta
ti
 implementing the proof rule 8R hasthe signatureforall_r: int -> ta
ti
Being applied to a position i where, in the
urrentgoal sequent, the ith assertion on the right{hand side isuniversally quanti�ed, the quanti�ed variable is repla
edby a fresh variable.As most other proof assistants do, EVT provides ta
-ti

ombinators (ta
ti
als) to o�er a fa
ility to derive newsound ta
ti
s from basi
 ta
ti
s. Examples of su
h ta
-ti
als aret_
ompose: ta
ti
 -> (ta
ti
 list) -> ta
ti
t_orelse: ta
ti
 -> ta
ti
 -> ta
ti
t_fix: 'a ->('a -> ('a -> ta
ti
) -> ta
ti
) ->ta
ti
The ta
ti
al t
ompose t tl applies the ta
ti
 t to the
urrent sequent and then applies the ta
ti
s in the listtl to the
orresponding resulting goals, failing if t doesso or if the number of goal sequents does not mat
h thenumber of ta
ti
s in tl. To evaluate t orelse t1 t2,�rst t1 is applied, and t2 is applied only if t1 fails.Finally t fix
an be used to write re
ursive ta
ti
s, the�rst argument being an arbitrary initialization value, these
ond a fun
tion of an arbitrary parameter and a \
on-tinuation", and returning a ta
ti
.3.3 User Interfa
e and CommandsThe standard user interfa
e to the proof assistant is the
onventional
ommand line interfa
e of Standard ML (ofNew Jersey) to whi
h a number of
ommands to intera
twith the proof assistant has been added. Con
eptuallythe user interfa
e de�nes notions su
h as \the
urrentproof graph" and \the
urrent proof node". The
om-mands of the proof assistant operate on proof graphs,possibly with side e�e
ts. For instan
e, there are
om-mands to start a new proof, to de�ne a lemma, to nav-igate through proof graphs (i.e., to rede�ne the
urrentproof node), to navigate through the hierar
hy of proofgraphs, to extend (or
omplete) a proof graph by ap-plying a ta
ti
 to its
urrent sequent resulting possiblyin new proof bran
hes, and to
an
el a previous proofstep. As another example the dis
harge and
opydis-
harge proof rules are implemented as
ommands ratherthan ta
ti
s, sin
e they
ause global e�e
ts on the graphstru
ture.A
lear alternative to
ombining ta
ti
s using ta
ti-
als is to dire
tly use the Standard ML programminglanguage fa
ilities to de�ne fun
tions exe
uting proof

Fig. 1. The Graphi
al User Interfa
e of EVT
ommands. This works reasonably well, but has the dis-advantage that all intermediate proof nodes are kept.In
ontrast, using ta
ti
al
ombinators, no intermediateproof nodes are ever kept.A se
ond, graphi
al, user interfa
e is also available.This user interfa
e
onsists of two parts: the �rst isprogrammed in Java and provides additional user assis-tan
e through the implementation of modern theoremprover features [4℄ su
h as \proof{by{pointing" (to sug-gest, based on the proof
ontext, the next proof rule toapply), a more stru
tured database of lemmata, proofre
ording and playba
k, et
. A s
reenshot of a proofsession using the graphi
al user interfa
e is shown inFigure 1. The se
ond
omponent of the graphi
al userinterfa
e is used to visualize and navigate through theproof graph, and is implemented by interfa
ing withthe daVin
i [13℄ graph visualisation system. Experien
eswith the graphi
al interfa
e indi
ate that the initial train-ing period required to be
ome familiar with the tool is
onsiderably shortened. However, for experien
ed usersthe
ommand-line interfa
e sofar remains the interfa
eof
hoi
e.3.4 Che
king Dis
harge ConditionsOf parti
ular interest is the implementation of the dis-
harge proof rule. Consider a proof node Nd, hen
eforth
alled the dis
harge node, representing an open proofgoal of the form �d ` �d. Assume that there exists anan
estor node N
 in the proof tree, hen
eforth
alled the
ompanion node, labelled by a sequent �
 ` �
. Here thedis
harge proof rule
an be used to
he
k whether the
ompanion node, and some auxiliary
onditions formu-lated on the global proof graph, motivate the dis
harg-ing of the dis
harge node. An obvious generalisation isto sear
h for suitable
ompanion nodes among all the

8 Thomas Arts et al.: A Veri�
ation Tool for Erlangan
estor nodes of Nd. A
hara
terisation of the
ondi-tions regulating when su
h a dis
harge step is sound isgiven in [7,9℄, here only a sket
h is given.The overall idea is to keep tra
k of unfoldings of�xed{point de�nitions by annotating �xed points withordinal variables, representing the number of unfoldings.Unfolding a least �xed{point de�nition to the left of theturnstile (in �) or a greatest �xed{point de�nition tothe right of the turnstile (in �) results in the repla
e-ment of the ordinal variable � asso
iated with the �xedpoint with a new ordinal variable �0, and introdu
es anordinal inequation �0 < � as an additional assumptionin � .For example, the rules for manipulating a greatest�xed point on the right{hand side, o

urring under ap-pli
ations, are:� ` ((�X.�)�) t1 : : : tn; �� ` (�X.�) t1 : : : tn; � � fresh�; �0 < � ` (�f(�X.�)�0=Xg) t1 : : : tn; �� ` ((�X.�)�) t1 : : : tn; � �0 freshAbove, � ranges over ordinal variables. Intuitively the�rst rule
orresponds to
ommen
ing a
o-indu
tion (onthe unfolding of the �xed point), and the se
ond re
ordsthe existen
e of an lesser ordinal as the inequation �0 <�. As a side-e�e
t the term ve
tor t1 : : : tn is kept inthe unfolded �xed point (as in Winskel's [29℄ taggingte
hnique). This is used in proof sear
h to heuristi
allydetermine whether unfolding is a progressing proof step.The dis
harge proof rule then
omprises
he
kingthree
onditions, given a proof node Nd � �d ` �d anda
andidate
ompanion node N
 � �
 ` �
:{ Is there a mapping from N
 to Nd? That is, does asubstitution � exists su
h that (i) for ea
h � 2 �
,�� 2 �d and (ii) for ea
h � 2 �
, �� 2 �d{ Does some ordinal de
rease on the path between N
and Nd? That is, is there some ordinal variable �o

urring in N
 su
h that �d ` �� < �{ The previous two
onditions where lo
al, i.e., involv-ing only one pair of dis
harge and
ompanion nodes.The third
ondition is a global one whi
h examinesall related dis
harges throughout the proof tree to en-sure that dis
harges
annot
an
el ea
h other (the-oreti
al details are elaborated in [7,9℄). In essen
ethis
orresponds to
he
king whether the global-prooftree de�nes a proper simultaneous �xed point indu
-tion s
heme.3.5 Embedding of ErlangThe Erlang program
onstru
ts are en
oded as terms ofthe many{sorted �rst{order logi
. The tool
ontains ade�nition of the transition relations (on the expressionand system levels) as re
ursive predi
ates in the under-lying logi
. In addition, and to improve the speed with

whi
h new transitions are
omputed, a set of low{levelrules was implemented dire
tly, for inferring transitionse ��! e0 that trigger on the synta
ti
 shape of the Erlang
onstru
t e. An example of su
h a rule is shown below,for the
ase of input under parallel
omposition to theleft in a sequent (T is assumed fresh in �;�):k ?L �; s1 pid ?v����! T; s0 = T k s2 ` ��; s2 pid ?v����! T; s0 = s1 k T ` ��; s1 k s2 pid ?v����! s0 ` �In general the handling of the operational semanti
s inEVT is split into two parts: a language{dependent partwhere ta
ti
s
orresponding to the operational seman-ti
s of the language in question are introdu
ed and ase
ond, largely language{independent part, for derivingvalid transitions from su
h sets of operational semanti
sta
ti
s.3.6 Ta
ti
s for Deriving TransitionsThe present tool implements four high{level ta
ti
s, diasem l,diasem r, boxsem l and boxsem r, for reasoning about
ombinations of program terms and modalities. For ex-ample, the diasem r and boxsem r ta
ti
s try to a
hievethe result of the rules h ir and [℄r given below. An un-derlying assumption of these rules is that the programterm t has a sequen
e of transitions t ��! t1; : : : ; t ��! tnunder the a
tion �, and that no other su
h
ontinuationstate tx exists.h ir � ` t1 : �; : : : ; tn : �;�� ` s : h�i�;�[℄r � ` t1 : �;� : : : � ` tn : �;�� ` s : [�℄�;�The means of realising ta
ti
s a
hieving the e�e
t ofthese rules is by repeatedly applying language{spe
i�
operational semanti
 ta
ti
s su
h as, e.g., k ?L shownbefore, together with simple general simpli�
ation stepssu
h as splitting
onjun
tions and term equality reason-ing. In addition language dependent ta
ti
s and lemmasfor handling data are appealed to.4 Indu
tive and Compositional ReasoningCode veri�
ation is an inherently
omplex a
tivity inwhi
h the
omplexity of the program behaviour is essen-tially multiplied with the
omplexity of the property be-ing analyzed. Using the proof system without any plan-ning requires a large amount of low{level inferen
e stepsand de
isions to be taken whi
h prohibits the veri�
ationof industrial{s
ale software. To make our veri�
ationmethod appli
able in this setting, we have to lift the rea-soning to a suitably high level of abstra
tion. High{level

Thomas Arts et al.: A Veri�
ation Tool for Erlang 9reasoning means proving \in
hunks", i.e., de
omposingproof obligations about
ompound obje
ts to proof obli-gations about the
omponents, and dealing with theseusing ta
ti
s designed to automate the lower{level rea-soning steps. At the same time, reasoning about ongoingbehaviour involves indu
tive and
o{indu
tive argumentswhi
h have sometimes to be
ombined with
omposi-tional reasoning. Below we dis
uss (
o{)indu
tive and
ompositional reasoning and their rôle in stru
turingproofs and higher{level reasoning.There is
learly no general method for veri�
ation ofarbitrary Erlang programs whi
h is e�e
tive and, at thesame time, leads to e
onomi
 proofs. However, one
ando mu
h better in spe
ialised
ases whi
h are well under-stood. A main dire
tion of resear
h is the identi�
ationof fragments of Erlang and of the property spe
i�
ationlanguage for whi
h eÆ
ient veri�
ation methods exist.One su
h fragment is the side{e�e
t{free one, in whi
han Erlang expression is evaluated purely for its value,and is not a�e
ting the environment in whi
h it is eval-uated in terms of sending messages, reading from themessage queue, or pro
ess spawning. Se
tion 4.3 givesa high{level treatment of side{e�e
t{free fun
tion
allsbased on
ompositional reasoning.4.1 Indu
tion and Dis
hargeAutomating the veri�
ation of
omponents usually fa
esthe diÆ
ulty of handling re
ursively de�ned behaviour.This requires indu
tive and
o{indu
tive reasoning, de-pending on whether one investigates properties of termi-nating or ongoing behaviour. Many types of indu
tionare involved in examples su
h as the
ase study
onsid-ered in Se
tion 6:{ Indu
tion on the number of evaluation steps.{ Indu
tion on the size of data values, su
h as numbersor lengths of lists.{ Indu
tion on the stru
ture of fun
tion expressions.Indu
tion on the number of evaluation steps from someinitial
on�guration is typi
ally used if we prove that
omputing the length of a list results in a natural num-ber, or that
omparing two numbers results in a boolean.Co{indu
tion is used, typi
ally, for invariants, by show-ing that the invariant remains unbroken after any num-ber of
omputation steps. General programs involve datatype operations,
ommuni
ation, and, maybe, dynami

reation of new pro
esses, in manners whi
h are inter-woven to a
onsiderable extent. To handle these
ompli-
ations, most parts of the proof will involve indu
tionand
o{indu
tion at many levels simultaneously, whi
h,when properly formalized, may be ex
eedingly
ompli-
ated. Our proof{theoreti
 approa
h, using loop dete
-tion or dis
harge, allows very substantial parts of thisformalisation to be almost
ompletely hidden from theuser. In fa
t the dis
harge me
hanism as des
ribed in

the previous se
tion attempts to
ast the proof as
on-stru
ted so far as a proof by simultaneous indu
tion,by seeking an ordering that makes the dependen
y re-lation between indu
tion and
o{indu
tion variables awell{founded one. Maintaining the
onstraints on thisdependen
y ordering is done by the proof editor. Thusthere is no need for users to spe
ify the sequen
e, nest-ing, or mutual dependen
ies of simultaneous indu
tivearguments, or even to state that indu
tion is being usedat all. All this is managed by the tool. Furthermore,the tool supports, through the dis
harge me
hanism, thedis
overy of su

essful indu
tion s
hemes; for making in-formed de
isions, however, the user will need to have abasi
 understanding of the general prin
iples of simulta-neous �xed-point indu
tion.4.2 Compositional ReasoningThe essen
e of
ompositional veri�
ation is the redu
-tion of an argument about the behaviour of a
ompoundsystem to arguments about the behaviour of its
ompo-nents. A system s
ontaining
omponent t
an be repre-sented through term substitution as s[t=T ℄, where T isa variable ranging over entities of the type of t. We
anrelativise an assertion s[t=T ℄ : � about the
ompoundobje
t s[t=T ℄ to a
ertain property of its
omponentt by
onsidering t as a parameter for whi
h property is assumed, provided we
an show that t indeed satis-�es the assumed property . Te
hni
ally, we a
hieve thisthrough a term{
ut proof rule of the shape:(TermCut) � ` t : ;� �; T : ` s : �;�� ` s[t=T ℄ : �;�Very often,
onstru
tors o

urring within the s
opeof re
ursion give rise to unbounded state spa
es. An ex-ample is a pro
ess spawning statement, giving rise to theformation of an unbounded pro
ess set. In su
h
aseswe have to
ombine (
o{)indu
tive with
ompositionalreasoning. For example, after a new pro
ess s has beenspawned o� by a re
ursive pro
ess t one
an apply theabove term{
ut rule to relativise the proof on the spe
i�-
ation of t rather than on its implementation, thus avoid-ing new pro
esses from being generated by t expli
itly inthe pro
ess term, and thus allowing the (
o{)indu
tionthrough loop dete
tion and dis
harge to go through.The above term{
ut rule provides the basi
 low{levelfa
ility for
ompositional reasoning. Applying the rulerequires a suitable
hoi
e of the
ut property . It should
apture the essen
e of the behaviour of t needed for
om-pleting the proof. In some spe
ial
ases we
an give a
on-
rete stru
ture to the formation of , as illustrated in thenext subse
tion, and give (and support through ta
ti
s)more high{level de
omposition prin
iples exploiting thisadditional stru
ture.

10 Thomas Arts et al.: A Veri�
ation Tool for Erlang4.3 Dealing with Side{E�e
t{Free Erlang CodeA frequent
ase in pra
ti
e is dealing with fun
tion
allswhere the body of the de�nition of the fun
tion is side{e�e
t{free, i.e., is evaluated purely for its value, and doesnot a�e
t the environment in whi
h it is evaluated interms of sending messages, reading from the messagequeue, or pro
ess spawning. The libraries o�er a largenumber of su
h fun
tions. For example, the list{sortingfun
tion sort
ould be used by the handle fun
tion inthe
on
urrent server (
f. Example 1) to pro
ess list sort-ing requests:handle ({srt, L}) ->sort (L).If we want to prove a property of su
h a sorting server,we would like to reason on a high{level and repla
e fun
-tion
alls to the list{sorting library fun
tion sort withargument L, with a value variable V , by adding the as-sumption that V is a sorted permutation of L. What weabstra
t from in this
ase are the internal steps requiredto evaluate the sort fun
tion
all. It is safe to do so sin
ethis
omputation does not a�e
t the rest of the system.It only a�e
ts the number of silent (i.e., side{e�e
t{free)steps, therefore su
h a de
omposition assumes the prop-erty we are analysing to be \insensitive" to silent a
tions.In general, under the assumptions that{ e is a
all of a fun
tion f , that{ the body of the de�nition of f is side{e�e
t{free, andthat{ � is insensitive to (the number of) side{e�e
t{freea
tions,the following de
omposition prin
iple is appli
able:(SefCut) � ` e : prepost(; �); �� ` ;��; V : � ` hV; pid; qi : �;�� ` he; pid; qi : �;�where prepost is as de�ned below and � is a formulainsensitive to silent a
tions.On
e a side{e�e
t{free fun
tion
all has been fa
-tored out, it
an be spe
i�ed and veri�ed using well{known te
hniques. A
lassi
al method for the veri�
a-tion of sequential programs is the axiomati
 methodof Hoare [16℄. It is based on assertions of the shapef gef�g, the intuitive semanti
s of whi
h, in our
ontext,is: if the parameters of e satisfy the pre
ondition , theexe
ution of e, provided it terminates, results in a valuesatisfying the post
ondition �. We follow the same idea,but require termination; a
orre
tness notion known astotal
orre
tness.We use assertions of the form e : prepost(; �) wheree : prepost(; �) = (! e : eval �)e : eval � (9V : erlangValue:(e = V ^ V : �)_ e : h�i true ^ [� ℄ eval �

For example, the required behaviour of the sort fun
-tion
an be spe
i�ed as a satisfa
tion pair of the formsort(L) : prepost(L : list; �sort L) where the type list isde�ned by:L : list (L = [℄_ 9P;R : erlangValue:L = [P jR℄ ^ R : listand the type �sort L is de�ned by:V : �sort L =isSorted V^ isPermutation V LA more detailed a

ount of how to deal with side{e�e
t{free Erlang
ode
an be found in [15℄.5 ExampleWe shall illustrate the ideas presented above using theErlang program from Example 1. Re
all the de�nitionof the
on
urrent server whi
h repeatedly takes a re-quest from its message queue and spawns o� a pro
essto serve it by handling the request, here always assumedto su

eed, and responding with the obtained result tothe
lient spe
i�ed in the request:
entral_server() ->re
eive{request, Request, Client} ->spawn(serve, [Request, Client℄),
entral_server()end.serve(Request, Client) ->Client!{response, handle(Request)}.handle(Request) ->ok.The property we
onsider is the liveness propertyfrom Example 3, namely stabilization, i.e., the
onver-gen
e on output and silent (estep) a
tions. We re
allits de�nition from Example 3:stabilizes (�S:� 8P:8V:[P !V ℄stabilizes S^ [� ℄stabilizes S �So, the initial proof goal is de
lared as:de
lare P:erlangPid, Q:erlangQueue in|- <
entral_server(), P, Q> : stabilizesIn the proof sket
h below we illustrate the interplaybetween automated proof sear
h { leading to dis
overyof proof stru
tures su
h as indu
tion strategies { and

Thomas Arts et al.: A Veri�
ation Tool for Erlang 11manual proof steps realising the dis
overies in a revisedproof attempt.The following proof sear
h s
ript results in a symboli
exe
ution of the pro
ess until either a system whi
h isnot a singleton pro
ess, or a repetition of the same
on-trol state is en
ountered:loop(
ase_by[(sp_and (sp_sat_syspro
_r 1)(sp_not (sp_sat_is_queue_var_r 1)),t_queue_flat_r 1),(sp_and (sp_sat_syspro
_r 1)(sp_unfoldable_r 1),t_gen_unfold_r 1)℄);In the �rst
ase, if the �rst right{hand side formulais a satisfa
tion pair the �rst part of whi
h is a sin-gle pro
ess the queue term of whi
h is not a variable,the t_queue_flat_r ta
ti
 is applied whi
h repla
es theterm with a fresh variable and adds an equation to theleft equating this fresh variable with the queue term.This is done to insure that, in the se
ond
ase, the pre-instan
e
he
king me
hanism based on sp_unfoldable_rdete
ts
ontrol-point repetition. Exe
ution of the aboveproof sear
h s
ript terminates be
ause a new pro
ess wasspawned (and thus sp_sat_syspro
_r failed). The re-sult is the sequent:Q = Q2�[[{request,Req,ClPid}℄℄�Q3,Q1 = Q2�Q3, not (P = P1) |-<begin P1,
entral_server() end, P, Q1>|| <serve (Req, ClPid), P1, eps> : stabilizesThe queue Q2�[[{request,Req,ClPid}℄℄�Q3 isbuilt from the
on
atenation of three parts, Q1, thevalue [[{request,Req,ClPid}℄℄ and Q3. We have nowa
lear indi
ation that the number of pro
esses in thesystem will grow without bound, so a blind proof sear
his bound to fail. Rather, one has to pro
eed by indu
tionon the system stru
ture. This is a
hieved through
om-positional reasoning by abstra
ting away the �rst pro-
ess
omponent whi
h is responsible for the unboundeddynami
 pro
ess
reation, and relativising the argumenton a property of this
omponent. The
hoi
e of a suit-able property is
ru
ial, of
ourse, for the indu
tionto su

eed. In our parti
ular example it happens thatstabilizes
omposes. We apply the term-
ut rule toobtain the two new goals:|- <begin P1,
entral_server() end, P, Q1> :stabilizesX : stabilizes |-X || <serve (Req, ClPid), P1, eps> :stabilizesthe �rst of whi
h
orresponding to the indu
tion basis,and the se
ond
orresponding to the indu
tion step. The

�rst of these
an be be analysed by the s
ript presentedabove, terminating with the goal|- <
entral_server(), P, Q1> : stabilizesbe
ause of dete
ting a pre-instan
e (we looped ba
k tothe initial
ontrol point),
ausing sp_unfoldable_r tofail. One might expe
t to be able to dis
harge here w.r.t.the initial goal, but this fails. The reason is that no or-dinal has been de
reased. However, by inspe
ting theproof state we realize that the length of the queue of thepro
ess has de
reased, and that indeed stabilization ofthe server is a
onsequen
e of the well{foundedness ofmessage queues. We therefore return to the initial goaland re-de
lare it by adding an expli
it assumption on thewell-foundedness of the queue, whi
h will be maintainedthroughout the proof:de
lare P:erlangPid, Q:erlangQueue inQ : queue |-<
entral_server(), P, Q> : stabilizesqueue (�Q : erlangQueue:� Q = eps_ 9V:9Q1:9Q2:Q = Q1�[[V ℄℄�Q2 ^ queue Q1�Q2�The revised proof will turn out to be, at leastpartly, by indu
tion on the queue-term stru
ture. All wehave to
hange in the beginning is to approximate theleft formula, resulting in Q : queue being repla
ed byQ : queue(K) where K is an approximation ordinal, andto pro
eed as before. This eventually results in:Q2�[[{request,Req,ClPid}℄℄�Q3 : queue(K),Q1 = Q2�Q3 |-<
entral_server(), P, Q1> : stabilizes,in pla
e of the unsu

essful goal we ended upwith earlier. This goal is \almost" dis
hargablew.r.t. the initial goal after approximation. Forthe instan
e
he
k to go through, one needsQ1 : queue(K1), for some ordinal variable K1<K, insteadof Q2�[[{request,Req,ClPid}℄℄�Q3 : queue(K)to appear as an assumption in the sequent. Wetherefore unfold queue(K) via t_gen_unfold_l, fol-lowed by transferring the queue-term assumption viat_queue_invar_l to obtain a dis
hargable goal.The important goal we are left with is the sequent
orresponding to the indu
tion step. Fortunately, it
anbe dealt with by the same proof s
ript as the initial goal,with the important di�eren
e that no new pro
esses willbe spawned. Parameter-assumption transfer, however,
on
erns in this
ase not the queue but the pro
ess pa-rameter X. And the number of
ontrol states will growdue to the presen
e of two
on
urrent pro
esses.

12 Thomas Arts et al.: A Veri�
ation Tool for Erlang6 Report on a Veri�
ation Experien
e: theAnalysis of A Distributed Database LookupManagerErlang is used extensively for writing robust distributedtele
ommuni
ation appli
ations. Central in many of theseappli
ations is a distributed database, Mnesia [28℄, alsowritten in Erlang. The Mnesia system is
ru
ial to therobustness of many Erlang{based produ
ts developed atEri
sson. It is, for instan
e, responsible for error re
ov-ery, the prompt and safe handling of whi
h is essentialin tele
ommuni
ation appli
ations. These features makethe Mnesia system a rewarding obje
t of study whentrying out new veri�
ation te
hniques.The
ase study at hand
on
erns only a small partof the Mnesia system, a proto
ol for the evaluation ofa query whi
h is distributed over several
omputers ina network. The starting point for this
ase study wasthe Erlang
ode implementing the distributed database.We extra
ted, from the real implementation, the
odefor the distributed query evaluation proto
ol and addedsome
ode to provide a very simple simulated interfa
eto parts of the system that were irrelevant for the prob-lem at hand. The result was an Erlang program that
ould be seen as a very pre
ise, and in some sense for-mal, des
ription of the underlying algorithm. Isolationof the
ode responsible for the lookup me
hanism andanalysing the intended behaviour of the
ode resulted,as a side e�e
t, in a
lear and patentable pi
ture of theunderlying proto
ol [22℄.As input the proto
ol re
eives a database query di-vided into subqueries. These subqueries are distributedover the network in the form of pro
esses on those
om-puters where the spe
i�
 data for a subquery is stored.Whenever a subquery pro
ess re
eives a message, it ex-tra
ts the
orresponding data from the database tablesand sends it along the network.One pro
ess is responsible for initialising the lookuppro
ess ring, and for
olle
ting the resulting data. Toavoid ex
essive delays and storage
onsumption, queryanswers are
olle
ted in segments, managed by the lookupmanager (see Figure 2). The task we set ourselves wasto prove that the implementation provided a responsive-ness property: that input queries are eventually beingreplied to.6.1 Using the Tool in Pra
ti
eMixing automated and intera
tive veri�
ation in the man-ner we propose puts very
onsiderable demands on theuser interfa
e, to aid users
ontrol of possibly very largeproofs. The ta
ti
 programming language gives a lotof help, providing fa
ilities for naming and retrievingnodes, and for de�ning sear
h and navigation pro
e-dures. The simple ta
ti
s we developed for \model
he
k-ing", type
he
k, and termination, turned out to be sur-prisingly robust, requiring little adaptation even for quite

6?Æ
��P1���= Æ
��P2ZZZ}Æ
��PnÆ
��Pn-1BBBBN ���-
�� ��� �� �� ��� ��� �� �� ��� ��� �� �� �Fig. 2. Ring of pro
esses atta
hed to tables, with P1 the initialpro
esssubstantial modi�
ations of the fun
tions and propertiesbeing
he
ked. In our
ase study so far we have proved anumber of properties for the ring pro
ess, and for vari-ous approximations of it. The most sophisti
ated of thoseproofs
ontains about 2000 proof nodes, of whi
h two-third has been generated automati
ally. To help visual-isation the daVin
i graph display fa
ility [13℄ was used.Small graphs, less than 1000 nodes, are easily displayedby daVin
i, and it provides good help, for instan
e indebugging proof ta
ti
s. For larger proofs graphs reallyneed to be displayed in
rementally (whi
h is not verywell supported
urrently) or in segments, to avoid ex-
essive delays.6.2 Con
lusions on the Database Case StudyOur report is a tentative one, reporting more on qual-itative than quantitative experien
es with the use of anovel approa
h to
ode veri�
ation for distributed sys-tems. The report must be a tentative one, sin
e there re-ally are not many tools or proof approa
hes around witha similar s
ope of addressing dynami
 pro
ess networkson the level of a
tual running
ode without resortingto approximate te
hniques. The database lookup man-ager whi
h we addressed was about 200 lines of
ode andexplored most \
ore" features of the Erlang language in-
luding list and number pro
essing,
ommuni
ation, anddynami
 pro
ess
reation. Experien
e with Erlang at Er-i
sson has indi
ated that | as a rule of thumb | oneline of Erlang
ode
orresponds to six lines of C
ode.A
entral issue on whi
h we have as yet little to sayis s
alability. Sin
e our proof system is highly
omposi-tional it is a
tually realisti
 to hope to reuse proofs to-gether with their asso
iated
ode modules. As yet, how-ever, we have little pra
ti
al experien
e with this.The proof approa
h whi
h we follow requires userintervention. We have developed ta
ti
s whi
h are quiterobust and manage to produ
e large parts of proofs with-out any user intervention at all. Moreover it is quite real-isti
 in many
ases to hope to automate almost the entireproof sear
h pro
ess, even in
ases when model
he
king-

Thomas Arts et al.: A Veri�
ation Tool for Erlang 13like te
hniques fail. The
riti
al point at whi
h user in-tervention is really essential is, of
ourse, in the iden-ti�
ation of indu
tive assertions. In the example stud-ied here this was not at all easy. A parti
ular sour
e ofheada
he was the handling of pro
ess identi�ers whi
hin Erlang play a rôle not unlike names in the �-
al
ulus.Even though our handling of pro
ess identi�ers and their
reation in Erlang is as yet imperfe
t, the tool was ableto assist the identi�
ation of indu
tive assertions quitesubstantially, by having ta
ti
s whi
h were suÆ
ientlyrobust to often a

omodate smaller formula modi�
a-tions
ompletely automati
ally.The reader is referred to [2℄ for a more detailed de-s
ription of this
ase study.7 Extension: Support for Program LibrariesAs pointed out in the pre
eding explanations, the veri-�
ation of
omplex distributed systems requires
ompo-sitional reasoning methods. Aiming to bring veri�
ationte
hnology into industrial appli
ations and to supportresear
h on industrially relevant problems in softwaredevelopment, it is neither meaningful nor manageableto start
ompletely from s
rat
h when a new or modi-�ed veri�
ation problem is being addressed. Instead itshould be possible to exploit known properties of sub-systems by reusing their proofs.A
ompositional reasoning framework will turn outto be useful espe
ially in
onne
tion with standard pro-gram libraries and programming te
hniques. Sin
e theseare developed to be used frequently, it is worth spendinga
onsiderable e�ort in analysing and des
ribing theirproperties sin
e many appli
ations will potentially ben-e�t from this knowledge.An alternative to the approa
h we advo
ated in Se
-tion 4.2 is to
apture the behaviour of library fun
tionsby spe
ifying their operational semanti
s on an abstra
tlevel, regardless of their
on
rete implementation. Tothis aim we provide rules in the style of Se
tion 2.1.2whi
h des
ribe the possible transitions that any Erlangpro
ess evaluating the respe
tive fun
tion
an take, re-stri
ted by the shape of the environment if ne
essary.Adding these rules to the general proof system of Se
-tion 2.3 enables us to argue about any program that usesthe library module without having to
onsider the mod-ule's sour
e
ode. In this way we support a
ompositionalstyle of reasoning whi
h is relativised by the assumptionthat the
on
rete implementation of a library follows itsspe
i�
ation.From a pragmati
al point of view we
an argue thatsu
h assumptions are justi�ed sin
e software librariesare usually well{tested, and sin
e their frequent use un-
overs unexpe
ted behaviour very soon. From a
on
ep-tual point of view however, the
onsisten
y between thelibrary{spe
i�
 transition rules and the
on
rete imple-mentation with respe
t to the general proof system is

an issue: do the spe
i�
 rules fully re
e
t the behaviourof the library fun
tions, or are they too abstra
t in thesense that
ertain details of the implementation are ig-nored although they have an impa
t on the veri�
ationproblem? Or, in other words: is the (low{level) imple-mentation of the library module
orre
t with respe
t tothe (high{level) spe
i�
ation?Pragmati
ally, our
on
ern is to provide a frameworkin whi
h we
an prove properties of the
ode in an ab-stra
t setting, where we use one abstra
tion for all possi-ble properties. This abstra
tion is very
lose to the realimplementation, but there will always exist propertiesfor whi
h it turns out to be too general. However, if we
an prove a
ertain property about the abstra
tion, thenwe in
reased the level of
on�den
e in the
ode; if we �ndthat a
ertain property does not hold by reasoning in thisabstra
ted setting, then, most likely, this
orresponds toan error in the real program.We now
on
retely demonstrate our ideas using aspe
i�

lass of programs whi
h plays an important rôlein open distributed appli
ations. The essential
hara
-teristi
s of this
lass are des
ribed in the following sub-se
tion.7.1 Generi
 Client{Server ImplementationsTo support the software development pro
ess, the Er-lang/OTP Development Team has devised a wide rangeof design prin
iples whi
h des
ribe how to stru
ture a
on
rete Erlang software ar
hite
ture. In parti
ular sev-eral kinds of behaviour modules are o�ered as templatesto build
on
rete systems. Among these one �nds thegen server behaviour whi
h is widely used to imple-ment
lient{server appli
ations in a standardized way.The gen server module o�ers a number of inter-fa
e fun
tions whi
h provide syn
hronous
ommuni
a-tion, debugging support, error handling, and other ad-ministrative tasks. The a
tual, appli
ation{spe
i�
 im-plementation of the server has to be provided by the userin a separate module,
alled the
allba
k module. When-ever the generi
 part of a server re
eives a request, the
orresponding
allba
k fun
tion is being invoked.For example, gen server provides the
all fun
tionwhi
h
an be invoked in the user pro
ess to send a re-quest to a server:gen server:
all(Server, Req)This request is handled by the generi
 server pro
essby exe
uting the
orresponding
allba
k fun
tion:
allba
k:handle
all(Req, User, State)Here,
allba
k is the name of the
allba
k module, Useridenti�es the user pro
ess, and State is a term repre-senting the
urrent state of the server. The
allba
k fun
-tion now de
ides whether the user should re
eive a re-ply immediately (freply, Answer, NewStateg), later(fnoreply, NewStateg), or whether the server pro
ess

14 Thomas Arts et al.: A Veri�
ation Tool for Erlangshould terminate as a result of the request (fstop, Reason,NewStateg). In the �rst
ase, Answer is the
all returnvalue.7.2 The Approa
hTo support the veri�
ation of
lient{server systems thatemploy the above generi
 implementation s
heme, onemight think of the following strategies:{ The
omplete system spe
i�
ation in
luding the
all-ba
k and the gen server modules is fed into EVT.{ The generi
 server implementation in ba
kground iseliminated by deriving a standalone Erlang programwhi
h re
e
ts the essential behaviour of the system.The �rst approa
h requires no intermediate translationof the program system, but the proof will be
ome mu
htoo
ompli
ated due to the ne
essity to
onsider the de-tails of the generi
 server implementation. Using these
ond idea, the proof system has to deal with onlyone,
omparatively simple pie
e of software. However,the sour
e
ode has to be translated, and syn
hronous
ommuni
ation has to be implemented by asyn
hronousmessages, involving a potential state{spa
e overhead.As explained above, we follow a third approa
h here.We fa
ilitate the proofs by ignoring the
on
rete imple-mentation of the gen server module. Instead, we spe
-ify its abstra
t behaviour by in
luding its synta
ti

on-stru
ts in the Erlang syntax, and by adding appropri-ate transition rules to the proof system. So the intu-itive meaning of the
all/handle
all me
hanism asdes
ribed above gives rise to the following set of rules.A
all in the user pro
ess
an be handled by theserver if it is in an idle state, as indi
ated by the loopatom. In this
ase, the server pro
ess exe
utes the handle
all
allba
k fun
tion, and the user pro
ess is put into a waitstate until the request has been answered. Formally, thisis re
e
ted by the following rule:h
all(pid 0; req); pid ; qi k hloop(state); pid 0; q0i�! hwait(pid 0); pid ; qi khhandle
all(req ; pid ; state); pid 0; q0iWhen the handle
all fun
tion yields an answer, itis immediately returned to the waiting user pro
ess, andthe server
hanges into the idle state again:hwait(pid 0); pid ; qi khfreply; answer ;newstateg; pid 0; q0i�! hanswer ; pid ; qi k hloop(newstate); pid 0; q0iAs
an be seen, the asyn
hronous
ommuni
ation a
-tions that are used in the gen server module to imple-ment syn
hronous message passing are
ollapsed into anatomi
 handshake. The remaining fun
tions are repre-sented in a similar fashion.So far we have extended the proof system by appro-priate transition rules and applied it to simple examples,

starting with systems whi
h
onsist of a �nite numberof
lients and servers. Currently, for more elaborated
ase studies, we are trying to identify ta
ti
s and ta
-ti
als whi
h automati
ally take (most of) the de
isionsdes
ribed in Se
tion 3, and we will try to extend themethod to programs whi
h involve dynami
 pro
ess
re-ation. The whole approa
h should also be easily adapt-able to several other libraries in the Erlang distribution,like systems of �nite{state ma
hines implemented by thegeneri
 gen fsm module.8 Related WorkIn this se
tion we shortly review other veri�
ation frame-works whi
h support dedu
tive systems tailored towardsformal reasoning about programming languages, ignor-ing theorem{proving systems designed for the formal-ization of
lassi
al or
onstru
tive mathemati
s, su
h asCoq, HOL, or Nuprl.ACL2 2, the su

essor of the \Boyer{Moore theoremprover" Nqthm, supports the �rst{order logi
 of totalre
ursive fun
tions with equality, o�ering mathemati
alindu
tion on ordinals as the main proof method. Withinthis framework it is possible to de�ne models of vari-ous kinds of
omputing systems and to prove theoremsabout them. Su

esful industrial{s
ale appli
ations ofthis approa
h in
lude
orre
tness proofs of several as-sembler programs for a Motorola signal pro
essor and ofthe
oating{point division unit of an AMD mi
ropro
es-sor.Another popular system is the Isabelle generi
 the-orem proving environment3. Its meta logi
,
alled Is-abelle/Pure, is used to de
lare the (
on
rete and ab-stra
t) syntax and the semanti
s (i.e., the inferen
e rules)of a
on
rete logi
. Moreover it allows to instantiategeneri
 proof tools su
h as a general tableau prover toobtain a spe
i�
 prover, or to manually
ode spe
ializedproof pro
edures. Con
rete programming{oriented ap-pli
ations of this framework
omprise veri�
ation toolsfor the Java programming language, for distributed sys-tems spe
i�ed using I/O automata or the UNITY lan-guage, and for obje
t{oriented programs.Examples for other veri�
ation systems of this kindare ELAN4 and Lar
h5.The spe
i�
ation language of the PVS theorem prover6is based on
lassi
al, typed higher{order logi
 supportingfun
tions, sets, re
ords, tuples, enumerations, re
ursively{de�ned abstra
t data types, predi
ate subtypes, and de-pendent typing. PVS provides a
olle
tion of proof rulesthat are applied intera
tively under user guidan
e withina sequent
al
ulus framework. Just like EVT the prover2 http://www.
s.utexas.edu/users/moore/a
l2/3 http://www.
l.
am.a
.uk/Resear
h/HVG/Isabelle/4 http://www.loria.fr/ELAN/5 http://www.sds.l
s.mit.edu/spd/lar
h/6 http://pvs.
sl.sri.
om/

Thomas Arts et al.: A Veri�
ation Tool for Erlang 15maintains a proof tree where the nodes are labeled bysequents. The primitive proof rules in
lude propositionaland quanti�er rules, equational reasoning, indu
tion, rewrit-ing, and de
ision pro
edures for linear arithmeti
.All of the above frameworks
ould be applied, atleast in prin
iple, to the veri�
ation of Erlang programsas well. To this aim, the synta
ti

onstru
ts and theirmeaning have to be de�ned in the
orresponding spe
i�-
ation formalism. With regard to the logi
, however, onewould be dependent on those proof methods whi
h areprede�ned in the respe
tive system. For example thismeans that, at the outset of a proof, the user has to
hoose from a
olle
tion of prede�ned indu
tion s
hemes.This requirement is in
ontradi
tion to our intentionto support the lazy dis
overy of
ompli
ated indu
tions
hemes through symboli
 program exe
ution, whi
h isessential for the pra
ti
al veri�
ation of temporal prop-erties of programs with dynami
 behaviour.Of
ourse the pri
e to be paid for this
exibility isthe missing generality of our system with respe
t to thespe
i�
ation language, whi
h makes it a spe
ial{purposetheorem prover tailored towards the Erlang language.An alternative approa
h to the veri�
ation of Erlangprograms is the use of abstra
t interpretation te
hniquesto
reate a �nite{state model of the given program whi
h
an be handled with standard model{
he
king te
hniques.This approa
h is taken by Hu
h [17℄, where a
on
reteabstra
t interpretation is suggested, essentially redu
ingin�nite data domains to �nite ones. However, the in�nitestate spa
es arising from unbounded message queues orunbounded pro
ess spawning, whi
h are
hara
teristi
for open distributed systems, are not handled there.9 Con
lusionWe have given an overview of the main results obtainedin the ASTEC proje
t Veri�
ation of Erlang Programs,fo
using in parti
ular on the Erlang Veri�
ation Tool, atheorem{proving tool whi
h assists in obtaining proofsthat Erlang appli
ations satisfy their
orre
tness require-ments formulated in a spe
i�
ation logi
. We presented asummary of the veri�
ation framework as supported byEVT, dis
ussed reasoning prin
iples essential for su

ess-ful veri�
ation su
h as indu
tive and
ompositional rea-soning and reasoning about side{e�e
t{free
ode, sum-marized our experien
e from a larger industrial
ase study,and suggested a pra
ti
al method for supporting veri�-
ation in the presen
e of program libraries.The experien
e gained in the proje
t
learly showsthe potential of the
hosen framework. We were able toverify Erlang systems whi
h, due to their dynami
 na-ture, are beyond the s
ope of most other existing veri�-
ation approa
hes. The pri
e to pay is the unde
idabil-ity of the general veri�
ation problem. The veri�
ationtask has to be split into automatable and manually as-sisted parts. Thus, the su

ess of the approa
h depends

ru
ially on the eÆ
ien
y of the de
ision pro
edures em-ployed and on the support provided for minimizing theneed for human intervention in terms of high{level rea-soning prin
iples and user interfa
e.To make the presented veri�
ation method pra
ti-
ally useful
onsiderable additional e�ort is required inseveral resear
h dire
tions. These in
lude providing au-tomati
 support for identifying appropriate indu
tions
hemes, providing easy and
ontext{sensitive a

ess tothe available proof ma
hinery through the graphi
al userinterfa
e, and designing eÆ
ient de
ision pro
edures au-tomating the straightforward low{level reasoning and �-nite state spa
e exploration.Referen
es1. J. Armstrong, R. Virding, C. Wikstr�om, andM. Williams. Con
urrent Programming in Erlang(Se
ond Edition). Prenti
e-Hall International (UK)Ltd., 1996.2. T. Arts and M. Dam. Verifying a distributed databaselookup manager written in Erlang. In Pro
. FormalMethods Europe'99, Le
ture Notes in Computer S
ien
e,1708:682{700, 1999.3. T. Arts, M. Dam, L.-�a. Fredlund, and D. Gurov. Systemdes
ription: Veri�
ation of distributed Erlang programs.In Pro
. CADE'98, Le
ture Notes in Arti�
ial Intelli-gen
e, 1421:38{41, 1998.4. Y. Bertot and L. Thery. A generi
 approa
h to buildinguser interfa
es for theorem provers. Journal of Symboli
Computation, 25(7):161{194, February 1998.5. R.L. Constable, S.F. Allen, H.M Bromley, W. R. Cleave-land, J. F. Cremer, R. W. Harper, D. J. Howe, T. B.Knoblo
k, N. P. Mendler, P. Panangaden, J. T. Sasaki,and S. F. Smith. Implementing Mathemati
s with theNuprl Proof Development System. Prenti
e Hall, 1986.6. M. Dam. Proving properties of dynami
 pro
ess net-works. Information and Computation, 140:95{114, 1998.7. M. Dam, L.-�a. Fredlund, and D. Gurov. Toward paramet-ri
 veri�
ation of open distributed systems. In Compo-sitionality: the Signi�
ant Di�eren
e, H. Langmaa
k, A.Pnueli and W.-P. de Roever (eds.), Springer, 1536:150{185, 1998.8. M. Dam and D. Gurov. Compositional veri�
ation ofCCS pro
esses. In Pro
. PSI'99, Le
ture Notes in Com-puter S
ien
e, 1755:247{256, 2000.9. M. Dam and D. Gurov. �-
al
ulus with expli
it pointsand approximations. In: Pro
. FICS'2000, 2000.10. G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy,C. Parent, C. Paulin-Mohring, and B. Werner. The Coqproof assistant user's guide version 5.8. Te
hni
al Report154, INRIA, 1993.11. L.-�a. Fredlund. Towards a semanti
s for Erlang. Unpub-lished manus
ript, Swedish Institute of Computer S
i-en
e, 1999.12. L.-�a. Fredlund and D. Gurov. A framework for for-mal reasoning about open distributed systems. In Pro
.ASIAN'99, Le
ture Notes in Computer S
ien
e, 1742:87{100, 1999.

16 Thomas Arts et al.: A Veri�
ation Tool for Erlang13. M. Fr�ohli
h and M. Werner. The graph visualization sys-tem daVin
i { a user interfa
e for appli
ations. Te
hni
alReport 5/94, Department of Computer S
ien
e; Univer-sitt Bremen, 1994.14. M.J.C. Gordon and T.F.Melham (eds.). Introdu
tion toHOL: a theorem proving environment for higher orderlogi
. Cambridge Press, 1993.15. D. Gurov and G. Chugunov. Veri�
ation of Erlang pro-grams: Fa
toring out the side-e�e
t-free fragment. InPro
. FMICS 2000, GMD Report No.91, pages 109{122,2000.16. C. A. R. Hoare. An axiomati
 basis for
omputer pro-gramming. Communi
ations of the ACM, 12:576{580,1969.17. F. Hu
h. Veri�
ation of Erlang programs using abstra
tinterpretation and model
he
king. In Pro
. ICFP '99,ACM SIGPLAN Noti
es, 34(9):261{272, 1999.18. D. Kozen. Results on the propositional �-
al
ulus. The-oreti
al Computer S
ien
e, 27:333{354, 1983.19. R. Milner. Communi
ation and Con
urren
y. Prenti
eHall International, 1989.20. R. Milner, M. Tofte, and R. Harper. The De�nition ofStandard ML { Revised. MIT Press, 1997.21. George C. Ne
ula. Proof-
arrying
ode. In Pro
.POPL'97, 1997.22. H. Nilsson. Patent Appli
ation, 1999.23. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K.Srivas. PVS: Combining spe
i�
ation, proof
he
king,and model
he
king. In Pro
. CAV'96, Le
ture Notes inComputer S
ien
e, 1102:411{414, 1996.24. D. Park. Finiteness is mu-Ine�able. Theoreti
al Com-puter S
ien
e, 3:173{181, 1976.25. L.C. Paulson. Isabelle: A Generi
 Theorem Prover.Springer Verlag (LNCS 828), 1994.26. G. D. Plotkin. A stru
tural approa
h to operational se-manti
s. Aarhus University report DAIMI FN-19, 1981.27. D. Sahlin, T. Franz�en, and S. Haridi. An intuitionisti
predi
ate logi
 theorem prover. In Journal of Logi
 andComputation, 2(5):619{656, O
tober 1992.28. C. Wikstr�om, H. Nilsson, and H. Mattson. Mnesiadatabase management system. In Open Tele
om Plat-form Users Manual. Open Systems, Eri
sson Utve
klingsAB, Sto
kholm, Sweden, 1997.29. G. Winskel. A note on model
he
king the modal�-
al
ulus. Theoreti
al Computer S
ien
e, 83:157{187,1991.

