SICS research report R96:03 ISRN: SICS-R-96/3-SE
ISSN: 0283-3638

Toward a modal theory of types for the

m-calculus
Roberto M. Amadio Mads Dam!
CNRS, BP 145 SICS
Sophia-Antipolis, F-06903, France Box 1263, Kista, Sweden
e-mail: amadio@cma.cma.fr e-mail: mfd@sics.se

Keywords: Process algebra, temporal logic, mobile processes, compositional veri-
fication, model checking

"Work partially supported by Esprit BRA project 8130 LOMAPS

Abstract

We study the problem of specifying and verifying properties of w-calculus processes
while relying on a bisimulation semantics. As our property specification language
we use a version of the modal p-calculus adapted to the m-calculus. We show
that the logical language is sufficiently expressive to characterize by means of a
finite formula a process up to any approximation of the bisimulation relation.
We consider the problem of checking that a process of the w-calculus satisfies a
specification expressed in this modal p-calculus. We develop an algorithm which is
sound in general, and complete for processes having a finite reachability property.
Finally, we present a proof system which can be applied to prove non-recursive
properties of arbitrary processes. We show that the system is complete on the
non-recursive fragment of the logical language.

1 Introduction

The 7-calculus was introduced by Milner, Parrow, and Walker [MPW92] as a lan-
guage for describing concurrent systems with features such as mobility, parameter
dependency, and dynamic reconfigurability that were outside the realm of CCS
and related formalisms. Essentially, the w-calculus augments CCS by adding to
it facilities for generating new names of communication channels, and for pass-
ing channel names between concurrent processes. The w-calculus has been used
successfully in a range of applications, from studies of reduction strategies in the
A-calculus [Mil92, San92, ALT95] and true concurrency semantics [AP94, San94]
to modellings of telecommunication protocols [Ora94] and object-oriented pro-
gramming languages [Wal94]. In this paper we study the problem of specifying
and verifying properties of w-calculus processes. This is a rather delicate issue for
two reasons:

1. While Hennessy-Milner logic [HM85] and the modal p-calculus [Koz83] have
by now emerged as standard basic devices for specifying properties of labelled
transition systems no corresponding tools have as yet emerged to account
for value passing or channel generation.

2. With some exceptions (e.g. the hand-over protocol study of Orava and
Parrow [OP92]) most interesting applications of the m-calculus give rise to
dynamic process networks which are not easily analysed using the verification
technology of the day.

As our property specification language we use a version of the modal p-calculus
adapted to the w-calculus. Roughly, the language is the Hennessy-Milner logic
considered in [MPW93] extended with:

1) A generalized box operator stating that a co-finite collection of actions can-
g p g
not happen.

(ii) Least and greatest fixed point operators.

Both extensions allow properties to be expressed that cannot be described by a
finite formula of the logic studied in [MPW93]. The generalized box operator
can be used to characterize a process up to any approximation of the bisimulation
relation (theorem 1). This fact is quite useful in the construction of a proof system
(theorem 4). Fixed point operators can be used to characterize processes having a
finite reachability property (FR-processes for short) up to bisimulation (theorem
3) and to express weak modalities.

We consider the problem of checking that a process of the w-calculus satisfies
a specification expressed in this modal pg-calculus. Following work by Winskel
[Win89] on CCS (see also [SW91]) and Dam [Dam93] on the 7-calculus we develop
an algorithm which is sound in general, and complete for FR-processes. The
algorithm is formalized by inference rules and relies on a suitable generalization of

the well-known technique of tagging fixed points. The key to the soundness proof is
a generalization to functions of Kozen’s reduction lemma [Ko0z83]. Completeness
is proven by exhibiting a bound on the size of the proofs of a judgment. This
bound is obtained as a corollary of the termination of a simple rewriting system.
The strong normalization proof of this rewriting system highlights the core of the
combinatorial problem.

The termination conditions embedded in the model checker are inherently lim-
ited to models whose global state space can be bounded. For dynamic process net-
works which do not in general possess the FR-property the model checker can only
prove limited properties that depend only on a finite part of an otherwise infinite
state space (as the compositional model checker of [ASW94]). To overcome this
problem we embark on a study of compositional proof systems that are not a priori
restricted to FR processes. Following work presented in [AD95, Dam95, Sti87] we
define a proof system operating on judgments I' -* p : ¢ where I' is a sequence of
the form xy : ¢1,..., 2, : ¢, and s is a finite set of channel names. Such a judgment
states properties ¢ of the process p relative to properties ¢; of its components, x;,
under a suitable restriction of the names in s. We present a system which is sound
in general and complete on recursion free formulas. The proof system can also be
regarded as a type system for the m-calculus in the sense that it provides approxi-
mate descriptions of the dynamic behaviour of a process. Extensions of the proof
system to recursive formulas is left for future work.

Our priorities in designing the system have been to keep both the process and
property specification languages as simple as possible by, for instance, avoiding
polyadic channels and operators such as matching, mismatching, and quantifiers
(which were considered in [Dam93]), and by concentrating on one sort of bisimula-
tion equivalence: the one based on early instantiation ([MPW93] considers various
subcases). In spite of this, the proof system is quite unwieldy, containing in the
order of 40 rules. Though the rules can be logically organized into various sub-
groups there is a lot of cases to be considered. Roughly one has to examine for
each of the two modalities six process combinators, and for each of these 5 types of
transition labels. Future work will have to give evidence for the practical relevance
of the proof system. In fact the proof system should be viewed as an attempt to
pin down a sort of assembly language for reasoning about mobile processes. Real
applications will require more complex and generic rules and partial automation.

The paper is organized as follows: section 2 recalls basic 7-calculus notation,
section 3 introduces a variant of the p-calculus adapted to the specification of 7-
processes, section 4 describes the model checker, and section 5 presents the proof
system. Finally research directions are mentioned in section 6.

2 Preliminaries on the m-calculus

We introduce some notation and some standard results on the 7-calculus. Let C'h
be a countable collection of channel names, say a, b, ... All free names should be

regarded as constants. Processes are specified by the following grammar:

p:=0 | a(b).p | ab.p | va.p |p +p |p | p | (recA(c—i).p)(g) | A(ad) | x
Remarks:

e In a(b).p and vb.p we assume that the name b is bound in p. Processes are
considered up to renaming of bound names. The resulting congruence is
denoted with =. We denote with fn(p) and bn(p) the free and bound names
occurring in p, respectively. All free names should be regarded as constants.

o Agent identifiers are ranged over by A, B,... In a well formed process all
agent identifiers are bound by rec. In the term (recA(d).p) we suppose that
all occurrences of agent identifiers in p are guarded (i.e. preceeded by a

prefix), and fn(p) C {ad}.

e =,y,... denote process variables. We denote with F'V(p) the process vari-
ables occurring free in the process p. Up to section 5, we assume that
processes do not contain process variables.

Actions are specified by the following grammar: ' o == 7 | ab| @b | a(b) | a(b).
Conventionally we set n(a) = fn(a) U bn(a) where:

fa(r) =0 fu(@®)) = fa(a(b)) = {a} fr(@b) = fn(ab) = {a, b}
bn(r) =0 bn(a(b)) = bn(a(b)) = {b} bn(ab) = bn(ab) =10

The labelled transition system (lts) follows an early instantiation schema and it
is described in figure 1, where we omit the symmetric version of the rules (sync),
(syncez), (comp), and (sum).

Definition 1 (bisimulation) Let Pr be the collection of (closed) processes. We
define an operator F : P(Pr x Pr) — P(Pr x Pr) as:

pF(S)q it Vp'Va (bn(a) N fa(q) = 0 and p = p')
implies ¢’ (¢ = ¢’ and p'S¢’) (and symmetrically)

A relation S is a bisimulation if S C F(S5). We define:
~={S|SCF(9} ~0= Pr x Pr = F(~F)
The following are well-known properties of bisimulation for the 7-calculus.

Proposition 1 1. Let n be an injective substitution on fn(p | q) then p ~ q iff
nmp~nq.

2. The operator F preserves fillered intersections, in particular ~= (oo, ~*.

!The action a(b) represents the input of a new name b on a channel a. This action is taken

a(b) /

as a derived action in standard accounts of the w-calculus. Namely one states: p — p' if p) p’
and b ¢ fn(p). We found it more convenient to introduce a(b) as a primitive action as it allows
for a symmetric and synthetic formulation of certain proof rules (cf. section 5).

(sync)

(sum)

(cong)

(out)

(out.y)

(syncey)

(comp)

; (rec)

[(recA(@).p)/A.b/alp = p/
(recA(a@).p)(b) = p'

Figure 1: Labelled transition system

3 An extended modal u-calculus

We introduce a Hennessy-Milner logic for the w-calculus and study its interpre-
tation. The logic includes least and greatest fixed points and a generalized box-
operator roughly saying that a co-finite collection of actions cannot happen. First
we need to fix some notation on actions.

o Let 3 vary over theset: B={a|aec ChlU{a|a e Ch}U{ab|a,bec Ch}.

o Let v vary over the co-finite subsets of B, that is v = {f,...,8,}° =
B\{/1,.... .} where n > 0 and ; € B. Given an action o we define its

projection pri(a) € B as follows:

prj(ab) = a prj(a(b)) =a prj(ab) =ab prj(alb)) =a

Given a process p we define the collection pact(p) € B of its projected
actions as follows:

pact(p) = {prj(a) |« # 7 and p = p'}

Observe that the set pact(p) is always finite. We also define the subject of
an input-output action as follows:

subj(ab) = subj(ab) = subj(a(b)) = subj(a(b)) = a

o We assume that the set of channels C'h is linearly ordered and that the
function fst returns the least channel in a (non-empty) set. We define:

Fout(p) ={ab|p =S p'}

Fin(p) ={ab|p “—b>_p’ and b € fn(p)}

Bout(p) = {a(b) | p ™3 p' and b= fst(Ch\fu(p))}

Bin(p) = {a(b) | p" p and b= fst(Ch\fu(p))}

7(p) ={rlp=7r}

act(p) = Fout(p)U Fin(p) U Bout(p) U Bin(p) U 7(p)
Observe that the set act(p) is finite.

Assume an infinite collection of formula variables X, Y, ... each with a specifed
arity ar(X) > 0. A tag of arity n is a set {a; = p; }ie; where @; € Ch™ and p; € Pr.
Tags are a technical device which plays an important role in the following proofs.
We denote tags with ¢,¢,... A tag t of arity n can be seen as a function in
Ch™ — P(Pr) by defining £(b) = {p | (b= p) € t}.

The functional space Ch™ — P(Pr) inherits from P(Pr) the order and the set
theoretic operations. In particular we have:

f<yg iff va(f(a)cg(a) (Ng)@ =f
(fug)a) = f(a)Ug(a) (f f

The space Ch"™ — P(Pr) is a complete lattice ordered by <. In particular mono-
tone functions over this space have a least fixed point (Ifp) and a greatest fixed
point (gfp). The following proposition generalizes to order 1 a remark by Kozen,
later exploited by Winskel in the definition of a model checker.

Proposition 2 Let F' be a monotone function over Ch™ — P(Pr). Then

(1) b=p<Up(F) iff b= p<FUp\fF\{B=p}))
(2) b=p<gfp(F) if b=p<Flgfp(\f.FfU{b= p}))
(3) b= p JlUp(AfF\{b= p})

(4) b=p < gfp(A[FfU{b= p})

PROOF. The interesting part of (1) is to prove the direction (=). Let I, for
¢ ordinal, be the 61" iterate of function F. Let 6, be the least ordinal such that
b= p < F%. Note that §, = §' 4 1, for some &’. Then we show that:

V8 < 6, F* < Ifp(Af.F f\{b= p})

By monotonicity it follows that: [% = [F(F*') < F(lfp()\fFf\{g = p})). (2)
follows by a dual argument. (3-4) are proven by unfolding the fixed point. O

Now we define the formulas of our logical language:

¢u=L|T|ond|oVe|la)s]|lale]|[ML|X@ (X (@), t.6)(B) (1)

Here o stands for either u, the lfp, or v, the gfp. ()¢ is a generic notation for
both (a)¢ and [a]¢. In (a(b))¢ and (@(b))¢ the name b is bound. Formulas are
considered up to alpha renaming. A formula is closed if it does not contain free
formula identifiers. The modal depth |¢| of a formula ¢ is an ordinal inductively
defined as follows:

Tl =]L=0 (6 A &) = |0V | = maz{|o], |4}
(@)él =146l Ib]LI=1
(o X(@).0)(B)] = w

Next we define a formula interpretation. Let Fide be the collection of formula
identifiers. An environment p is an element of HXeFide(Ch‘”(X) — P(Pr)), so
p(X) : Che™X) — P(Pr). The interpretation of a formula is given parametrically
w.r.t. an environment p in figure 2. In this context the condition “d fresh” means
that d is chosen such that d is neither in fn(p) or fn((a)¢) If ¢ has no free agent
identifiers then the interpretation is independent from the environment, and we
write = p: ¢ if p € [#]p, for some p. To claim that the interpretation actually
computes the least and greatest fixed points of the functionals M and N we have
to prove that M and N are monotone. This follows from the following proposition.

[L1p 9

[TIe = Pr
[A L]p = [olp N [¥]p
[¢V L]p = [eolp U [¥]p
N _JAplp =00 €ldlp} if bn(a)=10
Liedele - { (o1 p = pold/cly’ € [[d/b]6]p.d fresh} if bnfa) = {c}

[[a]o]p

{p|p=p implies p' € [¢]p} if bn(a)=10
= {p|p = p implies [d/c]p’ € [[d/b]¢]p,d fresh}
if bn(a) ={c}

[{B1, -, Bl = A{p | pact(p) S{B1,---, Bm}}

— —

[X(®)]p = p(X)(b)

[(uX (@), t.0)D]p = (N{f: Chw®) — P(Pr) | M(f) < f1)(B)
where M(f)(2) = [[¢/@)¢]plf/ X]\t(&)

[(vX(@),t.0)B)]p = (U{f: Ch") — P(Pr)| f < N(f)})(B)
where N(f)(@) = [[¢/@|¢lplf/ XU ()

Figure 2: Interpretation

Proposition 3 For any formula ¢, formula identifier X, and environment p, if

[<gin Che) — P(Pr) then [¢]plf/X] S [¢]plg/X].

PrOOF. By induction on ¢ size. Let us consider two interesting cases. If ¢ is a
formula identifier the hypothesis f < g applies. If ¢ is a least fixed point formula,
say (uY(d),t.9)(b), then it is enough to prove that M(h)(¢) < M'(h)(¢), where:

M(h)(e) = [le/alolplf/ X, /YN
M'(h)(e) = [le/alelplg/ X, h/YINL

This is proved by applying the inductive hypothesis on [¢/d]¢. O

=

Definition 2 Two (closed) processes p, ¢ are logically equivalent, and we write
p ~¢ ¢, if they cannot be distinguished by a (closed) formula. Formally:

p~cq iff Vo(Ep:o iff Eq:¢)
Proposition 4 If p ~ ¢ then p ~. q.

PRrROOF. Least and greatest fixed points can be expressed as infinite disjunctions
and conjunctions, respectively. Proceed then by induction on the structure of the
(infinitary) formula. O

Next, we show that there is a finite formula that characterizes a process up to
~F for k € w. To this end, for any process p and k € w we define a formula C*(p)
as follows. We set C°(p) = T and

CHip) = N\ (a)CH) A /(\) { }[a](V CHE) A pact(p)]L (2)
acact(p) a€act(p)U{r 2!

To prove that C*(p) characterizes p up to ~* we need to observe a peculiar property

of the labelled transition system (this property relates to the notion of active name

introduced in [MP95].)

Definition 3 The set Unobs(c, k) is composed of those processes such that no
sequence of transitions of length at most £ has ¢ as a free name. More precisely:

Unobs(c, k) ={q| (¢= B g >¢, h<kcdn(a),
a;, a not free input actions (¢ = 1,...,h))

implies ¢ ¢ fn(a)}
Lemma 1 If ¢ € Unobs(c, k) then ¢ ~* ve.q.

PRrROOF HINT. We relate the transitions of ¢ and ve.q. If ¢ plays a role in a labelled
reduction then we can observe a transition depending on ¢, hence contradicting

q € Unobs(c, k). O

Remark 1 The previous lemma fails if we allow matching in the calculus. For
instance p = a(b).(7.7 + [b = ¢].7) € Unobs(c,3) but p ~* ve.p does not hold.
A related example shows that theorem 1 fails in the presence of matching, more
precisely = ¢ : C¥(p) does not imply ¢ ~* p. On the other hand corollary 1 still
holds. It would be possible to extend the logic so as to capture the behaviour of
processes with matching. Roughly we need a modality that specifies the behaviour
of a process on a cofinite collection of input names. If s denotes a finite collection
of names then we would introduce modalities (a(b ¢ s))¢ and [a(b ¢ s)]¢ with the
following realizations:

pca(b g)6 I cp S pand e ¢ s and - [c/H]6)
Ep:la(bé s)|é ifVp,c(p=5p and ¢ ¢ s implies = p' : [c/b]d)

We refrain from going into this development because we want to keep the logic
simple and because it is debatable whether matching belongs to the w-calculus.

Lemma 2 If = q: C*(p) and c € fn(q)\fn(p) then ¢ € Unobs(c, k).

PROOF. By contradiction, if ¢ ¢ Unobs(c, k) then we have a sequence of transitions

g B g S such that h < k, ¢ ¢ n(;), ai, a0 not free input actions (i =
1,...,h) and ¢ € fa(a). Then we can find a sequence of transitions p =5 -~ 28 p,

such that = ¢ : C*"(p,). Since the transitions a; do not refer to ¢ it has to be
the case that ¢ ¢ fn(py). But then the formula [pact(p;)°]L forbids the action «
which depends on ¢, hence contradicting = g5 : C*~"(py). O

Theorem 1 For any process p and k € w: (1) = p: C*(p), and (2) = q: C*(p)
ifip~*q.

PROOF. Statement (1) and direction (<) of (2) are easily proven by induction
on k. To prove direction (=) of (2), suppose fn(q)\fn(p) = {¢}. By applying
lemma 2 we can conclude that vé.q ~* ¢. It is easy to show that = ¢ : C¥(p) iff
= vé.q : C*(p) (cf. proposition 4). Since ~* is transitive, we can now prove the
statement by induction on k, supposing that fn(q) C fn(p). O

Corollary 1 Let p,q be processes. Then: p~q iff p~rq.

PrOOF. By proposition 4, if p ~ ¢ then p ~, ¢. Vice versa, suppose p ~. q.
From proposition 1(1) we know that for each k € w, = p: C*(p). Hence for each
k€ w, | q: C¥p), which implies p ~* ¢, for each k € w. From theorem 1(2) we
conclude that p ~ g¢. a

4 Model checker

In figure 3 we define a proof system to derive judgments p : ¢, where F'V(p) =0
and ¢ is a closed formula. We write = p : ¢ if the judgment is provable in the
system. The rules follow quite closely the formula interpretation defined in figure
2, with the exception of fixed points where we exploit proposition 2.

9

p:¢ p:o

(M) — 7 (N
) S () L

() LELpi0 () L forsome p =
() ZAPE S D)) L henever - o

b=pet b=>pét p:[oX(@),tU{b= p}.¢/X,b/d)o

w) p: (vX(a@),t.0)(b) () p: (0 X(),1.0)(b)

Figure 3: Model checker

Proposition 5 (soundness) IfF p: ¢ then p € [¢].

PrOOF. The soundness of the rules concerning recursive formulas is proven by
applying proposition 2. For instance, suppose = p : [uX (@), tU{b = p}.¢/ X, b/d]¢

and b= p ¢ t. Apply proposition 2.1 with F()(b) = [[[g/&’]qﬁ]][f/X]\t(g) Then:

- -

= (uX(@),t.0)(b) iff = p: ifp(F)(b) .
iff = p o [[b/a@lo][ifp(Af-(Ff\b = p))/X]

Remark 2 1. Note that the following judgment cannot be proved:
p: (/LX(EL’),t.qﬁ)(g) whenever b = pEt

This is in accord with (3) in lemma 2. In the implementation of the model
checker judgments with this shape correspond to halting conditions.

2. The rule (o) expresses sufficient and necessary conditions, as exemplified in
(1-2) of lemma 2. This fact plays a crucial role in proving the completeness
of the model checker w.r.t. certain classes of processes. As a rule of thumb,
completeness means that we can bound the size of the proof of a judgment.
Technically, this amounts to show that a certain rewriting system terminates.

10

(=) rnm(p, (@)¢) = d bn(a) ={c} p:([d/c]a)[d/c]o
p:l(a)g

& /
for some p =N p

h 2 !
whenever p = p

ﬁ
3

2
=

=2

=&
]

=

’E\

©-

Figure 4: Optimized rules for the model checker

As a first step towards completeness we seek a better control on a-renaming
(rule (=)) and on the introduction of new free names (rules ((_)) and ([.])). To
this end we introduce a renaming function rnm defined as follows:

d if bu(a) = {e}. fsH(CR\(fn(p) U fu((a)6))) = d, d # ¢

() otherwise

iy (o) = {

The intuition is as follows: the only point in which we might need to rename in
order to apply a (real) rule is in a judgment p : (a)¢. This may happen if the
« contains a bound name which clashes with a name free in p. We also observe
that the bound name may become free in the premise of the rule. We should be
conservative in choosing this new name, for this reason in the definition of rnm
we pick up the first name which is not currently used. Next we try to bound
the collection of processes that might be considered in the proof. We need some
notation.

Definition 4 1. A normalization function N : Pr — Pr is a total recursive
function such that p ~ N(p), for all processes p, and fn(p) 2 fn(N(p)).

2. Given a normalization function N, we write p =y p’ if there exists p” such
that p = p” and N(p") = p'.

In practice the role of the normalization function is to collect some garbage
such as: restrictions on names that do not occur in the body of the process,

terminated processes, obviously deadlocked processes, ... We introduce in figure
4 the “optimized” version of the rules (=), ((-)) and ([.]).

Proposition 6 The optimized rules displayed in figure / are sound.

11

PROOF. The rule (=) is a particular case of the rule allowing for the renaming of
formulas. The manipulations operated by the normalization function in the rules
((_)) and ([.]) are sound because p ~ N(p) and theorem 1 applies. O

In proving completeness we concentrate on processes that have a finite reach-
ability property.

Definition 5 Let N be a normalization function, and let C' be a collection of
channels forming an initial segment of C'h. A process p has the (', N-finite reach-
ability property if (when ', N can be derived from the context we say FR-process
for a process that has the C', N-finite reachability property):

1. The following set is finite:
Red(p,C) ={p. | p=m g pn and n(a;) CC and n > 1} (3)

2. If ¢ € Red(p,C) then fn(q) C C.

The sense of the second condition is that whenever we need a fresh name for
performing a bound input/output we can find it in C.

Example 1 Consider processes with the shape: p = vey...enqr | - | gm)
where n > 0, m > 1, and parallel composition cannot occur in ¢;. This is a
generalization of the standard idea of considering products of regular processes.
Let the normalization function N transform all subterms of the shape ve.p’ into
p', whenever ¢ ¢ fn(p'). Let C be an initial segment of names containing all fn(p)
and exceeding the size of p in the sense that by rewriting p we always have less
than §C' distinct names. Then we can show that terms with the shape above have
the C,N-finite reachability property.

Lemma 3 Let p have the C, N-finite reachability property, and ¢ be a closed
formula. Then we can find an initial segment of channel names C' such that
fn(p) U fn(e),C C C7 satisfying the following property: all names free in a judg-
ment p' 1 ¢' occurring in a proof (in the optimized system) of the judgment p : ¢
belong to C".

PRrROOF. Given a formula ¢ one can bound the number of distinct names that can
occur in a formula ¢’ by unfolding and projecting on subformulas. Let this bound

be ny. Then we take §C7 = 4C + ny. O

Remark 3 In the hypotheses of the lemma 3 above it is possible to bound the
collection of step functions that can occur in a proof. Let n be the maximal arity of
a formula identifier occurring in ¢. Let C’ be the set of names obtained by lemma
3. Let §Red(p,C") be the cardinality of the set of processes that can be reached
by normalized reduction starting from the process p (cf. equation 3). Then there
can be at most bnstep(p, ¢, C’) step functions that occur in the proof, where:

bnstep(p, ¢,C") = ($(C™)) - §Red(p, (") (4)

12

Let us now outline an argument that shows that when developing a proof
bottom up in the hypotheses of lemma 3 we eventually stop. We observe that all
rules but (o) and (=) either entail termination or shrink the size of the formula to
be proved. We also note that the optimized rule (=) can be applied at most once
consecutively, hence any infinite backward development must include an infinite
number of applications of the rule (o). Now we remark that the rule (o) adds new
step functions to the tags. Since we know that the collection of reachable step
functions is finite (cf. equation 4) we might conjecture that this process eventually
terminates. We prove this in two steps:

1. We present a simple rewriting system whose strong normalization proof ex-
poses the kernel of the combinatorial problem.

2. We show termination of the bottom up proof development by exhibiting
a reduction preserving translation from judgments to terms of the simple
rewriting system.

Definition 6 We define a collection of o-terms as follows:
0:::X|1|0*0|00|0”X.0 (n € w)

A term 6 can be reduced according to the following rules (the rules are applied at

top level only).
o"X.0 — [0"X.0/X]0 o0 — 0
00 — 0 00 — ¢

Proposition 7 The rewriting system defined in 6 is strongly normalizing, that is
all reduction sequences terminate.

PRrROOF. Let SN be the collection of strongly normalizing o-terms. If § € SN let
d(6) be the lenght of the longest reduction sequence (this is well defined because
the reduction tree is finitely branching). We want to prove:

9,0/ € SN = [0'/X]0 €SN (5)

We prove (5) by induction on d(#). ? The only interesting case is when # has the
shape ¢"*1Y.0. Then we observe:

0//X)(0"+1Y-0)
 [on Y[/ X]0/Y)([0/ X]0)

oY [0/ X]0
[0/ X][o"Y.0/Y]0

We note that (c"t'Y.0) — [¢"Y.0/Y]0 € SN. Hence, we can apply the inductive
hypothesis on d([0"Y.0/Y]0), and we conclude that [’/ X][c"Y.0/Y]0 € SN.

?This proof mimicks proof techniques which show the strong normalization of the simply
typed and labelled A-calculus (cf. [VD80], chapter IV). The proof is elementary in the sense that
it can be formalized in Peano arithmetic, in particular no reducibility predicate is required.

13

Next we prove that all o-terms are strongly normalizing. We proceed by in-
duction on a relation > which is the least transitive relation such that:

c"X 0= 0"X.0 o"X0-0 ef -0
fx8 0 O -0

Clearly > is a well founded relation. Again the only interesting case is when the
term has the shape oY ™1.0. By the inductive hypothesis cY™.0 € SN,0 € SN,
and by (5) [ocY"™.0/Y]0 € SN. 0

Lemma 4 Consider a bottom up proof development starting from a root p : ¢,
where p is an FR-process. There is a translation (_) from formulas to o-terms
which preserves reductions, that is if p” : ¢" is a premise of p' : ¢ in the proof
development (by application of a rule different from (=), otherwise (¢') = (¢"))
then (¢') — (¢"). Consequentely, all paths in the proof tree having root p : ¢ are
finite.

PROOF. Let s = bnstep(p, ¢,C’) be as in equation 4. Then s exceeds the cardi-
nality of all tags that may occur by unfolding the fixed points. We associate a
o-term to a formula as follows:

=1 <

(@)9)) {
(0X(@),1.6)(8)) = oX07.(¢)

Suppose p”’ : ¢ is a premise of p’ : ¢’ in the proof developement (by application of
a rule different from (=)). We show (¢') — (¢”) by inspection of the proof rules.
The only interesting case is the (o) rule. Since in the translation we have picked
s = bnstep(p, ¢, C’) bigger than f we can compute:

>~

=
1
® —
—~ O
B~

*

=
=< B

< ~

=

Il
=~

*

=

—

(X (@), L.0)(B)) — XU ())
= [X O (0)/X)(6) = ([0X(@).1 U {F = p).o/ X, F/dls)

If there was an infinite path in the proof tree then there would be an infinite
reduction from the o-term (p : ¢), contradicting proposition 7. O

Theorem 2 The model checker is complete on FR-processes.

PrROOF. We show by induction on ¢ that |= p: ¢ iff a proof rule applies. Lemma
4 bounds the depth of a path in a bottom up proof development. Hence, if = p: ¢
by developing the proof bottom up we eventually obtain a proof of p: ¢. a

Moreover the logic is sufficiently expressive to characterize FR-processes up to
bisimulation equivalence.

14

Theorem 3 Let p be a processes having the C, N-finite reachability property.
Then there is a formula C(p) involving only greatest fixed points such that for
any process q, = q: C(p) iff ¢ ~ p.
PROOF. Suppose Red(p,C) = {p1,...,pn}. We consider the system of equations
X,(C)=¢;, for e =1,...,n, where:

=\ ()X;(C) A A L]V Xi(C) A [pact(pi)]L (6)
acact(p;) a€act(p)U{r}

[a}
Pi—Pj

When writing X;(C') we intend that the collection of names in C' has been ordered
in a list to form the parameters of the formula X;. For the sake of brevity we omit

to write these parameters in the following as all the formula variables depend on

the same list of parameters. °

1. We show that there are formulas 4, ..., 1, such that:

where equality can be proven simply by unfolding fixed points. We proceed

by induction on n. If n =1 let ¢ = vX7.¢1. Ifn > 1 let ¥, = vX,.0,.
Consider the system:

which by inductive hypothesis has a solution ¥y, ..., 1,1 satisfying:

vy = [/ X, -7¢n—1/Xn—1][¢;/Xn]¢i (t=1,...,nL1)
Then, taking ¢, = [t1/ X1, ..., a1/ X,_1]0), we observe that ¢, ... 1, is

a solution for the system (7).

2. Having obtained an explicit solution of the system (7) we can prove by
induction on k& € w that |= ¢ : ¢; implies ¢ ~* p; (cf. proof theorem 1).
Hence = ¢ : ¢; implies g ~ p;.

3. We can associate a monotone functional A\(Xy,..., X,).(¢1,...,¢,) to the
system (7). We can show that the solution t4,...,t, built in (1) is the
greatest fixed point of this functional.

4. Next we prove | p; : ;. From this we can derive that if ¢ ~ p; then
E ¢ : ¢, as bisimilar processes cannot be distinguished by a formula. To
this end we use a greatest fixed point reasoning principle applied to the
system of equations (7):

Ep:Xi (t=1,....n)implies Ep;:¢; (t=1,...,n)
EpovAMXy, . X)) (1, 00) i = (1=1,...,n)

a

3This way of deriving the characteristic formula is particularly honerous. In practice, if the
process p is specified by a system of parametric process equations using prefix and sum, then it
is possible to build a system of parametric formula equations having a comparable size.

15

5 Proof system

We develop a proof system supporting the compositional proof of process proper-
ties. Following [AD95, Dam95] basic judgments of such a proof system take the
form I' - p : ¢ where I' is a sequence of the form =1 : ¢1,...,2, : ¢,. Such a
judgment states properties ¢ of p relative to properties ¢; of its components, x;.
In the case of the w-calculus a main issue is how to cater for private names, in
particular name generation and scope extrusion. For instance one will wish to
verify properties of a process va.p(x) relative to a property, say 1, of x. In general
1 must be allowed to depend on a. Thus, the scope of a needs to be extended
to cover also . For this purpose we work instead with judgments of the form
I' =* p: ¢ where s is a finite set of restricted channel names whose scope extend
over I' and p.

Judgments. Let s range over finite sets of channels. Write s,a for s U {a}
and s L a for s\{a}, and if s = {a1,...,a,} then vs.p = vay...va,.p. A basic
judgment is an expression of the form

Ty iy, Ty b, FPp i) (8)
satisfying the properties:
1. All z; are distinct. The order of hypotheses in the context is irrelevant.
2. ¢¥;, 1 <12 <n, and 1 are closed.
3. FV(p) C{ay,. . a0}
4. fn()ns=0.

The judgment (8) is interpreted as follows:
For all p1,...,pn, if |Epi: o forall i (1 <o < n)then = vs.[p/Z]p: .

We write I' =° p: ¢ if ' =° p: o) is valid in this sense.

The proof system. In the following we present a proof system for deriving valid
judgments following [AD95, Dam95]. The rules are divided into three groups: one
depending on the logical structure of the formula (figure 5), one depending on both
formula structure and process structure (figures 6, 7, and 8), and finally a group of
ancillary rules including those that depend on the structure of process terms only
(figure 9). We omit symmetric rules for conjunction, disjunction, sum, and parallel
composition, in practice these operators should be regarded as commutative.

For the rules we suppose that the premises are well formed judgments, and
the conclusion judgment of each rule is relevant only if the judgment is well-
formed. The rules use the abbreviation a fresh. In the context of a single judgment

16

= Ix:1LFp:¢ T I'Hp:T

AL x:ypiFp:o AR I'Fp:o1r THE p:gs
Lot A FPpio IEp:d1 Ao

Vi Lz Fopio Lz Fopio Vh I'Fp:oy

Loty Vo FPpig IEp:g1 Vo
THY ¢ T,z 05 p: o
t
(est) IElg/elp:o
Figure 5: Logical rules
(0) ['H0:[a]d
(out!) I'Fp:g (out?) prj(a) #a

' 2 ab.p: (ab)¢ ' ab.p: [a]¢

(out!) I'F p:¢ b¢s (inh) I'F*[e/blp: ¢
@/ T E**@b.p: (a(b))o I'F*a(b).p: (ac)¢

' p:o

in? prj(a) # a -
(ln) I'Fs a(b)p [a]¢ (lnex) = Cl(b)p (a(b))¢ (b fresh)
(+() [p:(a)e (+0]) L p:laleg TFH q:[a]d

I'Fp+q:{a)e ['Fp+q:[a]e

Figure 6: Process structure rules (minus parallel composition)

17

oz, y b aly: ¢
Uya o (ab)yr,y (@) B2 |y (1)

(sync<>) Doy bay: o
& Uz {a(0))br,y : (@(b))a Boa |y (m)¢

(synct)

Lox:,y:taFaly:d nla)Ns=10
I (a)p,y e B x|y ()¢

(comp”) Fx:dpy:boFaly:o abds
Lee /g s (@b)aby, y s aba F20 x|y (a(b))o

(comp})

Iz cihig,y o "Sl’|y3¢
| R N TR TIPS "Sl’|y3¢
a7 nla)Ns=10
Doz soprg Afalidn g,y s han Allalbaa B2 [y o [af)

Doacprg,y o B x|y
Loz o,y b FPa |yt

] ST,y Yy,
(compez) a#T a,bg s

Uy by AJabler gy : aq A [abliban F5° 2 |y« [a(b)]

Fawiﬂbl,l,y:@/}ﬂ_swwiﬁ)
ety Fra |y
Dy s e |yt (Vab e i Ung)
(113)37?13@5%?2 |_5$|y3¢ (‘v’EbE’ny’yg)
)
)

(comp!)

82 8 8 8

(syncll)

3¢i4ay3¢is|_s’bx|y3¢ (Va ey U
Ty P ey (YaenUns
Lo cfy g B a fy [l

=

where, for ¢ € {1,2},

vi= i Al LA AC N (@l Alabll) AC A [@)]els Ala(0)]y];)

abeyruvs aeyUys

Figure 7: Process structure rules (parallel composition)

18

R . 2 ab¢ yoracs
(0) I'F20:[v]L (out”) ' ab.p:[y]L
~ 2 a¢yoracs ~ 2 ag¢yoracs
(outc,) L2 @bp: [v]L (in”) I'F?a(b).p:[y]L
Ly I piy]L TR g:[y]L -y L e]l T pyi[y]L
) I p+q:[]L (eomp™) PE pu|po 7]
Figure 8: Process structure rules, generalised box
[=%p:¢ I'F? [(recA(@).p)/A, bldlp: &
fresh =
W) Ty (e () FH (recA(@))(0) -
d ¢ [n((a(c))9)

(bt f) T,z : (a(c))o F z : (ad)[d/c]p

Lz:pF~ta:o
T,z :(ab) F*° 2 : (a(b))¢

(mon) (money)

prj(a) € 5
Faz:[y]LF 2 [a]e

(mon) (mon”)

Figure 9: Ancillary rules

19

I' =° p: ¢ this means that a does not occur freely in neither I', s, p, nor ¢, and in
the context of a rule /
F/ '_S p/ ¢/
FFsp:o
the abbreviation means that a is fresh for I' -* p : ¢.

We prove a completeness result to the effect that if I' F° p : ¢ is valid where
each formula in I' is a characteristic formula of some process to a depth at least
the modal depth of ¢, then I' F* p : ¢ is also provable. In order to achieve this,
certain relationships between free and bound input/output actions, must be made
explicit, see in particular rules (compgex), (compll), and (bt f) (btf stands for
bound to free).

At a first reading one may concentrate on the fragment including formulas
¢ =T | ON P | (a)¢ and processes p = 0 |Eb.p | a(b).p | va.p | (p | p) | T.
For proving the (weak) completeness of this fragment one just needs the following
14 rules: (T), (Az), (AR), (cut), (out"), (outl)), (in'), (inl)), (sync), (syncl)),
(comp?). (compy.,). (v), and (bL).

The precise formulation of the proof rules is open to a lot of variation. For
instance, it would be possible to be less explicit in our use of the cut-rule by
replacing the rules of figure 7 with rules of the form:

TH p:{a)g Toa:gF afq:¢ na)ns=10
I'Eoplg:(a)o

The soundness proof relies on the following observation.

Proposition 8 For all a not free inp or ¢, = p : ¢ if and only if |= [a/b]p : [a/b]o.

Note the following consequence of proposition 8: If @ does not occur in p or ¢
and b does not occur in ¢ then = p: ¢ if and only if |= [a/b]p : ¢. This allows us
to overcome some difficulties in the soundness proof.

Proposition 9 I[fT'F p: ¢ then T E° p: ¢.

PROOF. Let I' = x1 : ¢1,..., 2, : ¢, and let 6 be a I'-validating substitution, i.e.
a mapping with domain {x4,...,z,} such that = 6(x;): ¢; for each ¢ : 1 < < n.
We go through the rules on by one.

(cut). Assume |= ¢6 : ¢ and that whenever |= r : ¢ then |= vs.p([r/x]6) : ¢. Then
= vs.([¢8/2]p)é : ¢ and |= vs.([q/x]p)s.

(out'). Assume = vs.pé : ¢. It suffices to show | vs.(@b.p)é : (ab)¢. By well-
formedness we know that a,b ¢ s. But this is trivial.

(syncl)). Assume that whenever |= ¢, : ¢ and [= ¢y : b3 then |= vs.vb.gy | gz @ 6.
Let = r1 @ (a(b))yy and = ry @ (@(b))tpg. Then we find a fresh ¢ such that
el “9 ¢ and = ¢q : [¢/b]hq, and a fresh d such that r, i g2 and = qq : [d/b]1s.

20

Then = [b/clqr = 1, | [b/d]gy : 2, vs.ry | ro = vswb[b/clg | [b/d]gs, and
E vs.wb.[b/clgi | [b/d]gs : ¢ as desired.

(compl)). Assume that a,b € s, and that whenever = ¢ ;/)1 and = 2 : ¥

then |= vs.q1 | ¢z : ¢. Suppose that = ry : (@h)yy and |= g : 102, Then rq) ¢

such that = ¢; : ¥;. Then vs.wbry | ¢ @ ye. ¢1 | g2, and by the assumptions

E vs.q1 | g2 ¢, completing the case.

(v). For simplicity assume that n = 1, that 6(x1) = ¢, and that ¢ € s. Generalising
the proof is not hard. Assume = vs.va.[g/x1]p @ ¢. Since a is fresh it does not
occur freely in ¢1. Since = ¢ : ¢1 and a € fn(¢;) we can find some fresh b such
that | [b/alq : &1 too (proposition 8). Then | vs.wa.[b/alq/x1]p : ¢. Since
a & fn([b/alq) also = vs.[[b/a]q/x1]va.p : ¢. But since a does not occur in ¢ also
E [a/blvs.[[b/alq/x1]va.p : ¢, thus, since a & s, = vs.[q/x1|va.p : ¢ as desired.

(mon). Assume that whenever |= ¢ : ¢ then | vs.q: ¢. Assume that = r: ()¢

(the case for [a] is analogous). Let first o = ab. Then we find a ¢ such that r g
and |= ¢ : . Then | vs.q: ¢ by the assumptions. Moreover, since a,b ¢ s by the

well-formedness condition, vs.r L vs.q, so indeed = vs.r: (a)¢. The case for @b
is similar. Let then o = @(b). Either b is free in r or it is not (the easier case). So

assume b € fn(r). Since | r: (a)y also |= [¢/b]r : [¢/b]{a)t) where ¢ is fresh by
proposition 8. Note that c¢ ¢ fn(y). Then we ﬁnd a ¢ such that [¢/b]r) g and
E ¢ : 1. Then r) [b/c][d/b]q, so also vs.r) [b/c][d/blvs.q (assuming w.l.o.g.
that b & fn(s)). Now = vs.q: ¢ so |= [d/blvs.q : [d/b]¢ (proposition 8 again), and
then, since ¢ is not free in [d/b]¢ we obtain |= [b/c][d/blvs.q : [d]b]é, completing
the case.

(mone;). Assume that b Q 3 and that whenever |= ¢ : ¢ then |E vs.q: ¢. Assume
that |= ¢ : (@b)ip. Then ¢) q' for some ¢’ such that = ¢’ : 1. By well-formedness

b)

of the conclusion, a ¢ s. Then vs.vb.q =« vs.q'. By the assumption, E vs.q' : ¢.

But then we have shown that = vs.vb.q: (@(b))¢, as required.

The remaining cases are all patterned upon the above and left for the reader. O
We proceed to show completeness. The following lemma is important in the

latter case since it allows assumptions of the form z : C'*(q) to be exchanged for
substitutions by g.

Lemma b . Forall k € w, if ¢ ~* ¢, fori = 1,...,n, then vs.[q/Z]p ~*

vs.[¢[T]p.

2. Let || < ki, fori=1,....n. Then x1: C¥(q),..., 2, : C*(q,) E*p: ¢ if
and only if = vs [gufons- - ufalp 6.

Note that, given that |= ¢ : C*(q), 5.2 is an immediate consequence of 5.1, the
proof of which we omit.

21

Theorem 4 Let I' = zy : CM(q1),....2, : CF(q,). IfT E*p: ¢ and |6| < ki,
fori=1,...,n, then I'F° p: ¢.

PRrOOF. First observe that, because process terms are assumed to be guarded, it is

a routine matter to lift a proof of 4 for non-recursive processes to include recursion.
The proof proceeds by induction on the lexicographic order (|¢|, struct(p), struct(¢)).
Assume I' E* p @ ¢ and |¢| < k;, for ¢« = 1,...,n. We proceed by cases on
struct(o).

¢ = 1. Contradiction.
¢ = T. Use the rule T.

& = ¢1 A\ ¢a. We obtain I' E° p: ¢; for i = 1 and ¢ = 2. By the innermost ind.
hyp. (since |¢| has increased), we obtain I' =° p : ¢, for i = 1 and ¢ = 2. Then, by
Ar, ' p:o.

& = $1V . Observe that = vs.[q1/x1,. .., q./x,p: ¢. Then = vs. g /x1,. .. q0/,]p :
¢; for i = 1 or ¢« = 2. Then (by lemma 5.2), I' |=° p : ¢;, for that particular ¢.
Then the conclusion follows by Vg.

¢ = [y]L. We proceed by cases on struct(p).
o p=20: Fl—sp:gbby(()),

o p= a(zb).p’: If ' =% p: ¢ then either a € sora €. In any case ' F° p: ¢
by (in)
e p = ab.p’: The proof is similar to the previous case, except that (oﬁtQ) or

(oﬁtil,) are used dependent on whether b € s or not.

e p = va.p’: Suppose I' F* p: ¢. We can assume that « is not among the
names free in ¢1,...,q,. By 5.2, E vs.[¢1/x1,...,q./x,|va.p’ : ¢, and then
Evswva.lq /a1, ... qufza]p 6. Thus I' =% p' : ¢. By the second level ind.
hyp., I' 2% p' : ¢, and thus we are done by (v).

e p=p +p: U E p:dthen ' E° p;: ¢ fori=1and i = 2. By the
second level ind. hyp., I' F* p; : ¢, and then by (—T—[]) we are done.

p=p1|pe: Assume ' =% p: ¢. Then (sincer € v) ' E° p; : ¢ for i = 1 and
1 = 2, and by the second level ind. hyp. plus (cofnp[]) the result follows.

p = x;: Note that I' =° p: [y]L iff & vs.q; : [y]L. Since, by the convention,
s N~ = 0 this is the case if and only if = ¢; : [y]L, and then T' +° p : [y] L
by (Ar) and (mon).

¢ = (a)¢'. We proceed by cases on struct(p).

e p = 0: Contradiction.

22

p=a(b).p: T E°p: ¢ then o must have one of the form ac or a(c) where
a & s. Suppose first &« = ac. Then I' E?* [¢/b]p’ : ¢’ so by the outer ind. hyp.,
[E5 [e/blp’ : & giving T'F* p: ¢ by (in'). Second, if @ = a(b) (assuming
b & fn(¢), otherwise alpha-conversion is needed) the result is obtained by

(inc,)-

p = ab.p’: o must have one of the forms @b or @(b) (again appealing to alpha-
conversion, if needed). In the first case the result is obtained by (out!) and
the second by (out?,).

p = va.p’: Use (v) and the second level ind. hyp..

p = p1 + pa: Use lemma 5.2, (+0), and the second level ind. hyp..

p=mp | p: T E° p: ¢ then |= vs.gi/x1,. o quf/xn](pr | p2) @ ()@
« has one of the forms (1) 7, (2) @b, (3) @(b), (4) ab, or (5) a(b). Assume

—

case (1). Either (leaving out symmetrical subcases) (i) [7/Z]p1 = P} and

RPN R ab
= vt | [d/ps : ¢ or (ii) for some a,b, [§/Fp 3 ph, [§/T]p2 > ph. and
a(b)
= vsph | ph s &, or (iii) for some a,b, [7/7p "2 g, [3/7p " ph, and
E vs.wbp) | ph: ¢'. We take each subcase in turn.

(i) By lemma 5.2 and the second level ind. hyp. we obtain I' F p; :

(T)C*=1(p}), and (by the outer ind. hyp.) zo : C*71(p}), z1 : C¥1(q1),. ..,

Ck"(qn) F* 2o | p2 : ¢'. Then, using (comp?), 2o <T>Ck_1(p/1),$1 :
Ch(qr),...,xn + CF(q,) F* 29 | p2 : &, and then by (cut), z; :
Co(qr), ... xn : CF(q,) F° p1 | p2 1 ¢ as desired.

(ii) By lemma 5.2 and the second level ind. hyp. again we obtain I' -
p1 2 @)C*L(p)), T F py i (ab)C*1(p)), and (by the outer ind. hyp.)
z o CFYph),y : C*Yph),T +* x|y : ¢'. Then, by (sync) and (cut),
PEp|pao

(iii) The proof is analogous, except that (syncl)) is used in place of (sync).

For case (2), (4) and (5) the proof is analogous to subcase (i) above. Finally,
for case (3), assume that o = @(b). Either (again leaving out symmetrical
subcases) (i) [/@p1 ¥ pl and | va.p; | [3/&)pa: ' or (i) b € s, [/7ps
py and | vs\{b}.p| | [¢/Z]p2 : ¢'. In subcase (i) the proof uses (comp?) and
in subcase (ii) the proof uses (compy_,).

p = x;: We obtain from lemma 5.2 and the assumptions that = vs.q; : (a)¢'.
Suppose first a = 7. In this case C*(¢;) contains a conjunct (7)C*~1(q!)
where ¢; = ¢! and |= vs.q! : ¢'. By the outer ind. hyp., 1 : C*¥1(q1), ..., 2;
Ck=t(gh), ...z, + C*(q,) F* 2; : ¢ and then by (mon) and Ap, z; :
Co(qr)y. .,z » CF(q), ... 20 C*(q,) F* x; + ¢. The cases for a = ab

and a = a(b) are similar. Assume that o = @(b). There are two subcases:

23

T, -

Either (i) ¢ 0 q: and |= vs.ql : ¢/, or else (ii) b € s, ¢ a g/, and =

vs\{b}.¢) : ¢'. Subcase (i) follows the previous case. For subcase (ii) we
obtain that z1 : C*(q),...,z;: C%7Y(q)),..., 2, : C*(g,) F*=" 2; : ¢/, and
then by (mon), x1: C¥(q1), ...,z CF(q), .. an : CFn(q,) F* 2t (a)¢’
as desired. Finally assume that o = ab. We have ¢; b ¢l and E vs.ql: ¢ 1f
b € fn(g) then C*(q;) contains the conjunct (ab)C*~1(q!), and T F* p: ¢
follows by the ind. hyp. and (mon). If, on the other hand, b &€ fn(g;) then
C*(g;) contains a conjunct of the form (a(c))C*~1([c/bl¢!). Then we can
use the ind. hyp. and (mon) along with (btf) to conclude that I' F* p : ¢,
completing the case.

¢ = [a]¢. We proceed by cases on struct(p).

e p=0:TFp:o¢by(0).
e p=a(b).p: If prjy(a) # a then T F* p : ¢ by (in?), and if prj(a) = a the

proof follows the pattern of the diamond case.

The cases for p = ab.p’, p = va.p', p = py + p2, p = x; follow as in the
diamond case.

p = p1 | pa: We consider only the case for @« = 7. The other cases are
simpler and left as exercises. Let p} = [qi/21,...,q./20]p;, J € {1,2}.
Since = vs.(p) | ph) @ [7]¢' whenever p| | pf, = p” then | p” : ¢ and

" has the shape (vb.)p] | py where the vb is optional. By the outermost
md hyp. we find for each such p” formulas ¢} (p”) and ¢4(p”) such that

v O (p"),y2 s 95(p") B (vb)y [y 2 ¢ Define now

1= N{oy(py | py) | ph = vl
o= [pact(pl) JL
%/’1,1 = \/{451 | pz | p1 = p'{}

o= VIAL
o= VIAL
OTL) = VAN b | o) [, "D pty |9,
W) = VAN by | o) [y ™ ply | S }

ab ab
2Py = phy P =}
ab ab
5) | Pl —>p2} | —>p’1’}

(P
(P
(
(

and define symmetrically 2, 72, etc. Define then <%, j € {1,2} as in rule
(syncl). We need to show yy : ¢, ys : 004 B y1 | y2 1 [T, Since we have
constructed 1} in the right shape, (syncl) is immediately applicable. Notice

then that I' F? p; : +, for all conjuncts ¢ of ¥, g € {1,2}. Consequently,
using (cut), I'F° p ¢, and the case is complete. O

24

6 Conclusion

This paper is a step towards the definition of automatic or interactive tools for the

verification of properties of systems formalized in the w-calculus and described by

means of a modal p-calculus. We intend to pursue this work in two directions:

o To study efficient implementation strategies for the model checker. In partic-

ular, it remains to be seen if it is possible to generate the labelled transition
system of the process independently from the formula. Recent work on the
problem of checking bisimilarity might be of interest here [MP95].

o To extend the compositional proof system to recursive properties by adding
rules of discharge in the style of the model checker termination conditions.
Such an extension was presented in [Dam95] for CCS, and in [Dam96] this
work was extended to the m-calculus and a modal logic which is related to

the logic considered in the present paper.

References

[AD95]

[ALT95]

[AP94]

[ASW94]

[Dam93]

[Dam95]

[Dam96]

R. Amadio and M. Dam. Reasoning about higher-order processes. In Proc.
CAAP 95, Aarhus. SLNCS 915, 1995. Preliminary version appeared as SICS
RR 94-18, available at http://wwwi3s.unice.fr/~amadio/.

R. Amadio, L. Leth, and B. Thomsen. From a concurrent A-calculus to
the w-calculus. In Proc. Foundations of Computation Theory 95, Dresden.
SLNCS 965, 1995. Expanded version appeared as ECRC-TR-95-18, available
at http://wwwil3s.unice.fr/~amadio/.

R. Amadio and S. Prasad. Localities and Failures (Extended Summary).
In P S Thiagarajan, editor, Proceedings of 14" FST and TCS Confer-
ence, FST-TCS°94, volume 880 of SLNCYS, pages 205-216. Springer-Verlag,
1994. Preliminary version appeared as ECRC-TR-94-18, Munich, available
at http://wwwil3s.unice.fr/~amadio/.

H. Andersen, C. Stirling, and G. Winskel. A compositional proof system for
the modal p-calculus. In Proc. LICS’94, 1994.

M. Dam. Model checking mobile processes. In Proc. CONCUR’93, Lecture
Notes in Computer Science, 715:22-36, 1993. Full version in SICS report
RR94:1, 1994.

M. Dam. Compositional proof systems for model checking infinite state pro-
cesses. In Proc. CONCUR’95, Lecture Notes in Computer Science, 962:12-26,
1995.

M. Dam. On the verification of mobile process networks. Submitted for
publication, 1996.

25

[HMS85]

[Koz83]

[Mil92]

[MP95]

[MPW92]

[MPW93]

[OP92]

[Ora94]

[San92]

[San94]

[Sti87]

[SWO1]

[VDS0]

[Wal94]

[Wing9]

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the ACM, 32:137-162, 1985.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer
Science, 27:333-354, 1983.

R. Milner. Functions as processes. Mathematical Structures in Computer
Science, 2:119-141, 1992.

U. Montanari and M. Pistore. Checking bisimilarity for finitary w-calculus.

In CONCUR, SLNCS, 1995.

R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Process, Parts
1-2. Information and Computation, 100(1):1-77, 1992.

R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes.
Theoretical Computer Science, 114:149-171, 1993.

F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal
Aspects of Computing, pages 497-543, 1992.

F. Orava. On the Formal Analysis of Telecommunication Protocols. PhD
thesis, Dept. of Computer Systems, Uppsala University and Swedish Institute
of Computer Science, 1994.

D. Sangiorgi. Fzpressing mobility in process algebras: first-order and higher
order paradigms. PhD thesis, University of Edinburgh, September 1992.

D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile
processes. In Proceedings of TACS 94. Springer-Verlag, 1994.

C. Stirling. Modal logics for communicating systems. Theoretical Computer
Science, 49:311-347, 1987.

C. Stirling and D. Walker. Local model checking in the modal mu-calculus.
Theoretical Computer Science, 89:161-177, 1991.

D. Van Daalen. The language theory of Automath. PhD thesis, Technological
University of Eindhoven, 1980. PhD thesis.

D. Walker. Objects in the w-calculus. Information and Computation, 1994.
(To appear).

G. Winskel. Model checking the modal v-calculus. Springer Lecture Notes in
Computer Science, 372, 1989.

26

