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AbstractWe study the problem of specifying and verifying properties of �-calculus processeswhile relying on a bisimulation semantics. As our property speci�cation languagewe use a version of the modal �-calculus adapted to the �-calculus. We showthat the logical language is su�ciently expressive to characterize by means of a�nite formula a process up to any approximation of the bisimulation relation.We consider the problem of checking that a process of the �-calculus satis�es aspeci�cation expressed in this modal �-calculus. We develop an algorithm which issound in general, and complete for processes having a �nite reachability property.Finally, we present a proof system which can be applied to prove non-recursiveproperties of arbitrary processes. We show that the system is complete on thenon-recursive fragment of the logical language.



1 IntroductionThe �-calculus was introduced by Milner, Parrow, and Walker [MPW92] as a lan-guage for describing concurrent systems with features such as mobility, parameterdependency, and dynamic recon�gurability that were outside the realm of CCSand related formalisms. Essentially, the �-calculus augments CCS by adding toit facilities for generating new names of communication channels, and for pass-ing channel names between concurrent processes. The �-calculus has been usedsuccessfully in a range of applications, from studies of reduction strategies in the�-calculus [Mil92, San92, ALT95] and true concurrency semantics [AP94, San94]to modellings of telecommunication protocols [Ora94] and object-oriented pro-gramming languages [Wal94]. In this paper we study the problem of specifyingand verifying properties of �-calculus processes. This is a rather delicate issue fortwo reasons:1. While Hennessy-Milner logic [HM85] and the modal �-calculus [Koz83] haveby now emerged as standard basic devices for specifying properties of labelledtransition systems no corresponding tools have as yet emerged to accountfor value passing or channel generation.2. With some exceptions (e.g. the hand-over protocol study of Orava andParrow [OP92]) most interesting applications of the �-calculus give rise todynamic process networks which are not easily analysed using the veri�cationtechnology of the day.As our property speci�cation language we use a version of the modal �-calculusadapted to the �-calculus. Roughly, the language is the Hennessy-Milner logicconsidered in [MPW93] extended with:(i) A generalized box operator stating that a co-�nite collection of actions can-not happen.(ii) Least and greatest �xed point operators.Both extensions allow properties to be expressed that cannot be described by a�nite formula of the logic studied in [MPW93]. The generalized box operatorcan be used to characterize a process up to any approximation of the bisimulationrelation (theorem 1). This fact is quite useful in the construction of a proof system(theorem 4). Fixed point operators can be used to characterize processes having a�nite reachability property (FR-processes for short) up to bisimulation (theorem3) and to express weak modalities.We consider the problem of checking that a process of the �-calculus satis�esa speci�cation expressed in this modal �-calculus. Following work by Winskel[Win89] on CCS (see also [SW91]) and Dam [Dam93] on the �-calculus we developan algorithm which is sound in general, and complete for FR-processes. Thealgorithm is formalized by inference rules and relies on a suitable generalization of1



the well-known technique of tagging �xed points. The key to the soundness proof isa generalization to functions of Kozen's reduction lemma [Koz83]. Completenessis proven by exhibiting a bound on the size of the proofs of a judgment. Thisbound is obtained as a corollary of the termination of a simple rewriting system.The strong normalization proof of this rewriting system highlights the core of thecombinatorial problem.The termination conditions embedded in the model checker are inherently lim-ited to models whose global state space can be bounded. For dynamic process net-works which do not in general possess the FR-property the model checker can onlyprove limited properties that depend only on a �nite part of an otherwise in�nitestate space (as the compositional model checker of [ASW94]). To overcome thisproblem we embark on a study of compositional proof systems that are not a priorirestricted to FR processes. Following work presented in [AD95, Dam95, Sti87] wede�ne a proof system operating on judgments � `s p : � where � is a sequence ofthe form x1 : �1; :::; xn : �n and s is a �nite set of channel names. Such a judgmentstates properties � of the process p relative to properties �i of its components, xi,under a suitable restriction of the names in s. We present a system which is soundin general and complete on recursion free formulas. The proof system can also beregarded as a type system for the �-calculus in the sense that it provides approxi-mate descriptions of the dynamic behaviour of a process. Extensions of the proofsystem to recursive formulas is left for future work.Our priorities in designing the system have been to keep both the process andproperty speci�cation languages as simple as possible by, for instance, avoidingpolyadic channels and operators such as matching, mismatching, and quanti�ers(which were considered in [Dam93]), and by concentrating on one sort of bisimula-tion equivalence: the one based on early instantiation ([MPW93] considers varioussubcases). In spite of this, the proof system is quite unwieldy, containing in theorder of 40 rules. Though the rules can be logically organized into various sub-groups there is a lot of cases to be considered. Roughly one has to examine foreach of the two modalities six process combinators, and for each of these 5 types oftransition labels. Future work will have to give evidence for the practical relevanceof the proof system. In fact the proof system should be viewed as an attempt topin down a sort of assembly language for reasoning about mobile processes. Realapplications will require more complex and generic rules and partial automation.The paper is organized as follows: section 2 recalls basic �-calculus notation,section 3 introduces a variant of the �-calculus adapted to the speci�cation of �-processes, section 4 describes the model checker, and section 5 presents the proofsystem. Finally research directions are mentioned in section 6.2 Preliminaries on the �-calculusWe introduce some notation and some standard results on the �-calculus. Let Chbe a countable collection of channel names, say a; b; : : : All free names should be2



regarded as constants. Processes are speci�ed by the following grammar:p ::= 0 a(b):p ab:p �a:p p + p p j p (recA(~a):p)(~b) A(~a) xRemarks:� In a(b):p and �b:p we assume that the name b is bound in p. Processes areconsidered up to renaming of bound names. The resulting congruence isdenoted with �. We denote with fn(p) and bn(p) the free and bound namesoccurring in p, respectively. All free names should be regarded as constants.� Agent identi�ers are ranged over by A;B; : : : In a well formed process allagent identi�ers are bound by rec. In the term (recA(~a):p) we suppose thatall occurrences of agent identi�ers in p are guarded (i.e. preceeded by apre�x), and fn(p) � f~ag.� x; y; : : : denote process variables. We denote with FV (p) the process vari-ables occurring free in the process p. Up to section 5, we assume thatprocesses do not contain process variables.Actions are speci�ed by the following grammar: 1 � ::= � ab ab a(b) a(b).Conventionally we set n(�) = fn(�) [ bn(�) where:fn(� ) = ; fn(a(b)) = fn(a(b)) = fag fn(ab) = fn(ab) = fa; bgbn(� ) = ; bn(a(b)) = bn(a(b)) = fbg bn(ab) = bn(ab) = ;The labelled transition system (lts) follows an early instantiation schema and itis described in �gure 1, where we omit the symmetric version of the rules (sync),(syncex), (comp), and (sum).De�nition 1 (bisimulation) Let Pr be the collection of (closed) processes. Wede�ne an operator F : P(Pr � Pr)! P(Pr � Pr) as:pF(S)q if 8p0 8� (bn(�) \ fn(q) = ; and p �! p0)implies 9q0 (q �! q0 and p0Sq0) (and symmetrically)A relation S is a bisimulation if S � F(S). We de�ne:�= SfS j S � F(S)g �0= Pr � Pr �k+1= F(�k)The following are well-known properties of bisimulation for the �-calculus.Proposition 1 1. Let � be an injective substitution on fn(p j q) then p � q i��p � �q.2. The operator F preserves �ltered intersections, in particular �= Tk<! �k.1The action a(b) represents the input of a new name b on a channel a. This action is takenas a derived action in standard accounts of the �-calculus. Namely one states: p a(b)! p0 if p ab! p0and b =2 fn(p). We found it more convenient to introduce a(b) as a primitive action as it allowsfor a symmetric and synthetic formulation of certain proof rules (cf. section 5).3



(in) �a(b):p ac! [c=b]p (out) �ab:p ab! p(inex) �a(b):p a(b)! p (outex) p ab! p0 a 6= b�b:p a(b)! p0(sync) p ab! p0 q ab! q0p j q �! p0 j q0 (syncex) p a(b)! p0 q a(b)! q0p j q �! �b:(p0 j q0)(�) p �! p0 a =2 n(�)�a:p �! �a:p0 (comp) p �! p0 bn(�) \ fn(q) = ;p j q �! p0 j q(sum) p �! p0p+ q �! p0 (rec) [(recA(~a):p)=A;~b=~a]p �! p0(recA(~a):p)(~b) �! p0(cong) p � p0 p0 �! q0 q0 � qp �! qFigure 1: Labelled transition system
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3 An extended modal �-calculusWe introduce a Hennessy-Milner logic for the �-calculus and study its interpre-tation. The logic includes least and greatest �xed points and a generalized box-operator roughly saying that a co-�nite collection of actions cannot happen. Firstwe need to �x some notation on actions.� Let � vary over the set: B = fa j a 2 Chg[fa j a 2 Chg[fab j a; b 2 Chg.� Let 
 vary over the co-�nite subsets of B, that is 
 = f�1; : : : ; �ngc =Bnf�1; : : : ; �ng where n � 0 and �i 2 B. Given an action � we de�ne itsprojection prj (�) 2 B as follows:prj (ab) = a prj (a(b)) = a prj (ab) = ab prj (a(b)) = aGiven a process p we de�ne the collection pact(p) � B of its projectedactions as follows: pact(p) = fprj (�) j � 6= � and p �! p0gObserve that the set pact(p) is always �nite. We also de�ne the subject ofan input-output action as follows:subj (ab) = subj (ab) = subj (a(b)) = subj (a(b)) = a� We assume that the set of channels Ch is linearly ordered and that thefunction fst returns the least channel in a (non-empty) set. We de�ne:Fout(p) = fab j p ab! p0gFin(p) = fab j p ab! p0 and b 2 fn(p)gBout(p) = fa(b) j p a(b)! p0 and b = fst(Chnfn(p))gBin(p) = fa(b) j p a(b)! p0 and b = fst(Chnfn(p))g� (p) = f� j p �! p0gact (p) = Fout(p) [ Fin(p) [Bout(p) [ Bin(p) [ � (p)Observe that the set act(p) is �nite.Assume an in�nite collection of formula variables X;Y; : : : each with a specifedarity ar(X) � 0. A tag of arity n is a set f~ai ) pigi2I where ~ai 2 Chn and pi 2 Pr.Tags are a technical device which plays an important role in the following proofs.We denote tags with t; t0; : : : A tag t of arity n can be seen as a function inChn ! P(Pr) by de�ning t(~b) = fp j (~b) p) 2 tg.The functional space Chn ! P(Pr) inherits from P(Pr) the order and the settheoretic operations. In particular we have:f � g i� 8~a (f(~a) � g(~a)) (fng)(~a) = f(~a)ng(~a)(f [ g)(~a) = f(~a) [ g(~a) (f \ g)(~a) = f(~a) \ g(~a)5



The space Chn ! P(Pr) is a complete lattice ordered by �. In particular mono-tone functions over this space have a least �xed point (lfp) and a greatest �xedpoint (gfp). The following proposition generalizes to order 1 a remark by Kozen,later exploited by Winskel in the de�nition of a model checker.Proposition 2 Let F be a monotone function over Chn ! P(Pr). Then(1) ~b) p � lfp(F ) i� ~b) p � F (lfp(�f:Ffnf~b) pg))(2) ~b) p � gfp(F ) i� ~b) p � F (gfp(�f:Ff [ f~b) pg))(3) ~b) p �=lfp(�f:Ffnf~b) pg)(4) ~b) p � gfp(�f:Ff [ f~b) pg)Proof. The interesting part of (1) is to prove the direction ()). Let F �, for� ordinal, be the �th iterate of function F . Let �o be the least ordinal such that~b) p � F �o. Note that �o = �0 + 1, for some �0. Then we show that:8� < �o F � � lfp(�f:Ffnf~b) pg)By monotonicity it follows that: F �o = F (F �0) � F (lfp(�f:Ffnf~b ) pg)). (2)follows by a dual argument. (3-4) are proven by unfolding the �xed point. 2Now we de�ne the formulas of our logical language:� ::= ? > � ^ � � _ � h�i� [�]� [
]? X(~c) (�X(~a); t:�)(~b) (1)Here � stands for either �, the lfp, or �, the gfp. (�)� is a generic notation forboth h�i� and [�]�. In (a(b))� and (a(b))� the name b is bound. Formulas areconsidered up to alpha renaming. A formula is closed if it does not contain freeformula identi�ers. The modal depth j�j of a formula � is an ordinal inductivelyde�ned as follows:j>j = j?j = 0 j� ^  j = j� _  j = maxfj�j; j jgj(�)�j = 1 + j�j j[
]?j = 1j(�X(~a):�)(~b)j = !Next we de�ne a formula interpretation. Let Fide be the collection of formulaidenti�ers. An environment � is an element of �X2Fide(Char(X) ! P(Pr)), so�(X) : Char(X) ! P(Pr). The interpretation of a formula is given parametricallyw.r.t. an environment � in �gure 2. In this context the condition \d fresh" meansthat d is chosen such that d is neither in fn(p) or fn((�)�) If � has no free agentidenti�ers then the interpretation is independent from the environment, and wewrite j= p : � if p 2 [[�]]�, for some �. To claim that the interpretation actuallycomputes the least and greatest �xed points of the functionals M and N we haveto prove thatM and N are monotone. This follows from the following proposition.6



[[?]]� = ;[[>]]� = Pr[[� ^  ]]� = [[�]]�\ [[ ]]�[[� _  ]]� = [[�]]�[ [[ ]]�[[h�i�]]� = ( fp j p �! p0; p0 2 [[�]]�g if bn(�) = ;fp j p �! p0; [d=c]p0 2 [[[d=b]�]]�; d freshg if bn(�) = fcg[[[�]�]]� = 8><>: fp j p �! p0 implies p0 2 [[�]]�g if bn(�) = ;fp j p �! p0 implies [d=c]p0 2 [[[d=b]�]]�; d freshgif bn(�) = fcg[[[f�1; : : : ; �mgc]?]]� = fp j pact(p) � f�1; : : : ; �mgg[[X(~b)]]� = �(X)(~b)[[(�X(~a); t:�)(~b)]]� = (Tff : Char(X) ! P(Pr) jM(f) � fg)(~b)where M(f)(~c) = [[[~c=~a]�]]�[f=X ]nt(~c)[[(�X(~a); t:�)(~b)]]� = (Sff : Char(X) ! P(Pr) j f � N(f)g)(~b)where N(f)(~c) = [[[~c=~a]�]]�[f=X ][ t(~c)Figure 2: Interpretation
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Proposition 3 For any formula �, formula identi�er X, and environment �, iff � g in Char(X) ! P(Pr) then [[�]]�[f=X] � [[�]]�[g=X].Proof. By induction on � size. Let us consider two interesting cases. If � is aformula identi�er the hypothesis f � g applies. If � is a least �xed point formula,say (�Y (~a); t:�)(~b), then it is enough to prove that M(h)(~c) �M 0(h)(~c), where:M(h)(~c) = [[[~c=~a]�]]�[f=X; h=Y ]ntM 0(h)(~c) = [[[~c=~a]�]]�[g=X; h=Y ]ntThis is proved by applying the inductive hypothesis on [~c=~a]�. 2De�nition 2 Two (closed) processes p; q are logically equivalent, and we writep �L q, if they cannot be distinguished by a (closed) formula. Formally:p �L q i� 8� (j= p : � i� j= q : �)Proposition 4 If p � q then p �L q.Proof. Least and greatest �xed points can be expressed as in�nite disjunctionsand conjunctions, respectively. Proceed then by induction on the structure of the(in�nitary) formula. 2Next, we show that there is a �nite formula that characterizes a process up to�k, for k 2 !. To this end, for any process p and k 2 ! we de�ne a formula Ck(p)as follows. We set C0(p) = > andCk+1(p) = ^�2act(p)p �!p0 h�iCk(p0) ^ ^�2act(p)[f�g[�]( _p �!p0 Ck(p0)) ^ [pact(p)c]? (2)To prove that Ck(p) characterizes p up to�k we need to observe a peculiar propertyof the labelled transition system (this property relates to the notion of active nameintroduced in [MP95].)De�nition 3 The set Unobs(c; k) is composed of those processes such that nosequence of transitions of length at most k has c as a free name. More precisely:Unobs(c; k) = fq j (q �1! � � � �h! qh �! q0; h < k; c =2 n(�i);�i; � not free input actions (i = 1; : : : ; h))implies c =2 fn(�)gLemma 1 If q 2 Unobs(c; k) then q �k �c:q.Proof hint. We relate the transitions of q and �c:q. If c plays a role in a labelledreduction then we can observe a transition depending on c, hence contradictingq 2 Unobs(c; k). 28



Remark 1 The previous lemma fails if we allow matching in the calculus. Forinstance p � a(b):(�:� + [b = c]:� ) 2 Unobs(c; 3) but p �3 �c:p does not hold.A related example shows that theorem 1 fails in the presence of matching, moreprecisely j= q : Ck(p) does not imply q �k p. On the other hand corollary 1 stillholds. It would be possible to extend the logic so as to capture the behaviour ofprocesses with matching. Roughly we need a modality that speci�es the behaviourof a process on a co�nite collection of input names. If s denotes a �nite collectionof names then we would introduce modalities ha(b =2 s)i� and [a(b =2 s)]� with thefollowing realizations:j= p : ha(b =2 s)i� if 9p0; c (p ac! p0 and c =2 s and j= p0 : [c=b]�)j= p : [a(b =2 s)]� if 8p0; c (p ac! p0 and c =2 s implies j= p0 : [c=b]�)We refrain from going into this development because we want to keep the logicsimple and because it is debatable whether matching belongs to the �-calculus.Lemma 2 If j= q : Ck(p) and c 2 fn(q)nfn(p) then q 2 Unobs(c; k).Proof. By contradiction, if q =2 Unobs(c; k) then we have a sequence of transitionsq �1! � � � �h! qh �! � such that h < k, c =2 n(�i), �i; � not free input actions (i =1; : : : ; h) and c 2 fn(�). Then we can �nd a sequence of transitions p �1! � � � �h! phsuch that j= qh : Ck�h(ph). Since the transitions �i do not refer to c it has to bethe case that c =2 fn(ph). But then the formula [pact(ph)c]? forbids the action �which depends on c, hence contradicting j= qh : Ck�h(ph). 2Theorem 1 For any process p and k 2 !: (1) j= p : Ck(p), and (2) j= q : Ck(p)i� p �k q.Proof. Statement (1) and direction (() of (2) are easily proven by inductionon k. To prove direction ()) of (2), suppose fn(q)nfn(p) = f~cg. By applyinglemma 2 we can conclude that �~c:q �k q. It is easy to show that j= q : Ck(p) i�j= �~c:q : Ck(p) (cf. proposition 4). Since �k is transitive, we can now prove thestatement by induction on k, supposing that fn(q) � fn(p). 2Corollary 1 Let p; q be processes. Then: p � q i� p �L q.Proof. By proposition 4, if p � q then p �L q. Vice versa, suppose p �L q.From proposition 1(1) we know that for each k 2 !, j= p : Ck(p). Hence for eachk 2 !, j= q : Ck(p), which implies p �k q, for each k 2 !. From theorem 1(2) weconclude that p � q. 24 Model checkerIn �gure 3 we de�ne a proof system to derive judgments p : �, where FV (p) = ;and � is a closed formula. We write ` p : � if the judgment is provable in thesystem. The rules follow quite closely the formula interpretation de�ned in �gure2, with the exception of �xed points where we exploit proposition 2.9



(>) �p : > (^) p : � p :  p : � ^  (_l) p : �p : � _  (_r) p :  p : � _  (�) � � �0 p : �0p : � (h i) p0 :  p : h�i for some p �! p0([
]) pact(p) � f�1; : : : ; �ngp : [f�1; : : : ; �ngc]? ([ ]) p0 :  p : [�] whenever p �! p0(�) ~b) p 2 tp : (�X(~a); t:�)(~b) (�) ~b) p =2 t p : [�X(~a); t[ f~b) pg:�=X;~b=~a]�p : (�X(~a); t:�)(~b)Figure 3: Model checkerProposition 5 (soundness) If ` p : � then p 2 [[�]].Proof. The soundness of the rules concerning recursive formulas is proven byapplying proposition 2. For instance, suppose j= p : [�X(~a); t[f~b) pg:�=X;~b=~a]�and ~b) p =2 t. Apply proposition 2.1 with F (f)(~b) = [[[~b=~a]�]][f=X]nt(~b). Then:j= p : (�X(~a); t:�)(~b) i� j= p : lfp(F )(~b)i� j= p : [[[~b=~a]�]][lfp(�f:(Ffn~b) p))=X] 2Remark 2 1. Note that the following judgment cannot be proved:p : (�X(~a); t:�)(~b) whenever ~b) p 2 tThis is in accord with (3) in lemma 2. In the implementation of the modelchecker judgments with this shape correspond to halting conditions.2. The rule (�) expresses su�cient and necessary conditions, as exempli�ed in(1-2) of lemma 2. This fact plays a crucial role in proving the completenessof the model checker w.r.t. certain classes of processes. As a rule of thumb,completeness means that we can bound the size of the proof of a judgment.Technically, this amounts to show that a certain rewriting system terminates.10



(�) rnm(p; (�)�) = d bn(�) = fcg p : ([d=c]�)[d=c]�p : (�)�(h i) rnm(p; h�i�) = ; p0 : �p : h�i� for some p �!N p0([ ]) rnm(p; [�]�) = ; p0 : �p : [�]� whenever p �!N p0Figure 4: Optimized rules for the model checkerAs a �rst step towards completeness we seek a better control on �-renaming(rule (�)) and on the introduction of new free names (rules (h i) and ([ ])). Tothis end we introduce a renaming function rnm de�ned as follows:rnm(p; (�)�) = ( d if bn(�) = fcg; fst(Chn(fn(p) [ fn((�)�))) = d; d 6= c; otherwiseThe intuition is as follows: the only point in which we might need to rename inorder to apply a (real) rule is in a judgment p : (�)�. This may happen if the� contains a bound name which clashes with a name free in p. We also observethat the bound name may become free in the premise of the rule. We should beconservative in choosing this new name, for this reason in the de�nition of rnmwe pick up the �rst name which is not currently used. Next we try to boundthe collection of processes that might be considered in the proof. We need somenotation.De�nition 4 1. A normalization function N : Pr ! Pr is a total recursivefunction such that p � N(p), for all processes p, and fn(p) � fn(N(p)).2. Given a normalization function N , we write p �!N p0 if there exists p00 suchthat p �! p00 and N(p00) � p0.In practice the role of the normalization function is to collect some garbagesuch as: restrictions on names that do not occur in the body of the process,terminated processes, obviously deadlocked processes, : : : We introduce in �gure4 the \optimized" version of the rules (�), (h i) and ([ ]).Proposition 6 The optimized rules displayed in �gure 4 are sound.11



Proof. The rule (�) is a particular case of the rule allowing for the renaming offormulas. The manipulations operated by the normalization function in the rules(h i) and ([ ]) are sound because p � N(p) and theorem 1 applies. 2In proving completeness we concentrate on processes that have a �nite reach-ability property.De�nition 5 Let N be a normalization function, and let C be a collection ofchannels forming an initial segment of Ch. A process p has the C;N -�nite reach-ability property if (when C;N can be derived from the context we say FR-processfor a process that has the C;N -�nite reachability property):1. The following set is �nite:Red(p;C) = fpn j p � p1 �1!N � � � �n�1! N pn and n(�i) � C and n � 1g (3)2. If q 2 Red(p;C) then fn(q) � C.The sense of the second condition is that whenever we need a fresh name forperforming a bound input/output we can �nd it in C.Example 1 Consider processes with the shape: p � �c1 : : : cn:(q1 j � � � j qm)where n � 0, m � 1, and parallel composition cannot occur in qi. This is ageneralization of the standard idea of considering products of regular processes.Let the normalization function N transform all subterms of the shape �c:p0 intop0, whenever c =2 fn(p0). Let C be an initial segment of names containing all fn(p)and exceeding the size of p in the sense that by rewriting p we always have lessthan ]C distinct names. Then we can show that terms with the shape above havethe C,N-�nite reachability property.Lemma 3 Let p have the C;N-�nite reachability property, and � be a closedformula. Then we can �nd an initial segment of channel names C 0 such thatfn(p) [ fn(�); C � C 0 satisfying the following property: all names free in a judg-ment p0 : �0 occurring in a proof (in the optimized system) of the judgment p : �belong to C 0.Proof. Given a formula � one can bound the number of distinct names that canoccur in a formula �0 by unfolding and projecting on subformulas. Let this boundbe n�. Then we take ]C 0 = ]C + n�. 2Remark 3 In the hypotheses of the lemma 3 above it is possible to bound thecollection of step functions that can occur in a proof. Let n be the maximal arity ofa formula identi�er occurring in �. Let C 0 be the set of names obtained by lemma3. Let ]Red(p;C 0) be the cardinality of the set of processes that can be reachedby normalized reduction starting from the process p (cf. equation 3). Then therecan be at most bnstep(p; �;C 0) step functions that occur in the proof, where:bnstep(p; �;C 0) = (](C 0n)) � ]Red(p;C 0) (4)12



Let us now outline an argument that shows that when developing a proofbottom up in the hypotheses of lemma 3 we eventually stop. We observe that allrules but (�) and (�) either entail termination or shrink the size of the formula tobe proved. We also note that the optimized rule (�) can be applied at most onceconsecutively, hence any in�nite backward development must include an in�nitenumber of applications of the rule (�). Now we remark that the rule (�) adds newstep functions to the tags. Since we know that the collection of reachable stepfunctions is �nite (cf. equation 4) we might conjecture that this process eventuallyterminates. We prove this in two steps:1. We present a simple rewriting system whose strong normalization proof ex-poses the kernel of the combinatorial problem.2. We show termination of the bottom up proof development by exhibitinga reduction preserving translation from judgments to terms of the simplerewriting system.De�nition 6 We de�ne a collection of �-terms as follows:� ::= X 1 � � � � � �nX:� (n 2 !)A term � can be reduced according to the following rules (the rules are applied attop level only). �n+1X:�! [�nX:�=X]� ��! �� � �0 ! � � � �0 ! �0Proposition 7 The rewriting system de�ned in 6 is strongly normalizing, that isall reduction sequences terminate.Proof. Let SN be the collection of strongly normalizing �-terms. If � 2 SN letd(�) be the lenght of the longest reduction sequence (this is well de�ned becausethe reduction tree is �nitely branching). We want to prove:�; �0 2 SN ) [�0=X]� 2 SN (5)We prove (5) by induction on d(�). 2 The only interesting case is when � has theshape �n+1Y:�. Then we observe:[�0=X](�n+1Y:�) � �n+1Y:[�0=X]�! [�nY:[�0=X]�=Y ]([�0=X]�) � [�0=X][�nY:�=Y ]�We note that (�n+1Y:�)! [�nY:�=Y ]� 2 SN . Hence, we can apply the inductivehypothesis on d([�nY:�=Y ]�), and we conclude that [�0=X][�nY:�=Y ]� 2 SN .2This proof mimicks proof techniques which show the strong normalization of the simplytyped and labelled �-calculus (cf. [VD80], chapter IV). The proof is elementary in the sense thatit can be formalized in Peano arithmetic, in particular no reducibility predicate is required.13



Next we prove that all �-terms are strongly normalizing. We proceed by in-duction on a relation � which is the least transitive relation such that:�n+1X:� � �nX:� �n+1X:� � � �� � �� � �0 � � � � �0 � �0Clearly � is a well founded relation. Again the only interesting case is when theterm has the shape �Y n+1:�. By the inductive hypothesis �Y n:� 2 SN; � 2 SN ,and by (5) [�Y n:�=Y ]� 2 SN . 2Lemma 4 Consider a bottom up proof development starting from a root p : �,where p is an FR-process. There is a translation h i from formulas to �-termswhich preserves reductions, that is if p00 : �00 is a premise of p0 : �0 in the proofdevelopment (by application of a rule di�erent from (�), otherwise h�0i = h�00i)then h�0i ! h�00i. Consequentely, all paths in the proof tree having root p : � are�nite.Proof. Let s = bnstep(p; �;C 0) be as in equation 4. Then s exceeds the cardi-nality of all tags that may occur by unfolding the �xed points. We associate a�-term to a formula as follows:h>i = 1 h?i = 1h� ^  i = h�i � h i h� _  i = h�i � h ih(�)�i = �h�i hX(~a)i = Xh(�X(~a); t:�)(~b)i = �X(s�]t):h�iSuppose p00 : �00 is a premise of p0 : �0 in the proof developement (by application ofa rule di�erent from (�)). We show h�0i ! h�00i by inspection of the proof rules.The only interesting case is the (�) rule. Since in the translation we have pickeds = bnstep(p; �;C 0) bigger than ]t we can compute:h(�X(~a); t:�)(~b)i = �X(s�]t):h�i! [�X(s�]t�1):h�i=X]h�i = h[�X(~a); t [ f~b) pg:�=X;~b=~a]�iIf there was an in�nite path in the proof tree then there would be an in�nitereduction from the �-term hp : �i, contradicting proposition 7. 2Theorem 2 The model checker is complete on FR-processes.Proof. We show by induction on � that j= p : � i� a proof rule applies. Lemma4 bounds the depth of a path in a bottom up proof development. Hence, if j= p : �by developing the proof bottom up we eventually obtain a proof of p : �. 2Moreover the logic is su�ciently expressive to characterize FR-processes up tobisimulation equivalence. 14



Theorem 3 Let p be a processes having the C;N-�nite reachability property.Then there is a formula C(p) involving only greatest �xed points such that forany process q, j= q : C(p) i� q � p.Proof. Suppose Red(p;C) = fp1; : : : ; png. We consider the system of equationsXi(C) = �i, for i = 1; : : : ; n, where:�i � ^�2act(pi)pi �!pj h�iXj (C) ^ ^�2act(pi)[f�g[�]( _pi �!pjXj(C)) ^ [pact(pi)c]? (6)When writing Xi(C) we intend that the collection of names in C has been orderedin a list to form the parameters of the formula Xi. For the sake of brevity we omitto write these parameters in the following as all the formula variables depend onthe same list of parameters. 31. We show that there are formulas  1; : : : ;  n such that: i = [ 1=X1; : : : ;  n=Xn]�i (i = 1; : : : ; n) (7)where equality can be proven simply by unfolding �xed points. We proceedby induction on n. If n = 1 let  1 = �X1:�1. If n > 1 let  0n = �Xn:�n.Consider the system:Xi = [ 0n=Xn]�i (i = 1; : : : ; n� 1)which by inductive hypothesis has a solution  1; : : : ;  n�1 satisfying: i = [ 1=X1; : : : ;  n�1=Xn�1][ 0n=Xn]�i (i = 1; : : : ; n� 1)Then, taking  n = [ 1=X1; : : : ;  n�1=Xn�1] 0n, we observe that  1; : : : ;  n isa solution for the system (7).2. Having obtained an explicit solution of the system (7) we can prove byinduction on k 2 ! that j= q :  i implies q �k pi (cf. proof theorem 1).Hence j= q :  i implies q � pi.3. We can associate a monotone functional �(X1; : : : ;Xn):(�1; : : : ; �n) to thesystem (7). We can show that the solution  1; : : : ;  n built in (1) is thegreatest �xed point of this functional.4. Next we prove j= pi :  i. From this we can derive that if q � pi thenj= q :  i, as bisimilar processes cannot be distinguished by a formula. Tothis end we use a greatest �xed point reasoning principle applied to thesystem of equations (7):j= pi : Xi (i = 1; : : : ; n) implies j= pi : �i (i = 1; : : : ; n)j= pi : �(�(X1; : : : ;Xn):(�1; : : : ; �n))i �  i (i = 1; : : : ; n) 23This way of deriving the characteristic formula is particularly honerous. In practice, if theprocess p is speci�ed by a system of parametric process equations using pre�x and sum, then itis possible to build a system of parametric formula equations having a comparable size.15



5 Proof systemWe develop a proof system supporting the compositional proof of process proper-ties. Following [AD95, Dam95] basic judgments of such a proof system take theform � ` p : � where � is a sequence of the form x1 : �1; : : : ; xn : �n. Such ajudgment states properties � of p relative to properties �i of its components, xi.In the case of the �-calculus a main issue is how to cater for private names, inparticular name generation and scope extrusion. For instance one will wish toverify properties of a process �a:p(x) relative to a property, say  , of x. In general must be allowed to depend on a. Thus, the scope of a needs to be extendedto cover also  . For this purpose we work instead with judgments of the form� `s p : � where s is a �nite set of restricted channel names whose scope extendover � and p.Judgments. Let s range over �nite sets of channels. Write s; a for s [ fagand s � a for snfag, and if s = fa1; : : : ; amg then �s:p = �a1 : : : �am:p. A basicjudgment is an expression of the formx1 :  1; : : : ; xn :  n `s p :  (8)satisfying the properties:1. All xi are distinct. The order of hypotheses in the context is irrelevant.2.  i, 1 � i � n, and  are closed.3. FV (p) � fx1; : : : ; xng.4. fn( ) \ s = ;.The judgment (8) is interpreted as follows:For all p1; : : : ; pn, if j= pi :  i for all i (1 � i � n) then j= �s:[~p=~x]p :  .We write � j=s p :  if � `s p :  is valid in this sense.The proof system. In the following we present a proof system for deriving validjudgments following [AD95, Dam95]. The rules are divided into three groups: onedepending on the logical structure of the formula (�gure 5), one depending on bothformula structure and process structure (�gures 6, 7, and 8), and �nally a group ofancillary rules including those that depend on the structure of process terms only(�gure 9). We omit symmetric rules for conjunction, disjunction, sum, and parallelcomposition, in practice these operators should be regarded as commutative.For the rules we suppose that the premises are well formed judgments, andthe conclusion judgment of each rule is relevant only if the judgment is well-formed. The rules use the abbreviation a fresh. In the context of a single judgment16



? ��; x : ? `s p : � > �� `s p : >^L �; x :  1 `s p : ��; x :  1 ^  2 `s p : � ^R � `s p : �1 � `s p : �2� `s p : �1 ^ �2_L �; x :  1 `s p : � �; x :  2 `s p : ��; x :  1 _  2 `s p : � _R � `s p : �1� `s p : �1 _ �2(cut) � `; q :  �; x :  `s p : �� `s [q=x]p : �Figure 5: Logical rules
(0) �� `s 0 : [�]�(out1) � `s p : �� `s ab:p : (ab)� (out2) prj (�) 6= a� `s ab:p : [�]�(out1ex) � `s p : � b =2 s� `s;b ab:p : (a(b))� (in1) � `s [c=b]p : �� `s a(b):p : (ac)�(in2) prj (�) 6= a� `s a(b):p : [�]� (in1ex) � `s p : �� `s a(b):p : (a(b))� (b fresh)(+h i) � `s p : h�i�� `s p + q : h�i� (+[ ]) � `s p : [�]� � `s q : [�]�� `s p+ q : [�]�Figure 6: Process structure rules (minus parallel composition)17



(synch i) �; x :  1; y :  2 `s x j y : ��; x : habi 1; y : habi 2 `s x j y : h� i�(synch iex ) �; x :  1; y :  2 `s;b x j y : ��; x : ha(b)i 1; y : ha(b)i 2 `s x j y : h� i�(comph i1 ) �; x :  1; y :  2 `s x j y : � n(�) \ s = ;�; x : h�i 1; y :  2 `s x j y : h�i�(comph i1;ex) �; x :  1; y :  2 `s x j y : � a; b 62 s�; x : habi 1; y :  2 `s;b x j y : ha(b)i�(comp[ ]) �; x :  1;1; y :  2;2 `s x j y :  �; x :  1;2; y :  2;1 `s x j y :  � 6= � n(�) \ s = ;�; x :  1;1 ^ [�] 1;2; y :  2;1 ^ [�] 2;2 `s x j y : [�] (comp[ ]ex) �; x :  1;1; y :  2;2 `s x j y :  �; x :  1;2; y :  2;1 `s x j y :  � 6= � a; b 62 s�; x :  1;1 ^ [ab] 1;2; y :  2;1 ^ [ab] 2;2 `s;b x j y : [a(b)] (sync[ ]) �; x :  1;1; y :  2 `s x j y :  �; x :  1; y :  2;1 `s x j y :  �; x :  ab1;2; y :  ab2;3 `s x j y :  (8ab 2 
c1 [ 
c2)�; x :  ab1;3; y :  ab2;2 `s x j y :  (8ab 2 
c1 [ 
c2)�; x :  a1;4; y :  a2;5 `s;b x j y :  (8a 2 
c1 [ 
c2)�; x :  a1;5; y :  a2;4 `s;b x j y :  (8a 2 
c1 [ 
c2)�; x :  01; y :  02 `s�b x j y : [� ] where, for i 2 f1; 2g, 0i =  i ^ [
i]?^ [� ] i;1 ^ ( ^ab2
c1[
c2[ab] abi;2 ^ [ab] abi;3) ^ ( ^a2
c1[
c2[a(b)] ai;4 ^ [a(b)] ai;5)Figure 7: Process structure rules (parallel composition)18



(0̂) �� `s 0 : [
]? ( ^out2) ab =2 
 or a 2 s� `s ab:p : [
]?( ^out2ex) a =2 
 or a 2 s� `s;b ab:p : [
]? (în2) a =2 
 or a 2 s� `s a(b):p : [
]?(+̂[ ]) � `s p : [
]? � `s q : [
]?� `s p+ q : [
]? ( ^comp[ ]) � `s p1 : [
]? � `s p2 : [
]?� `s p1 j p2 : [
]?Figure 8: Process structure rules, generalised box
(�) � `s;a p : �� `s�a �a:p : � (a fresh) (rec) � `s [(recA(~a):p)=A;~b=~a]p : �� `s (recA(~a):p)(~b) : �(btf) d =2 fn((a(c))�)�; x : (a(c))� ` x : (ad)[d=c]�(mon) �; x :  `s x : ��; x : (�) `s x : (�)� (monex) �; x :  `s�b x : ��; x : (ab) `s;b x : (a(b))�(m̂on) 
 0 � 
�; x : [
]? `s x : [
 0]? (m̂on0) prj (�) 2 
�; x : [
]? `s x : [�]�Figure 9: Ancillary rules19



� `s p : � this means that a does not occur freely in neither �, s, p, nor �, and inthe context of a rule �0 `s0 p0 : �0� `s p : �the abbreviation means that a is fresh for � `s p : �.We prove a completeness result to the e�ect that if � `s p : � is valid whereeach formula in � is a characteristic formula of some process to a depth at leastthe modal depth of �, then � `s p : � is also provable. In order to achieve this,certain relationships between free and bound input/output actions, must be madeexplicit, see in particular rules (comphi1;ex), (comp[]ex), and (btf) (btf stands forbound to free).At a �rst reading one may concentrate on the fragment including formulas� ::= > � ^ � h�i� and processes p ::= 0 ab:p a(b):p �a:p (p j p) x.For proving the (weak) completeness of this fragment one just needs the following14 rules: (>), (^L), (^R), (cut), (out1), (out1ex), (in1), (in1ex), (synchi), (synchiex),(comphi1 ), (comphi1;ex), (�), and (btf).The precise formulation of the proof rules is open to a lot of variation. Forinstance, it would be possible to be less explicit in our use of the cut-rule byreplacing the rules of �gure 7 with rules of the form:� `; p : h�i� �; x : � `s x j q :  n(�) \ s = ;� `s p j q : h�i�The soundness proof relies on the following observation.Proposition 8 For all a not free in p or �, j= p : � if and only if j= [a=b]p : [a=b]�.Note the following consequence of proposition 8: If a does not occur in p or �and b does not occur in � then j= p : � if and only if j= [a=b]p : �. This allows usto overcome some di�culties in the soundness proof.Proposition 9 If � `s p : � then � j=s p : �.Proof. Let � = x1 : �1; : : : ; xn : �n and let � be a �-validating substitution, i.e.a mapping with domain fx1; : : : ; xng such that j= �(xi) : �i for each i : 1 � i � n.We go through the rules on by one.(cut). Assume j= q� :  and that whenever j= r :  then j= �s:p([r=x]�) : �. Thenj= �s:([q�=x]p)� : � and j= �s:([q=x]p)�.(out1). Assume j= �s:p� : �. It su�ces to show j= �s:(ab:p)� : habi�. By well-formedness we know that a; b 62 s. But this is trivial.(synchiex). Assume that whenever j= q1 :  1 and j= q2 :  2 then j= �s:�b:q1 j q2 : �.Let j= r1 : ha(b)i 1 and j= r2 : ha(b)i 2. Then we �nd a fresh c such thatr1 a(c)! q1 and j= q1 : [c=b] 1, and a fresh d such that r2 a(d)! q2 and j= q2 : [d=b] 2.20



Then j= [b=c]q1 :  1, j= [b=d]q2 :  2, �s:r1 j r2 �! �s:�b:[b=c]q1 j [b=d]q2, andj= �s:�b:[b=c]q1 j [b=d]q2 : � as desired.(comphiex). Assume that a; b 62 s, and that whenever j= q1 :  1 and j= q2 :  2then j= �s:q1 j q2 : �. Suppose that j= r1 : habi 1 and j= q2 :  2. Then r1 ab! q1such that j= q1 :  1. Then �s:�b:r1 j q2 a(b)! �s:q1 j q2, and by the assumptionsj= �s:q1 j q2 : �, completing the case.(�). For simplicity assume that n = 1, that �(x1) = q, and that a 62 s. Generalisingthe proof is not hard. Assume j= �s:�a:[q=x1]p : �. Since a is fresh it does notoccur freely in �1. Since j= q : �1 and a 62 fn(�1) we can �nd some fresh b suchthat j= [b=a]q : �1 too (proposition 8). Then j= �s:�a:[[b=a]q=x1]p : �. Sincea 62 fn([b=a]q) also j= �s:[[b=a]q=x1]�a:p : �. But since a does not occur in � alsoj= [a=b]�s:[[b=a]q=x1]�a:p : �, thus, since a 62 s, j= �s:[q=x1]�a:p : � as desired.(mon). Assume that whenever j= q :  then j= �s:q : �. Assume that j= r : h�i (the case for [�] is analogous). Let �rst � = ab. Then we �nd a q such that r ab! qand j= q :  . Then j= �s:q : � by the assumptions. Moreover, since a; b 62 s by thewell-formedness condition, �s:r ab! �s:q, so indeed j= �s:r : h�i�. The case for abis similar. Let then � = a(b). Either b is free in r or it is not (the easier case). Soassume b 2 fn(r). Since j= r : h�i also j= [c=b]r : [c=b]h�i where c is fresh byproposition 8. Note that c 62 fn( ). Then we �nd a q such that [c=b]r a(b)! q andj= q :  . Then r a(d)! [b=c][d=b]q, so also �s:r a(d)! [b=c][d=b]�s:q (assuming w.l.o.g.that b 62 fn(s)). Now j= �s:q : � so j= [d=b]�s:q : [d=b]� (proposition 8 again), andthen, since c is not free in [d=b]� we obtain j= [b=c][d=b]�s:q : [d=b]�, completingthe case.(monex). Assume that b 62 s and that whenever j= q :  then j= �s:q : �. Assumethat j= q : habi . Then q ab! q0 for some q0 such that j= q0 :  . By well-formednessof the conclusion, a 62 s. Then �s:�b:q a(b)! �s:q0. By the assumption, j= �s:q0 : �.But then we have shown that j= �s:�b:q : ha(b)i�, as required.The remaining cases are all patterned upon the above and left for the reader. 2We proceed to show completeness. The following lemma is important in thelatter case since it allows assumptions of the form x : Ck(q) to be exchanged forsubstitutions by q.Lemma 5 1. For all k 2 !, if qi �k q0i, for i = 1; : : : ; n, then �s:[~q=~x]p �k�s:[~q0=~x]p.2. Let j�j � ki, for i = 1; : : : ; n. Then x1 : Ck1(q1); : : : ; xn : Ckn(qn) j=s p : � ifand only if j= �s:[q1=x1; : : : ; qn=xn]p : �.Note that, given that j= q : Ck(q), 5.2 is an immediate consequence of 5.1, theproof of which we omit. 21



Theorem 4 Let � = x1 : Ck1(q1); : : : ; xn : Ckn(qn). If � j=s p : � and j�j � ki,for i = 1; : : : ; n, then � `s p : �.Proof. First observe that, because process terms are assumed to be guarded, it isa routine matter to lift a proof of 4 for non-recursive processes to include recursion.The proof proceeds by induction on the lexicographic order (j�j; struct(p); struct(�)).Assume � j=s p : � and j�j � ki, for i = 1; : : : ; n. We proceed by cases onstruct(�).� = ?. Contradiction.� = >. Use the rule >.� = �1 ^ �2. We obtain � j=s p : �i for i = 1 and i = 2. By the innermost ind.hyp. (since j�j has increased), we obtain � `s p : �i for i = 1 and i = 2. Then, by^R, � `s p : �.� = �1_�2. Observe that j= �s:[q1=x1; : : : ; qn=xn]p : �. Then j= �s:[q1=x1; : : : ; qn=xn]p :�i for i = 1 or i = 2. Then (by lemma 5.2), � j=s p : �i, for that particular i.Then the conclusion follows by _R.� = [
]?. We proceed by cases on struct(p).� p = 0: � `s p : � by (0̂).� p = a(b):p0: If � j=s p : � then either a 2 s or a 62 
. In any case � `s p : �by (în2).� p = ab:p0: The proof is similar to the previous case, except that ( ^out2) or( ^out2ex) are used dependent on whether b 2 s or not.� p = �a:p0: Suppose � j=s p : �. We can assume that a is not among thenames free in q1; : : : ; qn. By 5.2, j= �s:[q1=x1; : : : ; qn=xn]�a:p0 : �, and thenj= �s:�a:[q1=x1; : : : ; qn=xn]p0 : �. Thus � `s;a p0 : �. By the second level ind.hyp., � `s;a p0 : �, and thus we are done by (�).� p = p1 + p2: If � j=s p : � then � j=s pi : � for i = 1 and i = 2. By thesecond level ind. hyp., � `s pi : �, and then by (+̂[]) we are done.� p = p1 j p2: Assume � j=s p : �. Then (since � 62 
) � j=s pi : � for i = 1 andi = 2, and by the second level ind. hyp. plus ( ^comp[]) the result follows.� p = xi: Note that � j=s p : [
]? i� j= �s:qi : [
]?. Since, by the convention,s \ 
 = ; this is the case if and only if j= qi : [
]?, and then � `s p : [
]?by (^L) and (m̂on).� = h�i�0. We proceed by cases on struct(p).� p = 0: Contradiction. 22



� p = a(b):p0: If � j=s p : � then � must have one of the form ac or a(c) wherea 62 s. Suppose �rst � = ac. Then � j=s [c=b]p0 : �0 so by the outer ind. hyp.,� `s [c=b]p0 : �0 giving � `s p : � by (in1). Second, if � = a(b) (assumingb 62 fn(�), otherwise alpha-conversion is needed) the result is obtained by(in1ex).� p = ab:p0: � must have one of the forms ab or a(b) (again appealing to alpha-conversion, if needed). In the �rst case the result is obtained by (out1) andthe second by (out1ex).� p = �a:p0: Use (�) and the second level ind. hyp..� p = p1 + p2: Use lemma 5.2, (+hi), and the second level ind. hyp..� p = p1 j p2: If � j=s p : � then j= �s:[q1=x1; : : : ; qn=xn](p1 j p2) : h�i�0.� has one of the forms (1) � , (2) ab, (3) a(b), (4) ab, or (5) a(b). Assumecase (1). Either (leaving out symmetrical subcases) (i) [~q=~x]p1 �! p01 andj= �s:p01 j [~q=~x]p2 : �0 or (ii) for some a; b, [~q=~x]p1 ab! p01, [~q=~x]p2 ab! p02, andj= �s:p01 j p02 : �0, or (iii) for some a; b, [~q=~x]p1 a(b)! p01, [~q=~x]p2 a(b)! p02, andj= �s:�b:p01 j p02 : �0. We take each subcase in turn.(i) By lemma 5.2 and the second level ind. hyp. we obtain � ` p1 :h� iCk�1(p01), and (by the outer ind. hyp.) x0 : Ck�1(p01); x1 : Ck1(q1); : : : ; xn :Ckn(qn) `s x0 j p2 : �0. Then, using (comphi1 ), x0 : h� iCk�1(p01); x1 :Ck1(q1); : : : ; xn : Ckn(qn) `s x0 j p2 : �, and then by (cut), x1 :Ck1(q1); : : : ; xn : Ckn(qn) `s p1 j p2 : � as desired.(ii) By lemma 5.2 and the second level ind. hyp. again we obtain � `p1 : habiCk�1(p01), � ` p2 : habiCk�1(p02), and (by the outer ind. hyp.)x : Ck�1(p01); y : Ck�1(p02);� `s x j y : �0. Then, by (sync) and (cut),� `s p1 j p2 : �.(iii) The proof is analogous, except that (synchiex) is used in place of (sync).For case (2), (4) and (5) the proof is analogous to subcase (i) above. Finally,for case (3), assume that � = a(b). Either (again leaving out symmetricalsubcases) (i) [~q=~x]p1 a(b)! p01 and j= �s:p01 j [~q=~x]p2 : �0, or (ii) b 2 s, [~q=~x]p1 ab!p01 and j= �snfbg:p01 j [~q=~x]p2 : �0. In subcase (i) the proof uses (comphi1 ) andin subcase (ii) the proof uses (comphi1;ex).� p = xi: We obtain from lemma 5.2 and the assumptions that j= �s:qi : h�i�0.Suppose �rst � = � . In this case Cki(qi) contains a conjunct h� iCki�1(q0i)where qi �! q0i and j= �s:q0i : �0. By the outer ind. hyp., x1 : Ck1(q1); : : : ; xi :Cki�1(q0i); : : : ; xn : Ckn(qn) `s xi : �0 and then by (mon) and ^L, x1 :Ck1(q1); : : : ; xi : Cki(qi); : : : ; xn : Ckn(qn) `s xi : �. The cases for � = aband � = a(b) are similar. Assume that � = a(b). There are two subcases:23



Either (i) qi a(b)! q0i and j= �s:q0i : �0, or else (ii) b 2 s, qi ab! q0i, and j=�snfbg:q0i : �0. Subcase (i) follows the previous case. For subcase (ii) weobtain that x1 : Ck1(q1); : : : ; xi : Cki�1(q0i); : : : ; xn : Ckn(qn) `s�b xi : �0, andthen by (monex), x1 : Ck1(q1); : : : ; xi : Cki(qi); : : : ; xn : Ckn(qn) `s xi : h�i�0as desired. Finally assume that � = ab. We have qi ab! q0i and j= �s:q0i : �0. Ifb 2 fn(qi) then Cki(qi) contains the conjunct habiCki�1(q0i), and � `s p : �follows by the ind. hyp. and (mon). If, on the other hand, b 62 fn(qi) thenCki(qi) contains a conjunct of the form ha(c)iCki�1([c=b]q0i). Then we canuse the ind. hyp. and (mon) along with (btf) to conclude that � `s p : �,completing the case.� = [�]�. We proceed by cases on struct(p).� p = 0: � `s p : � by (0).� p = a(b):p0: If prj(�) 6= a then � `s p : � by (in2), and if prj(�) = a theproof follows the pattern of the diamond case.� The cases for p = ab:p0, p = �a:p0, p = p1 + p2, p = xi follow as in thediamond case.� p = p1 j p2: We consider only the case for � = � . The other cases aresimpler and left as exercises. Let p0j = [q1=x1; : : : ; qn=xn]pj, j 2 f1; 2g.Since j= �s:(p01 j p02) : [� ]�0 whenever p01 j p02 �! p00 then j= p00 : �0 andp00 has the shape (�b:)p001 j p002 where the �b is optional. By the outermostind. hyp. we �nd for each such p00 formulas �01(p00) and �02(p00) such thaty1 : �01(p00); y2 : �02(p00) `s (�b:)y1 j y2 : �0. De�ne now 1 = ^f�01(p01 j p002) j p02 �! p002g
1 = [pact(p01)c]? 1;1 = _f�01(p001 j p2) j p01 �! p001g ab1;2 = _f^f�01(p001 j p002) j p02 ab! p002g j p01 ab! p001g ab1;3 = _f^f�01(p001 j p002) j p02 ab! p002g j p01 ab! p001g a1;4(b) = _f^f�01(�b:p001 j p002) j p02 a(b)! p002g j p01 a(b)! p001g a1;5(b) = _f^f�01(�b:p001 j p002) j p02 a(b)! p002g j p01 a(b)! p001gand de�ne symmetrically  2, 
2, etc. De�ne then  0j, j 2 f1; 2g as in rule(sync[]). We need to show y1 :  01; y2 :  02 `s y1 j y2 : [� ] 0. Since we haveconstructed  0j in the right shape, (sync[]) is immediately applicable. Noticethen that � `; pj :  , for all conjuncts  of  0j, j 2 f1; 2g. Consequently,using (cut), � `s p :  , and the case is complete. 224
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